WO2018061811A1 - 決定方法及び装置、プログラム、情報記録媒体、露光装置、レイアウト情報提供方法、レイアウト方法、マーク検出方法、露光方法、並びにデバイス製造方法 - Google Patents

決定方法及び装置、プログラム、情報記録媒体、露光装置、レイアウト情報提供方法、レイアウト方法、マーク検出方法、露光方法、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2018061811A1
WO2018061811A1 PCT/JP2017/033376 JP2017033376W WO2018061811A1 WO 2018061811 A1 WO2018061811 A1 WO 2018061811A1 JP 2017033376 W JP2017033376 W JP 2017033376W WO 2018061811 A1 WO2018061811 A1 WO 2018061811A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
pitch
size
marks
substrate
Prior art date
Application number
PCT/JP2017/033376
Other languages
English (en)
French (fr)
Inventor
柴崎 祐一
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020197011426A priority Critical patent/KR102556130B1/ko
Priority to JP2018542387A priority patent/JP7081490B2/ja
Priority to CN201780059332.9A priority patent/CN109791368B/zh
Publication of WO2018061811A1 publication Critical patent/WO2018061811A1/ja
Priority to US16/351,081 priority patent/US20190279940A1/en
Priority to US17/354,016 priority patent/US11742299B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps

Definitions

  • the present invention relates to a determination method and apparatus, a program, an information recording medium, an exposure apparatus, a layout information providing method, a layout method, a mark detection method, an exposure method, and a device manufacturing method.
  • a multilayer circuit pattern is formed on a substrate such as a wafer or a glass plate (hereinafter collectively referred to as a wafer), but when the overlay accuracy between the layers is poor, A semiconductor element or the like cannot exhibit predetermined circuit characteristics, and may be a defective product in some cases. For this reason, usually, a mark (alignment mark) is formed in advance on each of a plurality of shot areas on the wafer, and the position (coordinate value) of the mark on the stage coordinate system of the exposure apparatus is detected. Thereafter, based on this mark position information and known position information of a newly formed pattern (for example, a reticle pattern), wafer alignment for aligning one shot area on the wafer with the pattern is performed. .
  • EGA enhanced global alignment
  • the movable alignment detection system has more design restrictions than the fixed alignment detection system and is disadvantageous in terms of cost.
  • layout information for arranging a plurality of marks detected using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partition areas are defined.
  • layout information providing method for providing, as the layout information, information relating to the arrangement of the plurality of marks, which is obtained based on the arrangement information of the plurality of detection areas.
  • layout information for arranging a plurality of marks for detection using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partition areas are defined.
  • the pitches of the first direction and the second direction intersecting within a predetermined plane of the plurality of detection regions are D 1 and D 2 , respectively, and the first direction and the second direction on the substrate
  • the sizes of the first direction and the second direction of each of the plurality of partition regions arranged two-dimensionally along the second direction are W 1 and W 2 , respectively, and the plurality of marks arranged on the substrate
  • the pitches in the first direction and the pitch in the second direction are respectively p 1 and p 2 , and candidates for the size W 1 and the size W 2 satisfying the following expressions (a) and (b), and Corresponding to A pitch p 2 of each candidate pitch p 1 and the second direction of the first direction of the mark, to provide as the layout information, the layout information providing method comprising is provided.
  • layout information for arranging a plurality of marks for detection using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partition areas are defined.
  • a layout information providing method to be provided wherein the plurality of detection regions are arranged on the substrate with pitches in a first direction and a second direction intersecting within a predetermined plane being D 1 and D 2 , respectively.
  • the pitch p 1 in the first direction of the plurality of marks satisfying the following expressions (c) and (d), where p 1 and p 2 are the pitch in the first direction and the pitch in the second direction, respectively. and pitch p 2 of each candidate of the second direction, to provide as the layout information, the layout information providing method comprising is provided.
  • p 1 D 1 / i (i is a natural number)
  • p 2 D 2 / j (j is a natural number) « (d)
  • layout information for arranging a plurality of marks for detection using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partition areas are defined.
  • the pitch D 1 in the first direction within the predetermined plane and the pitch D 2 in the second direction intersecting the first direction within the predetermined plane of the plurality of detection regions are provided.
  • the layout information providing method comprising, the method comprising providing as the layout information is provided.
  • layout information for arranging a plurality of marks for detection using a mark detection system having a plurality of detection areas on a substrate in which a plurality of partitioned areas are defined.
  • a layout information providing method to provide, wherein the first of a plurality of virtual points arranged in the first direction and the second direction intersecting each other within a predetermined plane including a point included in each of the plurality of detection regions.
  • a layout information providing method is provided.
  • layout information for arranging a plurality of marks detected using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partition areas are defined.
  • layout information including information related to the arrangement of the plurality of marks obtained based on the arrangement information of the plurality of detection areas is provided.
  • the pitches of the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas are D 1 and D 2 , respectively, on the substrate along the first direction and the second direction.
  • the sizes in the first direction and the second direction of each of the plurality of partitioned areas arranged two-dimensionally are W 1 and W 2 , respectively, and the pitch in the first direction of the plurality of marks arranged on the substrate
  • the pitches in the second direction are p 1 and p 2 , respectively, and the size W 1 and the size W 2 are obtained from the pitches D 1 and D 2 so as to satisfy the following expressions (a) and (b), respectively.
  • Candidates and their response The layout information includes a plurality of the pitch p 2 of each candidate pitch p 1 and the second direction of the first direction mark, a that is provided.
  • a determination method for determining an arrangement of a plurality of marks on a substrate on which a plurality of partitioned areas are defined for detection using a mark detection system having a plurality of detection areas is provided.
  • the pitches of the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas are D 1 and D 2 , respectively, on the substrate along the first direction and the second direction.
  • the sizes of the first direction and the second direction of each of the plurality of partitioned regions arranged two-dimensionally are W 1 and W 2 , respectively, and the first direction and the plurality of marks arranged on the substrate Based on the pitch D 1 , the pitch D 2 , the size W 1, and the size W 2 so that the pitches in the second direction are p 1 and p 2 , respectively, and the following expressions (a) and (b) are satisfied.
  • the first direction pin of the plurality of marks Determining method of determining a pitch p 2 of the switch p 1 and the second direction is provided.
  • a determination method for determining an arrangement of a plurality of marks on a substrate on which a plurality of partitioned areas are defined for detection using a mark detection system having a plurality of detection areas The pitches of the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas are D 1 and D 2 , respectively, on the substrate along the first direction and the second direction.
  • the sizes of the first direction and the second direction of each of the plurality of partitioned regions arranged two-dimensionally are W 1 and W 2 , respectively, and the first direction and the plurality of marks arranged on the substrate Based on the pitch D 1 , the pitch D 2 , the size W 1, and the size W 2 so that the pitches in the second direction are p 1 and p 2 , respectively, and the following expressions (a) and (b) are satisfied.
  • determining a method for determining at least one candidate is provided.
  • the arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on the substrate on which the plurality of partition areas are defined, and the partition areas A determination method for determining a size, wherein pitches in a first direction and a second direction intersecting within a predetermined plane of the plurality of detection regions are D 1 and D 2 , respectively, and the first direction and the second direction on the substrate.
  • the sizes of the first direction and the second direction of each of the plurality of partition regions arranged two-dimensionally along the second direction are W 1 and W 2 , respectively, and the plurality of marks arranged on the substrate
  • the sections are defined so that the pitches in the first direction and the second direction are p 1 and p 2 , respectively, and the following expressions (a) and (b) are satisfied.
  • the region size W 1 , W 2 , and Determining method of determining a pitch p 2 of the pitch p 1 and the second direction of the first direction of the plurality of marks is provided.
  • the arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on the substrate on which the plurality of partition areas are defined, and the size of the partition areas The pitches in the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas are respectively D 1 and D 2, and the first direction and the first direction on the substrate are determined.
  • the sizes of the first direction and the second direction of each of the plurality of partition regions arranged two-dimensionally along two directions are W 1 and W 2 , respectively, and the marks of the plurality of marks arranged on the substrate are
  • the pitches in the first direction and the second direction are p 1 and p 2 , respectively, and at least one candidate for each of the size W 1 and the size W 2 so as to satisfy the following expressions (a) and (b): Said plurality corresponding to them At least one candidate and determination method for determining the first direction of pitch p 1 and the second direction pitch p 2 of each mark is provided.
  • the size and mark of the partition area for arranging a plurality of marks for detection using a mark detection system having a plurality of detection areas on the substrate together with the plurality of partition areas.
  • the pitches p 1i and p 2j of the first direction pitch p 1 and the second direction pitch p 2 of the plurality of marks corresponding to the determined final candidates are determined as the pitches.
  • p 1 and the pitch p 2 its Determination method includes determining as a final candidate for, respectively, the is provided.
  • the arrangement of the plurality of detection areas of the mark detection system used for detecting the plurality of marks arranged together with the plurality of partition areas on the substrate is combined with the arrangement of the plurality of marks.
  • a determination method for determining an arrangement of a plurality of detection areas of a mark detection system used for detecting a plurality of marks on a substrate on which a plurality of partition areas are defined A determination method is provided that determines the arrangement of the plurality of detection regions based on the sizes of the plurality of partition regions that are two-dimensionally arranged along a first direction and a second direction intersecting each other on the substrate. .
  • a determination method for determining an arrangement of a plurality of detection areas of a mark detection system used for detecting a plurality of marks on a substrate on which a plurality of partition areas are defined The plurality of detection areas include a plurality of detection areas separated in a first direction within a predetermined plane and a plurality of detection areas separated in a second direction intersecting the first direction within the predetermined plane,
  • the pitch of the detection area in the first direction is D 1
  • the pitch in the second direction is D 2
  • the size in the first direction of the plurality of partition areas arranged on the substrate is W 1
  • the second The size of the direction is W 2
  • the arrangement of the plurality of detection areas is determined based on the partition area sizes W 1 and W 2 so as to satisfy the following expressions (c) and (d).
  • determining method includes determining a pitch D 1, D 2 of the detection area, is provided That.
  • D 1 / i (i is a natural number) W 1 / m (m is a natural number) (c)
  • D 2 / j (j is a natural number) W 2 / n (n is a natural number) (d)
  • a determination apparatus for determining an arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partitioned areas are defined.
  • the pitches in the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas are D 1 and D 2 , respectively, and 2 on the substrate along the first direction and the second direction.
  • the sizes of the first and second directions of each of the plurality of partitioned regions that are dimensionally arranged are W 1 and W 2 , respectively, and the first direction and the second direction of the plurality of marks arranged on the substrate.
  • the plurality of pitches satisfying the following expressions (a) and (b) based on the pitch D 1 , the pitch D 2 , the size W 1, and the size W 2 , respectively, with pitches in two directions being p 1 and p 2 , respectively.
  • the pitch p 1 and the pitch of the mark of A determination device provided with a calculation means for calculating the pitch p 2 is provided.
  • a determination apparatus for determining an arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on a substrate on which a plurality of partitioned areas are defined.
  • the pitches in the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas are D 1 and D 2 , respectively, and 2 on the substrate along the first direction and the second direction.
  • the sizes of the first and second directions of each of the plurality of partitioned regions that are dimensionally arranged are W 1 and W 2 , respectively, and the first direction and the second direction of the plurality of marks arranged on the substrate.
  • the plurality of pitches satisfying the following expressions (a) and (b) based on the pitch D 1 , the pitch D 2 , the size W 1, and the size W 2 , respectively, with pitches in two directions being p 1 and p 2 , respectively.
  • the pitch p 1 and the pitch of the mark of Determining device including a calculating means for calculating at least one candidate of pitch p 2 is provided.
  • the arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on the substrate on which the plurality of partition areas are defined, and the size of the partition areas And determining the pitches of the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas as D 1 and D 2 , respectively, and the first direction and the first direction on the substrate.
  • the sizes of the first direction and the second direction of each of the plurality of partition regions arranged two-dimensionally along two directions are W 1 and W 2 , respectively, and the marks of the plurality of marks arranged on the substrate are
  • the pitches in the first direction and the second direction are p 1 and p 2 , respectively, and based on the pitch D 1 and the pitch D 2 , the size W 1 and the size W satisfying the following expressions (a) and (b): the size W 2, of the plurality of mark Serial determination device having a calculating means for calculating a pitch p 2 in the first direction of pitch p 1 and the second direction is provided.
  • the arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on the substrate on which the plurality of partition areas are defined, and the size of the partition areas And determining the pitches of the first direction and the second direction intersecting within a predetermined plane of the plurality of detection areas as D 1 and D 2 , respectively, and the first direction and the first direction on the substrate.
  • the sizes of the first direction and the second direction of each of the plurality of partition regions arranged two-dimensionally along two directions are W 1 and W 2 , respectively, and the marks of the plurality of marks arranged on the substrate are
  • the pitches in the first direction and the second direction are p 1 and p 2 , respectively, and based on the pitch D 1 and the pitch D 2 , the size W 1 and the size W satisfying the following expressions (a) and (b): size W 2 each of at least 1 And candidates, corresponding to said plurality of at least determining apparatus having a calculating means for calculating one of the candidates for the first direction of the pitch p 1 and the second direction pitch p 2 of each mark, provided Is done.
  • the arrangement of a plurality of marks for detection using a mark detection system having a plurality of detection areas on the substrate on which the plurality of partition areas are defined, and the size of the partition areas A plurality of virtual points arranged in a first direction and a second direction intersecting each other in a predetermined plane including points included in each of the plurality of detection regions, in the first direction.
  • a candidate for which the value satisfies a predetermined condition is selected as the size W 1.
  • the 2j, the pitch p 1 and Serial pitch p 2 decision device comprising determination means for determining a respective final candidate, a is provided.
  • the arrangement of the plurality of detection areas of the mark detection system used for detecting the plurality of marks arranged together with the plurality of partition areas on the substrate is combined with the arrangement of the plurality of marks.
  • the arrangement of said plurality of detection areas of the mark detection system determines to be positioned, along the respective said pitch D 1 and the pitch D 2 determined by the plurality of marks corresponding to said final candidate said second determining with one direction of pitch p 1 and the pitch p 2 each of the plurality of candidate p 1 m of the second direction, the p 2n, determining means for determining as the pitch p 1 and the pitch p 2 each final candidate, the An apparatus is provided.
  • a determination device for determining an arrangement of a plurality of detection areas of a mark detection system used for detecting a plurality of marks on a substrate on which a plurality of partition areas are defined.
  • the plurality of detection areas include a plurality of detection areas separated in a first direction within a predetermined plane and a plurality of detection areas separated in a second direction intersecting the first direction within the predetermined plane,
  • the pitch of the detection region in the first direction is D 1
  • the pitch of the second direction is D 2
  • the size of the plurality of partition regions arranged on the substrate is W 1
  • the second direction the size as W 2
  • the following formula (c) so as to satisfy the (d), based on the size W 1, W 2 of the divided area, determines the pitch D 1, D 2 of the plurality of detection areas
  • an information recording medium readable by a computer in which the program according to the 24th aspect is recorded.
  • an exposure apparatus that exposes a substrate to form a plurality of partitioned regions on the substrate, wherein a plurality of marks are arranged for detection using the mark detection system.
  • a determination device according to any one of the seventeenth to twenty-third aspects, which determines the arrangement of a plurality of marks to be detected using the mark detection system and the size of a partition area in which the plurality of marks are formed.
  • An exposure apparatus comprising the same is provided.
  • an exposure apparatus that exposes a substrate with an energy beam, comprising: a mark detection system having a plurality of detection regions; and a holding unit that holds the substrate; A stage movable relative to the region, wherein the plurality of detection regions include a first detection region, a second detection region separated in a first direction with respect to the first detection region, and the first detection A third detection region that is separated from the region in a second direction that intersects the first direction, and the first, second, and third detection regions are moved by moving the stage to the first position.
  • at least one mark on the substrate can be detected, and by moving the stage from the first position to the second position, in each of the first, second, and third detection regions, At least one mark on the substrate is detectable Exposure apparatus is provided.
  • an exposure apparatus for exposing a substrate with an energy beam, comprising: a mark detection system having a plurality of detection regions; and a holding unit for holding the substrate; A plurality of detection areas separated from each other in a first direction within a predetermined plane, and a second direction intersecting the first direction within the predetermined plane.
  • a plurality of detection areas separated from each other, the pitch of the plurality of detection areas in the first direction is D 1 , the pitch in the second direction is D 2 , and the plurality of partition areas arranged on the substrate Assuming that the size in the first direction is W 1 and the size in the second direction is W 2 , the arrangement of the plurality of detection regions is determined at pitches D 1 and D 2 so as to satisfy the following expressions (c) and (d).
  • An exposed exposure apparatus is provided.
  • D 1 / i (i is a natural number) W 1 / m (m is a natural number) (c)
  • D 2 / j (j is a natural number) W 2 / n (n is a natural number) (d)
  • a plurality of detection set by the pitch D 2 in the second direction crossing the first direction in a first direction in a pitch D 1 and in the predetermined plane in a predetermined plane A method of laying out a plurality of marks formed on a substrate for detection using a mark detection system having a region, wherein the marks are two-dimensionally arranged on the substrate along the first direction and the second direction.
  • the size of each of the plurality of partition regions in the first direction and the second direction is W 1 and W 2 , respectively, and the plurality of marks arranged on the substrate are in the first direction and the second direction.
  • a plurality of virtual set in a pitch D 2 in the second direction crossing the first direction at the pitch D 1 a and in the predetermined plane in a first direction in a predetermined plane A method for laying out a plurality of marks formed on a substrate for detection using a mark detection system having a plurality of detection areas whose detection centers coincide with at least two of the points, The plurality of marks are formed with a pitch p 1 in the first direction and a pitch p 2 in the second direction on the substrate arranged in parallel with a plane, and the first direction and the second are formed on the substrate.
  • a plurality of detection set by the pitch D 2 in the second direction crossing the first direction in a first direction in a pitch D 1 and in the predetermined plane in a predetermined plane A mark detection method for detecting a plurality of marks formed on a substrate using a mark detection system having a region, wherein the marks are two-dimensionally arranged on the substrate along the first direction and the second direction.
  • the sizes of the first direction and the second direction of each of the plurality of partition regions are W 1 and W 2 , respectively, and the pitches of the plurality of marks arranged on the substrate are the pitches in the first direction and the second direction.
  • a plurality of marks are formed on the substrate so that the following expressions (a) and (b) are satisfied as p 1 and p 2 , respectively, and position information on the predetermined plane of the substrate is obtained using a position detection system. While detecting, using the mark detection system Mark detection method for each output region detected in parallel at least one of said mark on said substrate is provided.
  • a plurality of virtual set in a pitch D 2 in the second direction crossing the first direction in a first direction in a pitch D 1 and in the predetermined plane in a predetermined plane A mark detection method for detecting a plurality of marks formed on a substrate using a mark detection system having a plurality of detection regions each having a detection center that coincides with at least two of the points.
  • At least a part of the plurality of marks formed on the substrate is detected by the mark detection method according to the thirty-first or thirty-second aspect;
  • An exposure method is provided that includes moving the substrate based on a mark detection result and exposing the substrate with an energy beam.
  • a thirty-fourth aspect of the present invention using the exposure apparatus according to any of the twenty-sixth to twenty-eighth aspects or using the exposure method according to the thirty-third aspect, exposing the substrate; And developing the processed substrate.
  • a device manufacturing method is provided.
  • FIG. 1 It is a figure which shows roughly the hardware constitutions of the determination apparatus which concerns on one Embodiment. It is a figure (functional block diagram) which shows the function structure of the determination apparatus of FIG. It is a figure which takes out six shot area
  • FIG. (1) for demonstrating the alignment measurement of a wafer using an alignment system (and baseline check of an alignment system).
  • FIG. (2) for demonstrating the alignment measurement (and baseline check of an alignment system) of the wafer using an alignment system.
  • FIG. 10 is a diagram (No. 3) for explaining wafer alignment measurement (and alignment system baseline check) using an alignment system;
  • FIG. (4) for demonstrating the alignment measurement (and baseline check of an alignment system) of the wafer using an alignment system.
  • FIG. 1 schematically shows a hardware configuration of a determination device 50 according to an embodiment.
  • the determination device 50 includes a central processing unit (Central processing unit: hereinafter referred to as “CPU”) 51, a main memory 52, a ROM (read only memory) 53, a RAM (random access memory) 54, a hard disk drive (HDD), or a solid.
  • a storage device 56 such as a state drive (SSD), an input device 57 and a display device 58 are provided. Each is connected via a common bus BUS.
  • the CPU 51 controls the overall operation of the determination device 50.
  • the main memory 52 is a device for temporarily storing programs and data, and is a device that can be directly accessed from the CPU 51.
  • the ROM 53 stores a program such as IPL (Initial Program Loader) used for driving (starting) the CPU 51.
  • the RAM 54 is used as a work area for the CPU 51.
  • the storage device 56 stores a program written in a code that can be decoded by the CPU 51. Note that the program stored in the storage device 56 is loaded into the main memory 52 as necessary, and is executed by the CPU 51.
  • the input device 57 includes an input medium (not shown) such as a keyboard and a mouse, for example, and notifies the CPU 51 of various information (including data) input by the user. Note that information from the input medium may be input in a wireless manner.
  • the display device 58 includes a display screen using, for example, a CRT, a liquid crystal display (LCD), a plasma display panel (PDP), and the like, and displays various types of information.
  • a CRT a CRT
  • LCD liquid crystal display
  • PDP plasma display panel
  • FIG. 2 shows a functional configuration of the determination device 50.
  • Each functional unit is realized by each structural unit in the hardware configuration described above and a program corresponding to a processing algorithm shown in a flowchart described later.
  • the determination device 50 uses a mark detection system (alignment system) having two or more K detection regions (for example, K columns) to detect a plurality of marks (alignment marks) for use in a semiconductor element. Alternatively, it is an apparatus for determining the layout of marks when being arranged on a substrate such as a wafer or a glass plate for manufacturing an electronic device (microdevice) such as a liquid crystal display element.
  • the determination device 50 includes the first calculation unit 10, the second calculation unit 12, the determination unit 14 including the first determination unit 14a and the second determination unit 14b, the creation unit 16, and the display unit 18. I have. Note that the determination device 50 may include a calculation unit including the first calculation unit 10 and the second calculation unit 12.
  • the first calculation unit 10 inputs the pitch Dx (Dx in the X-axis direction) of the plurality of detection areas arranged in the X-axis direction, which is input via the input device 57 as the arrangement information of the K detection areas of the mark detection system.
  • Dx and Dy in response to input of, for example, 39 [mm]) data and data of a pitch Dy (Dy is, for example, 44 [mm]) in the Y-axis direction of a plurality of detection regions arranged in the Y-axis direction.
  • (Dx / i) and (Dy / j) are X-axis directions of a plurality of marks arranged on the substrate Are calculated as a plurality of candidates px i and py j of the pitch px and the pitch py in the Y-axis direction.
  • the pitch Dx may be called the interval Dx
  • the pitch Dy may be called the interval Dy.
  • the arrangement information of the detection areas is not limited to the information on the pitch (interval), but may be information on the coordinate position in the XY plane of each detection area (detection center). Further, the arrangement information of the detection area may be design arrangement information (for example, design values of the pitches Dx and Dy), or information on the arrangement of each detection area in the apparatus in which the mark detection system is mounted. (For example, the pitches Dx and Dy are measured), and the values may be used as the arrangement information of the detection area.
  • the detection centers of the K detection areas of the mark detection system are arranged so as to coincide with a plurality of virtual points arranged in the X-axis direction and the Y-axis direction orthogonal to each other within a predetermined plane (here, the XY plane).
  • the first calculation unit 10 obtains at least K points at which the centers of the K detection areas of the mark detection system, which are input via the input device 57 as the pitch information of the plurality of detection areas, coincide.
  • Data of pitch Dx (Dx is, for example, 39 [mm]) in the X-axis direction of a plurality of virtual points arranged in the X-axis direction and the Y-axis direction orthogonal to each other within a predetermined plane (here, the XY plane), and
  • Divided (Dx / i) and (Dy / j) are calculated as a plurality of candidates px i and py j of the pitch px in the X-axis direction and the pitch py in the Y-axis direction of the plurality of marks arranged on the substrate. .
  • the detection area arrangement information may not be input from the input device 57.
  • the information (data) is stored in the storage device 56, and the first calculation unit 10 stores the information in the storage device.
  • a plurality of candidates px i , py j may be calculated based on the information (for example, pitches Dx, Dy) regarding the arrangement of the detected areas.
  • pitches Dx, Dy, and pitches px, py, the X-axis direction and the Y-axis direction on the substrate P arranged in parallel to the XY plane as an example.
  • 6 shot areas SA of the plurality of shot areas SA formed in a matrix-like arrangement are shown together with a plurality of alignment sensors, here four alignment sensors (column CA).
  • a small circle at the center of each column CA is the detection area DA, and its center (detection center) coincides with four of the plurality of virtual points defined by the pitch Dx and the pitch Dy.
  • the pitch Dx in the axial direction and the pitch Dy in the Y-axis direction are the interval between the detection centers of the two detection areas DA adjacent in the X-axis direction and the two detection areas DA adjacent in the Y-axis direction, respectively. This is nothing but the interval in the Y-axis direction of the detection center.
  • the pitch Dx in the X-axis direction of a plurality of virtual points is the distance in the X-axis direction between the detection centers of two adjacent detection areas DA in the X-axis direction, and the pitch in the Y-axis direction. It can be said that Dy is the distance in the Y-axis direction between the detection centers of two adjacent detection areas DA in the Y-axis direction.
  • n 1 ⁇ M
  • n 1 ⁇ n
  • the shot area is calculated as a candidate Wx im of the size Wx in the X-axis direction and a candidate Wy jn of the size Wy in the Y-axis direction.
  • Such preconditions may be input via the input device 57 or may be stored in advance in the storage device 56 or the like. Such a precondition can also be used as information regarding the size of the shot area (partition area) SA.
  • the size Wx and the size Wy are determined as final candidates. For example, if the range of the size Wx in the X-axis direction and the range of the size Wy in the Y-axis direction of the shot area SA is determined as 30>Wx> 15 and 35>Wy> 25, Only certain candidates Wx im and candidate Wy jn are final candidates.
  • the range of the size Wx in the X-axis direction (for example, 30> Wx> 15) and the range of the size Wy in the Y-axis direction (for example, 35> Wy> 25) of the shot area SA are as described above.
  • Information regarding the size of the (region) may be input via the input device 57 or may be stored in advance in the storage device 56 or the like.
  • the second determination unit 14b is a candidate for the pitch px in the X-axis direction and the pitch py in the Y-axis direction of a plurality of marks corresponding to the final candidates Wx im and Wy jn of Wx and Wy determined by the first determination unit 14a.
  • px i and py j are determined as final candidates for the pitch px and the pitch py, respectively.
  • the final candidates for pitch px and pitch py corresponding to the final candidates for Wx and Wy are as follows.
  • the creation unit 16 has different size shot areas (also referred to as shot fields) based on the final candidates of the size Wx and the size Wy determined by the determination unit 14 and the final candidates of the pitch px and the pitch py.
  • Layout information also referred to as a template
  • the mark M in which a plurality of marks M are two-dimensionally arranged in the X-axis direction and the Y-axis direction with a pitch px and a pitch py is created for each SA.
  • the display unit 18 displays the layout information of the mark M created by the creating unit 16 on the display screen of the display device 58.
  • a plurality of, for example, 40 types of layout information (templates) as shown in FIG. 4 are displayed on the display screen.
  • the layout information created by the creation unit 16 (layout information displayed on the display unit 18) is not limited to that shown in FIG.
