WO2018062048A1 - 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品 - Google Patents

真空断熱材用外包材、真空断熱材、および真空断熱材付き物品 Download PDF

Info

Publication number
WO2018062048A1
WO2018062048A1 PCT/JP2017/034360 JP2017034360W WO2018062048A1 WO 2018062048 A1 WO2018062048 A1 WO 2018062048A1 JP 2017034360 W JP2017034360 W JP 2017034360W WO 2018062048 A1 WO2018062048 A1 WO 2018062048A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer packaging
heat insulating
film
packaging material
insulating material
Prior art date
Application number
PCT/JP2017/034360
Other languages
English (en)
French (fr)
Inventor
琢 棟田
将博 今井
結香 立川
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US16/335,827 priority Critical patent/US10723530B2/en
Priority to SI201730755T priority patent/SI3521681T1/sl
Priority to CN201780058275.2A priority patent/CN109790952B/zh
Priority to EP17856002.5A priority patent/EP3521681B1/en
Publication of WO2018062048A1 publication Critical patent/WO2018062048A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/02Bricks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present disclosure relates to an outer packaging material for a vacuum heat insulating material, a vacuum heat insulating material, and an article with a vacuum heat insulating material.
  • the vacuum heat insulating material has a core material and an outer packaging material in which the core material is enclosed.
  • the inside of the bag body constituted by the outer packaging material is held in a vacuum state in which the core material is disposed and the pressure is lower than the atmospheric pressure. Since heat convection inside the bag is suppressed, the vacuum heat insulating material can exhibit good heat insulating performance.
  • the outer packaging material constituting the vacuum heat insulating material requires a gas barrier property for suppressing the passage of gas and a heat welding property for forming a bag body. Is done. Therefore, the outer packaging material for a vacuum heat insulating material is generally composed of a gas barrier film and a heat-weldable film (for example, Patent Documents 1 to 3).
  • Patent Documents 1 to 3 disclose that the outer packaging material may be bent when the vacuum heat insulating material is manufactured or used. Even if the outer packaging material for a vacuum heat insulating material is bent, it is desirable that defects such as minute cracks are less likely to occur. Even if vacuum insulation materials with minute defects in the outer packaging material show the same level of insulation performance as the one without them in the initial state, the deterioration of the insulation performance is larger during use. It is to become.
  • the present disclosure provides an outer packaging material for a vacuum heat insulating material capable of producing a vacuum heat insulating material capable of maintaining good heat insulating performance, and provides a vacuum heat insulating material and an article with a vacuum heat insulating material capable of maintaining good heat insulating performance. Is an issue.
  • the present disclosure provides a vacuum heat insulating outer packaging material in which a heat-weldable film and a gas barrier film are arranged in this order, and the tensile elastic modulus of the vacuum heat insulating outer packaging material And the cube of the thickness of the outer packaging material for vacuum heat insulating material is 3.0 MPa ⁇ mm 3 or less, and the indentation elastic modulus of the heat weldable film is 0.8 GPa or more.
  • the present disclosure is a vacuum heat insulating material having a core material and an outer packaging material for vacuum heat insulating material in which the core material is enclosed, and the outer packaging material for vacuum heat insulating material is the outer packaging material for vacuum heat insulating material described above. Provide vacuum insulation.
  • the present disclosure is an article with a vacuum heat insulating material including an article having a heat insulating region and a vacuum heat insulating material, wherein the vacuum heat insulating material is a core material, and an outer packaging material for a vacuum heat insulating material in which the core material is enclosed.
  • the outer packaging material for a vacuum heat insulating material is the above-described outer packaging material for a vacuum heat insulating material.
  • an outer packaging material for a vacuum heat insulating material capable of producing a vacuum heat insulating material capable of maintaining good heat insulating performance.
  • goods with a vacuum heat insulating material can be provided.
  • the outer packaging material for vacuum heat insulating material may be abbreviated as “the outer packaging material”.
  • the outer packaging material when the vacuum heat insulating material is manufactured, a position close to the inside of the vacuum heat insulating material may be referred to as “the inner side of the outer packaging material”, and a far position may be referred to as “the outer side of the outer packing material”.
  • the vacuum heat insulation outer packaging material of the present disclosure is a vacuum heat insulation outer packaging material in which a heat-weldable film and a gas barrier film are arranged in this order.
  • the product of the elastic modulus and the cube of the thickness of the outer packaging material for vacuum heat insulating material is 3.0 MPa ⁇ mm 3 or less, and the indentation elastic modulus of the heat-weldable film is 0.8 GPa or more.
  • a function represented by the product of the tensile elastic modulus of the vacuum heat insulating material envelope and the cube of the thickness of the vacuum heat insulating material may be referred to as “function M”.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of an outer packaging material for a vacuum heat insulating material according to the present disclosure.
  • a heat-weldable film 1, a gas barrier film 2 and a protective film 3 are arranged in this order using an adhesive 4, and the value of the function M is 3.0 MPa ⁇ and in mm 3 or less, the indentation modulus of the heat-weldable film is not less than 0.8 GPa.
  • FIG. 2 is a schematic cross-sectional view showing an example of a vacuum heat insulating material manufactured using the outer packaging material of the present disclosure.
  • the vacuum heat insulating material 20 in FIG. 2 includes a core material 11 and an outer packaging material 10 in which the core material 11 is enclosed.
  • the outer packaging material 10 is formed into a bag by joining the inner sides of the outer packaging material 10 at the end 12.
  • a core material 11 is disposed inside the bag body constituted by the outer packaging material 10 and is maintained in a vacuum state in which the pressure is lower than the atmospheric pressure. Bending that is a portion where the outer packaging material 10 is bent at the base portion of the end portion 12 of the outer packaging material 10 on the core material 11 side or the corner portion of the outer packaging material 10 where the outer packaging material 10 covers the corner of the core material 11. Part 13 exists. Since the bending portion 13 is subjected to tensile stress and / or compressive stress, minute defects are likely to occur.
  • FIG. 3 is an explanatory diagram illustrating a usage state of a vacuum heat insulating material manufactured using the outer packaging material of the present disclosure.
  • the plurality of vacuum heat insulating materials 20 are arranged side by side, and the end portion 12 is bent to reduce the area occupied by the end portion 12 having low heat insulating performance.
  • the end portion 12 has a bent portion 13 in which minute defects are likely to occur.
  • the outer packaging material of the present disclosure provides a vacuum heat insulating material capable of maintaining good heat insulating performance because defects such as minute cracks are unlikely to occur in the gas barrier film even if there is a bent portion such as the bent portion 13. Can do.
  • the outer packaging material of the present disclosure can suppress the occurrence of minute cracks particularly in the folded portion of the outer packaging material by setting the value of the function M to 3.0 MPa ⁇ mm 3 or less. The reason can be inferred as follows.
  • an object has a characteristic of tensile elastic modulus E, a shape of which is a rectangular parallelepiped having a width b and a thickness h, and a position where stress F is applied is a position at a distance L from an end supporting a rectangular object.
  • M Eh 3
  • the deformation amount v is inversely proportional to the function M.
  • the value of the function M is an index of the softness of the outer packaging material. Therefore, the outer packaging material in which the value of the function M is equal to or less than a predetermined value has more than a predetermined flexibility. Similarly, it can be said that the value of the function M is an index of the hardness of the outer packaging material, and the outer packaging material having the function M value equal to or larger than a predetermined value has a rigidity higher than a predetermined value. .
  • a minute crack in the gas barrier film is considered to occur when a strong stress is applied to a portion where the strength of the gas barrier film is lowered due to the presence of a minute dent or a minute foreign material, for example.
  • the value of the function M exceeds a predetermined value and the outer packaging material is hard, the outer packaging material cannot be bent unless a strong stress is applied, and a crack is easily generated in the gas barrier film due to the strong stress.
  • the value of the function M is equal to or less than a predetermined value and the outer packaging material is soft, the outer packaging material can be bent with a small stress, so that the stress applied to the gas barrier film is small and cracks are not easily generated.
  • the value of the function M is equal to or less than a predetermined value and the outer packaging material is soft, stress is dispersed at a plurality of locations and bending occurs at many locations.
  • the number of the bent portions formed in is larger than that of the function M having a large value.
  • FIG. 4 when the number of bent portions 13a in the bent portion 13 is large (FIG. 4 (b)) as compared to the case where the bent portions 13a in the bent portion 13 are small (FIG. 4 (a)), respectively. Since the bending angle ⁇ at the bent portion 13a becomes smaller, the stress applied to the gas barrier film at each bent portion becomes smaller and the generation of cracks is suppressed.
  • the outer packaging material of the present disclosure has a value of the function M of 3.0 MPa ⁇ mm 3 or less and an indentation elastic modulus of the heat-weldable film of 0.8 GPa or more, particularly at a bent portion of the outer packaging material.
  • the generation of minute cracks can be suppressed. The reason can be inferred as follows.
  • the gas barrier film As the gas barrier film, a material having a relatively high indentation elastic modulus is often used with a constant thickness in order to ensure a certain gas barrier property.
  • the outer packaging material having such a gas barrier film When the outer packaging material having such a gas barrier film is bent, it is considered that relatively high stress is applied to the gas barrier film among the stresses applied to the outer packaging material, and cracks of the gas barrier film are likely to occur. Therefore, by using a heat-weldable film having an indentation elastic modulus of 0.8 GPa or more, the stress applied to the gas barrier film of the outer packaging material is dispersed in the heat-weldable film, and the stress applied to the gas barrier film is relatively Can be small.
  • the outer packaging material of the present disclosure is such that the indentation elastic modulus of the heat-weldable film is 0.8 GPa or more while the value of the function M is 3.0 MPa ⁇ mm 3 or less, so that the outer packaging material is bent. It is assumed that the occurrence of cracks can be suppressed.
  • the indentation elastic modulus of the heat-weldable film is 0.8 GPa or more, which is more useful when a protective film is disposed on the opposite side of the gas barrier film from the heat-weldable film. I can guess that there is.
  • a material having a relatively high indentation elastic modulus is often used in order to ensure resistance to external force.
  • the outer packaging material is folded, if the indentation elastic modulus difference between the inner and outer packaging materials is too large, the balance of stress will be lost on the inner and outer packaging materials, and the gas barrier film It is thought that cracks are likely to occur.
  • the stress balance is adjusted on the inside and outside of the outer packaging material. It is presumed that the stress applied to the outer packaging material can be dispersed to suppress the occurrence of cracks in the folded portion of the outer packaging material.
  • the outer packaging material of the present disclosure is a vacuum heat insulating material outer packaging material in which a heat-weldable film and a gas barrier film are arranged in this order, and the tensile elastic modulus of the vacuum heat insulating material outer packaging material and the vacuum heat insulating material outer packaging material
  • the product of the thickness and the cube of the thickness is 3.0 MPa ⁇ mm 3 or less, and the indentation elastic modulus of the heat-weldable film is 0.8 GPa or more.
  • Characteristics of vacuum insulation outer packaging material The value of the function M of the vacuum insulation outer packaging material is 3.0 MPa ⁇ mm 3 or less. It is possible to suppress the generation of minute cracks at the folded portion of the outer packaging material. Moreover, since the outer packaging material is highly flexible, it is easy to manufacture and use a vacuum heat insulating material such as an operation of bending an end portion.
  • the value of the function M of the outer packaging material for vacuum heat insulating material is not particularly limited, but can be, for example, 0.5 MPa ⁇ mm 3 or more, 0.7 MPa ⁇ mm 3 or more, or 0.8 MPa ⁇ mm 3 or more. well, may be at 0.9MPa ⁇ mm 3 or more, may be a 1.0MPa ⁇ mm 3 or more, may be a 1.1MPa ⁇ mm 3 or more, may be a 1.4MPa ⁇ mm 3 or more, even in 1.5MPa ⁇ mm 3 or more Good. Moreover, if the function M of the outer packaging material for a vacuum heat insulating material is 3.0 MPa ⁇ mm 3 or less, a more preferable upper limit can be set.
  • the function M of the vacuum heat insulating material for outer material may also be 2.8 MPa ⁇ mm 3 or less, may also be 2.5 MPa ⁇ mm 3 or less, even 2.0 MPa ⁇ mm 3 or less It may be 1.9 MPa ⁇ mm 3 or less. Therefore, the function M of the outer packaging material for a vacuum heat insulating material can be set to a range of an arbitrary combination of an upper limit and a lower limit in consideration of the above-described effects, for example, 0.5 MPa ⁇ mm 3 or more and 3.0 MPa ⁇ mm.
  • the tensile elastic modulus of the outer packaging material is not particularly limited as long as the value of the function M can be within a predetermined range, but can be, for example, 5.0 GPa or less, or 4.0 GPa or less, It may be 3.5 GPa or less, for example, 1.0 GPa or more, 1.2 GPa or more, or 1.5 GPa or more.
  • the tensile elastic modulus of the outer packaging material can be adjusted according to the type and number of each film and adhesive constituting the outer packaging material.
  • the tensile modulus of elasticity of the film or adhesive varies depending on the materials and blending ratios of the main component and subcomponent, or the production conditions such as film processing.