  • the layout information as shown in Tables 1 and 2 may be created (displayed).
  • FIG. 5 shows a flowchart corresponding to the processing algorithm executed by the CPU 51. In the following, description regarding the CPU 51 is omitted unless particularly necessary.
  • step S102 the count value i of the first counter, the count value j of the second counter, the count value m of the third counter, and the count value n of the fourth counter are initialized to 1, respectively.
  • step S104 in order to prompt the user to input the data of the pitch Dx in the X-axis direction and the data of the pitch Dy in the Y-axis direction of the plurality of detection areas, the display screen of the display device 58 displays these data. After the input screen is displayed, the process proceeds to step S106 and waits for the user to input data. When the user inputs pitch Dx data and pitch Dy data via the input device 57, the process proceeds to step S108.
  • step S108 for convenience, it is assumed that, for example, 39 [mm] is input as the data of the pitch Dx and 44 [mm] is input as the data of the pitch Dy.
  • step S104 or before step S108 a display prompting the user to input the preconditions as described above (for example, i> m, j> n, or Dx> Wx, Dy> Wy) is displayed on the screen of the display device 58. May be displayed. Further, in step S104 or before step S108, the display for prompting the input of the information regarding the size of the shot area (partition area) SA (for example, 30>Wx> 15, 35>Wy> 25) as described above. You may display on the screen of the display apparatus 58.
  • the result is stored in a predetermined storage area in the RAM 54.
  • step S110 it is determined whether or not the count value i is greater than or equal to a predetermined value I.
  • I 10
  • the determination in step S110 is denied, and after proceeding to step S112 and incrementing the count value i by 1 (i ⁇ i + 1), until the determination in step S110 is affirmed, step S108 ⁇
  • the result is stored in a predetermined storage area in the RAM 54.
  • step S116 it is determined whether or not the count value j is greater than or equal to a predetermined value J.
  • J 10
  • step S116 the determination in step S116 is negative, and after proceeding to step S118 and incrementing the count value j by 1 (j ⁇ j + 1), step S114 ⁇ until the determination in step S116 is affirmed.
  • the process of S116 ⁇ S118 (including determination) is repeated.
  • py 2 Dy / 2
  • py 3 Dy / 3
  • step S122 it is determined whether or not the count value m of the third counter is equal to or greater than a predetermined value M.
  • M 10
  • the process proceeds to step S124, and after incrementing the count value m by 1 (m ⁇ m + 1), until the determination in step S122 is positive, step S120 ⁇
  • i> m can be set as a precondition for calculation, and only Wx im satisfying the precondition may be calculated.
  • step S122 If the determination in step S122 is affirmed, the process proceeds to step S126.
  • step S1208 it is determined whether or not the count value n is equal to or greater than a predetermined value N.
  • N 10
  • step S126 ⁇ until the determination in step S128 is affirmed.
  • the loop processing (including judgment) of S128 ⁇ S130 is repeated.
  • j> n can be set as a precondition for calculation, and only Wy jn that satisfies the precondition may be calculated.
  • step S128 If the determination in step S128 is affirmed, the process proceeds to step S132.
  • Wy jn n ⁇ py j calculated for n.
  • step S134 Wx determined in step S132, the pitch py pitch px and Y-axis direction of the X-axis direction of the plurality of marks that corresponds to the last candidate Wy candidate px i, the py j, pitch px and The final candidate for each pitch py is determined.
  • the final candidates for pitch px and pitch py corresponding to the final candidates for Wx and Wy are as shown in Table 2 above.
  • shot areas having different sizes are determined based on the final candidates for size Wx and size Wy determined in step S132 and the final candidates for pitch px and pitch py determined in step S134.
  • the layout information (template) of the mark M in which a plurality of marks M are two-dimensionally arranged in the X-axis direction and the Y-axis direction with the pitch px and the pitch py is created in each field SA.
  • the layout information of the mark M created in step S136 is displayed on the display screen of the display device 58, and then the series of processing of this routine is terminated.
  • a plurality of, for example, 40 types of layout information (templates) as shown in FIG. 4 are displayed on the display screen. Therefore, the user views the screen and selects the template closest to the shot size to be produced from among 40 types of templates (layout information), thereby determining the optimum alignment mark layout according to the shot size. be able to.
  • the user selects a shot area template that is as close as possible to the shot size to be produced from among 40 types of templates (layout information), and for example, as shown in FIG.
  • the layout of the shot area SA and the alignment mark M may be determined so that the device pattern (actual pattern field) RPF is disposed therein.
  • the user can determine the reticle layout used in the exposure apparatus based on the selected shot size and alignment mark layout. For example, as shown in FIG. 6, the arrangement of the device pattern field RPF and a plurality of alignment marks on the reticle can be determined. Therefore, determining the shot size and the alignment mark as described above can also be said to determine the reticle layout.
  • the substrate rotation is performed.
  • a certain mark is positioned in one detection area of the plurality of detection areas of the mark detection system (alignment system) after adjustment, another mark is also positioned in the remaining detection areas. Therefore, a plurality of marks on the substrate can be detected in parallel in the plurality of detection areas DA of the mark detection system.
  • the CPU 51 executes the processing of steps S104 to S118 (including determination) to implement the first calculation unit 10, and the CPU 51 performs steps S120 to S130.
  • the second calculation unit 12 is realized, and when the CPU 51 executes the process of step S132, the first determination unit 14a is realized, and the CPU 51 executes the process of step S134.
  • the second determination unit 14b is realized, the creation unit 16 is realized by the CPU 51 executing the process of step S136, and the display unit 18 is realized by the CPU 51 executing the process of step S138.
  • each unit may be configured by hardware including a microprocessor and the like.
  • the first calculation unit 10 constitutes a first calculation unit
  • the second calculation unit 12 constitutes a second calculation unit
  • the determination means is comprised by the determination part 14 containing the 1st determination part 14a and the 2nd determination part 14b.
  • the creation unit 16 includes a creation unit
  • the display unit 18 includes a display unit.
  • FIG. 7 shows a functional block diagram of a determination device 50A according to this modification.
  • the hardware configuration of the determination device 50A according to this modification is the same as that of the determination device 50 described above. Therefore, the same reference numerals as those described above are used for the hardware configuration.
  • the creation unit 16 and the display unit 18 are omitted, but the creation and display of layout information (template) is performed in the same manner as the determination device 50 in FIG. 2.
  • the determination device 50A includes a plurality of shot regions (partition regions) formed on a substrate and arranged two-dimensionally along a first direction and a second direction intersecting each other, for example, an X-axis direction and a Y-axis direction orthogonal to each other.
  • Two or more K detection areas DA (and detection centers) of a mark detection system (alignment system) used to detect a plurality of marks arranged in a predetermined positional relationship on the substrate based on a known size of ) Is determined together with the arrangement of a plurality of marks.
  • the determination device 50A includes a first calculation unit 60, a second calculation unit 62, and a final candidate determination unit 64 including a first final candidate determination unit 64a and a second final candidate determination unit 64b. ing.
  • Each functional unit is realized by each structural unit in the hardware configuration described above and a program corresponding to a processing algorithm shown in a flowchart described later.
  • the first calculation unit 60 converts the size Wx to a natural number m.
  • a plurality of candidates px m and py n are sequentially calculated for the direction pitch px and the Y-axis direction pitch py.
  • i ⁇ px m and j ⁇ py n are sequentially detected in the X and Y axis directions in the XY plane parallel to the substrate P.
  • the area is calculated as a candidate for the pitch Dx in the Y-axis direction and the pitch Dy in the Y-axis direction.
  • the pitch Dx in the X-axis direction of the plurality of virtual points Alternatively, it may be calculated as a candidate for the pitch Dy in the Y-axis direction.
  • the relationship between i and m and j and n is defined as a precondition, and only Dx im and Dy jn satisfying the precondition are calculated, and the calculation amount may be reduced. good.
  • the final candidates for Dx and Dy that satisfy the above conditions are as follows.
  • the second final candidate determination unit 64b is a candidate for the pitch px in the X-axis direction and the pitch py in the Y-axis direction of a plurality of marks corresponding to the final candidates for Dx and Dy determined by the first final candidate determination unit 64a.
  • px m and py n are determined as final candidates for the pitch px and the pitch py.
  • the final candidates for pitch px and pitch py corresponding to the final candidates for Dx and Dy described above are as follows.
  • Information on each final candidate determined is stored in a predetermined final candidate storage area in the RAM. Therefore, the user reads the information from the final candidate storage area via the input device 57, selects arbitrary information from the read information, determines the pitch Dx and the pitch Dy, and determines the pitch Dx and the pitch Dy. Based on Dy, the positional relationship (arrangement) of the centers (detection centers) of the plurality of detection areas DA of the mark detection system (alignment system) is determined, and mark pitches px and py suitable for the shot sizes Wx and Wy are also determined. That is, it becomes possible to determine the layout of the mark according to the shot size.
  • FIG. 8 shows a flowchart corresponding to the processing algorithm executed by the CPU 51. In the following, description regarding the CPU 51 is omitted unless particularly necessary.
  • step S202 the count value i of the first counter, the count value j of the second counter, the count value m of the third counter, and the count value n of the fourth counter are initialized to 1, respectively.
  • step S204 in order to prompt the user to input the data of the size Wx in the X-axis direction and the data of the size Wy in the Y-axis direction of the shot area, the data input screen is displayed on the display screen of the display device 58. Then, the process proceeds to step S206 and waits for data to be input by the user.
  • step S208 When the user inputs data of size Wx and data of size Wy via the input device 57, the process proceeds to step S208.
  • the calculation result is stored in a predetermined storage area in the RAM 54.
  • step S210 it is determined whether or not the count value m is a predetermined value M or more.
  • M 10
  • the process proceeds to step S212, the count value m is incremented by 1 (m ⁇ m + 1), and then until the determination in step S210 is affirmed, step S208 ⁇
  • the calculation result is stored in a predetermined storage area in the RAM 54.
  • step S216 it is determined whether or not the count value n is greater than or equal to a predetermined value N.
  • N 10
  • the determination in step S216 is denied, and after proceeding to step S218 and incrementing the count value n by 1 (n ⁇ n + 1), until the determination in step S216 is affirmed, step S214 ⁇
  • step S222 it is determined whether the count value i of the first counter is equal to or greater than a preset value I.
  • I 10
  • the determination in step S222 is denied, and after proceeding to step S224 and incrementing the count value i by 1 (i ⁇ i + 1), until the determination in step S222 is affirmed, step S220 ⁇
  • the magnitude relationship between i and m may be defined as a precondition, and only Dx im that satisfies the precondition may be calculated in step S220.
  • step S2208 it is determined whether or not the count value j is greater than or equal to a predetermined value J.
  • J 10
  • step S228 the determination in step S228 is denied, and after proceeding to step S230 and incrementing the count value j by 1 (j ⁇ j + 1), until the determination in step S228 is affirmed, step S226 ⁇
  • the loop processing (including determination) of S228 ⁇ S230 is repeated.
  • the magnitude relationship between j and n may be determined as a precondition, and only Dy jn that satisfies the precondition may be calculated in step S226.
  • the final candidates for Dx and Dy that satisfy the above conditions are as shown in Table 3 above.
  • the candidates px m and py n of the pitch px in the X-axis direction and the pitch py in the Y-axis direction of the plurality of marks corresponding to the final candidates of Dx and Dy determined in step S232 are set as the pitch px and After determining as the final candidate of the pitch py and storing it in the final candidate storage area in the RAM, the series of processing of this routine is terminated.
  • the final candidates for pitch px and pitch py corresponding to the final candidates for Dx and Dy are as shown in Table 4 above.
  • the user reads out the information stored in the final candidate storage area in the RAM via the input device 57 and displays it on the display screen, and selects (determines) the pitch Dx and the pitch Dy based on the displayed information. Based on the pitch Dx and the pitch Dy, the positional relationship (arrangement) of the centers (detection centers) of the plurality of detection areas DA of the mark detection system is determined, and the mark pitch px suitable for the shot sizes Wx and Wy is also obtained. , Py, that is, the mark layout according to the shot size can be determined.
  • a substrate on which a plurality of marks are arranged in each shot area (shot size Wx, Wy) according to the determined mark layout is set as a detection target.
  • a mark alignment measurement
  • ⁇ z rotation rotation of the substrate
  • Another mark is aligned within the region. Therefore, a plurality of marks on the substrate can be detected in parallel in the plurality of detection areas DA of the mark detection system.
  • the CPU 51 executes the processing (including determination) of steps S204 to S218, thereby realizing the first arithmetic unit 60, and the CPU 51 performs steps S220 to S230.
  • the second calculation unit 62 is realized, and when the CPU 51 executes the process of step S232, the first final candidate determination unit 64a is realized, and the CPU 51 performs the process of step S234.
  • the second final candidate determination unit 64b is realized.
  • each unit may be configured by hardware including a microprocessor and the like.
  • the first calculation unit 60 constitutes a first calculation unit
  • the second calculation unit 62 constitutes a second calculation unit.
  • the final candidate determining unit 64 including the first final candidate determining unit 64a and the second final candidate determining unit 64b constitutes a determining means.
  • Such a determination device can be easily realized by slightly changing the algorithm corresponding to the flowchart described above. In the above description, two of the three sets or one set of final candidates are determined, but they may not be “candidates”. In other words, the determination device may make the final determination instead of the user.
  • the determination device 50 includes the creation unit 16 and the display unit 18 in addition to the first calculation unit 10, the second calculation unit 12, and the determination unit 14. At least one of the parts 18 may not necessarily be provided. If final candidates of size Wx and Wy and final pitches px and py of the mark are determined, a plurality of alignment marks with a pitch px and a pitch py on the shot area (partition area) based on the final candidates This is because the layout information of the two-dimensionally arranged marks can be created relatively easily by the user.
  • the determination apparatus may include only the creation unit of the creation unit 16 and the display unit 18. This is because if the shot area and mark layout information is created and stored in the RAM, the user can read the information via the input device 57 and display it on the display screen.
  • the shot area and the alignment mark are arranged on the substrate along the orthogonal two-axis directions (X-axis direction and Y-axis direction) has been described so far.
  • the shot area, the alignment mark, and the like are not limited to the orthogonal biaxial direction, and may be arranged along two directions that intersect each other at an angle other than 90 °.
  • the plurality of detection regions are not limited to the two orthogonal axes, and may be arranged along two directions that intersect each other at an angle other than 90 °.
  • the detection centers of the plurality of detection areas of the mark detection system coincide with any of a plurality of virtual points set along the orthogonal two-axis directions (X-axis direction and Y-axis direction) in the XY plane.
  • the plurality of virtual points are not limited to the orthogonal biaxial direction, and may be arranged along two directions intersecting each other at an angle other than 90 °.
  • program corresponding to the above-described flowchart may be stored in a CD-ROM, DVD-ROM or other information recording medium.
  • the alignment mark on the wafer (substrate) W in which the alignment marks M are formed in a plurality of shot areas is detected according to one template selected from the plurality of templates displayed on the display screen by the determination device 50.
  • An embodiment of an exposure apparatus to which the mark detection method to be applied can be applied will be described.
  • FIG. 9 schematically shows a configuration of an exposure apparatus 100 according to an embodiment.
  • the exposure apparatus 100 is a step-and-scan projection exposure apparatus, a so-called scanner.
  • the exposure apparatus 100 includes a projection optical system PL.
  • the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction
  • the scanning direction in which the reticle R and the wafer W are relatively scanned in a plane perpendicular to the Z-axis direction is the Y-axis direction.
  • the direction orthogonal to the axis is defined as the X-axis direction, and the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are described as the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the exposure apparatus 100 includes an illumination system 21, a reticle stage RST, a projection unit PU, a stage apparatus 80 having a wafer stage WST, and a control system thereof.
  • wafer W is placed on wafer stage WST.
  • the illumination system 21 illuminates the slit-shaped illumination area IAR on the reticle R set (restricted) with a reticle blind (also called a masking system) with illumination light (exposure light) IL with a substantially uniform illuminance.
  • a reticle blind also called a masking system
  • illumination light IL with a substantially uniform illuminance.
  • the configuration of the illumination system 21 is disclosed in, for example, US Patent Application Publication No. 2003/0025890.
  • ArF excimer laser light (wavelength 193 nm) is used as an example of the illumination light IL.
  • reticle stage RST On reticle stage RST, reticle R having a circuit pattern or the like formed on its pattern surface (lower surface in FIG. 9) is fixed, for example, by vacuum suction.
  • the reticle stage RST can be finely driven in the XY plane by a reticle stage drive system 81 (not shown in FIG. 9, refer to FIG. 14) including, for example, a linear motor, and the scanning direction (left and right direction in FIG. 9). In the Y-axis direction) at a predetermined scanning speed.
  • Position information of the reticle stage RST in the XY plane is formed on the end face of the reticle stage RST by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 116.
  • reticle interferometer a reticle laser interferometer
  • the measurement value of reticle interferometer 116 is sent to main controller 20 (not shown in FIG. 9, see FIG. 14).
  • the position information of reticle stage RST may be measured using an encoder system instead of reticle interferometer 116 or together with reticle interferometer 116.
  • the projection unit PU is arranged below reticle stage RST in FIG.
  • the projection unit PU includes a lens barrel 40 and a projection optical system PL held in the lens barrel 40.
  • the projection optical system PL for example, a refractive optical system including a plurality of optical elements (lens elements) arranged along an optical axis AX parallel to the Z-axis direction is used.
  • the projection optical system PL is, for example, both-side telecentric and has a predetermined projection magnification (for example, 1/4 times, 1/5 times, or 1/8 times).
  • the reticle R is arranged such that the first surface (object surface) of the projection optical system PL and the pattern surface substantially coincide with each other, and the wafer W having a resist (sensitive agent) coated on the surface thereof is the second surface of the projection optical system PL. It is arranged on the surface (image surface) side.
  • stage device 80 drives wafer stage WST disposed on base board 112, interferometer system 118 (see FIG. 14) for measuring positional information of wafer stage WST, and wafer stage WST.
  • a stage drive system 124 (see FIG. 14) is provided.
  • the wafer stage WST is supported above the base board 112 by a non-contact bearing (not shown) such as an air bearing through a clearance (gap, gap) of about several ⁇ m.
  • Wafer stage WST can be driven with a predetermined stroke in the X-axis direction and the Y-axis direction by a drive system including a linear motor or a planar motor, and can also be finely driven in the ⁇ z direction.
  • Wafer stage WST includes a stage main body 91 and a wafer table WTB mounted on stage main body 91.
  • Wafer table WTB can be finely driven on stage main body 91 in the Z-axis direction, ⁇ x direction, and ⁇ y direction via a Z-leveling mechanism (including a voice coil motor).
  • FIG. 14 shows a stage drive system 124 including a drive system for driving wafer stage WST and a Z / leveling mechanism.
  • Wafer table WTB can be driven in a six-degree-of-freedom direction (X-axis, Y-axis, Z-axis, ⁇ x, ⁇ y, and ⁇ z directions) with respect to base board 112 by stage drive system 124.
  • a magnetic levitation type planar motor or the like may be used so that wafer stage WST can be driven in directions of six degrees of freedom.
  • a wafer holder (not shown) for holding the wafer W by vacuum suction or the like is provided on the upper surface of the wafer table WTB.
  • a measurement plate 30 is provided on the + Y side of the wafer holder (wafer W) on the upper surface of wafer table WTB.
  • the measurement plate 30 is provided with a reference mark FM, and a pair of aerial image measurement slit plates SL are provided on both sides of the reference mark FM in the X-axis direction.
  • each aerial image measurement slit plate SL a linear opening pattern (X slit) having a predetermined width (for example, 0.2 ⁇ m) with the Y-axis direction as a longitudinal direction, and an X-axis A line-shaped opening pattern (Y slit) having a predetermined width (for example, 0.2 ⁇ m) whose direction is the longitudinal direction is formed.
  • each aerial image measurement slit plate SL inside the wafer table WTB is an optical system including a lens and a light receiving element such as a photomultiplier tube (photomultiplier tube (PMT)).
  • PMT photomultiplier tube
  • Devices 45A and 45B are configured.
  • the measurement results (output signals of the light receiving elements) of the aerial image measurement devices 45A and 45B are subjected to predetermined signal processing by a signal processing device (not shown) and sent to the main control device 20 (see FIG. 14).
  • the light receiving elements of the aerial image measurement devices 45A and 45B may be provided in another member (parts or the like) without being provided in the wafer table WTB. Further, a part of the optical system of the aerial image measuring devices 45A and 45B may be provided on another member without being provided inside the wafer table WTB.
  • a reflecting surface 27a and a reflecting surface 27b used in the interferometer system 118 are formed on the ⁇ Y end surface and the ⁇ X end surface of the wafer table WTB.
  • a fiducial extending in the X-axis direction is the same as the CD bar disclosed in US Pat. No. 8,054,472.
  • a bar (hereinafter abbreviated as “FD bar”) 46 is attached.
  • a plurality of reference marks MM are formed on the upper surface of the FD bar 46. As each reference mark MM, a two-dimensional mark having a size detectable by an alignment system described later is used.
  • Reference numeral LL denotes a center line in the X-axis direction of wafer table WTB.
  • alignment system ALG is arranged at a position spaced apart by a predetermined distance on the ⁇ Y side of projection optical system PL.
  • the alignment system ALG includes nine alignment sensors AL (the above-described columns) arranged in a matrix of 3 rows and 3 columns, with the X-axis direction as the row direction (horizontal 1 row) and the Y-axis direction as the column direction (vertical 1 column). Equivalent to CA).
  • these alignment sensors will be referred to as alignment sensors AL 11 , AL 12 , AL 13 , AL 21 , AL 22 , AL 23 , AL 31 , AL 32 , AL 33 for identification (see FIG. 13).
  • the alignment sensor AL 22 located at the center is on a straight line (hereinafter referred to as a reference axis) LV parallel to the Y axis passing through the optical axis AX of the projection optical system PL.
  • the detection center is located at a position a predetermined distance from the optical axis AX to the -Y side.
  • alignment sensors AL 21 and AL 23 in which detection centers are arranged almost symmetrically with respect to the reference axis LV are provided on one side and the other side of the X-axis direction across the alignment sensor AL 22. It has been.
  • the detection center of the alignment sensor AL 22 is located on a straight line (hereinafter referred to as a reference axis) LA in the X-axis direction.
  • a reference axis On one side and the other side of the Y-axis direction with the alignment sensor AL 22 in between, alignment sensors AL 12 and AL 32 in which detection centers are arranged almost symmetrically with respect to the reference axis LA are provided.
  • Alignment sensors AL 11 and AL 13 are provided on one side and the other side of the X-axis direction with the alignment sensor AL 12 in between, and the detection centers are arranged almost symmetrically with respect to the reference axis LV.
  • alignment sensors AL 31 and AL 33 are provided in which detection centers are arranged almost symmetrically with respect to the reference axis LV.
  • the detection centers of the alignment sensors AL 11 and AL 13 and the detection centers of the alignment sensors AL 31 and AL 33 are arranged symmetrically with respect to the reference axis LA.
  • the nine alignment sensors AL 11 to AL 33 are two-dimensionally arranged in the X-axis direction and the Y-axis direction in which the respective detection centers (centers of the detection area DA) are orthogonal to each other in the XY plane.
  • the detection centers of the alignment sensors AL 11 , AL 12 , AL 13 are arranged at a predetermined interval (pitch) Dx in the X axis direction, and the detection centers of the alignment sensors AL 21 , AL 22 , AL 23 are the X axis.
  • the detection centers of the alignment sensors AL 31 , AL 32 , AL 33 are arranged at a predetermined interval (pitch) Dx in the X-axis direction.
  • the detection centers of the alignment sensors AL 11 , AL 21 , AL 31 are arranged at a predetermined interval (pitch) Dy in the Y-axis direction, and the detection centers of the alignment sensors AL 12 , AL 22 , AL 32 are predetermined in the Y-axis direction.
  • the detection centers of the alignment sensors AL 13 , AL 23 , AL 33 are arranged at a predetermined interval (pitch) Dy in the X-axis direction.
  • the nine alignment sensors AL 11 to AL 33 each have a plurality of detection centers (centers of the detection areas DA) two-dimensionally arranged in the X-axis direction and the Y-axis direction that are orthogonal to each other in the XY plane.
  • Each of the virtual points coincides with 9 points.
  • Alignment system ALG (9 alignment sensors AL 11 to AL 33 ) is fixed to the lower surface of a main frame (not shown).
  • the detection center can also be called a detection position. Note that the detection region (detection center) of the alignment sensor AL 22 (AL 12 , AL 32 ) may not be arranged on the reference axis LV passing through the optical axis AX of the projection optical system.
  • each of the alignment sensors AL 11 to AL 33 for example, an image processing type FIA (Field Image Alignment) system is used. Imaging signals from each of the alignment sensors AL 11 to AL 33 are supplied to the main controller 20 via a signal processing system (not shown) (see FIG. 14).
  • FIA Field Image Alignment
  • the plurality of shot areas SA are arranged in a matrix on the wafer W with the X-axis direction and the Y-axis direction as the row direction (one horizontal row, ie, the direction in which the column advances) and the column direction (one vertical column, ie, the direction in which the row advances). It is formed by arrangement.
  • the mark M is shot in each of the shot areas SA whose size Wy in the Y-axis direction is 33.00 mm and size Wx in the X-axis direction is 26.00 mm.
  • the alignment sensors AL 11 to AL 33 between the detection centers of the alignment sensors AL ij and AL i (j + 1) adjacent to each other in the X-axis direction (where i is 1, 2, 3 or j is 1 or 2)
  • the interval in the X-axis direction, that is, the pitch Dx in the X-axis direction of the detection center is 39 mm
  • the distance between the detection centers in the Y-axis direction, that is, the pitch Dy of the detection centers in the Y-axis direction is 44 mm.
  • the interferometer system 118 irradiates the reflection surface 27a or 27b of the wafer table WTB shown in FIG. 11 with an interferometer beam (length measurement beam), receives the reflected light from the reflection surface 27a or 27b, and receives the wafer stage.
  • a Y interferometer 125 and three X interferometers 126 to 128 for measuring the position of the WST in the XY plane are provided.
  • the Y interferometer 125 includes a length measuring beam parallel to at least three Y axes including a pair of length measuring beams B4 1 and B4 2 that are symmetrical with respect to the reference axis LV. Is irradiated onto the reflecting surface 27a and the movable mirror 41 described later.
  • X interferometer 126 is parallel to the X axis orthogonal to the optical axis AX and the reference axis LV line (hereinafter, referred to as a reference axis) comprising at least symmetrical pair of measurement beams B5 1, B5 2 with respect to LH
  • the reflection surface 27b is irradiated with three measurement beams parallel to the X axis.
  • the X interferometer 127 irradiates the reflecting surface 27b with at least two length measuring beams parallel to the X axis including the length measuring beam B6 having the reference axis LA as the length measuring axis. Further, the X interferometer 128 irradiates the reflection surface 27b with a measurement beam B7 parallel to the X axis.
  • the position information from each interferometer of the interferometer system 118 is supplied to the main controller 20.
  • main controller 20 rotates wafer table WTB in the ⁇ x direction in addition to the X and Y positions of wafer table WTB (wafer stage WST) (that is, Pitching), ⁇ y direction rotation (ie, rolling), and ⁇ z direction rotation (ie, yawing) can also be calculated.
  • a movable mirror 41 having a concave reflecting surface is attached to the side surface on the ⁇ Y side of the stage main body 91.
  • the movable mirror 41 is designed such that the length in the X-axis direction is longer than the reflecting surface 27a of the wafer table WTB.
  • the interferometer system 118 further includes a pair of Z interferometers 43A and 43B arranged to face the movable mirror 41 (see FIGS. 9 and 11).
  • the Z interferometers 43A and 43B respectively irradiate the moving mirror 41 with two measuring beams B1 and B2 parallel to the Y axis, and each of the measuring beams B1 and B2 through the moving mirror 41, for example, a projection unit
  • the fixed mirrors 47A and 47B fixed to a frame (not shown) that supports the PU are irradiated. And each reflected light is received and the optical path length of length measuring beam B1 and B2 is measured. From this measurement result, main controller 20 calculates the position of wafer stage WST in the four degrees of freedom (Y, Z, ⁇ y, ⁇ z) direction.
  • wafer stage WST wafer table WTB.
  • symbol UP indicates an unloading position at which a wafer on wafer stage WST is unloaded
  • symbol LP indicates a loading position at which a new wafer is loaded onto wafer stage WST.
  • a multipoint focal position detection system including an irradiation system 90a and a light receiving system 90b for detecting the Z position on the surface of the wafer W at a large number of detection points.
  • AF abbreviated as “system”
  • system an oblique incidence type multi-point AF system having the same configuration as that disclosed in, for example, US Pat. No. 5,448,332 is adopted.
  • the irradiation system 90a and the light receiving system 90b of the multi-point AF system AF are arranged in the vicinity of the alignment system ALG as disclosed in, for example, US Pat. No. 8,054,472, and the wafer is aligned during wafer alignment.
  • Position information (surface position information) in the Z-axis direction may be measured (focus mapping is performed) on almost the entire surface of W. In this case, it is desirable to provide a surface position measurement system that measures the Z position of wafer table WTB during this focus mapping.
  • FIG. 14 is a block diagram showing the output relationship of the main controller 20 that mainly constitutes the control system of the exposure apparatus 100.
  • the main controller 20 is composed of a microcomputer (or workstation) and controls the entire exposure apparatus 100 in an integrated manner.
  • the exposure apparatus 100 configured as described above, for example, a procedure similar to the procedure disclosed in the embodiment of US Pat. No. 8,054,472 (however, the exposure apparatus 100 includes an encoder system). Therefore, the wafer table WTB for unloading the wafer W at the unloading position UP (see FIG. 12) and the new wafer W at the loading position LP (see FIG. 12) is not included.
  • main controller 20 positions wafer stage WST with reference mark FM on measurement plate 30 within the detection field (detection area DA) of alignment sensor AL 22 as shown in FIG. (That is, the position where the first half of the baseline measurement of the alignment sensor AL 22 is performed).
  • main controller 20 uses Y interferometer 125 and X interferometer 127 of interferometer system 118 to measure position information in the XY plane of wafer table WTB (wafer stage WST), while performing wafer stage WST. Is driven (position control).
  • main controller 20 performs the processing of the first half of the baseline measurement of the alignment sensor AL 22 for detecting the reference mark FM by using the alignment sensor AL 22.
  • main controller 20 moves wafer stage WST in the direction of the white arrow (+ Y direction). Then, main controller 20 detects alignment marks M attached to at least nine first alignment shot areas using all nine alignment sensors AL 11 to AL 33 as shown in FIG. The alignment mark attached to the first alignment shot area is actually detected by the main controller 20 as follows.
  • main controller 20 uses nine alignment sensors AL 11 to AL 33 to individually detect the alignment mark M present in each detection field in parallel. At this time, the main controller 20 aligns the alignment sensor AL so that the alignment mark M to be detected coincides with the focal point of the optical system of each of the alignment sensors AL 11 to AL 33 (so that the surface of the wafer W coincides). In a state where the autofocus mechanisms included in the respective 11 to AL 33 are controlled, the alignment mark parallel detection using the alignment sensors AL 11 to AL 33 is executed.
  • the wafer is so arranged that the alignment mark to be detected coincides with the focal point of the optical system of each alignment sensor (so that the surface of the wafer W coincides).
  • W focus / leveling control position control in the Z position and ⁇ x and ⁇ y directions
  • focus control control of the Z position
  • main controller 20 divides the nine alignment sensors into three sets of three alignment sensors whose detection centers are not on the same straight line, and uses each set of alignment sensors in sequence, so that each of the three alignment sensors performs parallel processing.
  • the detected alignment mark may be detected.
  • a combination of alignment sensors AL 11 , AL 13 , AL 32 ), alignment sensors (AL 12 , AL 21 , AL 23 ), alignment sensors (AL 22 , AL 31 , AL 33 ), and the like can be considered.
  • main controller 20 uses detection results ((X, Y) coordinate values of each alignment mark with the detection center as the origin) of nine alignment sensors AL 11 to AL 33 as interferometer system 118 at the time of each detection.
  • the Y interferometer 125 and the X interferometer 127 are stored in the internal memory in association with the positional information (that is, the X, Y, ⁇ z positions of the wafer table WTB).
  • main controller 20 moves wafer stage WST by a predetermined distance in the direction of the white arrow (+ Y direction) as shown in FIG. Then, as shown in FIG. 17, main controller 20 uses nine alignment sensors AL 11 to AL 33 to detect alignment marks attached to at least nine second alignment shot regions. The alignment mark attached to the second alignment shot area is detected by the main controller 20 in the same manner as the alignment mark attached to the first alignment area.
  • main controller 20 moves wafer stage WST in the + Y direction (see the white arrow in FIG. 18). Then, as shown in FIG. 18, when wafer stage WST reaches a position where measurement plate 30 is located immediately below projection optical system PL, main controller 20 stops wafer stage WST at that position, and alignment is performed.
  • the second half of the baseline measurement of the sensor AL 22 is executed.
  • the latter half of the baseline measurement of the alignment sensor AL 22 refers to the projection image (aerial image) of the pair of measurement marks on the reticle R projected by the projection optical system PL including the measurement plate 30 described above.
  • aerial image measuring devices 45A and 45B for example, slit scanning type spaces using a pair of aerial image measuring slit plates SL similar to the method disclosed in, for example, US Patent Application Publication No. 2002/0041377. Each is measured by image measurement operation. And the measurement result (aerial image intensity according to the X and Y positions of the wafer table WTB) is stored in the internal memory.
  • Main controller 20 determines the baseline of alignment sensor AL 22 based on the result of the first half of the baseline measurement of alignment sensor AL 22 and the result of the second half of the baseline measurement of alignment sensor AL 22. calculate.
  • main controller 20 moves wafer stage WST by a predetermined distance in the + Y direction, executes detection of alignment marks attached to at least nine third alignment shot areas, and interferometer system for detecting each detection result.
  • the information is stored in the internal memory in association with the position information of 118 Y interferometers 125 and X interferometers 127 (that is, the X, Y, and ⁇ z positions of wafer table WTB).
  • the detection of the alignment mark attached to the third alignment shot region is performed in the same procedure as the detection of the alignment mark attached to the first alignment shot region described above.
  • Main controller 20 obtains position information (i.e., Y interferometer 125 and X interferometer 127) of interferometer system 118 corresponding to the detection results (two-dimensional position information) of at least 27 alignment marks thus obtained.
  • position information i.e., Y interferometer 125 and X interferometer 127) of interferometer system 118 corresponding to the detection results (two-dimensional position information) of at least 27 alignment marks thus obtained.
  • the statistical calculation disclosed in, for example, U.S. Pat. No. 4,780,617 is performed using the X, Y, and ⁇ z positions of wafer table WTB, and is defined by the measurement axis of interferometer system 118.
  • the arrangement and scaling (shot magnification) of all shot areas on the wafer W on the coordinate system XY coordinate system with the center of the wafer table WTB as the origin) are calculated.
  • the specific movable lens that constitutes the projection optical system PL is driven, or the gas pressure inside the hermetic chamber formed between the specific lenses that constitute the projection optical system PL is changed.
  • an adjustment device (not shown) for adjusting the optical characteristics of the projection optical system PL is controlled to adjust the optical characteristics of the projection optical system PL, for example, the projection magnification.
  • main controller 20 performs step-and-scan exposure based on the results of the wafer alignment (EGA) performed in advance and the baselines of the latest alignment sensors AL 11 to AL 33 ,
  • the pattern of the reticle R is sequentially transferred to each of the plurality of shot areas SA on the wafer W. Thereafter, the same operation is repeated.
  • the baseline measurement of the alignment sensors AL 11 , AL 12 , AL 13 , AL 21 , AL 23 , AL 31 , AL 32 , AL 33 other than the alignment sensor AL 22 is performed at an appropriate timing, for example, US Pat.
  • the ⁇ z of the FD bar 46 is based on the measured value of at least one of the pair of Z interferometers 43A and 43B and the Y interferometer 125 described above. With the rotation adjusted, the alignment marks AL 11 to AL 33 are used to simultaneously measure the reference mark MM on the FD bar 46 in each field of view.
  • the baselines of the alignment sensors AL 11 , AL 12 , AL 13 , AL 21 , AL 23 , AL 31 , AL 32 , AL 33 are distances between the respective detection centers and the detection center of the alignment sensor AL 22. (Or positional relationship).
  • the wafer stage WST is moved stepwise only in the Y-axis direction to perform alignment measurement.
  • the wafer stage WST is moved stepwise in the Y-axis direction and the X-axis direction to perform alignment measurement.
  • all shot alignment measurement for measuring at least one alignment mark may be performed.
  • the nine alignment sensors AL 11 in a state where the wafer W is stationary at each step position of the wafer W (a state where the stationary servo control is performed on the stage driving system 124 that drives the wafer stage WST).
  • At least one alignment mark M can be detected in parallel for at least nine shot areas. Therefore, wafer alignment can be performed in a short time. As is clear from FIG. 13, since there are twelve alignment marks M in each shot area SA, two or more alignment marks M may be detected in at least one shot area.
  • one template is selected from the plurality of templates shown in FIG. 4, and a plurality of shot areas SA and a plurality of alignment marks M are formed on the wafer W according to the template.
  • the alignment system ALG shown in FIG. 13 is used, not only the case of selecting any of the remaining templates shown in FIG.
  • a plurality of shot areas SA and alignment marks M are formed on the wafer W using the exposure apparatus 100 or another exposure apparatus according to one template selected from the displayed plurality of templates.
  • the wafer W is stationary at each step position of the wafer W (stationary servo control is performed on the stage drive system 124 that drives the wafer stage WST).
  • nine in conducted state) of the alignment sensor AL 11, AL 12, AL 13 , AL 21, AL 2, AL 23, AL 31, AL 32 at least each one of the alignment marks M for at least nine shot areas by AL 33 can be detected in parallel.
  • the shot sizes Wx, Wy, and W are obtained by repeating the calculation based on the detection center pitches Dx and Dy so that the above formulas (3) and (4) are satisfied without necessarily using the determination device 50.
  • the mark pitches px and py may be determined.
  • “Equation (3) holds” or “satisfies equation (3)” not only means that Px completely matches Dx / i and Wx / m, but also Px is Dx / i, And the case where it substantially matches Wx / m. That is, it includes the case where Dx / i and Wx / m are slightly different, and also includes the case where Px is slightly different from at least one of Dx / i and Wx / m.
  • expression (4) holds” or “satisfies expression (4)” not only means that Py completely matches Dy / j and Wy / n, but also that Py is Dy / j. , And Wx / n. That is, it includes the case where Dy / j and Wy / n are slightly different, and also includes the case where Py is slightly different from at least one of Dy / j and Wy / n. Note that whether or not it is regarded as “substantially coincidence” may be determined based on whether or not mark detection is possible in parallel in a plurality of detection regions, for example.
  • it may be determined based on at least one of the size of the plurality of detection areas in the XY plane, the size of the alignment mark M, and the position control error of the wafer table WTB (wafer stage WST) in the XY plane. .
  • the detection centers of the plurality of detection regions may not be completely arranged with the pitches Dx and Dy. That is, the detection centers of the plurality of detection regions may be slightly shifted from the virtual points.
  • the allowable amount of deviation may be determined based on whether or not marks can be detected in parallel in a plurality of detection areas.
  • the allowable amount of deviation may be determined based on the size of a plurality of detection regions, the size of the alignment mark M, and the like.
  • the determining apparatus 50 and the determining method thereof in a state where the wafer is stopped, for example, similarly to the nine alignment sensors AL 11 to AL 33 of the alignment system ALG of the exposure apparatus 100.
  • the size of a plurality of shot areas to be formed on the wafer and the layout information of the alignment mark (template) corresponding to the size so that detection can be performed in parallel by a mark detection system having a plurality of detection areas having a fixed positional relationship. ) Can be determined and displayed on the display screen.
  • the nine alignment sensors AL 11 to AL 33 provided in the alignment system ALG and having a fixed positional relationship are used to detect the X axis direction on the wafer W.
  • Nine alignment marks arranged in the Y-axis direction can be detected in parallel.
  • the mark detection part of the alignment sensor AL 11 ⁇ AL 33 (1 s) complete After that, the mark detection may be started in another part (one or more).
  • parallel detection of alignment marks using the alignment sensors AL 11 to AL 33 is executed in a state where the autofocus mechanisms of the alignment sensors AL 11 to AL 33 are controlled. For this reason, it is possible to measure the position information of the alignment mark with high accuracy.
  • the above-described focus / leveling control of the wafer W position control in the Z position and ⁇ x and ⁇ y directions
  • focus control control of the Z position
  • the autofocus mechanism of the alignment sensors AL 11 to AL 33 may not be provided.
  • the main controller 20 divides the nine alignment sensors into three sets of three alignment sensors whose detection centers are not on the same straight line, and uses each set of alignment sensors in sequence, so that each of the three alignment sensors performs parallel processing. By detecting the alignment mark, the position information of the alignment mark can be measured with high accuracy.
  • the alignment measurement (mark detection method) performed by the exposure apparatus 100 it is possible to employ a fixed alignment sensor as each of the alignment sensors AL 11 to AL 33 .
  • the cost can be reduced and the space efficiency inside the exposure apparatus can be improved as compared with the case where a movable alignment sensor is employed as at least a part of the plurality of alignment sensors.
  • an optical system included in an alignment system (alignment sensor) can be increased in diameter.
  • A. It is possible to adopt a large optical system or to incorporate an adjustment mechanism such as imaging characteristics inside the optical system.
  • exposure apparatus 100 drives wafer stage WST based on the above-described highly accurate mark detection result, and performs exposure on a plurality of shot areas on wafer W by the step-and-scan method. Therefore, high-accuracy exposure (exposure with good overlay accuracy) is possible.
  • the main controller 20 of the exposure apparatus 100 may be used as the determination apparatus 50, or a host computer such as a factory where the exposure apparatus 100 is installed may be used. Further, as the determining device 50, a laptop computer connected to or not connected to the exposure apparatus 100 or the host computer may be used, or a portable terminal such as a tablet may be used.
  • the alignment system ALG has the nine alignment sensors AL 11 to AL 33 arranged in a matrix in the X-axis direction and the Y-axis direction has been described.
  • the nine alignment sensors AL 11 described above are described.
  • the arrangement of the plurality of columns of the mark detection system corresponding to .about.AL 33 is not limited to the matrix arrangement.
  • the above-described equations (3) ( The shot sizes Wx and Wy and the mark intervals px and py can be determined based on the detection center intervals Dx and Dy shown in FIG. 19 so as to satisfy 4). That is, also in the case of FIG.
  • the detection areas (detection centers) AL 1 to AL 5 are two-dimensionally arranged at predetermined intervals (pitch) Dx, Dy.
  • the detection center pitches Dx and Dy can be determined by assuming that the detection centers of the alignment sensors AL 1 to AL 5 coincide with the five points.
  • the plurality of columns of mark detection system may not be adjacent to each other.
  • the detection center pitches Dx and Dy including the virtual detection center (detection region) are determined by the determination method of the above embodiment. Based on the detection center pitches Dx and Dy shown in FIG. 19, the shot sizes Wx and Wy and the mark pitches px and py can be determined so as to satisfy (4).
  • the above-described formula (3) (or formula (4) )
  • the shot size Wx and the mark pitch px (or the shot size Wy and the mark pitch py) may be determined based on the detection center pitch Dx (or Dy).
  • Dx or Dy
  • a predetermined interval may be provided.
  • the column is drawn in a square shape in the XY plane, but the column shape in the XY plane may be a shape having no corners such as a circle. Alternatively, it may be another polygon such as a triangle or a pentagon, or a shape having a corner and a curve.
  • a plurality of marks for detection using a mark detection system having a plurality of detection areas are arranged on the substrate (wafer) together with the plurality of partition areas (shot areas).
  • the procedure for acquiring layout information including the size and mark pitch has been described step by step using the flowchart of FIG. 5 in order to make the description easy to understand.
  • the layout information is not necessarily provided according to the above-described procedure. There is no need to For example, the layout information is arranged in a first direction (for example, the X-axis direction) and a second direction (for example, the Y-axis direction) that intersect each other within a predetermined plane (for example, the XY plane) including the detection centers of the plurality of detection regions.
  • m ⁇ p xi
  • the first direction pitch px and the second direction pitch py candidates p xi , p yj may be provided as the layout information by the first layout information providing method.
  • the calculation of px i (steps S108 to S112) and the calculation of py j (steps S114 to S118) may be performed in parallel.
  • W xim or W yjn may be calculated.
  • the layout information may not be provided according to the above-described procedure.
  • a plurality of virtual regions The pitch Dx in the first direction (for example, the X-axis direction) and the pitch Dy in the second direction (for example, the Y-axis direction) intersecting the first direction are the points of the two detection areas DA adjacent to each other in the first direction. This is nothing but the distance between the detection centers in the first direction and the distance between the detection centers in the two detection areas DA adjacent to each other in the second direction.
  • the layout information intersects the first direction within the predetermined plane and the pitch Dx in the first direction (for example, the X-axis direction) within the predetermined plane (for example, the XY plane) of the plurality of detection regions.
  • a first one of a plurality of partition regions arranged two-dimensionally along the first direction and the second direction on the substrate Size Wx and the second direction size Wy as candidates, the calculated size Wx candidates and the size Wy candidates, and the first direction pitch px and the second of the plurality of marks corresponding thereto. It may be provided by a second layout information providing method including providing the direction pitch py candidates p xi and p yj as the layout information.
  • the mutual interval (detection center pitch) Dx (or Dy) between the detection centers may be a predetermined distance in design, or a measurement member (for example, the FD bar 46) provided on the wafer table WTB. ) Or may be measured using a sensor provided on wafer table WTB.
  • the pitches in the first direction (for example, the X-axis direction) and the second direction (for example, the Y-axis direction) intersecting within a predetermined plane (for example, the XY plane) of the plurality of detection regions are Dx and Dy, respectively.
  • the sizes in the first direction and the second direction of each of the plurality of partitioned regions that are two-dimensionally arranged along the first direction and the second direction on the substrate are Wx and Wy, respectively, and the plurality of marks arranged on the substrate
  • the first direction pitch is px
  • the second direction pitch is py
  • the candidates of size Wx and size Wy satisfying the above equations (3) and (4) and the first of a plurality of marks corresponding to them It may be provided by a third layout information providing method including providing candidates for the direction pitch px and the second direction pitch py as the layout information.
  • the layout information to be provided is displayed on the display screen of the determination device 50 or another computer, regardless of which layout information is provided by any of the first to third layout information providing methods. It is also good.
  • a plurality of virtual points set in the first direction (for example, the X-axis direction) and the second direction (for example, the Y-axis direction) intersecting the first direction are assumed.
  • the pitches Dx and Dy of the plurality of detection areas may be design values or values acquired (measured) in an apparatus in which the mark detection system is mounted. .
  • the above-described mark layout method and its determination method on a wafer can also be suitably applied to a wafer to be exposed, such as an exposure apparatus including the above. Even in these exposure apparatuses, after adjusting the position of the movable alignment sensor in the XY plane according to the shot map, the wafer (wafer stage) is moved in the XY plane while the position is fixed.
  • the plurality of alignment marks above can be efficiently detected using a plurality of alignment systems.
  • the adjustment of the position of the alignment sensor includes adjusting the position of the detection region (detection center) of the alignment sensor in the XY plane.
  • the position of the detection region (detection center) of the alignment sensor in the XY plane may be adjusted by moving the alignment sensor column or without moving the column.
  • the position of the detection region (detection center) of the alignment sensor in the XY plane may be adjusted without moving the column or with the movement of the column by the optical system constituting the alignment sensor.
  • the mark detection system has nine alignment sensors, that is, the mark detection system has nine columns and nine detection regions.
  • the mark detection system is not limited to this.
  • the number of columns is not limited and it is sufficient that two or more detection regions are provided.
  • the shot sizes Wx, Wy, and marks are determined based on the detection center distances Dx, Dy so as to satisfy one or both of the above formulas (3) and (4) by the determination method of the above embodiment. It is sufficient if the intervals px and py can be determined.
  • the above-described detection area DA arrangement (pitch Dx, Dy), shot size Wx, Wy, and mark arrangement (for example, pitch px, py) are focused on. You may pay attention to two sets of the above three sets. For example, if one of the two sets of interest is known, the remaining one (for example, the final candidate) may be determined without considering the one that is not of interest.
  • the other may be determined so as to satisfy the following expressions (3A) and (4A) .
  • Dx / i (i is a natural number) Wx / m (m is a natural number) (3A)
  • Dy / j (j is a natural number) Wy / n (n is a natural number) (4A)
  • the final candidates for the pitches Dx and Dy may be determined without considering the mark arrangement so as to satisfy the following expressions (3A) and (4A). Also in this case, as in the embodiment of FIG.
  • the arrangement (pitch Dx, Dy) of the detection region of the alignment sensor of the exposure apparatus 100 described above can be determined so as to satisfy the expressions (3A) and (4A).
  • the detection region of the alignment sensor when the detection region of the alignment sensor is movable, the detection region may be moved so as to satisfy the expressions (3A) and (4A).
  • the arrangement (pitch Dx, Dy) of the detection area DA is known, the final candidates of the shot sizes Wx, Wy are set so as to satisfy the expressions (3A), (4A) based on the shot sizes Wx, Wy. You may decide.
  • Px and Dx / i may be slightly different, and Py and Dy / j may be slightly different.
  • the allowable amount of deviation between Px and Dx / i and / or the allowable amount of deviation between Py and Dy / j may be determined based on, for example, the size of a plurality of detection areas, the size of a mark, and the like.
  • the description has been made on the assumption that the mark detection system is a multi-column type having a plurality of columns, but the mark detection system has a plurality of detection regions,
  • the number of columns is not particularly limited as long as marks can be individually detected in parallel in the plurality of detection regions.
  • each alignment sensor of the alignment system ALG is exemplified.
  • the present invention is not limited to this, and a wafer on which lattice marks are formed is moved.
  • a diffracted light interference method that detects position information of the grating mark by irradiating the grating mark with measurement light (measurement beam) and detecting interference light between a plurality of diffracted lights generated from the grating mark The alignment sensor may be used.
  • a diffracted light interference type alignment sensor a plurality of alignment sensors (for example, nine alignment sensors) may perform parallel detection while the wafer is moved to a certain position.
  • a diffracted light interference type alignment sensor is disclosed in detail, for example, in US Pat. No. 7,319,506.
  • the detection center (detection position) can be defined by the irradiation position of the measurement beam (detection light), and the mutual distance (detection center pitch) Dx ( Or Dy) can be defined by the mutual interval of the irradiation positions of the measurement beam.
  • the mutual distance (detection center pitch) Dx (or Dy) between the detection centers may be a predetermined distance in terms of design, or may be on the wafer table WTB. It may be measured using a provided measurement member (for example, FD bar 46) or may be measured using a sensor provided on wafer table WTB.
  • the mark M to be detected by the diffracted light interference type alignment sensor is not limited to the lattice mark having the X-axis direction as a periodic direction, but a one-dimensional pattern having a direction inclined +45 degrees with respect to the X-axis as a periodic direction.
  • a two-dimensional mark in which a mark and a one-dimensional mark having a period inclined at ⁇ 45 degrees with respect to the X axis are arranged in the X axis direction (or aligned in the Y axis direction) may be used.
  • the diffracted light generated from the two-dimensional mark may be detected by a diffracted light interference type alignment sensor while moving the wafer in the X-axis direction (or Y-axis direction).
  • a diffracted light interference type alignment sensor that performs mark detection while changing the irradiation position of the measurement beam may be adopted.
  • the measurement beam may be moved while the wafer is stopped, and the measurement beam and the lattice mark may be moved relative to each other.
  • both the measurement beam and the wafer may be moved, and the measurement beam and the lattice mark may be moved. The relative movement may be performed.
  • the alignment sensor with relative movement between the measurement beam and the alignment mark is not limited to a diffracted light interference type alignment sensor using a grating mark.
  • parallel detection refers not only to the case where the detection operation periods of a plurality of alignment sensors included in one set completely match, but also to the detection operation of one alignment sensor. This includes the case where part of the period overlaps with part of the detection operation period of another alignment sensor.
  • the alignment mark detected by the alignment system of the above embodiment may be a mark used in an overlay inspection apparatus (Overlay inspection apparatus).
  • the present invention can also be applied to a TTL alignment system that detects a mark.
  • TTL alignment systems are disclosed in, for example, US Pat. No. 5,151,750, US Pat. No. 6,242,754, and the like.
  • a multi-column type charged particle beam optical system that irradiates a mark formed corresponding to a plurality of detection regions on a wafer (target) with a charged particle beam and detects reflected charged particles generated at the mark, It may be used as a mark detection system.
  • a multi-column type charged particle beam exposure apparatus for example, it has a plurality of optical system columns arranged substantially 1: 1 corresponding to a plurality of shot regions formed on a wafer, and each of the plurality of optical system columns
  • an electron beam exposure apparatus In such a charged particle beam exposure apparatus, while the wafer is scanned with respect to a spot of a plurality of electron beams having a predetermined shape (for example, a circle, a rectangle, etc.), the on and off states of the plurality of electron beams are changed.
  • a multi-column type electron beam exposure apparatus that exposes a plurality of shot areas on a wafer by switching is known. Note that switching of the electron beam between the on state and the off state can be performed by, for example, electron beam deflection (beam blanking).
  • an electron beam exposure apparatus has a function of detecting an alignment mark by scanning an electron beam with respect to a mark on a wafer and detecting reflected electrons generated from the mark.
  • an electron beam irradiation point corresponds to an alignment mark detection region, and is on an electron beam wafer (target) from an adjacent optical system column.
  • the interval between the irradiation points (irradiation regions) corresponds to the pitches Dx and Dy of the detection region (detection center) described above. Therefore, based on the irradiation point intervals Dx and Dy, the shot sizes Wx and Wy are satisfied by the determination method (or mark layout method) of the above embodiment so as to satisfy the above-described equations (3) and (4).
  • the plurality of marks detected by the alignment sensors AL 11 to AL 33 are a plurality of marks formed on the layer immediately before the layer to be exposed based on the detection result. Alternatively, it may be a plurality of marks formed in a lower layer than that.
  • the alignment system ALG (alignment sensors AL 11 2 to AL 33 ) is mounted on the exposure apparatus 100.
  • a mark detection system having the above may be mounted and the mark detection operation as described above may be performed.
  • Such a measurement apparatus may be connected inline to the exposure apparatus 100 or may not be connected inline.
  • a measuring device arranged outside the exposure apparatus 100 is disclosed in, for example, US Pat. No. 4,861,162.
  • the alignment mark M formed in each shot area may be formed on the scribe line of each shot area, and the size Wx and Wy of the shot area include the scrubbing line. May be.