  • the tensile modulus is measured in accordance with JIS K7161-1: 2014 (Plastics-Determination of tensile properties-Part 1: General rules), and the outer packaging material is cut into a rectangle with a width of 15 mm. After sampling, a tensile tester is used to measure the tensile elastic modulus under the conditions that the distance between chucks is 100 mm, the tensile speed is 100 mm / min, and the reserve force is used. The measurement environment is 23 ° C. and humidity 55%.
  • the length of the sample is determined within a range in which a gripping tool is attached so that the length of the sample coincides with the axis of the testing machine and the gripping portion does not shift during measurement, and is, for example, about 120 mm.
  • the tensile tester is preferably Instron 5565 (Instron Japan).
  • the reserve force is, for example, the stress as ⁇ 0 and the elastic modulus as Et (if the appropriate elastic modulus or stress for the reserve force is unknown, test in advance to obtain the predicted value of the elastic modulus or stress. ( Et / 10000) ⁇ ⁇ 0 ⁇ (E t / 3000).
  • At least five samples are measured, and the average of the measured values is taken as the value of the tensile modulus of the condition.
  • the value of a tensile elasticity modulus may change with directions in an outer packaging material surface, use of an in-plane average value is preferable.
  • the average of the values of the eight conditions obtained by changing the condition in the in-plane direction of the outer packaging material by approximately 22.5 degrees can be regarded as the in-plane average value.
  • the thickness of the outer packaging material is not particularly limited as long as the value of the function M can be within a predetermined range, but can be, for example, 200 ⁇ m or less, may be 150 ⁇ m or less, and, for example, 30 ⁇ m. It can be set to the above, and may be 50 ⁇ m or more.
  • the heat-weldable film is arranged inside the outer packaging material than the gas barrier film, and is usually arranged most inside the outer packaging material in many cases. When the vacuum heat insulating material is manufactured, the heat-weldable films are heat-welded so that the outer packaging materials are joined.
  • the indentation elastic modulus of the heat-weldable film is 0.8 GPa or more. It is possible to suppress the generation of minute cracks at the folded portion of the outer packaging material. In order to further suppress the generation of minute cracks, the indentation elastic modulus of the heat-weldable film may be 1.3 GPa or more. Further, the indentation elastic modulus of the heat-weldable film may be 10 GPa or less, or 5 GPa or less. Normally, the heat-weldable film is disposed on the innermost side of the outer packaging material, so the inner surface of the exterior material corresponds to the surface of the heat-weldable film. Therefore, the indentation elastic modulus of the heat-weldable film is obtained by measuring the inner surface of the exterior material or the cross section of the exterior material.
  • the indentation elastic modulus of the heat-weldable film is 0.8 GPa or more, a more preferable lower limit can be set.
  • the indentation elastic modulus of the heat-weldable film may be 0.9 GPa or more, 1.0 GPa or more, 1.7 GPa or more, or 2.1 GPa or more. Or 2.5 GPa or more, or 2.7 GPa or more.
  • the upper limit of the indentation elastic modulus of the film which can be heat-welded is not specifically limited.
  • the indentation elastic modulus of the heat weldable film may be 10 GPa or less, 7.0 GPa or less, 5.0 GPa or less, or 3.0 GPa or less. .
  • the indentation elastic modulus of the heat-weldable film can be in a range of any combination of an upper limit and a lower limit in consideration of the above-described effects, for example, a range of 0.8 GPa to 10 GPa, 0.8 GPa
  • the indentation elastic modulus is measured according to ISO 14577, with a Vickers indenter (a square pyramid diamond indenter with a face angle of 136 °) in an environment of about 23 ° C and about 60% RH on the sample cross section or surface.
  • a method of measuring indentation elastic modulus using an ultra-micro load hardness tester is used. The measurement is performed at an indentation speed of 0.1 ⁇ m / second, an indentation depth of 2 ⁇ m, a holding time of 5 seconds, and an extraction speed of 0.1 ⁇ m / second.
  • the micro hardness tester is preferably Picodenter HM500 (Fischer Instruments).
  • the average of the measured values is taken as the value of the indentation elastic modulus of the condition.
  • the outer periphery of the sample is fixed by fixing with a cured resin adhesive, the fixed sample is cut in the thickness direction with a diamond knife, and the exposed cross section of the sample is measured.
  • the surface of the sample is fixed to a flat glass plate having a thickness of 1.1 mm with a cured resin adhesive, and the surface of the sample is measured.
  • the material of the main component of the heat-weldable film can be melted and fused by heating, for example, and for example, a thermoplastic resin or a heat-meltable resin can be used.
  • a thermoplastic resin or a heat-meltable resin can be used.
  • polypropylene such as unstretched polypropylene (CPP), polyolefin resin such as cyclopolyolefin, polyester resin such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyacetic acid Vinyl resins, polyvinyl chloride resins, poly (meth) acrylic resins, urethane resins, polyamide resins such as nylon, polyvinyl alcohol (PVA), polyvinyl alcohol such as ethylene-vinyl alcohol copolymer (EVOH), etc.
  • CPP unstretched polypropylene
  • polyolefin resin such as cyclopolyolefin
  • polyester resin such as
  • a polyolefin resin of cyclopolyolefin, and a polyester resin of polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate can be used.
  • an unstretched film can be used as the heat-weldable film.
  • the heat-weldable film may contain other materials such as an antiblocking agent, a lubricant, a flame retardant, and a filler in addition to the above-described resin.
  • the melting temperature of the heat-weldable film is not particularly limited, in order to increase the heat-weldability, for example, it can be 80 ° C. or higher, may be 100 ° C. or higher, and can be 300 ° C. or lower. It may be 250 ° C. or lower.
  • the measurement of (Tm) is based on JIS K7121: 2012 (plastic transition temperature measurement method), the DSC curve is measured using a differential scanning calorimetry (DSC) apparatus, and the melting temperature is measured. Is used. About 10 mg of sample was collected, placed in an aluminum container, and attached to the apparatus. The DSC curve is measured by increasing the temperature from a starting temperature of 20 ° C. to 250 ° C. at a heating rate of 10 ° C./min, holding at 250 ° C. for 10 minutes, and decreasing the temperature from 250 ° C. to 20 ° C. at a cooling rate of 10 ° C./min. Do it. The melting temperature is determined from the DSC curve at the time of temperature increase.
  • the DSC device is preferably DSC204 (manufactured by NETZSCH).
  • the thickness of the heat-weldable film is not particularly limited, but can be set to, for example, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, or 100 ⁇ m or less in order to improve heat weldability. 90 ⁇ m or less, or 80 ⁇ m or less.
  • Gas barrier film is arranged outside the outer packaging material than the heat-weldable film, and suppresses gas from entering the inside of the vacuum heat insulating material as a barrier for gases such as oxygen and water vapor. .
  • gas barrier film examples include a gas barrier film having a metal foil and a gas barrier film having a resin base material and a gas barrier layer containing an inorganic compound disposed on one or both sides of the resin base material.
  • the metal foil used in the gas barrier film having a metal foil is generally a thin metal stretched.
  • the metal foil can be manufactured by rolling, for example.
  • Examples of the metal foil include aluminum, nickel, stainless steel, iron, copper, titanium, and the like.
  • the metal foil has good gas barrier properties and is excellent in bending resistance and stab resistance. Furthermore, aluminum foil is easy to process and inexpensive.
  • the gas barrier film having a metal foil may be composed only of the metal foil, may be composed of a plurality of metal foils, or other layers may be laminated on the metal foil.
  • the thickness of the gas barrier film having a metal foil is not particularly limited, but can be, for example, 9 ⁇ m or less, 7 ⁇ m or less, for example, 4 ⁇ m or more, and 5 ⁇ m or more.
  • the oxygen permeability of the gas barrier film having a metal foil is not particularly limited, but can be 0.1 cc / (m 2 ⁇ day ⁇ atm) or less, or 0.01 cc / (m 2 ⁇ day ⁇ atm) or less. Good. It can suppress that gas, such as oxygen, penetrate
  • the oxygen permeability is measured according to JIS K7126-2A: 2006 (Plastic-Film and Sheet-Gas Permeability Test Method-Part 2: Isobaric Method, Appendix A: Oxygen Gas Permeation by Electrolytic Sensor Method)
  • JIS K7126-2A 2006 (Plastic-Film and Sheet-Gas Permeability Test Method-Part 2: Isobaric Method, Appendix A: Oxygen Gas Permeation by Electrolytic Sensor Method)
  • the outer surface of the outer packaging material (the side on which the gas barrier film of the heat-weldable film is disposed) using an oxygen permeability measuring device under the conditions of a temperature of 23 ° C. and a humidity of 60% RH. Is used in such a manner that the gas is in contact with oxygen gas under the condition of a transmission area of 50 cm 2 .
  • the oxygen permeability measuring device is preferably OXTRAN (OXTRAN 2/21 10X, manufactured by MOCON, a US company).
  • the test gas is purged with at least 99.5% dry oxygen at a carrier gas flow rate of 10 cc / min for 60 minutes or more, and then the test gas is flowed.
  • the measurement was started after 12 hours were secured as the time from the start of flowing the test gas until the equilibrium state was reached. In one condition, at least three samples are measured, and the average of the measured values is taken as the oxygen permeability value for that condition.
  • the water vapor permeability of the gas barrier film having a metal foil is not particularly limited, but can be 0.1 g / (m 2 ⁇ day) or less, or 0.01 g / (m 2 ⁇ day) or less. It can suppress that gas, such as water vapor
  • the water vapor transmission rate is measured in accordance with JIS K7129-B: 2008 (Plastics-Film and Sheet-Determination of water vapor transmission rate (instrument measurement method), Appendix B: Infrared sensor method).
  • condition 3 condition 3 of temperature 40 ° C. and humidity 90% RH
  • the outer side of the outer packaging material is on the high humidity side (using the water vapor permeability measuring device)
  • a method of measuring under the condition of a permeation area of 50 cm 2 is used so as to be on the water vapor supply side.
  • the water vapor transmission rate measuring device is preferably Permatran (PERMATRAN-3 / 33G +, manufactured by MOCON, an American company). NIST film # 3 is used as a standard test piece. Under one condition, at least three samples are measured, and the average of the measured values is taken as the value of the water vapor permeability of the condition.
  • the gas barrier layer of a gas barrier film having a resin base material and a gas barrier layer is generally an inorganic compound layer laminated on a resin base material.
  • the layer of the inorganic compound can be manufactured, for example, by vapor deposition or coating.
  • the inorganic compound include aluminum, aluminum oxide (alumina), silicon oxide (silica), and the like.
  • the main component of the resin base material include polyolefin resins such as polyethylene, polypropylene, and cycloolefin, polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT), and nylon.
  • Polyamide-based resins such as polyvinyl alcohol (PVA), and polyvinyl alcohol such as ethylene-vinyl alcohol copolymer (EVOH). Since the gas barrier film which has a resin base material and a gas barrier layer can make the thickness of a gas barrier layer comparatively thin, it can suppress the heat insulation fall by a heat bridge effect.
  • the gas barrier film having a resin base material and a gas barrier layer may have a plurality of gas barrier layers, and other layers other than the gas barrier layer may be laminated.
  • the thickness of the gas barrier layer of the gas barrier film having the resin substrate and the gas barrier layer is not particularly limited, but may be, for example, 5 nm or more, may be 10 nm or more, and may be, for example, 1000 nm or less, It may be 700 nm or less.
  • the thickness of the resin base material of the gas barrier film having the resin base material and the gas barrier layer is not particularly limited, but can be, for example, 6 ⁇ m or more, 9 ⁇ m or more, and, for example, 200 ⁇ m or less, It may be 100 ⁇ m or less.
  • the oxygen permeability of the gas barrier film having the resin substrate and the gas barrier layer is not particularly limited, but can be 1.0 cc / (m 2 ⁇ day ⁇ atm) or less, and 0.6 cc / (m 2 ⁇ day ⁇ atm) or less, or 0.1 cc / (m 2 ⁇ day ⁇ atm) or less. It can suppress that gas, such as oxygen, penetrate
  • Water vapor permeability of the gas barrier film having a resin base material and the gas barrier layer is not particularly limited, 1.0g / (m 2 ⁇ day ) can be below, 0.6g / (m 2 ⁇ day ) at less It may be 0.1 g / (m 2 ⁇ day) or less. It can suppress that gas, such as water vapor
  • the method for forming the gas barrier layer on the resin substrate is not particularly limited, and a known method can be used.
  • a physical vapor deposition (PVD) method such as a vacuum deposition method
  • a dry film forming method such as a chemical vapor deposition (CVD) method
  • a wet film forming method such as a coating method
  • a gas barrier layer from a resin substrate from another substrate examples thereof include a transfer method for transferring to a material.
  • the outer packaging material may have a protective film.
  • the protective film is disposed on the opposite side of the gas barrier film from the heat-weldable film and protects the outside of the gas barrier film. Note that the protective film can be distinguished from the gas barrier film in that no layer having gas barrier properties is disposed on any surface.
  • polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT), and polyamide resins such as nylon.
  • the thickness of the protective film is not particularly limited, but can be, for example, 5 ⁇ m or more, 10 ⁇ m or more, 200 ⁇ m or less, or 100 ⁇ m or less.
  • the indentation elastic modulus of the protective film is not particularly limited. For example, it can be 0.8 GPa or more, 1.3 GPa or more, 10 GPa or less, or 5 GPa or less.
  • the stress balance is adjusted between the inside and outside of the outer packaging material, the stress applied to the outer packaging material is dispersed, and cracks are generated at the folded portion of the outer packaging material. Can be suppressed.
  • the outer packaging material may have an intermediate film.
  • the intermediate film is disposed between the gas barrier film and the heat-weldable film, and protects the inside of the gas barrier film.
  • the heat-weldability is increased. May decrease. Therefore, by having the intermediate film, the value of the function M can be improved without reducing the heat-weldability of the heat-weldable film.
  • the intermediate film can be distinguished from the gas barrier film in that no layer having gas barrier properties is disposed on either side.
  • FIG. 5 is a schematic cross-sectional view showing another example of the outer packaging material for a vacuum heat insulating material according to the present disclosure.
  • an intermediate film 5 is disposed between the heat-weldable film 1 and the gas barrier film 2.