  • an encoder system is used instead of the interferometer system or together with the interferometer system as a measurement apparatus that measures the wafer stage position information with the exposure apparatus, for example, a lattice unit (scale) on the wafer table (wafer stage).
  • the encoder head is arranged outside the wafer stage so as to face the wafer stage.
  • the wafer stage An encoder system having a configuration in which an encoder head is provided and a grating part (for example, a two-dimensional grating or a one-dimensional grating part arranged two-dimensionally) outside the wafer stage may be employed.
  • the encoder head is not limited to a one-dimensional head, and it measures one of the X-axis direction and the Y-axis direction and the Z-axis direction as well as a two-dimensional head whose measurement direction is the X-axis direction and the Y-axis direction.
  • a sensor head having a direction may be used.
  • a three-dimensional head whose measurement direction is a three-axis direction orthogonal to the X axis, the Y axis, and the Z axis may be used.
  • the exposure apparatus is a dry type that exposes the wafer W without using liquid (water)
  • the present invention is not limited thereto, and, for example, European Patent Application Publication No. 1420298 Forming an immersion space including an optical path for illumination light between the projection optical system and the wafer, as disclosed in US Pat. No. 4,055,803 and US Pat. No. 6,952,253.
  • the above embodiment can also be applied to an exposure apparatus that exposes a wafer with illumination light through the projection optical system and the liquid in the immersion space. Further, the above embodiment can be applied to an immersion exposure apparatus disclosed in, for example, US Pat. No. 8,054,472.
  • the exposure apparatus is a scanning exposure apparatus such as a step-and-scan method
  • the present invention is not limited to this, and the above-described embodiment is applied to a stationary exposure apparatus such as a stepper. May be.
  • the above-described embodiment can also be applied to a step-and-stitch reduction projection exposure apparatus, a proximity exposure apparatus, or a mirror projection aligner that synthesizes a shot area and a shot area.
  • a multi-stage type exposure apparatus including a stage.
  • the projection optical system can perform the exposure operation of one stage under the projection optical system PL and the measurement operation of the other stage under the alignment system in parallel.
  • the distance between the system PL (optical axis AX) and the alignment system (AL1 or the like) is larger than that in the case of FIG.
  • the detection region (detection center) of one alignment sensor (for example, AL1) may not be arranged on the reference axis LV passing through the optical axis of the projection optical system.
  • an exposure including a measurement stage including a measurement member for example, a reference mark and / or a sensor
  • the projection optical system in the exposure apparatus of the above embodiment may be not only a reduction system but also any of the same magnification and enlargement systems
  • the projection optical system PL may be any of a reflection system and a catadioptric system as well as a refraction system.
  • the projected image may be either an inverted image or an erect image.
  • the illumination area and the exposure area described above are rectangular in shape, but the shape is not limited to this, and may be, for example, an arc, a trapezoid, or a parallelogram.
  • the light source of the exposure apparatus of the above embodiment is not limited to the ArF excimer laser, but is a KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser (output wavelength 126 nm), Kr 2 laser ( It is also possible to use a pulse laser light source with an output wavelength of 146 nm, an ultrahigh pressure mercury lamp that emits a bright line such as g-line (wavelength 436 nm), i-line (wavelength 365 nm), and the like. A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, US Pat. No.
  • a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light.
  • a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used.
  • EUV Extreme Ultraviolet
  • a soft X-ray region for example, a wavelength region of 5 to 15 nm
  • SOR or a plasma laser as a light source
  • the above embodiment can be suitably applied to such an apparatus.
  • the above embodiment can be applied to an exposure apparatus that uses charged particle beams such as an electron beam or an ion beam.
  • a light transmission mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a light transmission mask (reticle) in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • an electronic mask variable shaping mask, which forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, as disclosed in US Pat. No. 6,778,257.
  • an active mask or an image generator for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used.
  • DMD Digital Micro-mirror Device
  • the above-described embodiment can be applied to an exposure apparatus (lithography system) that forms line and space patterns on a wafer by forming interference fringes on the wafer.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and one scan exposure is performed on one wafer.
  • the above embodiment can also be applied to an exposure apparatus that performs double exposure of shot areas almost simultaneously.
  • the object on which the pattern is to be formed in the above embodiment is not limited to the wafer, but other objects such as a glass plate, a ceramic substrate, a film member, or a mask blank. But it ’s okay.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing.
  • an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate, an organic EL, a thin film magnetic head, an image sensor CCDs, etc.
  • micromachines DNA chips and the like can also be widely applied to exposure apparatuses.
  • the above embodiment can also be applied to an exposure apparatus that transfers a circuit pattern.
  • an electronic device such as a semiconductor element is a reticle (mask) in which a resist (sensitive material) is coated on a wafer and a pattern is formed by the exposure apparatus (pattern forming apparatus) of the above-described embodiment. ) Is used to expose the wafer (sensitive object), and through a lithography step of developing the exposed wafer.
  • a highly integrated device can be manufactured with high productivity.
  • the semiconductor device manufacturing process includes a device function / performance design step, a reticle (mask) manufacturing step based on this design step, a device assembly step (dicing process, bonding process, Including a packaging process), an inspection step, and the like.
  • the determination method and apparatus, the program, the information recording medium, and the exposure apparatus of the present invention are suitable for determining a mark arrangement capable of detecting a plurality of marks in parallel.
  • the layout provided by the layout information providing method of the present invention or a plurality of marks according to the layout method is suitable for parallel detection by a mark detection system having a plurality of detection areas.
  • the mark detection method of the present invention is suitable for detection of a plurality of marks by a mark detection system having a plurality of detection areas.
  • the exposure method and device manufacturing method of the present invention are suitable for manufacturing micro devices.
  • DESCRIPTION OF SYMBOLS 10 ... 1st calculation part, 12 ... 2nd calculation part, 14 ... Determination part, 14a ... 1st determination part, 14b ... 2nd determination part, 16 ... Creation part, 18 ... Display part, 50 ... Determination apparatus, 100 ... exposure apparatus, AL ... alignment sensor, AL 11 ⁇ AL 33 ... alignment sensor, ALG ... alignment system, M ... alignment mark, SA ... shot area, W ... wafer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Image Analysis (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

決定装置(50)は、複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、基板上に第1方向及び第2方向に沿って2次元配列される複数の区画領域それぞれの第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに基板上に配置される複数のマークの第1方向及び第2方向のピッチをそれぞれp、pとして、ピッチD1、ピッチD2、サイズW及びサイズWに基づいて、下式(a)、(b)を満たす、複数のマークのピッチp及びピッチpを算出する算出部(10、12)を備える。 p=D/i(iは自然数)=W/m(mは自然数)……(a) p=D/j(jは自然数)=W/n(nは自然数)……(b)

Description

決定方法及び装置、プログラム、情報記録媒体、露光装置、レイアウト情報提供方法、レイアウト方法、マーク検出方法、露光方法、並びにデバイス製造方法
 本発明は、決定方法及び装置、プログラム、情報記録媒体、露光装置、レイアウト情報提供方法、レイアウト方法、マーク検出方法、露光方法、並びにデバイス製造方法に関する。
 半導体素子等を製造するリソグラフィ工程では、ウエハ又はガラスプレート等の基板(以下、ウエハと総称する)上に多層の回路パターンを重ね合わせて形成するが、各層間での重ね合わせ精度が悪いと、半導体素子等は所定の回路特性を発揮することができず、場合によっては不良品ともなる。このため、通常、ウエハ上の複数のショット領域の各々に予めマーク(アライメントマーク)を形成しておき、露光装置のステージ座標系上におけるそのマークの位置(座標値)を検出する。しかる後、このマーク位置情報と新たに形成されるパターン(例えばレチクルパターン)の既知の位置情報とに基づいて、ウエハ上の1つのショット領域をそのパターンに対して位置合わせするウエハアライメントが行われる。
 ウエハアライメントの方式として、スループットとの兼ね合いから、ウエハ上のいくつかのショット領域(サンプルショット領域又はアライメントショット領域とも呼ばれる)のみのアライメントマークを検出し、ウエハ上のショット領域の配列を統計的手法で算出するエンハンスト・グローバル・アライメント(EGA)が主流となっている。EGAにより高精度にウエハ上のショット領域の配列を求めるためには、サンプルショット領域の数を増やしてより多くのアライメントマークを検出する必要がある。
 スループットを極力低下させずに、多くのアライメントマークを検出する手法として、例えば、複数のアライメントセンサを用いて複数のマークを一度に検出することが考えられる。しかるに、ウエハのショットマップ(ウエハ上に形成されたショット領域の配列に関するデータ)は、様々であり、ショット領域のサイズ及びマークの配置も様々である。したがって、種々のショットマップに対応できるように、相互の間隔が可変となるように複数のアライメント検出系のうちの一部のアライメント検出系を可動にした露光装置が知られている(例えば特許文献1参照)。
 しかるに、可動のアライメント検出系は、固定のアライメント検出系に比べて、設計上の制約が多く、コスト面でも不利であった。
米国特許第8,432,534号明細書
 本発明の第1の態様によれば、複数の検出領域を有するマーク検出系を用いて検出される複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、前記複数の検出領域の配置情報に基づいて求められる、前記複数のマークの配置に関する情報を、前記レイアウト情報として提供するレイアウト情報提供方法が、提供される。
 本発明の第2の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、前記複数の検出領域の、所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たす、前記サイズW及び前記サイズWそれぞれの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補とを、前記レイアウト情報として提供すること、を含むレイアウト情報提供方法が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第3の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、前記複数の検出領域の、所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に配置される前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、下式(c)、(d)を満たす、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補を、前記レイアウト情報として提供すること、を含むレイアウト情報提供方法が、提供される。
=D/i(iは自然数)……(c)
=D/j(jは自然数)……(d)
 本発明の第4の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、前記複数の検出領域の、所定面内の第1方向のピッチD、及び前記所定面内で前記第1方向と交差する第2方向のピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1i、p2jとして算出するとともに、前記複数の候補p1iに自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2jに自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW、及び前記第2方向のサイズWの候補として算出することと、算出された前記サイズWの候補W1m及び前記サイズWの候補W2nと、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの候補p1i、p2jとを、前記レイアウト情報として提供することと、を含むレイアウト情報提供方法が、提供される。
 本発明の第5の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、前記複数の検出領域のそれぞれに含まれる点を含む所定面内で互いに交差する前記第1方向及び第2方向に配置された複数の仮想点の、前記第1方向のピッチD、及び前記第2方向のピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1i、p2jとして算出するとともに、前記複数の候補p1iに自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2jに自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW、及び前記第2方向のサイズWの候補として算出することと、算出された前記サイズWの候補及び前記サイズWの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補p1i、p2jとを、前記レイアウト情報として提供することと、を含むレイアウト情報提供方法が、提供される。
 本発明の第6の態様によれば、複数の検出領域を有するマーク検出系を用いて検出される複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報であって、前記複数の検出領域の配置情報に基づいて求められる、前記複数のマークの配置に関する情報を含むレイアウト情報が、提供される。
 本発明の第7の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報であって、前記複数の検出領域の、所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように前記ピッチD、Dから求められる、前記サイズW及び前記サイズWそれぞれの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補と、を含むレイアウト情報が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第8の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定方法であって、前記複数の検出領域の配置情報に基づいて、前記複数のマークの配置を決定することを含む決定方法が、提供される。
 本発明の第9の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定方法であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpを決定する決定方法が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第10の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定方法であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの、少なくとも1つの候補を決定する決定方法が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第11の態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定方法であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチD、及び前記ピッチDに基づいて、前記区画領域のサイズW、W、及び前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpを決定する決定方法が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第12態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定方法であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記サイズW及び前記サイズWそれぞれの少なくとも1つの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの少なくとも1つの候補とを決定する決定方法が提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第13態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域とともに基板上に配置するための前記区画領域のサイズ及びマークピッチを決定する決定方法であって、前記複数の検出領域それぞれに含まれる点を含む所定面内で互いに交差する第1方向及び第2方向に配置された複数の仮想点の、前記第1方向のピッチD、及び前記第2方向のピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1i、p2jとして順次算出することと、前記複数の候補p1i(i=1~I)に自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2j(j=1~J)に自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW、及び前記第2方向のサイズWの候補として算出することと、算出された前記サイズWの候補及び前記サイズWの候補のうち、その値が予め定められた条件を満足する候補を、前記サイズW及び前記サイズWそれぞれの最終候補として決定するとともに、その決定した前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補p1i、p2jを、前記ピッチp及び前記ピッチpそれぞれの最終候補として決定することと、を含む決定方法が、提供される。
 本発明の第14態様によれば、基板上に複数の区画領域とともに配置される複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を、前記複数のマークの配置とともに決定する決定方法であって、前記基板上に互いに交差する第1方向及び第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW及び前記第2方向のサイズWを、それぞれ自然数m(m=1~M)、自然数n(n=1~N)で除した(W/m)及び(W/n)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1m(m=1~M)及びp2n(n=1~N)として順次算出することと、前記複数の候補p1m(m=1~M)に自然数i(i=1~I)を順次乗じたi・p1m、及び前記複数の候補p2n(n=1~N)に自然数j(j=1~J)を順次乗じたj・p2nを、前記基板と平行な所定面内に前記第1方向及び第2方向に配置される複数の仮想点の、前記第1方向のピッチDの候補D1im及び前記第2方向のピッチDの候補D2jnとして算出することと、算出された前記ピッチDの候補D1im及び前記ピッチDの候補D2jnのうち、その値が予め定められた条件を満足する候補を、前記ピッチD及び前記ピッチDそれぞれの最終候補として決定するとともに、決定した前記最終候補に従って定まる前記複数の仮想点の少なくとも一部がそれぞれの検出領域内に位置するように前記マーク検出系の前記複数の検出領域の配置を決定し、併せて決定された前記ピッチD及び前記ピッチDそれぞれの前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1m、p2nを、前記ピッチp及び前記ピッチpの最終候補として決定することと、を含む決定方法が、提供される。
 本発明の第15態様によれば、複数の区画領域が規定される基板上の複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を決定する決定方法であって、前記基板上に互いに交差する第1方向及び第2方向に沿って2次元配列される前記複数の区画領域のサイズに基づいて、前記複数の検出領域の配置を決定する決定方法が、提供される。
 本発明の第16態様によれば、複数の区画領域が規定される基板上の複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を決定する決定方法であって、前記複数の検出領域は、所定面内の第1方向に離れた複数の検出領域と前記所定面内で前記第1方向と交差する第2方向に離れた複数の検出領域を含み、前記複数の検出領域の前記第1方向のピッチをD、前記第2方向のピッチをDとして、前記基板上に配列される前記複数の区画領域の前記第1方向のサイズをW、前記第2方向のサイズをWとし、前記複数の検出領域の配置の決定は、下式(c)、(d)を満たすように、前記区画領域のサイズW、Wに基づいて、前記複数の検出領域のピッチD、Dを決定することを含む決定方法が、提供される。
/i(iは自然数)=W/m(mは自然数)……(c)
/j(jは自然数)=W/n(nは自然数)……(d)