  • the main component material of the intermediate film examples include polyolefin resins such as polyethylene, polypropylene, and cycloolefin, polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT), and nylon.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • nylon nylon.
  • Polyamide-based resin polyvinyl alcohol (PVA), polyvinyl alcohol such as ethylene-vinyl alcohol copolymer (EVOH), and the like.
  • the thickness of the intermediate film is not particularly limited, but can be, for example, 5 ⁇ m or more, 10 ⁇ m or more, 200 ⁇ m or less, or 100 ⁇ m or less.
  • Outer packaging material for vacuum heat insulating material The outer packaging material has at least one heat-weldable film and at least one gas barrier film. You may have other films, such as an at least 1 protective film and an at least 1 intermediate film.
  • the outer packaging material may be arranged such that each film constituting the outer packaging material is in direct contact by thermal welding or the like, and may be arranged with an adhesive layer interposed therebetween.
  • the adhesive include a polyester-based adhesive, a polyurethane-based adhesive, and an acrylic adhesive.
  • the gas barrier property of the outer packaging material varies depending on the type of the gas barrier film used and is not particularly limited.
  • the oxygen permeability after the bending test is 0.10 cc / (m 2 ⁇ day ⁇ atm) or less.
  • a vacuum heat insulating material capable of maintaining good heat insulating performance is obtained.
  • the oxygen permeability after a bending test can be 1.0 cc / (m ⁇ 2 > * day * atm) or less. Thereby, a vacuum heat insulating material capable of maintaining good heat insulating performance is obtained.
  • the bending test is a test in which a rectangular sample having a width of 210 mm and a length of 297 mm (A4 size) is subjected to refraction treatment three times with a gelbo flex tester in accordance with ASTM F392.
  • the model name BE1006 (manufactured by Tester Sangyo Co., Ltd.) is preferable for the gelboflex tester.
  • the method for producing the outer packaging material is not particularly limited, and a known method can be used. For example, a method of pasting each film manufactured in advance with an adhesive, a method of sequentially extruding the raw material of each heat-melted film with a T-die, etc., and the like can be mentioned.
  • the vacuum heat insulating material of the present disclosure has a core material and an outer packaging material for vacuum heat insulating material in which the core material is enclosed, and the outer packaging material for vacuum heat insulating material is the above-described outer packaging material for vacuum heat insulating material. It is a vacuum insulation material.
  • the vacuum heat insulating material of this indication can maintain favorable heat insulation performance.
  • a core material is used in order to ensure the space hold
  • powder, a porous body, a fiber body, or the like can be used as the main component material of the core material. Since these have low heat conductivity, heat conduction by the core material can be suppressed.
  • Specific examples include fumed silica, porous urethane foam, glass wool, and glass fiber.
  • the inside of the vacuum heat insulating material is kept in a vacuum state.
  • the degree of vacuum inside is not particularly limited, but can be, for example, 5 Pa or less.
  • the thermal conductivity of the vacuum heat insulating material is not particularly limited, but can be, for example, 15 mW / (m ⁇ K) or less, or 10 mW / (m ⁇ K) or less, or 5 mW / (m ⁇ K) or less. Good.
  • the thermal conductivity is measured according to JIS A1412-2: 1999 (Measurement method of thermal resistance and thermal conductivity of thermal insulation materials—Part 2: Heat flow meter method (HFM method)).
  • FAM method Heat flow meter method
  • both the sample under the conditions of 15 minutes or more required for steady state of the test standard plate type EPS, high temperature surface temperature 30 ° C, low temperature surface temperature 10 ° C, sample average temperature 20 ° C
  • a method of measuring by a heat flow meter method is used so that the main surface of the substrate is oriented in the vertical direction.
  • the thermal conductivity measuring device is preferably Auto Lambda HC-074 (manufactured by Eiko Seiki Co., Ltd.).
  • the sample size is, for example, 29 ⁇ 0.5 cm wide and 30 ⁇ 0.5 cm long. Under one condition, at least three samples are measured, and the average of the measured values is taken as the thermal conductivity value of the condition.
  • the manufacturing method of the vacuum heat insulating material is not particularly limited, and a known method can be used.
  • two outer packaging materials cut into a quadrilateral shape are prepared.
  • the heat-weldable films of the two outer packaging materials are overlapped face to face, and the outer edges of the three sides are heat-welded to obtain a bag having one side open.
  • After putting the core material through the opening of the bag air is sucked from the opening of the bag.
  • the remaining outer edge portion is thermally welded. Thereby, a vacuum heat insulating material in which the core material is enclosed by the outer packaging material is obtained.
  • the vacuum heat insulating material can be used for an article that requires thermal insulation.
  • Article with vacuum heat insulating material of the present disclosure includes an article having a heat insulating region, and a vacuum heat insulating material, the vacuum heat insulating material being a core material, and an outer packaging material for vacuum heat insulating material in which the core material is enclosed And the outer packaging material for vacuum heat insulating material is the above-described outer packaging material for vacuum heat insulating material.
  • the article with the vacuum heat insulating material of the present disclosure can maintain good heat insulating performance.
  • the vacuum heat insulating region is a region that is thermally insulated by a vacuum heat insulating material, for example, a region that is kept warm or cold, a region that surrounds a heat source or a cooling source, or a region that is isolated from a heat source or a cooling source. These areas may be spaces or objects.
  • electric devices such as refrigerators, freezers, heat insulators, and coolers, heat insulation containers, cold insulation containers, transport containers, containers, containers for storage containers, vehicles, aircraft, ships and other vehicles, houses, warehouses, etc. Buildings, etc.
  • AL6 Aluminum foil having a thickness of 6 ⁇ m (hereinafter sometimes referred to as “AL foil”) (product name: BESPA manufactured by UACJ).
  • VM-PET12 Tensile having a layer of aluminum deposited on a biaxially stretched polyethylene terephthalate film having a thickness of 12 ⁇ m and having a thickness of about 40 nm (hereinafter sometimes referred to as “AL deposition layer”).
  • a gas barrier film having a resin base material having a modulus of elasticity of 4.0 GPa and a gas barrier layer (manufactured by Toray Film Processing Co., Ltd .: product name: VM-PET1510).
  • LLDPE50 Unstretched linear short-chain branched polyethylene film (product name: TUX-HCE, manufactured by Mitsui Chemicals, Inc.) having a thickness of 50 ⁇ m and a tensile modulus of 0.4 GPa.
  • LLDPE30 Unstretched linear short-chain branched polyethylene film (product name: TUX-HCE, manufactured by Mitsui Chemicals, Inc.) having a thickness of 30 ⁇ m and a tensile modulus of 0.4 GPa.
  • HDPE50 an unstretched high-density polyethylene film having a thickness of 50 ⁇ m and a tensile modulus of 0.7 GPa (manufactured by Dai Nippon Printing Co., Ltd .: product name: EF-HK).
  • CPP50 an unstretched polypropylene film having a thickness of 50 ⁇ m and a tensile modulus of 0.4 GPa (product name: CPP-SC, manufactured by Mitsui Chemicals, Inc.).
  • CPP30 unstretched polypropylene film having a thickness of 30 ⁇ m and a tensile modulus of 0.9 GPa (product name: CPP-SC, manufactured by Mitsui Chemicals, Inc.)
  • PBT50 Stretched polybutylene terephthalate film (product name: Homo PBT manufactured by Aussie Films) having a thickness of 50 ⁇ m and a tensile modulus of 1.7 GPa.
  • PBT25 A stretched polybutylene terephthalate film having a thickness of 25 ⁇ m and a tensile modulus of 1.7 GPa (product name: CTG25 manufactured by Unitika).
  • CPET30 an unstretched polyethylene terephthalate film having a thickness of 30 ⁇ m and a tensile modulus of 1.8 GPa obtained by extrusion molding polyethylene terephthalate (product name: SI-173 manufactured by Toyobo Co., Ltd.) by the T-die method.
  • COP30 a cyclopolyolefin film having a thickness of 30 ⁇ m and a tensile modulus of 1.7 GPa (Kozeki ME-1 manufactured by Kurashiki Boseki Co., Ltd.).
  • PET50 Biaxially stretched polyethylene terephthalate film having a thickness of 50 ⁇ m and a tensile modulus of 4.3 GPa (product name: Lumirror S10 manufactured by Toray Industries, Inc.).
  • PET16 Biaxially stretched polyethylene terephthalate film (product name: Emblet PTMB, manufactured by Unitika Ltd.) having a thickness of 16 ⁇ m and a tensile modulus of 4.2 GPa.
  • PET12 Biaxially stretched polyethylene terephthalate film (product name: Emblet PTMB) manufactured by Unitika Ltd. having a thickness of 12 ⁇ m and a tensile modulus of 4.3 GPa.
  • ON35 Biaxially stretched nylon film (product name: Emblem ONBC, manufactured by Unitika Ltd.) having a thickness of 35 ⁇ m and a tensile modulus of 2.4 GPa.
  • ON25 Biaxially stretched nylon film (product name: Emblem ONBC, manufactured by Unitika Ltd.) having a thickness of 25 ⁇ m and a tensile modulus of 2.4 GPa.
  • Example 1 An outer packaging material in which ON25 as the first protective film, PET12 as the second protective film, AL6 as the gas barrier film, PET12 as the intermediate film, and CPP50 as the heat-weldable film were arranged in this order was produced.
  • thermosetting composition (A) was applied to the protective film and then dried to evaporate the solvent, thereby forming an adhesive layer on one surface of the protective film.
  • the protective film and the gas barrier film were bonded from each other by pressing the adhesive layer of the protective film and the gas barrier film from both sides.
  • the gas barrier film was bonded to the intermediate film after forming the adhesive layer on the gas barrier film, and the film capable of being thermally welded was bonded to the intermediate film after forming the adhesive layer on the intermediate film.
  • the outer packaging material was completed by performing the aging process for 3 days in the room (humidity is uncontrolled) which set the laminated body of each film joined by the adhesive to a temperature of about 40 ° C.
  • the heat-weldable film was joined last.
  • a gas barrier film having a metal foil as described above, an adhesive layer is formed on the film located on the outside with a vacuum heat insulating material, and then the adhesive layer and the inside on the film located on the outside. The film located in the position was bonded together.
  • two or more gas barrier films having a gas barrier layer and a resin base material were used, the gas barrier layers of the gas barrier film were joined together, and then joined in the order of the film located outside and the film located inside.
  • Example 2 The outer packaging material was produced in the same procedure as in Example 1 except that PET12 as the protective film, AL6 as the gas barrier film, PET12 as the intermediate film, and CPP30 as the heat-weldable film were arranged in this order. did.
  • Example 3 ON25 as the first protective film, PET12 as the second protective film, AL6 as the gas barrier film, except that the outer packaging material in which PBT50 is arranged in this order as the heat-weldable film is the same procedure as in Example 1, An outer packaging material was prepared.
  • Example 4 The outer packaging material was prepared in the same procedure as in Example 1 except that PET12 as the protective film, AL6 as the gas barrier film, PET12 as the intermediate film, and PBT25 as the heat-weldable film were arranged in this order. did.
  • Example 5 The outer packaging material was produced in the same procedure as in Example 1 except that the protective film was ON25, the gas barrier film was AL6, and the heat-weldable film was PBT25 arranged in this order.
  • Example 6 An outer packaging material was produced in the same procedure as in Example 1 except that PET16 as a protective film, AL6 as a gas barrier film, and PBT25 as a heat-weldable film were arranged in this order.
  • Example 7 An outer packaging material was produced in the same procedure as in Example 1, except that PET16 as a protective film, AL6 as a gas barrier film, and CPET30 as a heat-weldable film were arranged in this order.
  • Example 8 An outer packaging material was produced in the same procedure as in Example 1 except that PET16 as a protective film, AL6 as a gas barrier film, and COP30 as a heat-weldable film were arranged in this order.
  • Example 1 Example 1 except that ON35 is used as the first protective film, PET12 is used as the second protective film, AL6 is used as the gas barrier film, PET12 is used as the intermediate film, and CPP50 is used as the heat-weldable film in this order.
  • the outer packaging material was produced in the same procedure.
  • Example 4 The outer packaging material was produced in the same procedure as in Example 1 except that the protective film was ON25, the gas barrier film was AL6, and the heat-weldable film was LLDPE50 arranged in this order.
  • Example 5 An outer packaging material was produced in the same procedure as in Example 1, except that the protective film was ON25, the gas barrier film was AL6, and the heat-weldable film was LLDPE30 arranged in this order.
  • Example 9 Example 25, except that the protective film is ON25, the first gas barrier film is VM-PET12, the second gas barrier film is VM-PET12, and the heat-weldable film is CPP30 arranged in this order.
  • the outer packaging material was produced by the procedure described above. The two VM-PET12s are bonded to each other so that two AL-deposited layers are arranged between the resin base of one VM-PET12 and the resin base of the other VM-PET12. It joined by the agent.
  • Example 10 Example 9 except that the protective film is ON25, the first gas barrier film is VM-PET12, the second gas barrier film is VM-PET12, and the heat-weldable film is PBT25 arranged in this order.
  • the outer packaging material was produced by the procedure described above.
  • Example 9 except that PET50 was used as the protective film, VM-PET12 was used as the first gas barrier film, VM-PET12 was used as the second gas barrier film, and PBT25 was used as the heat-weldable film in this order.
  • the outer packaging material was produced by the procedure described above.
  • Example 9 except that the protective film is ON25, the first gas barrier film is VM-PET12, the second gas barrier film is VM-PET12, and the thermally weldable film is LLDPE30 arranged in this order.
  • the outer packaging material was produced by the procedure described above.
  • an outer packaging material having a function M value of 3.0 MPa ⁇ mm 3 or less and a heat-weldable film having an indentation elastic modulus of 0.8 GPa or more has low oxygen permeability after the bending test.
  • a vacuum heat insulating material capable of maintaining good heat insulating performance can be manufactured.
  • the indentation elastic modulus of the heat-weldable film is 1.3 GPa or more
  • the indentation elastic modulus of the heat-weldable film is less than that in Examples 1 to 2 in which the indentation elastic modulus is less than 1.3 GPa.
  • the oxygen permeability after the test was low. Therefore, by setting the indentation elastic modulus of the heat-weldable film to 1.3 GPa or more, a vacuum heat insulating material that can maintain better heat insulating performance can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Refrigerator Housings (AREA)
  • Wrappers (AREA)

Abstract

本開示は、熱溶着可能なフィルム、およびガスバリアフィルムがこの順で配置された真空断熱材用外包材であって、真空断熱材用外包材の引張弾性率と真空断熱材用外包材の厚さの3乗との積が3.0MPa・mm以下であり、熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である、真空断熱材用外包材を提供するものである。

Description

真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
 本開示は、真空断熱材用外包材、真空断熱材、および真空断熱材付き物品に関するものである。
 真空断熱材とは、芯材と、その芯材が封入された外包材とを有するものである。外包材により構成された袋体の内部は、芯材が配置されるとともに、大気圧よりも圧力が低い真空状態に保持されている。袋体の内部の熱対流が抑制されるため、真空断熱材は、良好な断熱性能を発揮することができる。真空断熱材の内部を真空状態に保持するために、真空断熱材を構成する外包材には、ガスが通過することを抑制するためのガスバリア性や、袋体とするための熱溶着性が要求される。そのため、真空断熱材用の外包材は、一般に、ガスバリアフィルムおよび熱溶着可能なフィルムから構成される(例えば、特許文献1~3)。
特開2006-70923号公報 特開2008-106532号公報 特開2013-103343号公報 特開2008-106532号公報 特開2013-103343号公報
 例えば、特許文献1~3には、真空断熱材の製造時や使用時に外包材が折り曲げられる場合があることが開示されている。真空断熱材用の外包材は、折り曲げられた場合であっても、微小なクラックなどの欠陥が発生しにくいことが望ましい。外包材に微小な欠陥が存在する真空断熱材は、初期状態ではそれが存在しないものと同等程度の断熱性能を示した場合であっても、使用している間に断熱性能の低下がより大きくなるためである。
 本開示は、良好な断熱性能を維持できる真空断熱材を製造可能な真空断熱材用外包材を提供すること、および良好な断熱性能を維持できる真空断熱材や真空断熱材付き物品を提供することを課題とする。
 上述の課題を解決するために、本開示は、熱溶着可能なフィルム、およびガスバリアフィルムがこの順で配置された真空断熱材用外包材であって、前記真空断熱材用外包材の引張弾性率と前記真空断熱材用外包材の厚さの3乗との積が3.0MPa・mm以下であり、前記熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である、真空断熱材用外包材を提供する。
 本開示は、芯材と、前記芯材が封入された真空断熱材用外包材とを有する真空断熱材であって、前記真空断熱材用外包材が、上述の真空断熱材用外包材である、真空断熱材を提供する。
 本開示は、熱絶縁領域を有する物品と、真空断熱材とを備える真空断熱材付き物品であって、前記真空断熱材が、芯材と、前記芯材が封入された真空断熱材用外包材とを有し、前記真空断熱材用外包材が、上述の真空断熱材用外包材である、真空断熱材付き物品を提供する。
 本開示では、良好な断熱性能を維持できる真空断熱材を製造可能な真空断熱材用外包材を提供できる。また、良好な断熱性能を維持できる真空断熱材や真空断熱材付き物品が提供できる。
本開示の真空断熱材用外包材の一例を示す概略断面図である。 本開示の真空断熱材の一例を示す概略断面図である。 本開示の真空断熱材の使用状態を示す説明図である。 屈曲部での屈曲状態を説明する説明図である。 本開示の真空断熱材用外包材の他の例を示す概略断面図である。
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本開示は、真空断熱材用外包材、ならびにそれを用いた真空断熱材および真空断熱材付き物品に関するものである。なお、下記の説明において、「真空断熱材用外包材」を「外包材」と略する場合がある。また、外包材において、真空断熱材を製造した際に真空断熱材の内部に近い位置を「外包材の内側」、遠い位置を「外包材の外側」と呼ぶ場合がある。
A.真空断熱材用外包材
 本開示の真空断熱材用外包材は、熱溶着可能なフィルム、およびガスバリアフィルムがこの順で配置された真空断熱材用外包材であり、真空断熱材用外包材の引張弾性率と真空断熱材用外包材の厚さの3乗との積が3.0MPa・mm以下であり、熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である。なお、下記の説明において、真空断熱材用外包材の引張弾性率と真空断熱材用外包材の厚さの3乗との積で示される関数を「関数M」と呼ぶ場合がある。
 図1は、本開示の真空断熱材用外包材の一例を示す概略断面図である。図1の真空断熱材用外包材10では、熱溶着可能なフィルム1、ガスバリアフィルム2および保護フィルム3が接着剤4を使ってこの順で配置されており、関数Mの値が3.0MPa・mm以下であり、熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である。
 図2は、本開示の外包材を用いて製造された真空断熱材の一例を示す概略断面図である。図2の真空断熱材20は、芯材11と、芯材11が封入された外包材10とを有する。外包材10は、端部12で外包材10の内側どうしが接合されて、袋体となっている。外包材10により構成された袋体の内部は、芯材11が配置され、大気圧よりも圧力が低い真空状態に保持されている。外包材10の端部12の芯材11側の付け根部分や、外包材10が芯材11の角を覆っている外包材10の角部分には、外包材10が折り曲げられた部位である屈曲部13が存在している。屈曲部13には、引張応力または/および圧縮応力がかかるため、微小な欠陥が生じやすい。
 図3は、本開示の外包材を用いて製造された真空断熱材の使用状態を示す説明図である。図3の使用状態では、複数の真空断熱材20が並べて配置されており、端部12は断熱性能が低い端部12の占める領域を減らすために折り曲げられている。端部12には微小な欠陥が生じやすい屈曲部13が存在している。
 本開示の外包材は、屈曲部13のような折り曲げられた部位があっても、微小なクラックなどの欠陥がガスバリアフィルムに発生しにくいため、良好な断熱性能を維持できる真空断熱材を得ることができる。
 本開示の外包材は、関数Mの値を3.0MPa・mm以下にすることで、特に、外包材の折り曲げられた部位での微小なクラックの発生を抑制できる。その理由は下記のように推察できる。
 一般的に、物体が引張弾性率Eの特性を有し、その形状が幅bで厚さhの直方体で、応力Fがかかる位置が直方体形状の物体を支持する端部から距離Lの位置である場合に、物体に対して応力Fがかかったときの変形量vはv=4FL/(bEh)で表わされる。一方、外包材の引張弾性率Eと外包材の厚さhの3乗との積である関数Mは、M=Ehで表わされるため、変形量vは関数Mに反比例する。関数Mの値が小さいほど同じ応力がかかったときの変形量は大きくなることになるため、関数Mの値は外包材の柔らかさの指標になる。したがって、関数Mの値が所定の値以下である外包材は、所定以上の柔軟性を有している。なお、同様に、関数Mの値は外包材の硬さの指標になると言うことも可能であり、関数Mの値が所定の値以上である外包材は、所定以上の剛性を有している。
 ガスバリアフィルムの微小なクラックは、例えば微小な凹みや微小な異物の存在によりガスバリアフィルムの強度が低下している箇所に強い応力がかかったときに発生すると考えられる。関数Mの値が所定の値を超えて外包材が硬い場合には、強い応力を加えないと外包材を屈曲させることができず、その強い応力によりガスバリアフィルムにクラックが発生しやすくなる。それに対して、関数Mの値が所定の値以下で外包材が柔らかい場合には、外包材は小さい応力で屈曲できることから、ガスバリアフィルムにかかる応力は小さく、クラックは発生しにくい。また、関数Mの値が所定の値以下で外包材が柔らかい場合には、複数箇所に応力が分散されて多くの箇所で屈曲が生じることから、関数Mの値が所定の値以下の屈曲部に形成される屈曲箇所の数は、関数Mの値が大きいものと比較して多くなる。図4に示すように、屈曲部13における屈曲箇所13aが少ない場合(図4(a))と比較して、屈曲部13における屈曲箇所13aが多い場合(図4(b))には、それぞれの屈曲箇所13aでの屈曲の角度αが小さくなるため、それぞれの屈曲箇所においてガスバリアフィルムに加わる応力が小さくなり、クラックの発生が抑制される。
 本開示の外包材は、関数Mの値を3.0MPa・mm以下にしつつ熱溶着可能なフィルムの押込み弾性率が0.8GPa以上にすることで、特に、外包材の折り曲げられた部位での微小なクラックの発生を抑制できる。その理由は下記のように推察できる。
 ガスバリアフィルムは、一定のガスバリア性を確保するために、押込み弾性率が比較的高い材料が一定の厚さで用いられることが多い。このようなガスバリアフィルムを有する外包材を屈曲させた際には、外包材にかかる応力のなかでも相対的に高い応力がガスバリアフィルムにかかり、ガスバリアフィルムのクラックが発生しやすくなると考えられる。そこで、押込み弾性率が0.8GPa以上の熱溶着可能なフィルムを用いることで、外包材のガスバリアフィルムにかかる応力が、熱溶着可能なフィルムにも分散され、ガスバリアフィルムにかかる応力を相対的に小さくすることができる。そのため、本開示の外包材は、関数Mの値を3.0MPa・mm以下にしつつ熱溶着可能なフィルムの押込み弾性率が0.8GPa以上にすることで、外包材の折り曲げられた部位でのクラックの発生を抑制できる、と推察される。
 なお、熱溶着可能なフィルムの押込み弾性率が0.8GPa以上にすることは、ガスバリアフィルムの熱溶着可能なフィルムとは反対の面側に、保護フィルムが配置されている場合に、より有用であると推察できる。保護フィルムは、外力に対する耐性を確保するために、押込み弾性率が比較的高い材料が用いられることが多い。その外包材が折り曲げられたとき、外包材の内側と外側とで使用されているフィルムの押込み弾性率の差が大き過ぎると、外包材の内側と外側で応力のバランスが崩れて、ガスバリアフィルムのクラックが発生しやすくなると考えられる。そこで、ガスバリアフィルムの保護フィルムとは反対の面側に配置されている熱溶着可能なフィルムで押込み弾性率が比較的高い材料を用いることで、外包材の内側と外側で応力のバランスを整えて、外包材にかかる応力を分散させて、外包材の折り曲げられた部位でのクラックの発生を抑制できる、と推察される。
 本開示の外包材は、熱溶着可能なフィルム、およびガスバリアフィルムがこの順で配置された真空断熱材用外包材であって、真空断熱材用外包材の引張弾性率と真空断熱材用外包材の厚さの3乗との積が3.0MPa・mm以下であり、熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である。
(1)真空断熱材用外包材の特性
 真空断熱材用外包材の関数Mの値は、3.0MPa・mm以下である。外包材の折り曲げられた部位での微小なクラックの発生を抑制できる。また、外包材の柔軟性が高いので、例えば端部を折り曲げる作業などの真空断熱材の製造や使用が容易になる。