 本発明の第17態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定装置であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、下式(a)、(b)を満たす、前記複数のマークの前記ピッチp及び前記ピッチpを算出する算出手段を備えた決定装置が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第18態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定装置であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、下式(a)、(b)を満たす、前記複数のマークの前記ピッチp及び前記ピッチpの少なくとも1つの候補を算出する算出手段を備えた決定装置が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第19態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定装置であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチDに基づいて、下式(a)、(b)を満たす、前記サイズW及び前記サイズWと、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpとを算出する算出手段を備えた決定装置が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第20態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定装置であって、前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチDに基づいて、下式(a)、(b)を満たす、前記サイズW及び前記サイズWそれぞれの少なくとも1つの候補と、それに対応する、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの少なくとも1つの候補とを算出する算出手段を備えた決定装置が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第21態様によれば、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定装置であって、前記複数の検出領域それぞれに含まれる点を含む所定面内で互いに交差する第1方向及び第2方向に配置された複数の仮想点の、前記第1方向のピッチD、及び前記第2方向のピッチDの入力に応答して、前記ピッチD及び前記ピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1i、p2jとして順次算出する第1の算出手段と、前記複数の候補p1iに自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2jに自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW及び前記第2方向のサイズWそれぞれの候補として算出する第2の算出手段と、算出された前記サイズWの候補及び前記サイズWの候補のうち、その値が予め定められた条件を満足する候補を、前記サイズW及び前記サイズWそれぞれの最終候補として決定するとともに、決定した前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの候補p1i、p2jを、前記ピッチp及び前記ピッチpそれぞれの最終候補として決定する決定手段と、を備える決定装置が、提供される。
 本発明の第22態様によれば、基板上に複数の区画領域とともに配置される複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を、前記複数のマークの配置とともに決定する決定装置であって、前記基板上に互いに交差する第1方向及び第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW及び前記第2方向のサイズWの入力に応答して、前記サイズWを自然数m(m=1~M)で除した(W/m)及び前記サイズWを自然数n(n=1~N)で除したW/nを、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1m(m=1~M)及びp2n(n=1~N)として順次算出する第1の演算手段と、前記複数の候補p1m(m=1~M)に自然数i(i=1~I)を順次乗じたi・p1m、及び前記複数の候補p2n(n=1~N)に自然数j(j=1~J)を順次乗じたj・p2nを、前記基板と平行な所定面内に前記第1方向及び第2方向に配置される複数の仮想点の、前記第1方向のピッチDの候補D1im及び前記第2方向のピッチDの候補D2jnとして算出する第2の演算手段と、算出された前記ピッチDの候補D1im及び前記ピッチDの候補D2jnのうち、その値が予め定められた条件を満足する候補を、前記ピッチD及び前記ピッチDそれぞれの最終候補として決定するとともに、決定した前記最終候補に従って定まる前記複数の仮想点の少なくとも一部がそれぞれの検出領域内に位置するように前記マーク検出系の前記複数の検出領域の配置を決定し、併せて決定された前記ピッチD及び前記ピッチDそれぞれの前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1m、p2nを、前記ピッチp及び前記ピッチpそれぞれの最終候補として決定する決定手段と、を備える決定装置が、提供される。
 本発明の第23態様によれば、複数の区画領域が規定される基板上の複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を決定する決定装置であって、前記複数の検出領域は、所定面内の第1方向に離れた複数の検出領域と前記所定面内で前記第1方向と交差する第2方向に離れた複数の検出領域を含み、前記複数の検出領域の前記第1方向のピッチをD、前記第2方向のピッチをD、前記基板上に配列される前記複数の区画領域の前記第1方向のサイズをW、前記第2方向のサイズをWとして、下式(c)、(d)を満たすように、前記区画領域のサイズW、Wに基づいて、前記複数の検出領域のピッチD、Dを決定する決定装置が、提供される。
/i(iは自然数)=W/m(mは自然数)……(c)
/j(jは自然数)=W/n(nは自然数)……(d)
 本発明の第24の態様によれば、第1~第5の態様のいずれかに係るレイアウト情報提供方法、または第8~第16の態様のいずれかに係る決定方法を、コンピュータに実行させるためのプログラムが、提供される。
 本発明の第25の態様によれば、第24の態様に係るプログラムが記録されたコンピュータによる読み取りが可能な情報記録媒体が、提供される。
 本発明の第26の態様によれば、基板を露光して前記基板上に複数の区画領域を形成する露光装置であって、前記マーク検出系を用いて検出するための複数のマークの配置、または前記マーク検出系を用いて検出するための複数のマークの配置と前記複数のマークが形成される区画領域のサイズを決定する第17~第23の態様のいずれかに係る決定装置と、を備える露光装置が、提供される。
 本発明の第27の態様によれば、エネルギビームで基板を露光する露光装置であって、複数の検出領域を有するマーク検出系と、前記基板を保持する保持部を有し、前記複数の検出領域に対して移動可能なステージと、を備え、前記複数の検出領域は、第1検出領域と、前記第1検出領域に対して第1方向に離れた第2検出領域と、前記第1検出領域に対して、前記第1方向と交差する第2方向に離れた第3検出領域とを有し、前記ステージの第1位置への移動により、前記第1、第2、第3検出領域のそれぞれで、前記基板上の少なくとも1つのマークが検出可能であり、前記ステージの前記第1位置から前記第2位置への移動により、前記第1、第2、第3検出領域のそれぞれで、前記基板上の少なくとも1つのマークが検出可能である露光装置が、提供される。
 本発明の第28の態様によれば、エネルギビームで基板を露光する露光装置であって、複数の検出領域を有するマーク検出系と、前記基板を保持する保持部を有し、前記複数の検出領域に対して移動可能なステージと、を備え、前記複数の検出領域は、所定面内の第1方向に離れた複数の検出領域と前記所定面内で前記第1方向と交差する第2方向に離れた複数の検出領域を含み、前記複数の検出領域の前記第1方向のピッチをD、前記第2方向のピッチをD、前記基板上に配列される前記複数の区画領域の前記第1方向のサイズをW、前記第2方向のサイズをWとして、下式(c)、(d)を満たすように、ピッチD、Dで前記複数の検出領域の配置が決定された露光装置が、提供される。
/i(iは自然数)=W/m(mは自然数)……(c)
/j(jは自然数)=W/n(nは自然数)……(d)
 本発明の第29の態様によれば、所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向に交差する第2方向にピッチDで設定された複数の検出領域を有するマーク検出系を用いて検出するための、基板上に形成される複数のマークのレイアウト方法であって、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチp及びpを定めるレイアウト方法が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第30の態様によれば、所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向と交差する第2方向にピッチDで設定された複数の仮想点のうち、少なくとも2点にそれぞれの検出中心が一致する複数の検出領域を有するマーク検出系を用いて検出するための、基板上に形成される複数のマークのレイアウト方法であって、前記所定面と平行に配置された前記基板上に前記複数のマークが前記第1方向にピッチpでかつ前記第2方向にピッチpで形成され、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される複数の区画領域それぞれの前記第1方向のサイズをW、前記第2方向のサイズをWとしたとき、前記ピッチpは、p=D/i(iは自然数)かつp=W/m(mは自然数)を満たし、前記ピッチpは、p=D/j(jは自然数)かつp=W/n(nは自然数)を満たすように前記ピッチp及びpを定めるレイアウト方法が、提供される。
 本発明の第31の態様によれば、所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向に交差する第2方向にピッチDで設定された複数の検出領域を有するマーク検出系を用いて基板上に形成された複数のマークを検出するマーク検出方法であって、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記基板に複数のマークが形成され、前記基板の前記所定面内の位置情報を、位置検出系を用いて検出しつつ、前記マーク検出系を用いて前記複数の検出領域のそれぞれで前記基板上の少なくとも1つの前記マークを並行して検出するマーク検出方法が、提供される。
=D/i(iは自然数)=W/m(mは自然数)……(a)
=D/j(jは自然数)=W/n(nは自然数)……(b)
 本発明の第32の態様によれば、所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向に交差する第2方向にピッチDで設定された複数の仮想点のうち、少なくとも2点にそれぞれの検出中心が一致する複数の検出領域を有するマーク検出系を用いて基板上に形成された複数のマークを検出するマーク検出方法であって、前記基板上に前記第1方向及び前記第2方向に沿って配列される複数の区画領域それぞれの前記第1方向のサイズをW、前記第2方向のサイズをWとしたとき、前記基板上には、前記複数のマークが前記第1方向にピッチp=D/i(iは自然数)=W/m(mは自然数)でかつ前記第2方向にピッチp=D/j(jは自然数)=W/n(nは自然数)で形成され、前記基板の前記所定面内の位置情報を、位置検出系を用いて検出しつつ、前記マーク検出系を用いて前記複数の検出領域のそれぞれで前記基板上の少なくとも1つの前記マークを並行して検出するマーク検出方法が、提供される。
 本発明の第33の態様によれば、前記基板上に形成された前記複数のマークのうちの少なくとも一部のマークを第31または第32の態様に係るマーク検出方法により検出することと、前記マークの検出結果に基づいて、前記基板を移動して、前記基板をエネルギビームで露光することと、を含む露光方法が、提供される。
 本発明の第34の態様によれば、第26~第28の態様のいずれかに係る露光装置を用いて、または第33の態様に係る露光方法を用いて前記基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。
一実施形態に係る決定装置のハードウェア構成を概略的に示す図である。 図1の決定装置の機能構成を示す図(機能ブロック図)である。 基板上にマトリクス状の配置で形成された6つのショット領域SAを取り出して複数のアライメントセンサ(カラム)とともに示す図である。 表示画面上に表示される40種類のレイアウト情報(テンプレート)を示す図である。 決定装置によって実行される処理アルゴリズムに対応するフローチャートである。 ショット領域の中にデバイスパターン(実パターンフィールド)が配置されたショット領域とアライメントマークのレイアウトの一例を示す図である。 変形例に係る決定装置の機能ブロック図である。 変形例に係る決定装置によって実行される処理アルゴリズムに対応するフローチャートである。 一実施形態に係る露光装置の構成を概略的に示す図である。 ウエハステージを示す平面図である。 図9の露光装置が備える干渉計の配置を示す平面図である。 図9の露光装置が備えるアライメント系をウエハステージとともに示す平面図である。 アライメント系を取り出して、ウエハ上の複数のショット領域とともに示す平面図である。 露光装置の制御系を中心的に構成する主制御装置の出力関係を示すブロック図である。 アライメント系を用いたウエハのアライメント計測(及びアライメント系のベースラインチェック)について説明するための図(その1)である。 アライメント系を用いたウエハのアライメント計測(及びアライメント系のベースラインチェック)について説明するための図(その2)である。 アライメント系を用いたウエハのアライメント計測(及びアライメント系のベースラインチェック)について説明するための図(その3)である。 アライメント系を用いたウエハのアライメント計測(及びアライメント系のベースラインチェック)について説明するための図(その4)である。 マトリクス状配置以外の、複数のアライメントセンサ(カラム)の配置の一例を示す図である。 半導体素子などの電子デバイスの製造における、リソグラフィ工程を示す図である。
 以下、一実施形態に係る決定装置について、図1~図6に基づいて説明する。
 図1には、一実施形態に係る決定装置50のハードウェア構成が概略的に示されている。決定装置50は、中央演算処理装置(Central Processing Unit:以下「CPU」と称する)51、メインメモリ52、ROM(Read Only Memory)53、RAM(Random Access Memory)54、ハードディスクドライブ(HDD)又はソリッドステートドライブ(SSD)などのストレージデバイス56、入力装置57及び表示装置58などを備えている。そして、それぞれは共通のバスBUSを介して接続されている。
 CPU51は、決定装置50の全体の動作を制御する。メインメモリ52は、プログラムやデータを一時的に蓄えておくための装置で、CPU51から直接アクセスできる装置である。
 ROM53は、CPU51の駆動(起動)に用いられるIPL(Initial Program Loader)等のプログラムを記憶している。RAM54は、CPU51のワークエリアとして使用される。
 ストレージデバイス56には、CPU51で解読可能なコードで記述されたプログラムが格納されている。なお、ストレージデバイス56に格納されているプログラムは、必要に応じてメインメモリ52にロードされ、CPU51により実行される。
 入力装置57は、例えばキーボード、マウスなどの入力媒体(図示省略)を備え、ユーザから入力された各種情報(データを含む)をCPU51に通知する。なお、入力媒体からの情報はワイヤレス方式で入力されても良い。
 表示装置58は、例えばCRT、液晶ディスプレイ(LCD)及びプラズマディスプレイパネル(PDP)などを用いた表示画面を備え、各種情報を表示する。
 次に決定装置50の機能構成について説明する。図2には、決定装置50の機能構成が示されている。各機能部は、前述のハードウェア構成における構成各部と後述するフローチャートで示される処理アルゴリズムに対応するプログラムとによって実現される。
 決定装置50は、2以上のK個の検出領域を有する(例えば、K個のカラムを有する)マーク検出系(アライメント系)を用いて検出するための複数のマーク(アライメントマーク)を、半導体素子又は液晶表示素子等の電子デバイス(マイクロデバイス)製造用のウエハ又はガラスプレート等の基板上に配置する際のマークのレイアウトを決定するための装置である。決定装置50は、第1の算出部10と、第2の算出部12と、第1決定部14a及び第2決定部14bを含む決定部14と、作成部16と、表示部18とを、備えている。なお、決定装置50が、第1の算出部10と第2の算出部12とを含む算出部を備えていてもよい。
 第1の算出部10は、マーク検出系のK個の検出領域の配置情報として、入力装置57を介して入力された、X軸方向に並ぶ複数の検出領域のX軸方向のピッチDx(Dxは、例えば39[mm])のデータ、及びY軸方向に並ぶ複数の検出領域のY軸方向のピッチDy(Dyは、例えば44[mm])のデータの入力に応答して、Dx及びDyをそれぞれ自然数i(i=1~I)、自然数j(j=1~J)で除した(Dx/i)及び(Dy/j)を、基板上に配置される複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの複数の候補px、pyとして算出する。なお、ピッチDxを間隔Dx、ピッチDyを間隔Dyと呼んでもよい。
 また、検出領域の配置情報は、ピッチ(間隔)の情報に限らず、それぞれの検出領域(検出中心)のXY平面内の座標位置の情報であってもよい。
 また、検出領域の配置情報は、設計上の配置情報(例えば、ピッチDx,Dyの設計値)であってもよいし、マーク検出系が搭載される装置内で、各検出領域の配置に関する情報を取得(例えば、ピッチDx,Dyを計測)し、その値を、検出領域の配置情報としてもよい。また、マーク検出系のK個の検出領域の検出中心が、所定面(ここではXY平面)内で互いに直交するX軸方向及びY軸方向に並ぶ複数の仮想点と一致するように配置されていると考えてもよい。この場合、第1の算出部10は、複数の検出領域のピッチの情報として入力装置57を介して入力される、マーク検出系のK個の検出領域の中心が一致する少なくともK個の点を含み、所定面(ここではXY平面)内で互いに直交するX軸方向及びY軸方向に並ぶ複数の仮想点の、X軸方向のピッチDx(Dxは、例えば39[mm])のデータ、及びY軸方向のピッチDy(Dyは、例えば44[mm])のデータの入力に応答して、Dx及びDyをそれぞれ自然数i(i=1~I)、自然数j(j=1~J)で除した(Dx/i)及び(Dy/j)を、基板上に配置される複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの複数の候補px、pyとして算出する。
 なお、検出領域の配置情報を入力装置57から入力しなくてもよい。例えば、検出領域の配置に関する情報(例えば、ピッチDx,Dy)が既知の場合には、その情報(データ)をストレージデバイス56に記憶しておき、第1の算出部10は、ストレージデバイスに記憶された検出領域の配置に関する情報(例えば、ピッチDx,Dy)に基づいて複数の候補px、pyを算出してもよい。
 図3には、上記の仮想点、ピッチDx、Dy、及びピッチpx、py等の意味を明らかにするため、一例としてXY平面に平行に配置された基板P上にX軸方向及びY軸方向に沿ってマトリクス状の配置で形成された複数のショット領域SAのうちの6つのショット領域SAが、複数のアライメントセンサ、ここでは4つのアライメントセンサ(カラムCA)とともに、示されている。各カラムCAの中心にある小円が検出領域DAであり、その中心(検出中心)は、上述のピッチDx、ピッチDyで規定される複数の仮想点のうちの4点に一致している。この図3の例では、各ショット領域SAに着目すると、そのショット領域SAが3行2列のマトリクス状の配置で6等分された各分割領域の四隅にマークMがそれぞれ配置されている。したがって、各ショット領域SAには、12箇所にマークMが配置されている。図3には、i=3かつj=4の場合、すなわちpx=Dx/3かつpy=Dy/4の場合のマークMの配置が示されている。ここで、図3から明らかなように、複数の検出領域DAが、XY平面内で2方向(又は1方向)に等間隔で並んで配置されている場合には、複数の検出領域の、X軸方向のピッチDx、及びY軸方向のピッチDyは、X軸方向に関して隣り合う2つの検出領域DAそれぞれの検出中心のX軸方向の間隔、及びY軸方向に関して隣り合う2つの検出領域DAそれぞれの検出中心のY軸方向の間隔に他ならない。
 なお、図3においては、複数の仮想点の、X軸方向のピッチDxは、X軸方向に関して隣り合う2つの検出領域DAそれぞれの検出中心のX軸方向の間隔であり、Y軸方向のピッチDyは、Y軸方向に関して隣り合う2つの検出領域DAそれぞれの検出中心のY軸方向の間隔であるとも言える。
 ここでは、説明の便宜上から、例えばiについて1~10(=I)、jについて1~10(=J)の場合について、(Dx/i)及び(Dy/j)の計算が行われるものとする。したがって、px=Dx/i(i=1~10)、py=Dy/j(j=1~10)が、第1の算出部10によって算出されることになる。
 第2の算出部12は、算出された複数の候補px=Dx/i(i=1~10)、py=Dy/j(j=1~10)のそれぞれに、自然数m(m=1~M)、n(n=1~N)を順次乗じたm・px及びn・pyを、基板P上に、X軸方向及びY軸方向に沿って2次元配列される複数のショット領域(区画領域)のX軸方向のサイズWxの候補Wxim及びY軸方向のサイズWyの候補Wyjnとして算出する。ここでは、例えばmについて1~10(=M)、nについて1~10(=N)の場合について、Wxim=m・px及びWyjn=n・pyの計算が行われるものとする。この場合、第2の算出部12によって、px(i=1~10)のそれぞれについて、m・px(m=1~10)が算出され、結果的に、サイズWxの候補として、Wxim=m・px(i=1~10、m=1~10)が算出される。同様に、第2の算出部12によって、py(j=1~10)のそれぞれについて、n・py(n=1~10)が算出され、結果的に、サイズWyの候補として、Wyjn=n・py(j=1~10、n=1~10)が算出される。
 ただし、px=Wxim/m=Dx/i、py=Wyjn/n=Dy/jであり、かつ図3から明らかなように、Dx>Wx、Dy>Wyであるから、この場合は、i>m、j>nである。したがって、かかる条件を計算の前提条件とすることで、実際には、Wxim=m・px(i=1~10、m=1~10)及びWyjn=n・py(j=1~10、n=1~10)の計算に際しては、i>m、j>nを満足するWxim及びWyjnのみ、計算すれば良いことになる。
 なお、Dx≦Wx、Dy≦Wyのいずれか一方、または両方を満たす条件であってもよい。また、このような前提条件は、入力装置57を介して入力されてもよいし、予めストレージデバイス56などに記憶されていてもよい。また、このような前提条件は、ショット領域(区画領域)SAのサイズに関する情報として用いることもできる。
 第1決定部14aは、上で算出されたサイズWxの候補Wxim=m・px及びサイズWyの候補Wyjn=n・pyのうち、予め定められた条件を満足する候補のみを、サイズWx、及びサイズWyそれぞれの最終候補として決定する。例えば、ショット領域SAのX軸方向のサイズWxの範囲及びY軸方向のサイズWyの範囲が、30>Wx>15、かつ35>Wy>25と定められていた場合には、その範囲内にある候補Wxim及び候補Wyjnのみが、最終候補となる。なお、Wximの値が同一となる、iとmとの異なる組み合わせ、及びWyjnの値が同一となる、jとnとの異なる組み合わせが存在する場合もあるが、Wxim、Wyjnのいずれについても、同一の値については、1つの候補のみが最終候補として決定される。
 なお、上記のようなショット領域SAのX軸方向のサイズWxの範囲(たとえば、30>Wx>15)及びY軸方向のサイズWyの範囲(例えば35>Wy>25)は、ショット領域(区画領域)のサイズに関する情報として、入力装置57を介して入力されてもよいし、予めストレージデバイス56などに記憶されていてもよい。
 前述したように、例えばDx=39、Dy=44とし、i=1~10、j=1~10、m=1~10、n=1~10(かつi>m、j>n)について、Wxim、Wyjnが算出された場合、上記の30>Wx>15、かつ35>Wx>25の条件を満足するWx、Wyの最終候補の一例は、それぞれ次のようになる。
Figure JPOXMLDOC01-appb-T000001
 第2決定部14bは、第1決定部14aで決定されたWx、Wyそれぞれの最終候補Wxim、Wyjnに対応する複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの候補px、pyを、ピッチpx及びピッチpyそれぞれの最終候補として決定する。上記のWx、Wyの最終候補に対応するピッチpx及びピッチpyそれぞれの最終候補は次のようになる。
Figure JPOXMLDOC01-appb-T000002
 作成部16は、決定部14で決定されたサイズWx及びサイズWyそれぞれの最終候補と、ピッチpx及びピッチpyの最終候補とに基づいて、サイズの異なるショット領域(ショットフィールドと呼ぶこともできる)SAのそれぞれにピッチpx及びピッチpyで複数のマークMがX軸方向及びY軸方向に2次元配列されたマークMのレイアウト情報(テンプレートとも呼ばれる)を作成する。
 表示部18は、作成部16で作成されたマークMのレイアウト情報を、表示装置58の表示画面上に表示する。この場合、表示画面上には、図4に示されるような複数、例えば40種類のレイアウト情報(テンプレート)が表示される。
 なお、作成部16で作成されるレイアウト情報(表示部18で表示されるレイアウト情報)は、図4のものに限られない。例えば、上記表1、表2のようなレイアウト情報を作成(表示)するだけでもよい。
 これまでは、ハードウェアに模した図2の各機能部について説明したが、これらは、実際には、決定装置50のCPU51が所定のソフトウェアプログラムを実行することによって実現される。以下では、これについて、図5に基づいて説明する。
 図5には、CPU51によって実行される処理アルゴリズムに対応するフローチャートが示されている。以下では、特に必要な場合を除き、CPU51に関する記載は省略する。
 まず、ステップS102において、第1カウンタのカウント値i、第2カウンタのカウント値j、第3カウンタのカウント値m、及び第4カウンタのカウント値nを、それぞれ1に初期化する。
 次のステップS104において、ユーザによる前述の複数の検出領域のX軸方向のピッチDxのデータ及びY軸方向のピッチDyのデータの入力を促すため、表示装置58の表示画面に、それらのデータの入力画面を表示した後、ステップS106に進み、ユーザによりデータが入力されるのを待つ。そして、ユーザにより入力装置57を介してピッチDxのデータ及びピッチDyのデータが入力されると、ステップS108に進む。ここでは、便宜上、ピッチDxのデータとして例えば39[mm]、ピッチDyのデータとして例えば44[mm]が入力されたものとする。
 なお、ステップS104において、あるいはステップS108の前に、上述のような前提条件(例えば、i>m、j>n、あるいはDx>Wx、Dy>Wy)の入力を促す表示を表示装置58の画面に表示してもよい。
 また、ステップS104において、あるいはステップS108の前に、上述のような、ショット領域(区画領域)SAのサイズに関する情報(例えば、30>Wx>15、35>Wy>25)の入力を促す表示を表示装置58の画面に表示してもよい。
 ステップS108では、Dxを第1カウンタのカウント値iで除したpx=Dx/iを、基板P上に配置される複数のマークMのX軸方向のピッチpxの候補として算出し、その算出結果をRAM54内の所定の格納領域に格納する。このとき、i=1であるから、px=Dx/1=Dxが、ピッチpxの候補として算出される。
 次のステップS110では、カウント値iが、予め定めた値I以上であるか否かを判断する。ここでは、便宜上、I=10に設定されているものとする。このとき、i=1であるから、ステップS110における判断は否定され、ステップS112に進んでカウント値iを1インクリメント(i←i+1)した後、ステップS110の判断が肯定されるまで、ステップS108→S110→S112のループの処理(判断を含む)を繰り返す。これにより、ピッチpxの候補として、px=Dx/2、px=Dx/3、……、px10=Dx/10が順次算出され、RAM54内の所定の格納領域に格納される。
 そして、px10=Dx/10が算出されると、ステップS110の判断が肯定され、ステップS114に進む。ステップS114では、Dyを第2カウンタのカウント値jで除したpy=Dy/jを、基板P上に配置される複数のマークMのY軸方向のピッチpyの候補として算出し、その算出結果をRAM54内の所定の格納領域に格納する。このとき、j=1であるから、py=Dy/1=Dyが、ピッチpyの候補として算出される。
 次のステップS116では、カウント値jが、予め定めた値J以上であるか否かを判断する。ここでは、便宜上、J=10に設定されているものとする。このとき、j=1であるから、ステップS116における判断は否定され、ステップS118に進んでカウント値jを1インクリメント(j←j+1)した後、ステップS116の判断が肯定されるまで、ステップS114→S116→S118のループの処理(判断を含む)を繰り返す。これにより、ピッチpyの候補として、py=Dy/2、py=Dy/3、……、py10=Dy/10が順次算出され、RAM54内の所定の格納領域に格納される。
 そして、py10=Dy/10が算出されると、ステップS116の判断が肯定され、ステップS120に進む。ステップS120では、算出されRAM54内の所定の格納領域に格納された複数(ここでは10)の候補px=Dx/i(i=1~10)のそれぞれに第3カウンタのカウント値mを乗じたWxim=m・px(i=1~10)を、基板P上に、2次元配列される複数のショット領域(区画領域)のX軸方向のサイズWxの候補として算出し、RAM54内の所定の格納領域に格納した後、ステップS122に進む。このとき、m=1であるから、Wxi1=1・px=px(i=1~10)が算出される。
 ステップS122では、第3カウンタのカウント値mが、予め定めた値M以上であるか否かを判断する。ここでは、便宜上、M=10に設定されているものとする。このとき、m=1であるから、ステップS122における判断は否定され、ステップS124に進んでカウント値mを1インクリメント(m←m+1)した後、ステップS122の判断が肯定されるまで、ステップS120→S122→S124のループの処理(判断を含む)を繰り返す。これにより、サイズWxの候補として、Wxim=m・px(i=1~10、m=2~10)が算出される。ここで、前述したように、本実施形態では、i>mを計算の前提条件とすることができ、かかる前提条件を満足するWximのみを算出することとしても良い。
 ステップS122の判断が肯定されると、ステップS126に移行する。ステップS122の判断が肯定された時点では、RAM54内の所定の格納領域には、サイズWxの候補として、i=1~10、m=1~10、又はこのうちのi>mを満足するi、mについて算出されたWxim=m・pxが格納されている。
 ステップS126では、RAM54内の所定の格納領域に格納された複数(ここでは10)の候補py=Dy/j(j=1~10)のそれぞれに第4カウンタのカウント値nを乗じたWyjn=n・py(j=1~10)を、基板P上に、2次元配列される複数のショット領域(区画領域)のY軸方向のサイズWyの候補として算出し、RAM内の所定の格納領域に格納した後、ステップS128に進む。このとき、n=1であるから、Wyj1=1・py=py(j=1~10)が算出される。
 ステップS128では、カウント値nが、予め定めた値N以上であるか否かを判断する。ここでは、便宜上、N=10に設定されているものとする。このとき、n=1であるから、ステップS128における判断は否定され、ステップS130に進んでカウント値nを1インクリメント(n←n+1)した後、ステップS128の判断が肯定されるまで、ステップS126→S128→S130のループの処理(判断を含む)を繰り返す。これにより、サイズWyの候補として、Wyjn=n・py(j=1~10、n=2~10)が算出される。ここで、前述したように、本実施形態では、j>nを計算の前提条件とすることができ、かかる前提条件を満足するWyjnのみを算出することとしても良い。
 ステップS128の判断が肯定されると、ステップS132に移行する。ステップS128の判断が肯定された時点では、RAM54内の所定の格納領域には、サイズWyの候補として、j=1~10、n=1~10、又はこのうちのj>nを満足するj、nについて算出されたWyjn=n・pyが格納されている。
 ステップS132では、RAM54内の所定の格納領域に格納されているサイズWxの候補Wxim=m・px及びサイズWyの候補Wyjn=n・pyのうち、予め定められた条件を満足する候補のみを、サイズWx、及びサイズWyそれぞれの最終候補として決定する。例えば、ショット領域SAのX軸方向のサイズWxの範囲及びY軸方向のサイズWyの範囲が、30>Wx>15、かつ35>Wy>25と定められていた場合には、その範囲内にある候補Wxim及び候補Wyjnのみが、最終候補となる。なお、Wximの値が同一となる、iとmとの異なる組み合わせ、及びWyjnの値が同一となる、jとnとの異なる組み合わせが存在する場合もあるが、Wxim、Wyjnのいずれについても、同一の値については、1つの候補のみが最終候補として決定される。
 前述したように、例えばDx=39、Dy=44とし、i=1~10、j=1~10、m=1~j、n=1~10(かつi>m、j>n)について、Wxim、Wyjnが算出された場合、上記の30>Wx>15、かつ35>Wx>25の条件を満足するWx、Wyの最終候補は、それぞれ前述の表1のようになる。
 次のステップS134では、ステップS132で決定されたWx、Wyの最終候補に対応する複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの候補px、pyを、ピッチpx及びピッチpyそれぞれの最終候補として決定する。上記のWx、Wyの最終候補に対応するピッチpx及びピッチpyそれぞれの最終候補は前述の表2のようになる。
 次のステップS136では、ステップS132で決定されたサイズWx及びサイズWyそれぞれの最終候補と、ステップS134で決定されたピッチpx及びピッチpyそれぞれの最終候補とに基づいて、サイズの異なるショット領域(ショットフィールド)SAのそれぞれにピッチpx及びピッチpyで複数のマークMがX軸方向及びY軸方向に2次元配列されたマークMのレイアウト情報(テンプレート)を作成する。
 次のステップS138において、ステップS136で作成されたマークMのレイアウト情報を、表示装置58の表示画面上に表示した後、本ルーチンの一連の処理を終了する。この場合、表示画面上には、図4に示されるような複数、例えば40種類のレイアウト情報(テンプレート)が表示される。そこで、ユーザは、その画面を見て、40種類のテンプレート(レイアウト情報)の中から生産したいショットサイズに最も近いテンプレートを選択することで、ショットサイズに応じた最適なアライメントマークのレイアウトを決定することができる。
 ここで、ユーザは、40種類のテンプレート(レイアウト情報)の中から生産したいショットサイズになるべく近く、一回り大きいショット領域のテンプレートを選択し、例えば図6に示されるように、そのショット領域SAの中にデバイスパターン(実パターンフィールド)RPFを配置するようにショット領域SAとアライメントマークMのレイアウトを決定することとしても良い。この場合、図6から明らかなように、実パターンフィールドRPF内にアライメントマーク(in-dieマーク)Minを配置(形成)する必要がある。
 なお、ユーザは、選択した、ショットサイズとアライメントマークのレイアウトに基づいて、露光装置で用いられるレチクルのレイアウトを決定することができる。例えば、図6に示すように、デバイスパターンフィールドRPFと、複数のアライメントマークのレチクル上での配置を決定することができる。したがって、上述のようにショットサイズとアライメントマークを決定することは、レチクルのレイアウトを決定することとも言える。
 決定されたマークのレイアウトに従って複数のマークが各ショット領域(ショットサイズWx、Wy)に配置された基板を検出対象として、マークの検出(アライメント計測)を行う場合、基板の回転(θz回転)を調整し、そのマーク検出系(アライメント系)の複数の検出領域のうちの1つの検出領域内に、あるマークを位置させると、残りの検出領域内にも別のマークが位置される。したがって、マーク検出系の複数の検出領域DAで基板上の複数のマークを並行して検出することが可能になる。
 これまでの説明から明らかなように、本実施形態では、CPU51がステップS104~S118の処理(判断を含む)を実行することで第1の算出部10が実現され、CPU51がステップS120~S130処理(判断を含む)を実行することで第2の算出部12が実現され、CPU51がステップS132の処理を実行することで第1決定部14aが実現され、CPU51がステップS134の処理を実行することで第2決定部14bが実現され、CPU51がステップS136の処理を実行することで作成部16が実現され、CPU51がステップS138の処理を実行することで表示部18が実現されている。しかし、これに限らず、上記各部を、マイクロプロセッサ等をそれぞれ含むハードウェアにより構成しても良い。
 また、本実施形態では、第1の算出部10により第1の算出手段が構成され、第2の算出部12により第2の算出手段が構成されている。また、第1決定部14a及び第2決定部14bを含む決定部14により決定手段が構成されている。また、作成部16に作成手段が構成され、表示部18により表示手段が構成されている。
《変形例》
 次に、変形例に係る決定装置について説明する。図7には、本変形例に係る決定装置50Aの機能ブロック図が示されている。本変形例に係る決定装置50Aのハードウェア構成は、前述した決定装置50と同様になっている。そこで、ハードウェア構成については、前述と同一の符号を用いるものとする。なお、図7においては、作成部16及び表示部18は省略されているが、レイアウト情報(テンプレート)の作成、および、その表示は図2の決定装置50と同様に行われる。
 決定装置50Aは、基板上に形成される、互いに交差する第1方向及び第2方向、例えば互いに直交するX軸方向及びY軸方向に沿って2次元配列される複数のショット領域(区画領域)の既知のサイズに基づいて、基板上に所定の位置関係で配置される複数のマークを検出するのに用いられるマーク検出系(アライメント系)の2以上のK個の検出領域DA(及び検出中心)の配置を、複数のマークの配置とともに決定するものである。
 決定装置50Aは、第1の演算部60と、第2の演算部62と、第1の最終候補決定部64a及び第2の最終候補決定部64bを含む最終候補決定部64と、を、備えている。各機能部は、前述のハードウェア構成における構成各部と後述するフローチャートで示される処理アルゴリズムに対応するプログラムとによって実現される。
 第1の演算部60は、ショット領域(区画領域)のX軸方向のサイズWxのデータ及びY軸方向のサイズWyのデータの入力装置57を介した入力に応答して、サイズWxを自然数m(m=1~M)で除した(Wx/m)及びサイズWyを自然数n(n=1~N)で除した(Wy/n)を、基板上に配置される複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの複数の候補px、pyとして順次算出する。
 ここでは、説明の便宜上から、例えばmについて1~10(=M)、nについて1~10(=N)の場合について、(Wx/m)及び(Wy/n)の計算が行われるものとする。したがって、px=Wx/m(m=1~10)、py=Wy/n(n=1~10)が、第1の演算部60によって算出されることになる。
 第2の演算部62は、算出された複数の候補px=Wx/m(m=1~10)、pyn=Wy/n(n=1~10)のそれぞれに、自然数i(i=1~I)、j(j=1~J)を順次乗じたi・px及びj・pyを、基板Pと平行なXY平面内にX軸方向及びY軸方向に配置される複数の検出領域の、Y軸方向のピッチDx、及びY軸方向のピッチDyの候補として算出する。ここでは、例えばiについて1~10(=I)、jについて1~10(=J)の場合について、i・px及びj・pyの計算が行われるものとする。この場合、第2の演算部62によって、px(i=1~10)のそれぞれについて、i・px(i=1~10)が算出され、結果的に、ピッチDxの候補として、Dxim=i・px(i=1~10、m=1~10)が算出される。同様に、第2の演算部62によって、py(n=1~10)のそれぞれについて、j・py(j=1~10)が算出され、結果的に、ピッチDyの候補として、Dyjn=j・py(j=1~10、n=1~10)が算出される。
 なお、複数の検出領域の検出中心を、XY平面内にX軸方向及びY軸方向に配置される複数の仮想点に一致させる場合には、複数の仮想点の、X軸方向のピッチDx、及びY軸方向のピッチDyの候補として算出してもよい。
 ここで、前述と同様に、iとm、jとnとの大小関係を前提条件として定め、その前提条件を満足するDxim、Dyjnのみを算出することとして、計算量を減らすこととしても良い。
 第1の最終候補決定部64aは、上で算出されたピッチDxの候補Dxim=i・px及びピッチDyの候補Dyjn=j・pyのうち、予め定められた条件を満足する候補を、ピッチDx、及びピッチDyそれぞれの最終候補として決定する。例えば、ピッチDx及びピッチDyが、満足すべき条件として、Dx<Dy、かつ60≧Dx>30、かつ60≧Dy>30と定められていた場合には、その条件を満足する候補Dxim及び候補Dyjnのみが、最終候補となる。なお、Dximの値が同一となる、iとmとの異なる組み合わせ、及びDyjnの値が同一となる、jとnとの異なる組み合わせが存在する場合もあるが、Dxim、Dyjnのいずれについても同一の値については、1つの候補のみが最終候補として決定される。
 前述したように、例えばWx=26、Wy=33とし、i=1~10、j=1~10、m=1~10、n=1~10について、Dxim、Dyjnが算出された場合、上記の条件を満足するDx、Dyの最終候補は、それぞれ次のようになる。
Figure JPOXMLDOC01-appb-T000003
 第2の最終候補決定部64bは、第1の最終候補決定部64aで決定されたDx、Dyの最終候補に対応する複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの候補px、pyを、ピッチpx及びピッチpyの最終候補として決定する。上述のDx、Dyそれぞれの最終候補に対応するピッチpx及びピッチpyそれぞれの最終候補は、次のようになる。
Figure JPOXMLDOC01-appb-T000004
 決定された各最終候補の情報は、RAM内の所定の最終候補格納領域に格納される。したがって、ユーザは、入力装置57を介してその情報を最終候補格納領域から読出し、読みだした情報のうちから任意の情報を選択して、ピッチDx及びピッチDyを決定し、そのピッチDx及びピッチDyに基づいて、マーク検出系(アライメント系)の複数の検出領域DAそれぞれの中心(検出中心)の位置関係(配置)を決定し、併せてショットサイズWx、Wyに適したマークピッチpx、py、すなわちショットサイズに応じたマークのレイアウトを決定することが可能になる。
 これまでは、ハードウェアに模した図7の各機能部について説明したが、これらは、実際には、決定装置50AのCPU51が所定のソフトウェアプログラムを実行することによって実現される。以下では、これについて、図8に基づいて説明する。
 図8には、CPU51によって実行される処理アルゴリズムに対応するフローチャートが示されている。以下では、特に必要な場合を除き、CPU51に関する記載は省略する。
 まず、ステップS202において、第1カウンタのカウント値i、第2カウンタのカウント値j、第3カウンタのカウント値m、及び第4カウンタのカウント値nを、それぞれ1に初期化する。
 次のステップS204において、ユーザによるショット領域のX軸方向のサイズWxのデータ及びY軸方向のサイズWyのデータの入力を促すため、表示装置58の表示画面に、それらのデータの入力画面を表示した後、ステップS206に進み、ユーザによりデータが入力されるのを待つ。そして、ユーザにより入力装置57を介してサイズWxのデータ及びサイズWyのデータが入力されると、ステップS208に進む。ここでは、便宜上、サイズWxのデータとして例えば26[mm]、サイズWyのデータとして例えば33[mm]が入力されたものとする。
 ステップS208では、サイズWxを第3カウンタのカウント値mで除したpx=Wx/mを、基板P上に配置される複数のマークMのX軸方向のピッチpxの候補として算出し、その算出結果をRAM54内の所定の格納領域に格納する。このとき、m=1であるから、px=Wx/1=Wxが、ピッチpxの候補として算出される。
 次のステップS210では、カウント値mが、予め定めた値M以上であるか否かを判断する。ここでは、便宜上、M=10に設定されているものとする。このとき、m=1であるから、ステップS210における判断は否定され、ステップS212に進んでカウント値mを1インクリメント(m←m+1)した後、ステップS210の判断が肯定されるまで、ステップS208→S210→S212のループの処理(判断を含む)を繰り返す。これにより、ピッチpxの候補として、px=Wx/2、px=Wx/3、……、px10=Wx/10が順次算出され、RAM54内の所定の格納領域に格納される。
 そして、px10=Wx/10が算出されると、ステップS210の判断が肯定され、ステップS214に進む。ステップS214では、サイズWyを第4カウンタのカウント値nで除したpy=Wy/nを、基板P上に配置される複数のマークMのY軸方向のピッチpyの候補として算出し、その算出結果をRAM54内の所定の格納領域に格納する。このとき、n=1であるから、py=Wy/1=Wyが、ピッチpyの候補として算出される。
 次のステップS216では、カウント値nが、予め定めた値N以上であるか否かを判断する。ここでは、便宜上、N=10に設定されているものとする。このとき、n=1であるから、ステップS216における判断は否定され、ステップS218に進んでカウント値nを1インクリメント(n←n+1)した後、ステップS216の判断が肯定されるまで、ステップS214→S216→S218のループの処理(判断を含む)を繰り返す。これにより、ピッチpyの候補として、py=Wy/2、py=Wy/3、……、py10=Wy/10が順次算出され、RAM54内の所定の格納領域に格納される。
 そして、py10=Wy/10が算出されると、ステップS216の判断が肯定され、ステップS220に進む。ステップS220では、算出されRAM54内の所定の格納領域に格納された複数(ここでは10)の候補px=Wx/m(m=1~10)のそれぞれに第1カウンタのカウント値iを乗じたDxim=i・px(m=1~10)を、基板Pと平行なXY平面内にX軸方向及びY軸方向に配置される複数の仮想点の、X軸方向のピッチDxの候補として算出し、RAM内の所定の格納領域に格納した後、ステップS222に進む。このとき、i=1であるから、Dx1m=1・px=px(m=1~10)が算出される。
 ステップS222では、第1カウンタのカウント値iが、予め設定された値I以上であるか否かを判断する。ここでは、便宜上、I=10に設定されているものとする。このとき、i=1であるから、ステップS222における判断は否定され、ステップS224に進んでカウント値iを1インクリメント(i←i+1)した後、ステップS222の判断が肯定されるまで、ステップS220→S222→S224のループの処理(判断を含む)を繰り返す。これにより、ピッチDxの候補として、Dxim=i・px(i=2~10、m=1~10)が算出される。ステップS222の判断が肯定されると、ステップS226に移行する。ステップS222の判断が肯定された時点では、RAM54内の所定の格納領域には、ピッチDxの候補として、Dxim=i・px(i=1~10、m=1~10)が格納されている。ここで、前述と同様に、iとmとの大小関係を前提条件として定め、その前提条件を満足するDximのみを、ステップS220において、算出することとしても良い。
 ステップS226では、RAM54内の所定の格納領域に格納された複数(ここでは10)の候補py=Wy/n(n=1~10)のそれぞれに第2カウンタのカウント値jを乗じたDyjn=j・py(n=1~10)を、基板Pと平行なXY平面内にX軸方向及びY軸方向に配置される複数の仮想点の、Y軸方向のピッチDyの候補として算出し、RAM内の所定の格納領域に格納した後、ステップS228に進む。このとき、j=1であるから、Dy1n=1・py=py(n=1~10)が算出される。
 ステップS228では、カウント値jが、予め定めた値J以上であるか否かを判断する。ここでは、便宜上、J=10に設定されているものとする。このとき、j=1であるから、ステップS228における判断は否定され、ステップS230に進んでカウント値jを1インクリメント(j←j+1)した後、ステップS228の判断が肯定されるまで、ステップS226→S228→S230のループの処理(判断を含む)を繰り返す。これにより、ピッチDyの候補として、Dyjn=j・py(j=2~10、n=1~10)が算出される。ステップS228の判断が肯定されると、ステップS232に移行する。ステップS228の判断が肯定された時点では、RAM54内の所定の格納領域には、ピッチDyの候補として、Dyjn=j・py(j=1~10、n=1~10)が格納されている。ここで、前述と同様に、jとnとの大小関係を前提条件として定め、その前提条件を満足するDyjnのみを、ステップS226において、算出することとしても良い。
 ステップS232では、RAM54内の所定の格納領域に格納されているピッチDxの候補Dxim=i・px及びピッチDyの候補Dyjn=j・pyのうち、その値が予め定められた条件を満足する候補のみを、ピッチDx、及びピッチDyそれぞれの最終候補として決定し、RAM内の最終候補格納領域に格納する。例えば、ピッチDx及びピッチDyが、満足すべき条件として、Dx<Dy、かつ60≧Dx>30、かつ60≧Dy>30と定められていた場合には、その条件を満足する候補Dxim及び候補Dyjnのみが、最終候補となる。なお、Dximの値が同一となる、iとmとの異なる組み合わせ、及びWyjnの値が同一となる、jとnとの異なる組み合わせが存在する場合もあるが、Dxim、Dyjnのいずれについても同一の値については、1つの候補のみが最終候補として決定される。
 前述したように、例えばWx=26、Wy=33とし、i=1~10、j=1~10、m=1~10、n=1~10について、Dxim、Dyjnが算出された場合、上記の条件を満足するDx、Dyの最終候補は、それぞれ前述の表3のようになる。
 次のステップS234では、ステップS232で決定されたDx、Dyの最終候補に対応する複数のマークのX軸方向のピッチpx及びY軸方向のピッチpyの候補px、pyを、ピッチpx及びピッチpyの最終候補として決定し、RAM内の最終候補格納領域に格納した後、本ルーチンの一連の処理を終了する。上述のDx、Dyそれぞれの最終候補に対応するピッチpx及びピッチpyそれぞれの最終候補は、前述の表4のようになる。
 したがって、ユーザは、入力装置57を介してRAM内の最終候補格納領域に格納された情報を読出して表示画面に表示させ、その表示された情報に基づき、ピッチDx及びピッチDyを選択(決定)し、そのピッチDx及びピッチDyに基づいて、マーク検出系の複数の検出領域DAの中心(検出中心)の位置関係(配置)を決定し、併せてショットサイズWx、Wyに適したマークピッチpx、py、すなわちショットサイズに応じたマークのレイアウトを決定することが可能になる。
 決定された位置関係の複数の検出領域DAを有するマーク検出系を用いて、決定されたマークのレイアウトに従って複数のマークが各ショット領域(ショットサイズWx、Wy)に配置された基板を検出対象として、マークの検出(アライメント計測)を行う場合、基板の回転(θz回転)を調整し、そのマーク検出系の複数の検出領域の1つの検出領域内に、あるマークを位置させると、残りの検出領域内に別のマークが位置合される。したがって、マーク検出系の複数の検出領域DAで基板上の複数のマークを並行して検出することが可能になる。
 これまでの説明から明らかなように、本変形例では、CPU51がステップS204~S218の処理(判断を含む)を実行することで第1の演算部60が実現され、CPU51がステップS220~S230処理(判断を含む)を実行することで第2の演算部62が実現され、CPU51がステップS232の処理を実行することで第1の最終候補決定部64aが実現され、CPU51がステップS234の処理を実行することで第2の最終候補決定部64bが実現されている。しかし、これに限らず、上記各部を、マイクロプロセッサ等をそれぞれ含むハードウェアにより構成しても良い。
 また、本変形例では、第1の演算部60により第1の演算手段が構成され、第2の演算部62により第2の演算手段が構成されている。また、第1の最終候補決定部64a及び第2の最終候補決定部64bを含む最終候補決定部64により決定手段が構成されている。
 なお、これまでは、前述の検出領域DAの配置(ピッチDx、Dy)、ショットサイズWx、Wy、及びマークの配置(ピッチpx、py)の3組のうち、ピッチDx、Dy又はショットサイズWx、Wyが既知である場合に、残りの2組の最終候補を求める場合について例示した。しかしながら、上記3組のうち、2組が既知である場合に、残りの1組の最終候補を決定する決定装置を設けても良い。例えば、検出領域DAの配置(ピッチDx、Dy)、及びショットサイズWx、Wyが既知である場合には、マークの配置(ピッチpx、py)の最終候補を決定する決定装置を設けてもよい。かかる決定装置は、前述したフローチャートに対応するアルゴリズムを僅かに変更することにより、容易に実現できる。
 また、上述の説明においては、上記3組のうちの2組、又は1組の最終候補を決定するようにしているが、「候補」でなくてもよい。すなわち、最終判断をユーザではなく、決定装置が行ってもよい。
 前述した実施形態に係る決定装置50は、第1の算出部10、第2の算出部12及び決定部14に加えて、作成部16及び表示部18を備えていたが、作成部16及び表示部18の少なくとも一方は、必ずしも備えていなくても良い。サイズWx、Wyの最終候補及びマークのピッチpx、pyの最終候補が決定されていれば、それらの最終候補に基づいて、ショット領域(区画領域)上にピッチpx及びピッチpyで複数のアライメントマークが2次元配列されたマークのレイアウト情報は、ユーザが比較的簡単に作成できるからである。勿論、決定装置は、作成部16及び表示部18のうち、作成部のみを備えていても良い。ショット領域及びマークのレイアウト情報が作成されてRAM内に格納されていれば、ユーザがその情報を入力装置57を介して読出し、表示画面に表示させることができるからである。
 また、これまでは、基板上にショット領域及びアライメントマークが直交2軸方向(X軸方向及びY軸方向)に沿って配置される場合について説明した。しかしながら、ショット領域及びアライメントマークなどは、直交2軸方向に限らず、90°以外の角度で互いに交差する2方向に沿って配置されていても良い。
 また、これまでは、マーク検出系の複数の検出領域が、XY平面内に直交2軸方向(X軸方向及びY軸方向)に沿って配置されている場合について説明した。複数の検出領域は、直交2軸方向に限らず、90°以外の角度で互いに交差する2方向に沿って配置されていてもよい。なお、マーク検出系の複数の検出領域の検出中心が、XY平面内に直交2軸方向(X軸方向及びY軸方向)に沿って設定された複数の仮想点のいずれかに一致する場合について説明したが、複数の仮想点は、直交2軸方向に限らず、90°以外の角度で互いに交差する2方向に沿って配置されていても良い。
 なお、前述したフローチャート(図5又は図8)に対応するプログラムは、CD-ROM、DVD-ROMその他の情報記録媒体に格納しておいても良い。
 次に、決定装置50により表示画面上に表示された複数のテンプレートの中から選択された1つのテンプレートに従って複数のショット領域にアライメントマークMが形成されたウエハ(基板)W上のアライメントマークを検出するマーク検出方法を適用可能な露光装置の実施形態について説明する。
 図9には、一実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。後述するように、露光装置100は投影光学系PLを備えている。以下においては、投影光学系PLの光軸AXと平行な方向をZ軸方向、これに直交する面内でレチクルRとウエハWとが相対走査される走査方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
 露光装置100は、照明系21、レチクルステージRST、投影ユニットPU、ウエハステージWSTを有するステージ装置80、及びこれらの制御系等を備えている。図9では、ウエハステージWST上にウエハWが載置されている。
 照明系21は、レチクルブラインド(マスキングシステムとも呼ばれる)で設定(制限)されたレチクルR上のスリット状の照明領域IARを、照明光(露光光)ILによりほぼ均一な照度で照明する。照明系21の構成は、例えば米国特許出願公開第2003/0025890号明細書などに開示されている。ここで、照明光ILとして、一例として、ArFエキシマレーザ光(波長193nm)が用いられている。
 レチクルステージRST上には、そのパターン面(図9における下面)に回路パターンなどが形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系81(図9では不図示、図14参照)によって、XY平面内で微小駆動可能であるとともに、走査方向(図9における紙面内左右方向であるY軸方向)に所定の走査速度で駆動可能となっている。
 レチクルステージRSTのXY平面内の位置情報(θz方向の回転情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)116によって、移動鏡115(又はレチクルステージRSTの端面に形成された反射面)を介して、例えば0.25nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、主制御装置20(図9では不図示、図14参照)に送られる。なお、レチクル干渉計116に代えて、あるいはレチクル干渉計116とともにエンコーダシステムを用いてレチクルステージRSTの位置情報を計測することとしても良い。
 投影ユニットPUは、レチクルステージRSTの図9における下方に配置されている。投影ユニットPUは、鏡筒40と、鏡筒40内に保持された投影光学系PLと、を含む。投影光学系PLとしては、例えば、Z軸方向と平行な光軸AXに沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4倍、1/5倍又は1/8倍など)を有する。レチクルRは、投影光学系PLの第1面(物体面)とパターン面がほぼ一致するように配置され、表面にレジスト(感応剤)が塗布されたウエハWは、投影光学系PLの第2面(像面)側に配置される。このため、照明系21からの照明光ILによってレチクルR上の照明領域IARが照明されると、レチクルRを通過した照明光ILにより、その照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLを介して、照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。
 ステージ装置80は、図9に示されるように、ベース盤112上に配置されたウエハステージWST、ウエハステージWSTの位置情報を計測する干渉計システム118(図14参照)、及びウエハステージWSTを駆動するステージ駆動系124(図14参照)等を備えている。
 ウエハステージWSTは、不図示の非接触軸受、例えばエアベアリングなどにより、数μm程度のクリアランス(隙間、ギャップ)を介して、ベース盤112の上方に支持されている。また、ウエハステージWSTは、リニアモータ又は平面モータ等を含む駆動系によって、X軸方向及びY軸方向に所定ストロークで駆動可能である共にθz方向にも微小駆動可能である。
 ウエハステージWSTは、ステージ本体91と、該ステージ本体91上に搭載されたウエハテーブルWTBとを含む。ウエハテーブルWTBは、ステージ本体91上でZ・レベリング機構(ボイスコイルモータなどを含む)を介してZ軸方向、θx方向、θy方向に微小駆動可能である。図14には、ウエハステージWSTを駆動する駆動系と、Z・レベリング機構とを含んで、ステージ駆動系124として示されている。ウエハテーブルWTBは、ステージ駆動系124によって、ベース盤112に対し、6自由度方向(X軸、Y軸、Z軸、θx、θy、及びθzの各方向)に駆動可能である。なお、例えば磁気浮上型の平面モータ等を用いて、ウエハステージWSTを、6自由度方向に駆動可能に構成しても良い。
 ウエハテーブルWTBの上面には、ウエハWを真空吸着等によって保持するウエハホルダ(不図示)が設けられている。図10に示されるように、ウエハテーブルWTB上面のウエハホルダ(ウエハW)の+Y側には、計測プレート30が設けられている。この計測プレート30には、基準マークFMが設けられ、基準マークFMのX軸方向の両側に一対の空間像計測用スリット板SLが、設けられている。各空間像計測用スリット板SLには、図示は省略されているが、Y軸方向を長手方向とする所定幅(例えば、0.2μm)のライン状の開口パターン(Xスリット)と、X軸方向を長手方向とする所定幅(例えば、0.2μm)のライン状の開口パターン(Yスリット)と、が形成されている。
 そして、各空間像計測用スリット板SLに対応して、ウエハテーブルWTBの内部には、レンズ等を含む光学系及び光電子増倍管(フォト・マルチプライヤ・チューブ(PMT))等の受光素子が配置され、一対の空間像計測用スリット板SLと、対応する光学系及び受光素子とによって、例えば米国特許出願公開第2002/0041377号明細書などに開示されるものと同様の一対の空間像計測装置45A,45B(図14参照)が構成されている。空間像計測装置45A,45Bの計測結果(受光素子の出力信号)は、信号処理装置(不図示)により所定の信号処理が施されて、主制御装置20に送られる(図14参照)。なお、空間像計測装置45A、45Bの受光素子をウエハテーブルWTBの内部に設けずに、別の部材(部品など)に設けてもよい。また、空間像計測装置45A、45Bの光学系の一部をウエハテーブルWTBの内部に設けずに、別の部材に設けてもよい。
 ウエハテーブルWTBの-Y端面,-X端面には、図10に示されるように、干渉計システム118で用いられる反射面27a,反射面27bが形成されている。
 また、ウエハテーブルWTBの+Y側の面には、図10に示されるように、米国特許第8,054,472号明細書に開示されるCDバーと同様の、X軸方向に延びるフィデューシャルバー(以下、「FDバー」と略述する)46が取り付けられている。FDバー46の上面には、複数の基準マークMMが形成されている。各基準マークMMとしては、後述するアライメント系によって検出可能な寸法の2次元マークが用いられている。なお、符号LLは、ウエハテーブルWTBのX軸方向に関するセンターラインを示す。
 露光装置100では、図12に示されるように、投影光学系PLの-Y側に所定距離隔てた位置にアライメント系ALGが配置されている。アライメント系ALGは、X軸方向を行方向(横1行)とし、Y軸方向を列方向(縦1列)として3行3列のマトリクス状に配置された9つのアライメントセンサAL(前述したカラムCAに相当)を有している。以下では、識別のため、これらのアライメントセンサを、アライメントセンサAL11、AL12、AL13、AL21、AL22、AL23、AL31、AL32、AL33と表記する(図13参照)。
 9つのアライメントセンサAL11~AL33のうち、中央に位置するアライメントセンサAL22は、投影光学系PLの光軸AXを通るY軸に平行な直線(以下、基準軸と呼ぶ)LV上で、光軸AXから-Y側に所定距離隔てた位置に検出中心を有する。図13に示されるように、アライメントセンサAL22を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるアライメントセンサAL21、AL23が設けられている。アライメントセンサAL22の検出中心は、X軸方向の直線(以下、基準軸と呼ぶ)LA上に位置している。アライメントセンサAL22を挟んで、Y軸方向の一側と他側には、基準軸LAに関してほぼ対称に検出中心が配置されるアライメントセンサAL12、AL32が設けられている。アライメントセンサAL12を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるアライメントセンサAL11、AL13が設けられている。アライメントセンサAL32を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるアライメントセンサAL31、AL33が設けられている。アライメントセンサAL11、AL13の検出中心と、アライメントセンサAL31、AL33の検出中心とは、基準軸LAに関して対称に配置されている。本実施形態では、9つのアライメントセンサAL11~AL33は、それぞれの検出中心(検出領域DAの中心)がXY平面内で互いに直交するX軸方向及びY軸方向に2次元配列されている。本実施形態では、アライメントセンサAL11,AL12,AL13の検出中心がX軸方向に所定の間隔(ピッチ)Dxで配置され、アライメントセンサAL21,AL22,AL23の検出中心がX軸方向に所定の間隔(ピッチ)Dxで配置され、アライメントセンサAL31,AL32,AL33の検出中心がX軸方向に所定の間隔(ピッチ)Dxで配置されている。また、アライメントセンサAL11,AL21,AL31の検出中心がY軸方向に所定の間隔(ピッチ)Dyで配置され、アライメントセンサAL12,AL22,AL32の検出中心がY軸方向に所定の間隔(ピッチ)Dyで配置され、アライメントセンサAL13,AL23,AL33の検出中心がX軸方向に所定の間隔(ピッチ)Dyで配置されている。本実施形態では、9つのアライメントセンサAL11~AL33は、それぞれの検出中心(検出領域DAの中心)がXY平面内で互いに直交するX軸方向及びY軸方向に2次元配列された複数の仮想点のうちの9点にそれぞれ一致している。アライメント系ALG(9つのアライメントセンサAL11~AL33)は、不図示のメインフレームの下面に固定されている。なお、検出中心は、検出位置と呼ぶこともできる。
 なお、アライメントセンサAL22(AL12、AL32)の検出領域(検出中心)が、投影光学系の光軸AXを通る基準軸LV上に配置されていなくてもよい。
 アライメントセンサAL11~AL33のそれぞれとして、例えば画像処理方式のFIA(Field Image Alignment)系が用いられている。アライメントセンサAL11~AL33のそれぞれからの撮像信号は、不図示の信号処理系を介して主制御装置20に供給される(図14参照)。
 ここで、図13に基づいて、アライメント系ALGの複数の検出中心(複数のアライメントセンサそれぞれの検出中心)の位置関係、ウエハW上に形成される複数のショット領域SAそれぞれのサイズ、各ショット領域に対するマークMのレイアウト等について説明する。
 複数のショット領域SAは、ウエハW上にX軸方向及びY軸方向を行方向(横1行、すなわち列が進む方向)及び列方向(縦1列、すなわち行が進む方向)としてマトリクス状の配置で形成されている。
 本実施形態では、前述した40種類のレイアウト情報(テンプレート)のうち、Y軸方向のサイズWyが33.00mm、X軸方向のサイズWxが26.00mmのショット領域SAのそれぞれにマークMがショット領域SAを3行2列のマトリクス状に6等分する各分割領域の4隅に相当する合計12点に配置されるレイアウト情報(テンプレート)が選択され、このレイアウト情報に従ってウエハW上には、複数のショット領域SA及びマークMが形成されている。
 アライメントセンサAL11~AL33のうち、X軸方向に隣接するアライメントセンサALij、ALi(j+1)(iは1,2,3のいずれか、jは1又は2)の検出中心相互間のX軸方向の間隔、すなわち検出中心のX軸方向のピッチDxは、39mmであり、アライメントセンサAL11~AL33のうち、Y軸方向に隣接するアライメントセンサALij、AL(i+1)j(iは1又は2,jは、1、2,3のいずれか)の検出中心相互間のY軸方向の間隔、すなわち検出中心のY軸方向のピッチDyは、44mmである。
 この場合、X軸方向に隣接するマークM相互の間隔、すなわちマークMのX軸方向のピッチpxは、Wx/2=26.00/2=13.00(mm)で、Y軸方向に隣接するマークM相互の間隔、すなわちマークMのY軸方向のピッチpyは、Wy/3=33.00/3=11.00である。
 また、Dx/3=13.00、Dy/4=11.00である。
 したがって、ピッチpxとピッチDxとサイズWxとの間、及びピッチpyとピッチDyとサイズWyとの間には、次の関係が成り立つ。
 px=Dx/3=Wx/2……(1)
 py=Dy/4=Wy/3……(2)
 上記の式(1)、式(2)が成り立っている結果、アライメント系ALGに対するウエハWのθz方向の回転が調整された状態(各ショット領域の向きと、各アライメントセンサALijの向きとが一致する状態)では、図13から明らかなように、いずれのアライメントセンサにおいても、検出中心(検出領域DAの中心)とマークMとの位置関係が同じになっている。
 干渉計システム118は、図11に示されるウエハテーブルWTBの反射面27a又は27bにそれぞれ干渉計ビーム(測長ビーム)を照射し、反射面27a又は27bからの反射光を受光して、ウエハステージWSTのXY平面内の位置を計測する、Y干渉計125と、3つのX干渉計126~128とを備えている。