 真空断熱材用外包材の関数Mの値は、特に限定されないが、例えば0.5MPa・mm以上とすることができ、0.7MPa・mm以上でもよく、0.8MPa・mm以上でもよく、0.9MPa・mm以上でもよく、1.0MPa・mm以上でもよく、1.1MPa・mm以上でもよく、1.4MPa・mm以上でもよく、1.5MPa・mm以上でもよい。また、真空断熱材用外包材の関数Mは、3.0MPa・mm以下であれば、より好ましい上限を設定することができる。例えば、真空断熱材用外包材の関数Mは、2.8MPa・mm以下であってもよく、2.5MPa・mm以下であってもよく、2.0MPa・mm以下であってもよく、1.9MPa・mm以下であってもよい。したがって、真空断熱材用外包材の関数Mは、上述した効果を考慮して、上限および下限の任意の組み合わせの範囲とすることができ、例えば、0.5MPa・mm以上3.0MPa・mm以下の範囲、0.5MPa・mm以上2.5MPa・mm以下の範囲、0.5MPa・mm以上2.0MPa・mm以下の範囲、0.7MPa・mm以上3.0MPa・mm以下の範囲、0.7MPa・mm以上2.5MPa・mm以下の範囲、0.7MPa・mm以上2.0MPa・mm以下の範囲、1.0MPa・mm以上3.0MPa・mm以下の範囲、1.0MPa・mm以上2.5MPa・mm以下の範囲、1.0MPa・mm以上2.0MPa・mm以下の範囲等とすることができる。
 外包材の引張弾性率は、関数Mの値を所定の範囲内にすることができるものであれば特に限定されないが、例えば、5.0GPa以下にすることができ、4.0GPa以下でもよく、3.5GPa以下でもよく、また、例えば、1.0GPa以上にすることができ、1.2GPa以上でもよく、1.5GPa以上でもよい。外包材の引張弾性率は、外包材を構成する各フィルムや接着剤の種類や数により調整することができる。フィルムや接着剤の引張弾性率は、主成分や副成分の材料や配合比、あるいはフィルム化加工などの製造条件などによって異なる値になる。
 本開示では、引張弾性率の測定方法は、JIS K7161-1:2014(プラスチック-引張特性の求め方-第1部:通則)に準拠し、外包材を幅15mmの長方形にカットしてサンプルを採取した後、引張試験機を用いて、チャック間距離100mm、引張速度100mm/min、予備力の使用有り、の条件で、引張弾性率を測定する方法を用いる。測定環境は23℃、湿度55%の環境とする。サンプルの長さは、試験機の軸にサンプルの長さが一致するようにつかみ具を取り付けられかつ測定中につかみ部分がずれない範囲で決定し、例えば120mm程度である。引張試験機は、インストロン5565(インストロン・ジャパン社製)が好ましい。予備力は、例えば、応力をσ、弾性率をEとして(予備力のための適切な弾性率や応力が不明なときは事前に試験をして弾性率や応力の予測値を求めておく)、(E/10000)≦σ≦(E/3000)の範囲である。1つの条件では少なくとも5つのサンプルを測定し、それらの測定値の平均をその条件の引張弾性率の値とする。なお、引張弾性率の値は外包材面内の方向によって異なる場合があるので、面内平均値の使用が好ましい。外包材の面内方向の条件を概ね22.5度ずつ変えて採取した8つの条件の値の平均を面内平均値とみなすことができる。
 外包材の厚さは、関数Mの値を所定の範囲内にすることができるものであれば特に限定されないが、例えば、200μm以下にすることができ、150μm以下でもよく、また、例えば、30μm以上にすることができ、50μm以上でもよい。
(2)熱溶着可能なフィルム
 熱溶着可能なフィルムは、ガスバリアフィルムよりも外包材の内側に配置され、通常は外包材の最も内側に配置される場合が多い。真空断熱材を製造する際に、熱溶着可能なフィルムどうしが熱溶着することによって、外包材どうしが接合する。
 熱溶着可能なフィルムの押込み弾性率は、0.8GPa以上である。外包材の折り曲げられた部位での微小なクラックの発生を抑制できる。微小なクラックの発生をより抑制するために、熱溶着可能なフィルムの押込み弾性率は、1.3GPa以上にしてもよい。また、熱溶着可能なフィルムの押込み弾性率は、10GPa以下にしてもよく、5GPa以下でもよい。なお、通常、熱溶着可能なフィルムは外包材の最も内側に配置されるので、外装材の内側の表面が熱溶着可能なフィルムの表面に相当する。そのため、熱溶着可能なフィルムの押込み弾性率は、外装材の内側の表面または外装材の断面を測定することで求める。
 より詳しくは、熱溶着可能なフィルムの押込み弾性率は、0.8GPa以上であれば、より好ましい下限を設定することができる。例えば、熱溶着可能なフィルムの押込み弾性率は、0.9GPa以上であってもよく、1.0GPa以上であってもよく、1.7GPa以上であってもよく、2.1GPa以上であってもよく、2.5GPa以上であってもよく、2.7GPa以上であってもよい。また、熱溶着可能なフィルムの押込み弾性率の上限は、特に限定されない。例えば、熱溶着可能なフィルムの押込み弾性率は、10GPa以下であってもよく、7.0GPa以下であってもよく、5.0GPa以下であってもよく、3.0GPa以下であってもよい。したがって、熱溶着可能なフィルムの押込み弾性率は、上述した効果を考慮して、上限および下限の任意の組み合わせの範囲とすることができ、例えば、0.8GPa以上10GPa以下の範囲、0.8GPa以上5.0GPa以下の範囲、0.8GPa以上3.0GPa以下の範囲、0.9GPa以上10GPa以下の範囲、0.9GPa以上5.0GPa以下の範囲、0.9GPa以上3.0GPa以下の範囲、1.7GPa以上10GPa以下の範囲、1.7GPa以上5.0GPa以下の範囲、1.7GPa以上3.0GPa以下の範囲、2.0GPa以上10GPa以下の範囲、2.0GPa以上5.0GPa以下の範囲、2.0GPa以上3.0GPa以下の範囲等とすることができる。
 押込み弾性率の測定は、ISO 14577に準拠し、サンプルの断面または表面に対して、約23℃約60%RHの環境で、ビッカース圧子(対面角136°の正四角錐のダイヤモンド圧子)を装着させた超微小負荷硬さ試験機を用いて、押込み弾性率を測定する方法を用いる。測定は、押込み速度0.1μm/秒、押込み深さ2μm、保持時間5秒間、引き抜き速度0.1μm/秒でおこなう。微小硬さ試験機は、ピコデンターHM500(フィッシャー・インストルメンツ社製)が好ましい。1つの条件では、少なくとも5つのサンプルを測定し、それらの測定値の平均をその条件の押込み弾性率の値とする。サンプルの断面を測定する場合は、サンプルの外周を硬化樹脂系接着剤で固めて固定し、固定したサンプルをダイヤモンドナイフで厚さ方向に切断し、サンプルの露出した断面を測定する。また、サンプルの表面を測定する場合は、サンプルの測定しない側の面を硬化樹脂系接着剤で厚さ1.1mmの平坦なガラス板に固定し、サンプルの表面を測定する。
 熱溶着可能なフィルムの主成分の材料は、例えば、加熱によって溶融して融着することが可能であることから、例えば、熱可塑性樹脂や熱溶融性樹脂などを用いることができる。具体的には、未延伸ポリプロピレン(CPP)等のポリプロピレン、シクロポリオレフィン等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ウレタン樹脂、ナイロン等のポリアミド系樹脂、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール、等が挙げられる。良好な接着力を得つつ高い押込み弾性率が得られるため、シクロポリオレフィンのポリオレフィン系樹脂、ならびにポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリブチレンテレフタレートのポリエステル系樹脂を用いることができる。また、熱溶着可能なフィルムは、未延伸フィルムを用いることができる。
 熱溶着可能なフィルムは、上述した樹脂の他に、アンチブロッキング剤、滑剤、難燃化剤、充填剤等の他の材料を含んでいてもよい。
 熱溶着可能なフィルムの溶融温度は、特に限定されないが、熱溶着性を高めるために、例えば80℃以上にすることができ、100℃以上でもよく、また、300℃以下にすることができ、250℃以下でもよい。
 溶融温度の測定方法は、(Tm)の測定は、JIS K7121:2012(プラスチックの転移温度測定方法)に準拠し、示差走査熱量測定(DSC)装置を用いて、DSC曲線を測定し、融解温度を求める方法を用いる。約10mgのサンプルを採取し、アルミニウム製の容器に入れ、装置に装着した。DSC曲線の測定は、開始温度20℃から加熱速度10℃/分で250℃まで昇温し、250℃で10分間保持し、250℃から冷却速度10℃/分で20℃まで降温することによっておこなう。融解温度は、昇温時のDSC曲線より求める。DSC装置は、DSC204(NETZSCH社製)が好ましい。
 熱溶着可能なフィルムの厚さは、特に限定されないが、熱溶着性を高めるために、例えば20μm以上にすることができ、25μm以上でもよく、30μm以上でもよく、また、100μm以下にすることができ、90μm以下でもよく、80μm以下でもよい。
(3)ガスバリアフィルム
 ガスバリアフィルムは、熱溶着可能なフィルムよりも外包材の外側に配置され、酸素や水蒸気などのガスの障壁として、ガスが真空断熱材の外部から内部に侵入するのを抑制する。
 ガスバリアフィルムとして、例えば、金属箔を有するガスバリアフィルムや、樹脂基材とその樹脂基材の片方または両方の面側に配置された無機化合物を含むガスバリア層とを有するガスバリアフィルムが挙げられる。
 金属箔を有するガスバリアフィルムで用いられる金属箔は、一般に、金属が薄く伸ばされたものである。金属箔は例えば圧延加工により製造できる。金属箔として、例えばアルミニウム、ニッケル、ステンレス、鉄、銅、チタン、等が挙げられる。金属箔は、ガスバリア性が良好であり耐屈曲性や耐突刺性に優れている。さらに、アルミニウム箔は加工しやすく安価である。金属箔を有するガスバリアフィルムは、金属箔のみで構成されていてもよく、複数の金属箔で構成されていてもよく、金属箔に他の層が積層されていてもよい。
 金属箔を有するガスバリアフィルムの厚さは、特に限定されないが、例えば、9μm以下にすることができ、7μm以下でもよく、例えば、4μm以上にすることができ、5μm以上でもよい。
 金属箔を有するガスバリアフィルムの酸素透過度は、特に限定されないが、0.1cc/(m・day・atm)以下にすることができ、0.01cc/(m・day・atm)以下でもよい。酸素等のガスが真空断熱材の外側から内側に侵入して真空断熱材の内部の真空度が低下することを抑制できる。
 なお、本開示では、酸素透過度の測定は、JIS K7126-2A:2006(プラスチック-フィルム及びシート-ガス透過度試験方法-第2部:等圧法、付属書A:電解センサ法による酸素ガス透過度の試験方法)に準拠して、温度23℃、湿度60%RHの条件で、酸素透過度測定装置を用いて、外包材の外側(熱溶着可能なフィルムのガスバリアフィルムが配置された側)が酸素ガスに接するようにして、透過面積50cmの条件で、測定する方法を用いる。酸素透過度測定装置は、オクストラン(OXTRAN2/21 10X、米国企業のモコン(MOCON)社製)が好ましい。試験ガスは少なくとも99.5%の乾燥酸素を用いて、キャリアーガス流量10cc/分で60分以上パージした後、試験ガスを流す。試験ガスを流し始めてから平衡状態に達するまでの時間として12時間を確保した後、測定を開始した。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の酸素透過度の値とする。
 金属箔を有するガスバリアフィルムの水蒸気透過度は、特に限定されないが、0.1g/(m・day)以下にすることができ、0.01g/(m・day)以下でもよい。水蒸気等のガスが真空断熱材の外側から内側に侵入して真空断熱材の内部の真空度が低下することを抑制できる。
 なお、本開示では、水蒸気透過度の測定は、JIS K7129-B:2008(プラスチック-フィルム及びシート-水蒸気透過度の求め方(機器測定法)、付属書B:赤外線センサ法)に準拠して、温度40℃、湿度90%RHの条件(条件3)で、水蒸気透過度測定装置を用いて、外包材の外側(熱溶着可能なフィルムのガスバリアフィルムが配置された側)が高湿度側(水蒸気供給側)になるようにして、透過面積50cmの条件で、測定する方法を用いる。水蒸気透過度測定装置は、パ-マトラン(PERMATRAN-3/33G+、米国企業のモコン(MOCON)社製)が好ましい。標準試験片としてNISTフィルム#3を用いる。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の水蒸気透過度の値とする。