 これをさらに詳述すると、図11に示されるように、Y干渉計125は、基準軸LVに関して対称な一対の測長ビームB41,B42を含む少なくとも3つのY軸に平行な測長ビームを反射面27a、及び後述する移動鏡41に照射する。また、X干渉計126は、光軸AXと基準軸LVとに直交するX軸に平行な直線(以下、基準軸と呼ぶ)LHに関して対称な一対の測長ビームB51,B52を含む少なくとも3つのX軸に平行な測長ビームを反射面27bに照射する。また、X干渉計127は、基準軸LAを測長軸とする測長ビームB6を含む少なくとも2つのX軸に平行な測長ビームを反射面27bに照射する。また、X干渉計128は、X軸に平行な測長ビームB7を反射面27bに照射する。
 干渉計システム118の上記各干渉計からの位置情報は、主制御装置20に供給される。主制御装置20は、Y干渉計125及びX干渉計126又は127の計測結果に基づいて、ウエハテーブルWTB(ウエハステージWST)のX,Y位置に加え、ウエハテーブルWTBのθx方向の回転(すなわちピッチング)、θy方向の回転(すなわちローリング)、及びθz方向の回転(すなわちヨーイング)も算出することができる。
 また、図9に示されるように、ステージ本体91の-Y側の側面に、凹形状の反射面を有する移動鏡41が取り付けられている。移動鏡41は、図10からわかるように、X軸方向の長さがウエハテーブルWTBの反射面27aよりも、長く設計されている。
 干渉計システム118(図14参照)は、移動鏡41に対向して配置された一対のZ干渉計43A、43Bをさらに備えている(図9及び図11参照)。Z干渉計43A、43Bは、それぞれ2つのY軸に平行な測長ビームB1、B2を移動鏡41に照射し、該移動鏡41を介して測長ビームB1、B2のそれぞれを、例えば投影ユニットPUを支持するフレーム(不図示)に固定された固定鏡47A、47Bに照射する。そして、それぞれの反射光を受光して、測長ビームB1、B2の光路長を計測する。この計測結果より、主制御装置20は、ウエハステージWSTの4自由度(Y,Z,θy,θz)方向の位置を算出する。
 なお、干渉計システム118に代えて、あるいは干渉計システム118とともにエンコーダシステムを用いてウエハステージWST(ウエハテーブルWTB)の全位置情報を計測することとしても良い。なお、図12において、符号UPは、ウエハステージWST上にあるウエハのアンロードが行われるアンローディングポジションを示し、符号LPは、ウエハステージWST上への新たなウエハのロードが行われるローディングポジションを示す。
 この他、本実施形態の露光装置100では、ウエハW表面のZ位置を多数の検出点で検出するための照射系90a及び受光系90bから成る多点焦点位置検出系(以下、「多点AF系」と略述する)AFが設けられている(図14参照)。多点AF系AFとしては、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成の斜入射方式の多点AF系が採用されている。なお、多点AF系AFの照射系90a及び受光系90bを、例えば米国特許第8,054,472号明細書などに開示されるように、アライメント系ALGの近傍に配置し、ウエハアライメント時にウエハWのほぼ全面でZ軸方向の位置情報(面位置情報)を計測する(フォーカスマッピングを行う)ようにしても良い。この場合、ウエハテーブルWTBのZ位置を、このフォーカスマッピング中に計測する面位置計測系を設けることが望ましい。
 図14には、露光装置100の制御系を中心的に構成する主制御装置20の出力関係がブロック図にて示されている。主制御装置20は、マイクロコンピュータ(又はワークステーション)から成り、露光装置100の全体を統括的に制御する。
 上述のようにして構成された露光装置100では、例えば米国特許第8,054,472号明細書の実施形態中に開示されている手順と同様の手順(但し、露光装置100はエンコーダシステムを備えていないので、エンコーダシステムに関する処理は含まれない)に従って、アンローディングポジションUP(図12参照)でのウエハWのアンロード、ローディングポジションLP(図12参照)での新たなウエハWのウエハテーブルWTB上へのロード、計測プレート30の基準マークFMと所定のアライメントセンサ(ここではアライメントセンサAL22とする)とを用いたアライメントセンサAL22のベースライン計測(チェック)前半の処理、干渉計システム118の原点の再設定(リセット)、アライメントセンサAL11~AL33を用いたウエハWのアライメント計測、空間像計測装置45A,45Bを用いたアライメントセンサAL22のベースライン計測(チェック)後半の処理、並びにアライメント計測の結果求められるウエハ上の各ショット領域の位置情報と、最新のアライメント系ALG(アライメントセンサAL11~AL33)のベースラインと、に基づく、ステップ・アンド・スキャン方式でのウエハW上の複数のショット領域の露光などの、ウエハステージWSTを用いた一連の処理が、主制御装置20によって実行される。
 ここで、アライメント系ALG(アライメントセンサAL11~AL33)を用いたウエハWのアライメント計測(及びアライメント系のベースラインチェック)について説明する。ウエハWのロード後、主制御装置20は、図15に示されるように、ウエハステージWSTを、計測プレート30上の基準マークFMがアライメントセンサAL22の検出視野(検出領域DA)内に位置決めされる位置(すなわち、アライメントセンサAL22のベースライン計測の前半の処理を行う位置)へ移動させる。このとき、主制御装置20は、干渉計システム118のY干渉計125及びX干渉計127を用いて、ウエハテーブルWTB(ウエハステージWST)のXY平面内の位置情報を計測しつつ、ウエハステージWSTを駆動(位置制御)する。そして、主制御装置20は、アライメントセンサAL22を用いて基準マークFMを検出するアライメントセンサAL22のベースライン計測の前半の処理を行う。
 次に、図16に示されるように、主制御装置20は、ウエハステージWSTを白抜き矢印方向(+Y方向)へ移動させる。そして、主制御装置20は、図16に示されるように、9つのアライメントセンサAL11~AL33の全てを用いて、少なくとも9つのファーストアライメントショット領域に付設されたアライメントマークMを検出する。このファーストアライメントショット領域に付設されたアライメントマークの検出は、主制御装置20によって、実際には、次のようにして行われる。
 まず、主制御装置20は、9つのアライメントセンサAL11~AL33を用いて、それぞれの検出視野内に存在するアライメントマークMを、並行して個別に検出する。このとき、主制御装置20は、アライメントセンサAL11~AL33それぞれが有する光学系の焦点に検出対象のアライメントマークMが一致するように(ウエハWの表面が一致するように)、アライメントセンサAL11~AL33それぞれが有するオートフォーカス機構を制御した状態で、アライメントセンサAL11~AL33を用いたアライメントマークの並行検出を実行する。
 なお、上述の各アライメントセンサのオートフォーカス機構の制御に代えて、各アライメントセンサが有する光学系の焦点に検出対象のアライメントマークが一致するように(ウエハWの表面が一致するように)、ウエハWのフォーカス・レベリング制御(Z位置及びθx、θy方向の位置制御)、又はフォーカス制御(Z位置の制御)を行っても良い。この場合、主制御装置20は、9つのアライメントセンサを検出中心が同一直線上にない3つのアライメントセンサから成る3組に分け、各組のアライメントセンサを順次用いて、各3つのアライメントセンサによる並行したアライメントマークの検出を行なうようにしても良い。例えば、アライメントセンサ(AL11、AL13、AL32)、アライメントセンサ(AL12、AL21、AL23)、アライメントセンサ(AL22、AL31、AL33)の組みなどが考えられる。
 そして、主制御装置20は、9つのアライメントセンサAL11~AL33による検出結果(検出中心を原点とする各アライメントマークの(X,Y)座標値)を、それぞれの検出時の干渉計システム118のY干渉計125及びX干渉計127の位置情報(すなわちウエハテーブルWTBのX、Y、θz位置)と関連付けて、内部メモリに記憶する。
 上述のファーストアライメントショット領域に付設されたアライメントマークの検出が終了すると、主制御装置20は、図17に示されるように、ウエハステージWSTを白抜き矢印方向(+Y方向)へ所定距離移動させる。そして、主制御装置20は、図17中に示されるように、9つのアライメントセンサAL11~AL33を用いて、少なくとも9つのセカンドアライメントショット領域に付設されたアライメントマークを検出する。このセカンドアライメントショット領域に付設されたアライメントマークの検出は、主制御装置20によって、前述のファーストアライメント領域に付設されたアライメントマークの検出と同様にして行われる。
 上述のセカンドアライメントショット領域に付設されたアライメントマークの検出が終了すると、主制御装置20は、ウエハステージWSTを+Y方向へ移動させる(図18中の白抜き矢印参照)。そして、図18に示されるように、計測プレート30が投影光学系PLの直下に位置する位置に、ウエハステージWSTが到達すると、主制御装置20は、その位置でウエハステージWSTを停止させ、アライメントセンサAL22のベースライン計測の後半の処理を実行する。ここで、アライメントセンサAL22のベースライン計測の後半の処理とは、投影光学系PLによって投影されたレチクルR上の一対の計測マークの投影像(空間像)を、計測プレート30を含む前述した空間像計測装置45A,45Bを用いて、例えば米国特許出願公開第2002/0041377号明細書などに開示される方法と同様の一対の空間像計測用スリット板SLをそれぞれ用いたスリットスキャン方式の空間像計測動作にてそれぞれ計測する。そして、その計測結果(ウエハテーブルWTBのX、Y位置に応じた空間像強度)を内部メモリに記憶する処理を意味する。主制御装置20は、上述のアライメントセンサAL22のベースライン計測の前半の処理の結果とアライメントセンサAL22のベースライン計測の後半の処理の結果とに基づいて、アライメントセンサAL22のベースラインを算出する。
 さらに、主制御装置20は、ウエハステージWSTを+Y方向へ所定距離移動させ、少なくとも9つのサードアライメントショット領域に付設されたアライメントマークの検出を実行し、それぞれの検出結果を検出時の干渉計システム118のY干渉計125及びX干渉計127の位置情報(すなわちウエハテーブルWTBのX、Y、θz位置)と関連付けて、内部メモリに記憶する。ここで、サードアライメントショット領域に付設されたアライメントマークの検出は、前述したファーストアライメントショット領域に付設されたアライメントマークの検出と同様の手順で行われる。
 主制御装置20は、このようにして得た少なくとも合計27個のアライメントマークの検出結果(2次元位置情報)と対応する干渉計システム118のY干渉計125及びX干渉計127の位置情報(すなわちウエハテーブルWTBのX、Y、θz位置)とを用いて、例えば米国特許第4,780,617号明細書などに開示される統計演算を行って、干渉計システム118の測長軸で規定される座標系(ウエハテーブルWTBの中心を原点とするXY座標系)上におけるウエハW上の全てのショット領域の配列及びスケーリング(ショット倍率)を算出する。さらに、その算出したショット倍率に基づいて、投影光学系PLを構成する特定の可動レンズを駆動する、あるいは投影光学系PLを構成する特定レンズ間に形成された気密室内部の気体の圧力を変更するなどして、投影光学系PLの光学特性を調整する調整装置(不図示)を制御して投影光学系PLの光学特性、例えば投影倍率を調整する。
 その後、主制御装置20は、事前に行われた前述のウエハアライメント(EGA)の結果及び最新のアライメントセンサAL11~AL33のベースラインに基づいて、ステップ・アンド・スキャン方式の露光を行い、ウエハW上の複数のショット領域SAのそれぞれにレチクルRのパターンを順次転写する。以降、同様の動作が繰り返し行われる。
 なお、アライメントセンサAL22以外のアライメントセンサAL11、AL12、AL13、AL21、AL23、AL31、AL32、AL33のベースライン計測は、適宜なタイミングで、例えば米国特許第8,054,472号明細書に開示される方法と同様に、前述の一対のZ干渉計43A、43B及びY干渉計125の少なくとも一方の計測値に基づいて、FDバー46(ウエハステージWST)のθz回転を調整した状態で、アライメントセンサAL11~AL33を用いて、それぞれの視野内にあるFDバー46上の基準マークMMを同時に計測することで行われる。ここで、アライメントセンサAL11、AL12、AL13、AL21、AL23、AL31、AL32、AL33のベースラインとは、それぞれの検出中心と、アライメントセンサAL22の検出中心との距離(又は位置関係)を意味する。
 なお、上の説明では、ウエハステージWSTをY軸方向にのみステップ移動させてアライメント計測を行なうものとしたが、ウエハステージWSTをY軸方向及びX軸方向にステップ移動させてアライメント計測を行なっても良い。例えば、ウエハW上の全てのショット領域について、少なくとも各1つのアライメントマークを計測する全ショットアライメント計測を行なっても良い。この場合においても、ウエハWのステップ位置毎にウエハWを静止させた状態(ウエハステージWSTを駆動するステージ駆動系124に対して静止サーボ制御が行われた状態)で9つのアライメントセンサAL11、AL12、AL13、AL21、AL22、AL23、AL31、AL32、AL33によって少なくとも9つのショット領域について少なくとも各1つのアライメントマークMを並行して検出することができる。したがって、短時間でのウエハアライメントが可能になる。
 また、図13から明らかなように、それぞれのショット領域SAには、12個のアライメントマークMが存在するので、少なくとも1つのショット領域において、2個以上のアライメントマークMを検出しても良い。
 なお、上の説明では、図4に示される複数のテンプレートの中から1つのテンプレートが選択され、そのテンプレートに従って、ウエハW上に複数のショット領域SAと複数のアライメントマークMが形成された場合について説明した。しかるに、図13に示されるアライメント系ALGを用いれば、図4に示される残りのテンプレートのいずれかを選択した場合は勿論、それ以外の場合であっても、前述した決定装置50により画面上に表示された複数のテンプレートの中から選択された1つのテンプレートに従ってウエハW上に複数のショット領域SA及びアライメントマークMを、露光装置100又は他の露光装置を用いて形成し、そのウエハWを、露光装置100で露光対象の基板として、ウエハアライメントを行う場合には、ウエハWのステップ位置毎にウエハWを静止させた状態(ウエハステージWSTを駆動するステージ駆動系124に対して静止サーボ制御が行われた状態)で9つのアライメントセンサAL11、AL12、AL13、AL21、AL22、AL23、AL31、AL32、AL33によって少なくとも9つのショット領域について少なくとも各1つのアライメントマークMを並行して検出することができる。
 その理由は、マークピッチpxと検出中心ピッチDxとショットサイズWxとの間、及びマークピッチpyと検出中心ピッチDyとショットサイズWyとの間には、次の関係が成り立つからである。
 px=Dx/i(iは自然数)=Wx/m(mは自然数)……(3)
 py=Dy/j(jは自然数)=Wy/n(nは自然数)……(4)
 Dx>Wxの場合、i>m
 Dy>Wyの場合、j>n
 なお、決定装置50を必ずしも用いることなく、上の式(3)及び式(4)が成り立つように、検出中心ピッチDx、Dyに基づいて、演算を繰り返すことにより、ショットサイズWx、Wy、及びマークピッチpx、pyを決定することとしても良い。
 なお、「式(3)が成り立つ」あるいは「式(3)を満たす」とは、Pxが、Dx/i、およびWx/mと完全に一致する場合だけでなく、Pxが、Dx/i、およびWx/mとほぼ一致する場合も含む。すなわち、Dx/iとWx/mが僅かに異なる場合も含むし、Pxが、Dx/iとWx/mの少なくとも一方と僅かに異なる場合も含む。
 同様に、「式(4)が成り立つ」あるいは「式(4)を満たす」とは、Pyが、Dy/j、およびWy/nと完全に一致する場合だけでなく、Pyが、Dy/j、およびWx/nとほぼ一致する場合も含む。すなわち、Dy/jとWy/nが僅かに異なる場合も含むし、Pyが、Dy/jとWy/nとの少なくとも一方と僅かに異なる場合も含む。
 なお、「ほぼ一致」と見なすかどうかは、例えば、複数の検出領域で並行してマーク検出が可能か否かで決めてもよい。例えば、複数の検出領域のXY平面内での大きさ、アライメントマークMの大きさ、ウエハテーブルWTB(ウエハステージWST)のXY平面内での位置制御誤差の少なくとも1つに基づいて決めてもよい。
 また、複数の検出領域の検出中心がピッチDx,Dyで完全に配置されていなくてもよい。すなわち、複数の検出領域の検出中心が、仮想点から僅かにずれていてもよい。このずれの許容量も、例えば、複数の検出領域で並行してマーク検出が可能か否かで決めてもよい。例えば、このずれの許容量を、複数の検出領域の大きさ、アライメントマークMの大きさなどに基づいて決めてよい。
 以上説明したように、本実施形態に係る決定装置50及びその決定方法によると、ウエハを停止した状態で、例えば露光装置100のアライメント系ALGの9つのアライメントセンサAL11~AL33などと同様に位置関係が固定の複数の検出領域を有するマーク検出系により、並行して検出が可能になるような、ウエハ上に形成すべき複数のショット領域のサイズ及びそれに応じたアライメントマークのレイアウト情報(テンプレート)を決定し、表示画面に表示することが可能になる。
 また、露光装置100で行われるアライメント計測(マーク検出方法)によると、アライメント系ALGが備える、位置関係が固定の9つのアライメントセンサAL11~AL33を用いて、ウエハW上にX軸方向及びY軸方向に並ぶ9つのアライメントマークを、並行して検出することが可能である。また、ウエハWを少なくともY軸方向に複数回ステップ移動して、ステップ移動の停止位置毎に、アライメントセンサAL11~AL33を用いて、9つのアライメントマークが、並行して検出することが可能である。もちろん、アライメントセンサAL11~AL33の一部(1つ又は複数)でマーク検出を行わなくてもよいし、アライメントセンサAL11~AL33の一部(1つ又は複数)でマーク検出が完了した後に、他の一部(1つ又は複数)でマーク検出を開始してもよい。
 また、アライメントセンサAL11~AL33それぞれが有するオートフォーカス機構を制御した状態で、アライメントセンサAL11~AL33を用いたアライメントマークの並行検出を実行する。このため、アライメントマークの位置情報の高精度な計測が可能になる。
 また、アライメントセンサAL11~AL33のオートフォーカス機構の制御に代えて、前述したウエハWのフォーカス・レベリング制御(Z位置及びθx、θy方向の位置制御)、又はフォーカス制御(Z位置の制御)を行なっても良い。この場合には、アライメントセンサAL11~AL33のオートフォーカス機構を有していなくても良い。この場合、主制御装置20は、9つのアライメントセンサを検出中心が同一直線上にない3つのアライメントセンサから成る3組に分け、各組のアライメントセンサを順次用いて、各3つのアライメントセンサによる並行したアライメントマークの検出を行なうことで、アライメントマークの位置情報の高精度な計測が可能になる。
 したがって、露光装置100で行われるアライメント計測(マーク検出方法)によると、アライメントセンサAL11~AL33のそれぞれとして、固定のアライメントセンサを採用することが可能である。この結果、複数のアライメントセンサの少なくとも一部として可動のアライメントセンサを採用する場合と比べて、コストの低減及び露光装置内部のスペース効率の向上が可能となる。後者のスペース効率の向上の一例としては、例えばアライメント系(アライメントセンサ)が有する光学系の大口径化が可能となるので、開口数N.A.の大きな光学系を採用したり、光学系の内部に結像特性等の調整機構を内蔵したりすることが可能になる。
 また、露光装置100では、上述した高精度なマークの検出結果に基づいて、ウエハステージWSTを駆動して、ステップ・アンド・スキャン方式で、ウエハW上の複数のショット領域に対して露光が行われるので、高精度な露光(重ね合わせ精度の良好な露光)が可能となる。
 なお、決定装置50として、露光装置100の主制御装置20を用いてもよいし、露光装置100が設置される工場などのホストコンピュータを用いてもよい。また決定装置50として、露光装置100あるいはホストコンピュータに接続された、あるいは接続されていないラップトップコンピュータを用いてもよいし、タブレットなどの携帯端末を用いてもよい。
 なお、上記実施形態では、アライメント系ALGがX軸方向及びY軸方向にマトリクス状に配置された9つのアライメントセンサAL11~AL33を有する場合について説明したが、上記の9つのアライメントセンサAL11~AL33に相当する、マーク検出系の複数のカラムの配置は、マトリクス状配置に限定されるものではない。例えば、図19に示されるような配置の5つのアライメントセンサ(カラム)AL~ALを有するマーク検出系であっても上記実施形態のレイアウト決定方法により、前述の式(3)、式(4)を満たすように、図19に示される検出中心間隔Dx、Dyに基づいて、ショットサイズWx、Wy、及びマーク間隔px、pyを決定することができる。すなわち、図19の場合も、AL~ALの検出領域(検出中心)が所定の間隔(ピッチ)Dx,Dyで2次元配列されているとみなすことができる。例えば、図19中に仮想線(二点鎖線)の丸(円)で示される4つの仮想の検出領域の中心点を含むX軸方向及びY軸方向に2次元配列された複数の仮想点のうちの5点にアライメントセンサAL~ALの検出中心が一致しているものと考えて、検出中心ピッチDx、Dyを定めることができる。ここで、図19に示される、アライメントセンサALとアライメントセンサALとに着目するとわかるように、マーク検出系の複数のカラムは、相互に隣接していなくても良い。
 また、例えば、図19に示されるカラムAL、AL、ALのように、X軸に所定角度で交差する直線上に沿ってそれぞれの検出中心が配置された複数のカラムのみを有するマーク検出系の場合も、図19と同様に、仮想の検出中心(検出領域)を含んで検出中心ピッチDx、Dyを定めることで、上記実施形態の決定方法により、前述の式(3)、式(4)を満たすように、図19に示される検出中心ピッチDx、Dyに基づいて、ショットサイズWx、Wy、及びマークピッチpx、pyを決定することができる。
 また、例えばマーク検出系の複数のカラムが所定方向、例えばX軸方向(又はY軸方向)に一列に所定間隔で配置されている場合には、前述の式(3)(又は式(4))を満たすように、検出中心ピッチDx(又はDy)に基づいて、ショットサイズWx及びマークピッチpx(又はショットサイズWy及びマークピッチpy)を決定すれば良い。ここで、式(3)、式(4)には、カラム及び検出領域のサイズは含まれず、検出中心ピッチのみが含まれていることからわかるように、隣接するカラム同士は、互いに接していても良いし、所定間隔を隔てていても良い。
 また、上記実施形態(図3,13,19など)では、XY平面内においてカラムを四角形で描いているが、XY平面内においてカラムの形状は、円形など角部を持たない形状であってもよいし、三角形、五角形など、他の多角形であってもよいし、角部と曲線部を有する形状であってもよい。
 なお、上記実施形態では、複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域(ショット領域)とともに基板(ウエハ)上に配置するための区画領域のサイズ及びマークピッチを含むレイアウト情報を取得する手順について、説明をわかり易くするため、図5のフローチャートを用いて、ステップ毎に説明を行なったが、上記レイアウト情報は、必ずしも、前述した手順に従って提供される必要はない。例えば、レイアウト情報は、複数の検出領域の検出中心を含む所定面(例えばXY平面)内で互いに交差する第1方向(例えばX軸方向)及び第2方向(例えばY軸方向)に配置された複数の仮想点の、第1方向のピッチDx、及び第2方向のピッチDyを、それぞれ自然数i、jで除した(Dx/i)及び(Dy/j)を、基板上に配置される複数のマークの第1方向のピッチpx及び第2方向のピッチpyの複数の候補pxi(i=1~I)、pyj(j=1~J)として算出するとともに、複数の候補pxi(i=1~I)に自然数m(m=1~M)を順次乗じたm・pxi、及び複数の候補pyj(j=1~J)に自然数n(n=1~N)を順次乗じたn・pyjを、基板上に、第1方向及び第2方向に沿って2次元配列される複数の区画領域の第1方向のサイズWx、及び第2方向のサイズWyの候補として算出することと、その算出されたサイズWxの候補及びサイズWyの候補と、それらに対応する複数のマークの第1方向のピッチpx及び第2方向のピッチpyの候補pxi、pyjとを、上記レイアウト情報として提供することと、を含む第1のレイアウト情報提供方法によって提供されても良い。
 また、図5のフローチャートにおいて、pxの算出(ステップS108~S112)とpyの算出(ステップS114~S118)を並行して行ってもよい。pxの少なくとも1つ、あるいはpyの少なくとも1つが算出された時点で、Wxim、あるいはWyjnの算出を行ってもよい。
 図8のフローチャートにおいても、レイアウト情報が、前述した手順に従って提供されなくてもよい。
 なお、図3及び図13の場合のように、複数の検出領域DAが、XY平面内で2次元方向(又は1次元方向)に等間隔で並んで配置されている場合には、複数の仮想点の、第1方向(例えばX軸方向)のピッチDx、及び第1方向に交差する第2方向(例えばY軸方向)のピッチDyは、第1方向に関して隣り合う2つの検出領域DAそれぞれの検出中心の第1方向の間隔、及び第2方向に関して隣り合う2つの検出領域DAそれぞれの検出中心の第2方向の間隔に他ならない。したがって、かかる場合には、レイアウト情報は、複数の検出領域の、所定面(例えばXY平面)内の第1方向(例えばX軸方向)のピッチDx、及び所定面内で第1方向と交差する第2方向(例えばY軸方向)のピッチDyを、それぞれ自然数i、jで除した(Dx/i)及び(Dy/j)を、基板上に配置される複数のマークの第1方向のピッチpx及び第2方向のピッチpyの複数の候補pxi(i=1~I)、pyj(j=1~J)として算出するとともに、複数の候補pxi(i=1~I)に自然数m(m=1~M)を順次乗じたm・pxi、及び複数の候補pyj(j=1~J)に自然数n(n=1~N)を順次乗じたn・pyjを、基板上に、第1方向及び第2方向に沿って2次元配列される複数の区画領域の第1方向のサイズWx、及び第2方向のサイズWyの候補として算出することと、算出されたサイズWxの候補及びサイズWyの候補と、それらに対応する複数のマークの第1方向のピッチpx及び第2方向のピッチpyの候補pxi、pyjとを、上記レイアウト情報として提供することと、を含む第2のレイアウト情報提供方法によって提供されても良い。ここで、検出中心の相互の間隔(検出中心ピッチ)Dx(又はDy)は、設計上、予め定められた距離であっても良いし、ウエハテーブルWTBに設けられた計測部材(例えばFDバー46)を用いて計測されたものであっても良いし、ウエハテーブルWTBに設けられたセンサを用いて計測されたものであっても良い。
 あるいは、レイアウト情報は、複数の検出領域の所定面(例えばXY平面)内で交差する第1方向(例えばX軸方向)及び第2方向(例えばY軸方向)のピッチをそれぞれDx、Dyとし、基板上に第1方向及び第2方向に沿って2次元配列される複数の区画領域それぞれの第1方向及び第2方向のサイズをそれぞれWx、Wyとし、さらに基板上に配置される複数のマークの第1方向のピッチをpx、第2方向のピッチをpyとして、上式(3)、(4)を満たす、サイズWx及びサイズWyそれぞれの候補と、それらに対応する複数のマークの第1方向のピッチpx及び第2方向のピッチpyそれぞれの候補とを、上記レイアウト情報として提供すること、を含む第3のレイアウト情報提供方法によって提供されても良い。
 なお、上記の第1~第3のレイアウト情報提供方法は、前述した図5のフローチャートで示されるアルゴリズムを、適宜変更することで、図1の決定装置50、あるいは他のコンピュータを用いて、実現することができる。
 なお、上記第1~第3のレイアウト情報提供方法のいずれによってレイアウト情報が提供される場合であっても、提供されるレイアウト情報は、決定装置50あるいは他のコンピュータの表示画面上に表示することとしても良い。
 なお、これまでは、わかりやすくするために、第1方向(例えばX軸方向)、及び第1方向に交差する第2方向(例えばY軸方向)に設定された複数の仮想点を想定し、複数の検出領域DAの検出中心が、その仮想点とほぼ一致するように、複数の検出領域DAが配置される場合について説明したが、複数の仮想点を想定しなくてもよい。例えば、上述したように、複数の検出領域のピッチDx、Dyは、設計上の値であってもよいし、マーク検出系が搭載される装置内で取得(計測)した値であってもよい。
 なお、例えば米国特許第8,432,534号明細書、米国特許第8,054,472号明細書などに開示されている、固定のアライメントセンサと、可動のアライメントセンサとを含む複数のアライメントセンサを備える露光装置などの露光対象となるウエハに対しても、上述したウエハ上のマークのレイアウト方法及びその決定方法は好適に適用できる。これらの露光装置でも、XY平面内における可動のアライメントセンサの位置を、ショットマップに合わせて調整した後は、その位置を固定したまま、ウエハ(ウエハステージ)をXY平面内で移動しつつ、ウエハ上の複数のアライメントマークを複数のアライメント系を用いて効率的に検出することが可能になる。なお、アライメントセンサの位置の調整とは、そのアライメントセンサの検出領域(検出中心)のXY平面内での位置を調整することを含む。アライメントセンサの検出領域(検出中心)のXY平面内での位置の調整は、アライメントセンサのカラムを動かして行ってもよいし、カラムを移動させることなしに行ってもよい。例えば、アライメントセンサを構成する光学系により、カラムを移動させることなしに、あるいはカラムの移動とともに、アライメントセンサの検出領域(検出中心)のXY平面内での位置の調整を行ってもよい。
 なお、上記実施形態では、マーク検出系がアライメントセンサを9つ、すなわちマーク検出系が、カラム及び検出領域を9つ有している場合について説明したが、これに限らず、マーク検出系は、カラムの数は問わず、検出領域が2つ以上設けられていれば良い。要は、上記実施形態の決定方法により、前述の式(3)及び式(4)の一方、又は両方を満たすように、検出中心間隔Dx、Dyに基づいて、ショットサイズWx、Wy、及びマーク間隔px、pyを決定することができれば良い。
 また、上記実施形態においては、前述の検出領域DAの配置(ピッチDx、Dy)、ショットサイズWx、Wy、及びマークの配置(例えば、ピッチpx、py)の3組に着目していたが、上記3組のうちの2組に着目してもよい。例えば、着目する2組のうちの1組が既知の場合には、残りの1組(例えば、最終候補)を、着目しない1組を考慮せずに、決定してもよい。
 例えば、ショットサイズWx、Wyと、検出領域の配置(ピッチDx,Dy)に着目し、一方が既知の場合に、下式(3A)、(4A)を満たすように、他方を決めてもよい。
Dx/i(iは自然数)=Wx/m(mは自然数)……(3A)
Dy/j(jは自然数)=Wy/n(nは自然数)……(4A)
 例えば、ショットサイズWx、Wyが既知の場合に、下式(3A)、(4A)を満たすように、ピッチDx、Dyの最終候補を、マーク配置を考慮せずに、決めてもよい。この場合も、図8の実施形態と同様に、例えばWx=26、Wy=33とし、i=1~10、j=1~10、m=1~10、n=1~10について、前述の条件(Dx<Dy、かつ60≧Dx>30、かつ60≧Dy>30)を満たす、Dx、Dyの最終候補は、それぞれ前述の表3のようになる。
 例えば、上述の露光装置100のアライメントセンサの検出領域の配置(ピッチDx,Dy)を、式(3A)、(4A)を満たすように決めることができる。上記のように、アライメントセンサの検出領域が可動の場合には、式(3A)、(4A)を満たすように、検出領域を動かしてもよい。
 なお、検出領域DAの配置(ピッチDx,Dy)が既知の場合に、ショットサイズWx,Wyに基づいて、式(3A)、(4A)を満たすように、ショットサイズWx,Wyの最終候補を決めてもよい。
 また、検出領域DAの配置(例えば、ピッチDx、Dy)とマークの配置(例えば、ピッチpx、py)の2組に着目し、一方が既知の場合に、下式(3B)、(4B)を満たすように、他方を決めてもよい。
px=Dx/i(iは自然数)……(3B)
py=Dy/j(jは自然数)……(4B)
 例えば、検出領域DAの配置(ピッチDx、Dy)が既知の場合に、上式(3B)、(4B)に基づいて、ショットサイズWx,Wyを考慮せずに、マークの配置(ピッチPx,Py)を決めてもよい。この場合、図3あるいは図4に示されるように各区画領域内の分割領域を想定しなくてもよいし、区画領域の四隅にマークが無くてもよい。要は、各区画領域内の複数のマーク、および隣り合う複数の区画領域内の複数のマークが、上式(3B)、(4B)を満たすように基板上に形成されればよい。なお、上式(3)、(4)と同様に、上式(3A)、(4A)、(3B)、(4B)を満たすとは、上式(3A)、(4A)、(3B)、(4B)を完全に満たす場合に限られず、ほぼ満たしている場合も含む。例えば、上式(3B)と上式(4B)において、PxとDx/iが僅かに異なっていてもよいし、PyとDy/jが僅かに異なっていてもよい。PxとDx/iとのずれの許容量、及び/又はPyとDy/jとのずれの許容量は、例えば複数の検出領域の大きさ、マークの大きさなどに基づいて決めてもよい。
 なお、これまでは、説明をわかり易くするため、マーク検出系が、複数のカラムを有するマルチカラムタイプであることを前提として、説明を行なったが、マーク検出系は、検出領域を複数有し、その複数の検出領域で並行してマークを個別に検出可能であれば良く、カラムの数は特に問わない。
 なお、上記実施形態では、アライメント系ALGの各アライメントセンサとして、画像処理方式のFIA(Field Image Alignment)系が用いられる場合について例示したが、これに限らず、格子マークが形成されたウエハを移動しつつ、その格子マークに対して計測光(計測ビーム)を照射し、格子マークから発生する複数の回折光同士の干渉光を検出することで、格子マークの位置情報を検出する回折光干渉方式のアライメントセンサを用いても良い。回折光干渉方式のアライメントセンサを用いる場合には、ウエハをある位置へ移動している間に、複数のアライメントセンサ(例えば、9個のアライメントセンサ)で並行検出しても良い。回折光干渉方式のアライメントセンサについては、例えば米国特許第7,319,506号明細書に、詳細に開示されている。