 樹脂基材およびガスバリア層を有するガスバリアフィルムのガスバリア層は、一般に、無機化合物の層が樹脂基材に積層されたものである。無機化合物の層は、例えば蒸着や塗布によって製造できる。無機化合物として、例えば、アルミニウム、アルミニウム酸化物(アルミナ)、ケイ素酸化物(シリカ)などが挙げられる。樹脂基材の主成分の材料として、例えば、ポリエチレン、ポリプロピレン、シクロオレフィン等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ナイロン等のポリアミド系樹脂、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール、等が挙げられる。樹脂基材およびガスバリア層を有するガスバリアフィルムは、ガスバリア層の厚さを比較的薄くできるので、ヒートブリッジ効果による断熱性の低下を抑制できる。樹脂基材およびガスバリア層を有するガスバリアフィルムは、複数のガスバリア層を有していてもよく、ガスバリア層以外の他の層が積層されていてもよい。
 樹脂基材およびガスバリア層を有するガスバリアフィルムのガスバリア層の厚さは、特に限定されないが、例えば、5nm以上にすることができ、10nm以上でもよく、また、例えば、1000nm以下にすることができ、以上700nm以下でもよい。
 樹脂基材およびガスバリア層を有するガスバリアフィルムの樹脂基材の厚さは、特に限定されないが、例えば6μm以上にすることができ、9μm以上でもよく、また、例えば、200μm以下にすることができ、100μm以下でもよい。
 樹脂基材およびガスバリア層を有するガスバリアフィルムの酸素透過度は、特に限定されないが、1.0cc/(m・day・atm)以下にすることができ、0.6cc/(m・day・atm)以下でもよく、0.1cc/(m・day・atm)以下でもよい。酸素等のガスが真空断熱材の外側から内側に侵入して真空断熱材の内部の真空度が低下することを抑制できる。
 樹脂基材およびガスバリア層を有するガスバリアフィルムの水蒸気透過度は、特に限定されないが、1.0g/(m・day)以下にすることができ、0.6g/(m・day)以下でもよく、0.1g/(m・day)以下でもよい。水蒸気等のガスが真空断熱材の外側から内側に侵入して真空断熱材の内部の真空度が低下することを抑制できる。
 樹脂基材にガスバリア層を形成する方法は、特に限定されず、公知の方法を用いることができる。例えば、真空蒸着法等の物理気相成長(PVD)法や化学気相成長(CVD)法等の乾式製膜法、塗布法等の湿式成膜法、ガスバリア層を他の基材から樹脂基材に転写する転写法、等が挙げられる。
(4)保護フィルム
 外包材は、保護フィルムを有していてもよい。保護フィルムは、ガスバリアフィルムの熱溶着可能なフィルムとは反対側に配置され、ガスバリアフィルムの外側を保護する。なお、保護フィルムは、いずれの面にもガスバリア性を有する層が配置されていない点で、ガスバリアフィルムと区別することが可能である。
 保護フィルムの主成分の材料は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ナイロン等のポリアミド系樹脂、等が挙げられる。
 保護フィルムの厚さは、特に限定されないが、例えば、5μm以上にすることができ、10μm以上でもよく、また、200μm以下にすることができ、100μm以下でもよい。
 保護フィルムの押込み弾性率は、特に限定されないが、例えば、0.8GPa以上にすることができ、1.3GPa以上でもよく、また、10GPa以下にしてもよく、5GPa以下でもよい。熱溶着可能なフィルムと同様の範囲にすることによって、外包材の内側と外側で応力のバランスを整えて、外包材にかかる応力を分散させて、外包材の折り曲げられた部位でのクラックの発生を抑制できる。
(5)中間フィルム
 外包材は、中間フィルムを有していてもよい。中間フィルムは、ガスバリアフィルムと熱溶着可能なフィルムとの間に配置され、ガスバリアフィルムの内側を保護する。また、関数Mの値を一定以上とするにあたって、熱溶着可能なフィルムの引張弾性率や厚さを大きくすることが考えられるが、熱溶着可能なフィルムでこれらの値を大きくすると熱溶着性が低下する場合がある。そこで、中間フィルムを有することで、熱溶着可能なフィルムの熱溶着性を低下させることなく、関数Mの値を向上させることができる。なお、中間フィルムは、いずれの面にもガスバリア性を有する層が配置されていない点で、ガスバリアフィルムと区別することが可能である。
 図5は、本開示の真空断熱材用外包材の他の例を示す概略断面図である。図5の真空断熱材用外包材10では、熱溶着可能なフィルム1とガスバリアフィルム2との間に、中間フィルム5が配置されている。
 中間フィルムの主成分の材料は、例えば、ポリエチレン、ポリプロピレン、シクロオレフィン等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ナイロン等のポリアミド系樹脂、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール、等が挙げられる。
 中間フィルムの厚さは、特に限定されないが、例えば、5μm以上にすることができ、10μm以上でもよく、また、200μm以下にすることができ、100μm以下でもよい。
(6)真空断熱材用外包材
 外包材は、少なくとも1つの熱溶着可能なフィルムおよび少なくとも1つのガスバリアフィルムを有している。少なくとも1つの保護フィルムや少なくとも1つの中間フィルムなどのその他のフィルムを有していてもよい。
 外包材は、外包材を構成する各フィルムが、熱溶着などにより直接接触して配置されていてもよく、接着剤の層を間に挟んで配置されていてもよい。接着剤は、例えば、ポリエステル系接着剤、ポリウレタン系接着剤、アクリル系接着剤などを挙げることができる。
 外包材のガスバリア性は、用いているガスバリアフィルムの種類によって異なり、特に限定されないが、金属箔を有するガスバリアフィルムを用いた場合は、屈曲試験後の酸素透過度を0.10cc/(m・day・atm)以下にすることができる。それによって良好な断熱性能を維持できる真空断熱材が得られる。また、樹脂基材およびガスバリア層を有するガスバリアフィルムを用いた場合は、屈曲試験後の酸素透過度を1.0cc/(m・day・atm)以下にすることができる。それによって良好な断熱性能を維持できる真空断熱材が得られる。
 本開示では、屈曲試験は、ASTM F 392に準拠して、幅210mm×長さ297mm(A4サイズ)の長方形のサンプルをゲルボフレックステスターで、3回の屈折処理をおこなう試験である。ゲルボフレックステスターは、機種名BE1006(テスター産業社製)が好ましい。
 外包材の製造方法は、特に限定されず、公知の方法を用いることができる。例えば、予め製造した各フィルムを接着剤で貼り合せる方法や、熱溶融させた各フィルムの原材料をTダイ等で順次押出しして積層体を得る方法、等が挙げられる。
B.真空断熱材
 本開示の真空断熱材は、芯材と、芯材が封入された真空断熱材用外包材とを有し、真空断熱材用外包材が上述の真空断熱材用外包材である、真空断熱材である。本開示の真空断熱材は、良好な断熱性能を維持することができる。
 真空断熱材用外包材は、上述のものを用いることができる。
 芯材は、真空断熱材の内部に真空状態に保持される空間を確保するために用いられる。芯材の主成分の材料は、例えば、粉体、多孔質体、繊維体、等を用いることができる。これらは、熱伝導率が低いので、芯材による熱伝導を抑制できる。具体的には、ヒュームドシリカ、多孔質ウレタンフォーム、グラスウール、グラスファイバー、等が挙げられる。
 真空断熱材の内部は、真空状態に保持されている。内部の真空度は、特に限定されないが、例えば、5Pa以下にすることができる。
 真空断熱材の熱伝導率は、特に限定されないが、例えば、15mW/(m・K)以下にすることができ、10mW/(m・K)以下でもよく、5mW/(m・K)以下でもよい。
 本開示では、熱伝導率の測定は、JIS A1412-2:1999(熱絶縁材の熱抵抗及び熱伝導率の測定方法-第2部:熱流計法(HFM法))に準拠し、熱伝導率測定装置を用いて、試験の定常に要する時間15分以上、標準板の種類EPS、高温面の温度30℃、低温面の温度10℃、サンプル平均温度20℃、の条件で、サンプルの両方の主面が上下方向を向くように配置し、熱流計法により測定する方法を用いる。熱伝導率測定装置は、オートラムダHC-074(英弘精機社製)が好ましい。サンプルの大きさは、例えば、幅29±0.5cm、長さ30±0.5cmである。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の熱伝導率の値とする。
 真空断熱材の製造方法は、特に限定されず、公知の方法を用いることができる。例えば、四辺形の形状に切断された外包材を2枚準備する。2枚の外包材のそれぞれの熱溶着可能なフィルムを向かい合わせに重ねて、三辺の外縁部を熱溶着させることによって、一辺が開口している袋体を得る。袋体の開口部から芯材を入れた後、袋体の開口部から空気を吸引する。袋体の内部が減圧された状態で、残る一辺の外縁部を熱溶着させる。これによって、芯材が外包材により封入された真空断熱材が得られる。
(用途)
 真空断熱材は、熱絶縁が必要とされる物品に用いることができる。
C.真空断熱材付き物品
 本開示の真空断熱材付き物品は、熱絶縁領域を有する物品、および真空断熱材を備え、真空断熱材が、芯材と、芯材が封入された真空断熱材用外包材とを有し、真空断熱材用外包材が、上述の真空断熱材用外包材である、物品である。本開示の真空断熱材付き物品は、良好な断熱性能を維持することができる。
 真空断熱材は、「B.真空断熱材」の項で上述のものを用いることができる。
 熱絶縁領域は、真空断熱材により熱絶縁された領域であり、例えば、保温や保冷された領域、熱源や冷却源を取り囲んでいる領域、熱源や冷却源から隔離されている領域である。これらの領域は、空間であっても物体であってもよい。
 物品として、例えば、冷蔵庫、冷凍庫、保温器、保冷器等の電気機器、保温容器、保冷容器、輸送容器、コンテナ、貯蔵容器等の容器、車両、航空機、船舶等の乗り物、家屋、倉庫等の建築物、等が挙げられる。
 下記に実施例を示して、本開示をさらに具体的に説明する。
 以下のフィルムを準備した。
(1)AL6:厚さ6μmのアルミニウム箔(以下、「AL箔」と記載される場合がある。)(UACJ製 製品名:BESPA)。
(2)VM-PET12:厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルムに厚さ約40nmの蒸着されたアルミニウムの層(以下、「AL蒸着層」と記載される場合がある。)を有する、引張弾性率4.0GPaの樹脂基材およびガスバリア層を有するガスバリアフィルム(東レフィルム加工社製 :製品名:VM-PET1510)。
(3)LLDPE50:厚さ50μm、引張弾性率0.4GPaの未延伸の直鎖状短鎖分岐ポリエチレンフィルム(三井化学東セロ社製 製品名:TUX-HCE)。
(4)LLDPE30:厚さ30μm、引張弾性率0.4GPaの未延伸の直鎖状短鎖分岐ポリエチレンフィルム(三井化学東セロ社製 製品名:TUX-HCE)。
(5)HDPE50:厚さ50μm、引張弾性率0.7GPaの未延伸の高密度ポリエチレンフィルム(大日本印刷社製 :製品名:EF-HK)。
(6)CPP50:厚さ50μm、引張弾性率0.4GPaの未延伸ポリプロピレンフィルム(三井化学東セロ社製 製品名:CPP-SC)。
(7)CPP30:厚さ30μm、引張弾性率0.9GPaの未延伸ポリプロピレンフィルム(三井化学東セロ社製 製品名:CPP-SC)
(8)PBT50:厚さ50μm、引張弾性率1.7GPaの延伸ポリブチレンテレフタレートフィルム(オージーフィルム社製 製品名: ホモPBT)。
(9)PBT25:厚さ25μm、引張弾性率1.7GPaの延伸ポリブチレンテレフタレートフィルム(ユニチカ社製 製品名: CTG25)。
(10)CPET30:ポリエチレンテレフタレート(東洋紡社製 製品名: SI-173)をTダイ法で押出成形した、厚さ30μm、引張弾性率1.8GPaの未延伸ポリエチレンテレフタレートフィルム。
(11)COP30:厚さ30μm、引張弾性率1.7GPaのシクロポリオレフィンフィルム(倉敷紡績社製 コゼック ME-1)。
(12)PET50:厚さ50μm、引張弾性率4.3GPaの二軸延伸ポリエチレンテレフタレートフィルム(東レ社製 製品名:ルミラー S10)。
(13)PET16:厚さ16μm、引張弾性率4.2GPaの二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社製 製品名:エンブレット PTMB)。
(14)PET12:厚さ12μm、引張弾性率4.3GPaの二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社製 製品名:エンブレット PTMB)。
(15)ON35:厚さ35μm、引張弾性率2.4GPaの二軸延伸ナイロンフィルム(ユニチカ社製 製品名:エンブレム ONBC)。
(16)ON25:厚さ25μm、引張弾性率2.4GPaの二軸延伸ナイロンフィルム(ユニチカ社製 製品名:エンブレム ONBC)。
[実施例1]
 第1保護フィルムとしてON25、第2保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、中間フィルムとしてPET12、熱溶着可能なフィルムとしてCPP50が、この順番で配置された外包材を作製した。
 各フィルムは、厚さ約4μm(外包材における単位面積当たりの重量が3.5g/m)の接着剤により接合した。接着剤は、ポリエステルポリオールを主成分とする主剤(ロックペイント社製 製品名:アドロックRU-77T)、脂肪族系ポリイソシアネートを含む硬化剤(ロックペイント社製 製品名:ロックボンドJH-7)、および酢酸エチルの溶剤が、重量配合比が主剤:硬化剤:溶剤=10:1:14となるように混合された熱硬化性組成物(A)を熱硬化して用いた。主剤、硬化剤、および溶剤は、使用前はそれぞれ別々に保管し、使用直前に混合した。
 外包材の作製では、まず、保護フィルムに熱硬化性組成物(A)を塗布した後、乾燥して溶剤を蒸発させることによって、保護フィルムの一方の面に接着剤の層を形成した。次に、保護フィルムの接着剤の層とガスバリアフィルムとを両側から加圧することによって、保護フィルムとガスバリアフィルムとを接着剤により接合した。同様の手順で、ガスバリアフィルムに接着剤の層を形成した後にガスバリアフィルムと中間フィルムと接合し、また、中間フィルムに接着剤の層を形成した後に中間フィルムと熱溶着可能なフィルムを接合した。最後に、接着剤により接合された各フィルムの積層体を温度約40℃に設定した部屋(湿度は無管理)で3日間のエージング処理をおこなうことによって、外包材を完成させた。
 なお、いずれの実施例および比較例においても、熱溶着な可能なフィルムは最後に接合した。例えば、金属箔を有するガスバリアフィルムを用いた場合、上述のように、順次、真空断熱材で外側に位置するフィルムに接着剤の層を形成後、外側に位置するフィルムの接着剤の層と内側に位置するフィルムとを貼り合わせた。一方、ガスバリア層および樹脂基材を有するガスバリアフィルムを2枚以上用いた場合は、ガスバリアフィルムのガスバリア層どうしを接合した後、外側に位置するフィルム、内側に位置するフィルムの順番で接合した。
[実施例2]
 保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、中間フィルムとしてPET12、熱溶着可能なフィルムとしてCPP30がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例3]
 第1保護フィルムとしてON25、第2保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてPBT50がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例4]
 保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、中間フィルムとしてPET12、熱溶着可能なフィルムとしてPBT25がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例5]
 保護フィルムとしてON25、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてPBT25がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例6]
 保護フィルムとしてPET16、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてPBT25がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例7]
 保護フィルムとしてPET16、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてCPET30がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例8]
 保護フィルムとしてPET16、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてCOP30がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[比較例1]
 第1保護フィルムとしてON35、第2保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、中間フィルムとしてPET12、熱溶着可能なフィルムとしてCPP50がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[比較例2]
 第1保護フィルムとしてON25、第2保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてLLDPE50がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[比較例3]
 第1保護フィルムとしてON25、第2保護フィルムとしてPET12、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてHDPE50がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[比較例4]
 保護フィルムとしてON25、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてLLDPE50がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[比較例5]
 保護フィルムとしてON25、ガスバリアフィルムとしてAL6、熱溶着可能なフィルムとしてLLDPE30がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。
[実施例9]
 保護フィルムとしてON25、第1ガスバリアフィルムとしてVM-PET12、第2ガスバリアフィルムとしてVM-PET12、熱溶着可能なフィルムとしてCPP30がこの順番で配置された外包材としたこと以外は、実施例1と同様の手順で、外包材を作製した。なお、2つのVM-PET12は、一方のVM-PET12の樹脂基材ともう一方のVM-PET12の樹脂基材の間に2つのAL蒸着層が配置されるように、AL蒸着層どうしを接着剤により接合した。
[実施例10]
 保護フィルムとしてON25、第1ガスバリアフィルムとしてVM-PET12、第2ガスバリアフィルムとしてVM-PET12、熱溶着可能なフィルムとしてPBT25がこの順番で配置された外包材としたこと以外は、実施例9と同様の手順で、外包材を作製した。
[比較例6]
 保護フィルムとしてPET50、第1ガスバリアフィルムとしてVM-PET12、第2ガスバリアフィルムとしてVM-PET12、熱溶着可能なフィルムとしてPBT25がこの順番で配置された外包材としたこと以外は、実施例9と同様の手順で、外包材を作製した。
[比較例7]
 保護フィルムとしてON25、第1ガスバリアフィルムとしてVM-PET12、第2ガスバリアフィルムとしてVM-PET12、熱溶着可能なフィルムとしてLLDPE30がこの順番で配置された外包材としたこと以外は、実施例9と同様の手順で、外包材を作製した。
 実施例および比較例で得られた外包材について、下記の評価をおこなった。
(1)関数M
 実施例および比較例で得られた外包材について、引張弾性率および厚さを測定し、関数Mの値を計算した。結果を下記の表1に示す。なお、引張弾性率は、上述の方法で測定し、面内平均値(外包材の面内方向の条件を概ね22.5度ずつ変えて採取した8つの条件の値の平均)を採用した。
(2)熱溶着可能なフィルムの押込み弾性率
 実施例および比較例で得られた外包材について、熱溶着可能なフィルムの押込み弾性率を上述の方法で測定した。結果を下記の表1に示す。
(3)屈曲試験後の酸素透過度
 実施例および比較例で得られた外包材について、屈曲試験を上述の方法で行なった後、酸素透過度を上述の方法で測定した。結果を下記の表1に示す。
[評価結果]
Figure JPOXMLDOC01-appb-T000001
 表1より、関数Mの値が3.0MPa・mm以下である実施例1~10では、屈曲試験後の酸素透過度が低く、ガスバリア性の耐久性が高かった。これに対して、関数Mの値が3.0MPa・mmを超えている比較例1、6では、屈曲試験後の酸素透過度が高く、ガスバリア性の耐久性が低かった。
 また、表1より、熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である実施例1~10では、屈曲試験後の酸素透過度が低く、ガスバリア性の耐久性が高かった。これに対して、熱溶着可能なフィルムの押込み弾性率が0.8GPa未満である比較例2~5、7では、屈曲試験後の酸素透過度が高く、ガスバリア性の耐久性が低かった。
 上記より、関数Mの値が3.0MPa・mm以下かつ熱溶着可能なフィルムの押込み弾性率が0.8GPa以上の外包材は、屈曲試験後の酸素透過度が低くなると考えられる。屈曲試験後の酸素透過度が低い外包材は、良好な断熱性能を維持できる真空断熱材が製造可能である。
 さらに、熱溶着可能なフィルムの押込み弾性率が1.3GPa以上である実施例3~8では、熱溶着可能なフィルムの押込み弾性率が1.3GPa未満である実施例1~2よりも、屈曲試験後の酸素透過度が低かった。そのため、熱溶着可能なフィルムの押込み弾性率を1.3GPa以上とすることによって、より良好な断熱性能を維持できる真空断熱材が製造可能である。
 1 … 熱溶着可能なフィルム
 2 … ガスバリアフィルム
 3 … 保護フィルム
 4 … 接着剤
 5 … 中間フィルム
 10 … 真空断熱材用外包材
 11 … 芯材
 20 … 真空断熱材

Claims (9)

  1.  熱溶着可能なフィルム、およびガスバリアフィルムがこの順で配置された真空断熱材用外包材であって、
     前記真空断熱材用外包材の引張弾性率と前記真空断熱材用外包材の厚さの3乗との積が3.0MPa・mm以下であり、
     前記熱溶着可能なフィルムの押込み弾性率が0.8GPa以上である、真空断熱材用外包材。
  2.  前記熱溶着可能なフィルムの押込み弾性率が1.3GPa以上である、請求項1に記載の真空断熱用外包材。
  3.  前記真空断熱材用外包材の引張弾性率と前記真空断熱材用外包材の厚さの3乗との積が1.0MPa・mm以上である、請求項1に記載の真空断熱用外包材。
  4.  前記ガスバリアフィルムが、金属箔を有する、請求項1または請求項3に記載の真空断熱用外包材。
  5.  前記ガスバリアフィルムが、樹脂基材、および前記樹脂基材の片方または両方の面側に配置された無機化合物を含むガスバリア層を有する、請求項1または請求項3に記載の真空断熱用外包材。
  6.  前記ガスバリアフィルムの熱溶着可能なフィルムとは反対の面側に保護フィルムを有する、請求項1または請求項3に記載の真空断熱用外包材。
  7.  前記ガスバリアフィルムと熱溶着可能なフィルムとの間に中間フィルムを有する、請求項1または請求項3に記載の真空断熱用外包材。
  8.  芯材と、前記芯材が封入された真空断熱材用外包材とを有する真空断熱材であって、
     前記真空断熱材用外包材が、請求項1または請求項3に記載の真空断熱用外包材である、真空断熱材。
  9.  熱絶縁領域を有する物品と、真空断熱材とを備える真空断熱材付き物品であって、
     前記真空断熱材が、芯材と、前記芯材が封入された真空断熱材用外包材とを有し、
     前記真空断熱材用外包材が、請求項1または請求項3に記載の真空断熱用外包材である、真空断熱材付き物品。
PCT/JP2017/034360 2016-09-30 2017-09-22 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品 WO2018062048A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/335,827 US10723530B2 (en) 2016-09-30 2017-09-22 Outer packing material for vacuum insulation material, vacuum insulation material, and article provided with vacuum insulation material
SI201730755T SI3521681T1 (sl) 2016-09-30 2017-09-22 Zunanji embalirni material za vakuumski izolacijski material, vakuumski izolacijski material, in izdelek, opremljen z vakuumskim izolacijskim materialom
CN201780058275.2A CN109790952B (zh) 2016-09-30 2017-09-22 真空绝热材料用外包装材料、真空绝热材料和带真空绝热材料的物品
EP17856002.5A EP3521681B1 (en) 2016-09-30 2017-09-22 Outer packaging material for vacuum insulation material, vacuum insulation material, and article provided with vacuum insulation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016195065A JP6202174B1 (ja) 2016-09-30 2016-09-30 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2016-195065 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062048A1 true WO2018062048A1 (ja) 2018-04-05

Family

ID=59969315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034360 WO2018062048A1 (ja) 2016-09-30 2017-09-22 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品

Country Status (6)

Country Link
US (1) US10723530B2 (ja)
EP (1) EP3521681B1 (ja)
JP (1) JP6202174B1 (ja)
CN (1) CN109790952B (ja)
SI (1) SI3521681T1 (ja)
WO (1) WO2018062048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431858A4 (en) * 2016-03-18 2019-02-13 Panasonic Intellectual Property Management Co., Ltd. VACUUM HEAT INSULATION AND HOUSEHOLD UNIT, HOUSE WALL AND TRANSPORT EQUIPMENT THEREWITH

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6932523B2 (ja) * 2017-03-09 2021-09-08 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
JP7296608B2 (ja) * 2017-10-04 2023-06-23 株式会社ベルグリーンワイズ 青果物の鮮度保持用収納袋
JP2021050014A (ja) * 2019-09-24 2021-04-01 大日本印刷株式会社 包装材料及び包装材料を備える包装製品
US20220134724A1 (en) * 2020-11-02 2022-05-05 Kuraray Co., Ltd. Multilayer film and the use for container type house system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557477A (en) * 1978-07-04 1980-01-19 Unitika Ltd Laminate wrapping laminate whose gas shuttingg shuttinggoff property hardly deteriorates due to inflexion fatigue
JPS62102093U (ja) * 1985-12-17 1987-06-29
JP2006021429A (ja) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd 真空断熱材
JP2007040391A (ja) * 2005-08-03 2007-02-15 Matsushita Electric Ind Co Ltd 真空断熱材および真空断熱材を使用した断熱箱体
JP2008106532A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd 真空断熱材
JP2013103343A (ja) * 2011-11-10 2013-05-30 Toppan Printing Co Ltd 真空断熱材用外被材及びそれを用いた真空断熱材
WO2016006191A1 (ja) * 2014-07-09 2016-01-14 凸版印刷株式会社 包装材用積層体、真空断熱材用包装材及び真空断熱材
US20160101593A1 (en) * 2014-10-08 2016-04-14 Samsung Display Co., Ltd. Flexible window and flexible display
JP2016124186A (ja) * 2014-12-26 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. 積層体およびこれを用いた真空断熱材
JP2016191468A (ja) * 2015-03-30 2016-11-10 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070923A (ja) 2004-08-31 2006-03-16 Hitachi Home & Life Solutions Inc 真空断熱材および冷蔵庫
CN101959945B (zh) * 2008-03-07 2013-07-31 东丽株式会社 绝热材料
US20140178613A1 (en) * 2011-08-09 2014-06-26 Panasonic Corporation Sealed container, method of manufacturing the same, and vacuum heat insulating body
CN103917818B (zh) * 2011-11-03 2016-04-27 三菱电机株式会社 真空绝热件及其制造方法、以及使用了该真空绝热件的保温箱和热泵式热水器
JP5611440B2 (ja) 2012-11-28 2014-10-22 積水フィルム株式会社 真空断熱材
JP2014228114A (ja) 2013-05-24 2014-12-08 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557477A (en) * 1978-07-04 1980-01-19 Unitika Ltd Laminate wrapping laminate whose gas shuttingg shuttinggoff property hardly deteriorates due to inflexion fatigue
JPS62102093U (ja) * 1985-12-17 1987-06-29
JP2006021429A (ja) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd 真空断熱材
JP2007040391A (ja) * 2005-08-03 2007-02-15 Matsushita Electric Ind Co Ltd 真空断熱材および真空断熱材を使用した断熱箱体
JP2008106532A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd 真空断熱材
JP2013103343A (ja) * 2011-11-10 2013-05-30 Toppan Printing Co Ltd 真空断熱材用外被材及びそれを用いた真空断熱材
WO2016006191A1 (ja) * 2014-07-09 2016-01-14 凸版印刷株式会社 包装材用積層体、真空断熱材用包装材及び真空断熱材
US20160101593A1 (en) * 2014-10-08 2016-04-14 Samsung Display Co., Ltd. Flexible window and flexible display
JP2016124186A (ja) * 2014-12-26 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. 積層体およびこれを用いた真空断熱材
JP2016191468A (ja) * 2015-03-30 2016-11-10 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431858A4 (en) * 2016-03-18 2019-02-13 Panasonic Intellectual Property Management Co., Ltd. VACUUM HEAT INSULATION AND HOUSEHOLD UNIT, HOUSE WALL AND TRANSPORT EQUIPMENT THEREWITH

Also Published As

Publication number Publication date
SI3521681T1 (sl) 2021-08-31
JP6202174B1 (ja) 2017-09-27
EP3521681B1 (en) 2021-04-21
US20190300253A1 (en) 2019-10-03
CN109790952A (zh) 2019-05-21
CN109790952B (zh) 2021-08-13
EP3521681A1 (en) 2019-08-07
JP2018059532A (ja) 2018-04-12
US10723530B2 (en) 2020-07-28
EP3521681A4 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2018062048A1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP6187718B1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018189163A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018059524A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP6880630B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP6471734B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2017210986A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器
JP6149997B1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP6245332B1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018059625A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP7056029B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2020008084A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018189227A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP6642605B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2019095066A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP6187719B1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2019027444A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018059533A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018059557A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP7305922B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP7447675B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP7106942B2 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
WO2020262668A1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2023065501A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018189226A (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856002

Country of ref document: EP

Effective date: 20190430