 なお、回折光干渉方式のアライメントセンサを採用する場合、検出中心(検出位置)は計測ビーム(検出光)の照射位置で規定することができ、検出中心の相互の間隔(検出中心ピッチ)Dx(又はDy)は、計測ビームの照射位置の相互の間隔で規定することができる。回折光干渉方式のアライメントセンサを採用する場合も、検出中心の相互の間隔(検出中心ピッチ)Dx(又はDy)は、設計上、予め定められた距離であっても良いし、ウエハテーブルWTBに設けられた計測部材(例えばFDバー46)を用いて計測されたものであっても良いし、ウエハテーブルWTBに設けられたセンサを用いて計測されたものであっても良い。
 なお、回折光干渉方式のアライメントセンサの検出対象となるマークMとしては、X軸方向を周期方向とする格子マークに限らず、X軸に対して+45度傾斜した方向を周期方向とする一次元マークと、X軸に対して-45度傾斜した方向を周期方向とする一次元マークとがX軸方向(又はY軸方向に並んで)配置されて成る二次元マークを用いても良い。この場合、計測時には、ウエハをX軸方向(又はY軸方向に)に移動させつつ回折光干渉方式のアライメントセンサによってその二次元マークから発生する回折光を検出すれば良い。
 また、計測ビームの照射位置を変更しながらマーク検出を行う回折光干渉方式のアライメントセンサを採用しても良い。この場合、ウエハを停止させた状態で計測ビームを移動させて、計測ビームと格子マークとの相対移動を行っても良いし、計測ビームとウエハの両方を移動させて、計測ビームと格子マークとの相対移動を行っても良い。
 なお、計測ビームとアライメントマークとを相対的な移動を伴うアライメントセンサは、格子マークを用いる回折光干渉方式のアライメントセンサに限られない。
 なお、上述の実施形態において、「並行検出」とは、1つの組に含まれている複数のアライメントセンサの検出動作期間が完全に一致している場合だけでなく、1つのアライメントセンサの検出動作期間の一部と、別のアライメントセンサの検出動作期間の一部とが重複している場合も含む。
 また、上述の実施形態のアライメント系で検出されるアライメントマークは、重ね合わせ検査装置(Overlay検査装置)で用いられるマークであっても良い。
 また、上記実施形態は、マルチレンズ光学系(マルチカラムタイプの光学系を含む)を有する露光装置において、それぞれのレンズの像面に最も近い位置にある先玉レンズを少なくとも含む一部のレンズを介して、マークを検出するTTLアライメント系にも、適用可能である。かかるTTLアライメント系については、例えば、米国特許第5,151,750号明細書、米国特許第6,242,754号明細書等に開示されている。
 また、ウエハ(ターゲット)上に複数の検出領域に対応して形成されたマークに荷電粒子ビームを照射し、マークで発生した反射荷電粒子を検出する、マルチカラムタイプの荷電粒子ビーム光学系を、マーク検出系として用いてもよい。
 マルチカラムタイプの荷電粒子ビーム露光装置として、例えばウエハ上に形成された複数のショット領域にほぼ1:1で対応して配置される複数の光学系カラムを有し、複数の光学系カラムのそれぞれが、オン状態(電子ビームがウエハなどに照射されている状態)とオフ状態(電子ビームがウエハなどに照射されていない状態)の切換が可能であり、かつ電子ビームの偏向が可能である。このような荷電粒子ビームの露光装置では、複数の電子ビームの、所定形状(例えば、円形、矩形など)のスポットに対してウエハを走査しながら、その複数の電子ビームのオン状態とオフ状態を切り換えることで、ウエハ上の複数のショット領域を露光するマルチカラムタイプの電子ビーム露光装置が知られている。なお、電子ビームのオン状態とオフ状態の切換は、例えば電子ビームの偏向(ビームブランキング)などで行うことができる。一般に電子ビーム露光装置では、ウエハ上のマークに対して電子ビームを走査し、マークから発生する反射電子を検出することでアライメントマークを検出する機能も有している。このため、マルチカラムタイプの電子ビーム露光装置などでは、電子ビームの照射点(照射領域)が、アライメントマークの検出領域に相当し、隣接する光学系カラムからの電子ビームのウエハ(ターゲット)上での照射点(照射領域)の間隔が前述した検出領域(検出中心)のピッチDx、Dyに相当する。したがって、この照射点の間隔Dx、Dyに基づいて、上記実施形態の決定方法(又はマークのレイアウト方法)により、前述の式(3)及び式(4)を満たすように、ショットサイズWx、Wy、及びマーク間隔px、pyを決定することで、全ての光学系カラムから確実にウエハ上のマークに電子ビームを照射することが可能になり、複数のショット(例えば、全ショット)について複数の光学系カラムを用いて複数のマークの並行検出を一度に行なうことが可能になる。
 また、上記実施形態において、アライメントセンサAL11~AL33で検出される複数のマークは、その検出結果に基づいて露光が行われる層の1つ前の層に形成された複数のマークであっても良いし、それよりも下層に形成されている複数のマークであっても良い。
 また、上記実施形態においては、アライメント系ALG(アライメントセンサAL112~AL33)は、露光装置100に搭載されているが、露光装置100の外部に配置された計測装置に複数の検出領域を有するマーク検出系を搭載し、上述したようなマーク検出動作を行っても良い。このような計測装置は、露光装置100にインライン接続されていてもよいし、インライン接続されていなくてもよい。露光装置100の外部に配置された計測装置は、例えば、米国特許4,861,162号明細書等に開示されている。
 また、上述の実施形態において、各ショット領域に形成されるアライメントマークMは、各ショット領域のスクライブライン上に形成されていてもよく、ショット領域のサイズWx、Wyは、スクラブイブラインを含んでいても良い。
 なお、露光装置でウエハステージの位置情報を計測する計測装置として、干渉計システムに代えて、あるいは、干渉計システムとともにエンコーダシステムを用いる場合、例えば、ウエハテーブル(ウエハステージ)上に格子部(スケール)を設け、これに対向してエンコーダヘッドをウエハステージの外部に配置する構成のエンコーダシステムに限らず、例えば米国特許第8,514,395号明細書などに開示されているように、ウエハステージにエンコーダヘッドを設け、これに対向してウエハステージの外部に格子部(例えば2次元格子又は2次元に配置された1次元の格子部)を配置する構成のエンコーダシステムを採用しても良い。いずれのエンコーダシステムでも、エンコーダヘッドとして、一次元ヘッドに限らず、X軸方向及びY軸方向を計測方向とする2次元ヘッドは勿論、X軸方向及びY軸方向の一方とZ軸方向を計測方向とするセンサヘッドを用いても良い。あるいは、X軸、Y軸及びZ軸の直交3軸方向を計測方向とする3次元ヘッドを用いても良い。
 また、上述の実施形態では、露光装置が、液体(水)を介さずにウエハWの露光を行うドライタイプである場合について説明したが、これに限らず、例えば欧州特許出願公開第1420298号明細書、国際公開第2004/055803号、米国特許第6,952,253号明細書などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置にも上記実施形態を適用することができる。また、例えば米国特許第8,054,472号明細書に開示される、液浸露光装置などにも、上記実施形態を適用することができる。
 また、上記実施形態では、露光装置が、ステップ・アンド・スキャン方式等の走査型露光装置である場合について説明したが、これに限らず、ステッパなどの静止型露光装置に上記実施形態を適用しても良い。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも上記実施形態は適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも上記実施形態を適用できる。マルチステージ型の露光装置では、言うまでもなく、投影光学系PLの下での1つのステージの露光動作と、アライメント系の下での他のステージの計測動作を並行して実行できるように、投影光学系PL(光軸AX)とアライメント系(AL1など)との距離が、図11の場合に比べて離れている。なお、マルチステージ型の露光装置の場合も、アライメントセンサの1つ(例えばAL1)の検出領域(検出中心)が、投影光学系の光軸を通る基準軸LV上に配置されていなくてもよい。また、例えば米国特許第7,589,822号明細書などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも上記実施形態は適用が可能である。
 また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。また、前述の照明領域及び露光領域はその形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
 なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
 また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことは言うまでもない。例えば、近年、70nm以下のパターンを形成するために、SORやプラズマレーザを光源として、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を発生させるとともに、この露光波長(例えば13.5nm)の下で設計されたオール反射縮小光学系、及び反射型マスクを用いたEUV露光装置の開発が行われている。この装置においては、円弧照明を用いてマスクとウエハを同期走査してスキャン露光する構成が考えられるので、かかる装置にも上記実施形態を好適に適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。
 また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
 また、例えば干渉縞をウエハ上に形成することによって、ウエハ上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記実施形態を適用することができる。
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
 なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。
 露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。
 半導体素子などの電子デバイスは、図20に示されるように、ウエハ上にレジスト(感応材)を塗布し、前述した実施形態の露光装置(パターン形成装置)により、パターンが形成されたレチクル(マスク)を用いてウエハ(感応物体)を露光するとともに、露光されたウエハを現像するリソグラフィステップを経て製造される。この場合、高集積度のデバイスを生産性良く製造することができる。
 なお、半導体デバイスの製造プロセスが、リソグラフィステップの他に、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクル(マスク)を製作するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を含んでも良い。
 なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。
 本発明の決定方法及び装置、プログラム、情報記録媒体、並びに露光装置は、複数マークの並行検出が可能なマーク配置を決定するのに適している。本発明のレイアウト情報提供方法によって提供されたレイアウト、又はレイアウト方法に従う複数のマークは、複数の検出領域を有するマーク検出系による並行検出に適している。本発明のマーク検出方法は、複数の検出領域を有するマーク検出系による複数のマークの検出に適している。本発明の露光方法及びデバイス製造方法は、マイクロデバイスの製造に適している。
 10…第1の算出部、12…第2の算出部、14…決定部、14a…第1決定部、14b…第2決定部、16…作成部、18…表示部、50…決定装置、100…露光装置、AL…アライメントセンサ、AL11~AL33…アライメントセンサ、ALG…アライメント系、M…アライメントマーク、SA…ショット領域、W…ウエハ。
 

Claims (106)

  1.  複数の検出領域を有するマーク検出系を用いて検出される複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、
     前記複数の検出領域の配置情報に基づいて求められる、前記複数のマークの配置に関する情報を、前記レイアウト情報として提供するレイアウト情報提供方法。
  2.  前記複数のマークの配置に関する情報は、前記複数のマークのピッチの情報を含む請求項1に記載のレイアウト情報提供方法。
  3.  前記複数のマークの配置に関する情報は、前記複数のマークの配置の少なくとも1つの候補に関する情報を含む請求項1又は2に記載のレイアウト情報提供方法。
  4.  前記複数のマークの配置の少なくとも1つの候補は、前記複数の検出領域で前記基板上の複数のマークを並行して検出可能にするための配置を含む請求項3に記載のレイアウト情報提供方法。
  5.  前記複数の検出領域は、第1検出領域と、前記第1検出領域に対して第1方向に離れて配置された第2検出領域と、前記第1検出領域に対して、所定面内で前記第1方向と交差する第2方向に離れて配置された第3検出領域を含む請求項1~4のいずれか一項に記載のレイアウト情報提供方法。
  6.  前記第1検出領域と前記第2検出領域は、前記第1方向に沿って配置されている請求項5に記載のレイアウト情報提供方法。
  7.  前記第2検出領域は、前記第1検出領域に対して、前記第1方向および前記第2方向に離れて配置されている請求項5に記載のレイアウト情報提供方法。
  8.  前記検出領域の配置情報は、前記第1方向における前記第1領域と前記第2領域の間隔に関する情報を含む請求項6又は7に記載のレイアウト情報提供方法。
  9.  前記第1検出領域と前記第3検出領域は、前記第2方向に沿って配置されている請求項5~8のいずれか一項に記載のレイアウト情報提供方法。
  10.  前記第3検出領域は、前記第1検出領域に対して、前記第1方向および前記第2方向に離れて配置されている請求項5~8のいずれか一項に記載のレイアウト情報提供方法。
  11.  前記検出領域の配置情報は、前記第2方向における前記第1領域と前記第3領域の間隔に関する情報を含む請求項9又は10に記載のレイアウト情報提供方法。
  12.  前記第2方向における前記第1領域と前記第3領域との間隔は、前記第1方向における前記第1領域と前記第2領域の間隔よりも大きい請求項5~11のいずれか一項に記載のレイアウト情報提供方法。
  13.  前記複数の検出領域は、前記第1方向と前記第2方向にマトリクス状に配置されている請求項5~12のいずれか一項に記載のレイアウト情報提供方法。
  14.  前記複数のマークの配置に関する情報は、前記第1方向に沿って形成される複数のマークのピッチと、前記第2方向に沿って形成される複数のマークのピッチの情報を含む請求項5~13のいずれか一項に記載のレイアウト情報提供方法。
  15.  前記レイアウト情報は、前記複数の検出領域の配置情報に基づいて求められる、前記区画領域のサイズに関する情報を含み、
     前記区画領域のサイズに関する情報は、前記第1方向のサイズと前記第2方向のサイズを含む請求項5~14のいずれか一項に記載のレイアウト情報提供方法。
  16.  前記区画領域のサイズに関する情報は、前記区画領域のサイズの少なくとも1つの候補に関する情報を含む請求項15に記載のレイアウト情報提供方法。
  17.  前記レイアウト情報は、前記区画領域のサイズの複数の候補に関する情報と、前記区画領域のサイズの複数の候補に対応する、前記複数のマークの配置の複数の候補に関する情報を含む請求項16に記載のレイアウト情報提供方法。
  18.  前記区画領域のサイズの複数の候補は、前記第1方向のサイズと前記第2方向のサイズの少なくとも一方が互いに異なる請求項16又は17に記載のレイアウト情報提供方法。
  19.  前記複数の検出領域の前記第1方向及び前記第2方向のピッチをそれぞれD、Dとし、前記区画領域の前記第1方向及び前記第2方向のサイズをそれぞれW、Wとし、前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、前記複数のマークの配置に関する情報は、下式(a)、(b)を満たす、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの情報を含む請求項15~18のいずれか一項に記載のレイアウト情報提供方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  20.  前記レイアウト情報は、前記式(a)、(b)を満たす、前記サイズW及び前記サイズWの情報を含む請求項19に記載のレイアウト情報提供方法。
  21.  前記レイアウト情報は、前記複数の検出領域の配置情報に基づいて求められる、前記区画領域のサイズに関する情報を含む請求項1~14のいずれか一項に記載のレイアウト情報提供方法。
  22.  前記区画領域のサイズに関する情報は、前記区画領域のサイズの少なくとも1つの候補に関する情報を含む請求項21に記載のレイアウト情報提供方法。
  23.  前記複数のマークの配置に関する情報は、前記サイズの少なくとも1つの候補に対応する、前記複数のマークの配置の少なくとも1つの候補に関する情報を含む請求項22に記載のレイアウト情報提供方法。
  24.  前記複数の検出領域の前記第1方向及び前記第2方向のピッチをそれぞれD、Dとし、前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、ピッチpとし、前記複数のマークの配置に関する情報は、下式(c)、(d)を満たす、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpを含む請求項3~14のいずれか一項に記載のレイアウト情報提供方法。
    =D/i(iは自然数)……(c)
    =D/j(jは自然数)……(d)
  25.  前記検出領域の配置情報は、前記複数の検出領域の間隔の情報を含む請求項1~24のいずれか一項に記載のレイアウト情報提供方法。
  26.  前記複数の検出領域は所定ピッチで配置され、
     前記複数の検出領域の配置情報は、前記所定ピッチの情報を含む請求項1~25のいずれか一項に記載のレイアウト情報提供方法。
  27.  前記区画領域のそれぞれは、デバイスパターンが形成されるパターン領域を含み、
     前記複数のマークの配置の候補は、前記基板上において、前記複数のマークの一部が、前記パターン領域内に形成される配置を含む請求項1~26のいずれか一項に記載のレイアウト情報提供方法。
  28.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、
     前記複数の検出領域の、所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たす、前記サイズW及び前記サイズWそれぞれの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補とを、前記レイアウト情報として提供すること、を含むレイアウト情報提供方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  29.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、
     前記複数の検出領域の、所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に配置される前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、下式(c)、(d)を満たす、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補を、前記レイアウト情報として提供すること、を含むレイアウト情報提供方法。
    =D/i(iは自然数)……(c)
    =D/j(jは自然数)……(d)
  30.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、
     前記複数の検出領域の、所定面内の第1方向のピッチD、及び前記所定面内で前記第1方向と交差する第2方向のピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1i、p2jとして算出するとともに、前記複数の候補p1iに自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2jに自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW、及び前記第2方向のサイズWの候補として算出することと、
     算出された前記サイズWの候補W1m及び前記サイズWの候補W2nと、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの候補p1i、p2jとを、前記レイアウト情報として提供することと、を含むレイアウト情報提供方法。
  31.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報を提供するレイアウト情報提供方法であって、
     前記複数の検出領域のそれぞれに含まれる点を含む所定面内で互いに交差する前記第1方向及び第2方向に配置された複数の仮想点の、前記第1方向のピッチD、及び前記第2方向のピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1i、p2jとして算出するとともに、前記複数の候補p1iに自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2jに自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW、及び前記第2方向のサイズWの候補として算出することと、
     算出された前記サイズWの候補及び前記サイズWの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補p1i、p2jとを、前記レイアウト情報として提供することと、を含むレイアウト情報提供方法。
  32.  前記複数の仮想点は、前記複数の検出領域の検出中心を含む請求項31に記載のレイアウト情報提供方法。
  33.  前記レイアウト情報を、表示画面上に表示することを、さらに含む請求項1~32のいずれか一項に記載のレイアウト情報提供方法。
  34.  複数の検出領域を有するマーク検出系を用いて検出される複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報であって、
     前記複数の検出領域の配置情報に基づいて求められる、前記複数のマークの配置に関する情報を含むレイアウト情報。
  35.  前記複数の検出領域の配置情報に基づいて求められる、前記区間領域のサイズに関する情報をさらに含む請求項34に記載のレイアウト情報。
  36.  前記区画領域に関する情報は、前記区画領域のサイズの少なくとも1つの候補に関する情報を含み、
     前記複数のマークの配置に関する情報は、前記区画領域のサイズの少なくとも1つの候補に対応する、前記複数のマークの配置の少なくとも1つの候補に関する情報を含む請求項35に記載のレイアウト情報。
  37.  前記複数のマークの配置に関する情報は、前記区画領域のサイズの複数の候補に関する情報を含み、
     前記複数の検出領域は、第1方向に第1のピッチで配置された複数の検出領域と、前記第1方向と交差する第2方向に第2のピッチで配置された複数の検出領域とを含み、
    前記区画領域のサイズの複数の候補は、前記第1方向のサイズと前記第2方向のサイズの少なくともいずれか一方が異なる請求項36に記載のレイアウト情報。
  38.  前記複数のマークの配置に関する情報は、前記区画領域のサイズの複数の候補に対応する、前記複数のマークの配置の複数の候補に関する情報を含む請求項37に記載のレイアウト情報。
  39.  前記複数のマークの配置に関する情報は、前記区画領域のそれぞれにおける複数のマークの配置に関する情報を含む請求項34~38に記載のレイアウト情報。
  40.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域が規定される基板上に配置するためのレイアウト情報であって、
     前記複数の検出領域の、所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向のピッチ及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように前記ピッチD、Dから求められる、前記サイズW及び前記サイズWそれぞれの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補と、を含むレイアウト情報。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  41.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定方法であって、
     前記複数の検出領域の配置情報に基づいて、前記複数のマークの配置を決定することを含む決定方法。
  42.  前記複数のマークの配置は、前記複数の検出領域で前記基板上の複数のマークを並行して検出可能な配置である請求項41に記載の決定方法。
  43.  前記複数のマークの配置を決定することは、前記複数の検出領域の配置情報に基づいて、前記複数のマークの配置の少なくとも1つの候補を決定することを含む請求項41又は42に記載の決定方法。
  44.  前記複数のマークの配置を決定することは、前記複数の検出領域の配置情報に基づいて求められる、前記複数のマークの配置の複数の候補から少なくとも1つを選択することを含む請求項41~43のいずれか一項に記載の決定方法。
  45.  前記複数の検出領域は、第1検出領域と、前記第1検出領域に対して第1方向に離れて配置された第2検出領域と、前記第1検出領域に対して、所定面内で前記第1方向と交差する第2方向に離れて配置された第3検出領域を含む請求項41~44のいずれか一項に記載の決定方法。
  46.  前記複数の検出領域は、前記第1方向と前記第2方向にマトリクス状に配置されている請求項45に記載の決定方法。
  47.  前記複数の検出領域は、前記第1方向に第1ピッチで配置された3つの以上の検出領域と、前記第2方向に第2ピッチで配置された3つの以上の検出領域とを含み、
     前記複数の検出領域の配置情報は、前記第1ピッチと前記第2ピッチの情報を含む請求項45又は46に記載の決定方法。
  48.  前記複数のマークの配置を決定することは、前記第1方向に沿って形成される複数のマークのピッチと前記第2方向に沿って形成される複数のマークのピッチを決定することを含む請求項45~47のいずれか一項に記載の決定方法。
  49.  前記複数の検出領域の配置情報として、前記複数の検出領域の、前記第1方向及び前記第2方向のピッチをそれぞれD、Dとし、前記区画領域のサイズに関する情報として、前記区画領域の前記第1方向及び前記第2方向のサイズをそれぞれW、Wとし、下式(a)、(b)を満たすように、前記複数のマークの前記第1方向のピッチp、及び前記第2方向のピッチpを決定する請求項45~48のいずれか一項に記載の決定方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  50.  前記式(a)、(b)を満たすように、前記区画領域の前記第1方向のサイズWと前記第2方向のサイズWを決定することをさらに含む請求項49に記載の決定方法。
  51.  前記複数の検出領域の配置情報に基づいて、前記区画領域の前記第1方向のサイズと、前記第2方向のサイズとを決定することをさらに含む請求項45~48のいずれか一項に記載の決定方法。
  52.  前記複数の検出領域の配置情報に基づいて、前記区画領域のサイズを決定することをさらに含む請求項41~45のいずれか一項に記載の決定方法。
  53.  前記区画領域のサイズを決定することは、前記区画領域のサイズの少なくとも1つの候補を決定することを含む請求項50~52のいずれか一項に記載の決定方法。
  54.  前記複数のマークの配置を決定することは、前記区画領域のサイズの少なくとも1つの候補に対応する、前記複数のマークの配置の複数の候補を決定することを含む請求項53に記載の決定方法。
  55.  前記複数のマークの配置を、前記複数の検出領域の配置情報と、前記区画領域のサイズに関する情報とに基づいて決定する請求項41~54のいずれか一項に記載の決定方法。
  56.  前記区画領域のサイズに関する情報は、前記第1方向のサイズと前記第2方向のサイズとに関する情報を含む請求項55に記載の決定方法。
  57.  前記区画領域のサイズに関する情報は、前記区画領域のサイズの範囲に関する情報を含む請求項55又は56に記載の決定方法。
  58.  前記複数のマークの配置を決定することは、前記複数の検出領域の配置情報と、前記区間領域のサイズに関する情報とに基づいて、前記区間領域のサイズの少なくとも1つの候補と、その少なくとも1つの候補に対応する、前記複数のマークの配置の少なくとも1つの候補とを決定することを含む請求項56~57のいずれか一項に記載の決定方法。
  59.  前記複数のマークの配置を決定することは、前記複数の検出領域の配置情報と、前記区間領域のサイズに関する情報とに基づいて求められた、前記区間領域のサイズの少なくとも1つの候補と、それに対応する、前記複数のマークの配置の少なくとも1つの候補から、前記区画領域のサイズと前記複数のマークの配置との一組を選択することを含む請求項55~58のいずれか一項に記載の決定方法。
  60.  前記検出領域の配置情報は、前記複数の検出領域の間隔の情報を含む請求項41~59のいずれか一項に記載の決定方法。
  61.  前記複数の検出領域は所定ピッチで配置され、
     前記複数の検出領域の配置情報は、前記所定ピッチの情報を含む請求項41~60のいずれか一項に記載の決定方法。
  62.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定方法であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpを決定する決定方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  63.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定方法であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの、少なくとも1つの候補を決定する決定方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  64.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定方法であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチD、及び前記ピッチDに基づいて、前記区画領域のサイズW、W、及び前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpを決定する決定方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  65.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定方法であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記サイズW及び前記サイズWそれぞれの少なくとも1つの候補と、それらに対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの少なくとも1つの候補とを決定する決定方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  66.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークを、複数の区画領域とともに基板上に配置するための前記区画領域のサイズ及びマークピッチを決定する決定方法であって、
     前記複数の検出領域それぞれに含まれる点を含む所定面内で互いに交差する第1方向及び第2方向に配置された複数の仮想点の、前記第1方向のピッチD、及び前記第2方向のピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1i、p2jとして順次算出することと、
     前記複数の候補p1i(i=1~I)に自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2j(j=1~J)に自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW、及び前記第2方向のサイズWの候補として算出することと、
     算出された前記サイズWの候補及び前記サイズWの候補のうち、その値が予め定められた条件を満足する候補を、前記サイズW及び前記サイズWそれぞれの最終候補として決定するとともに、その決定した前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの候補p1i、p2jを、前記ピッチp及び前記ピッチpそれぞれの最終候補として決定することと、を含む決定方法。
  67.  前記決定された前記サイズW及び前記サイズWそれぞれの最終候補と、前記ピッチp及び前記ピッチpそれぞれの最終候補とに基づいて、前記区画領域上に前記ピッチp及び前記ピッチpで複数のマークが前記第1方向及び第2方向に2次元配列されたマークレイアウト情報を作成することを、さらに含む請求項66に記載の決定方法。
  68.  作成された前記マークレイアウト情報を、表示画面上に表示することを、さらに含む請求項67に記載の決定方法。
  69.  前記複数の仮想点は、前記複数の検出領域それぞれの検出中心を含む請求項66~68のいずれか一項に記載の決定方法。
  70.  基板上に複数の区画領域とともに配置される複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を、前記複数のマークの配置とともに決定する決定方法であって、
     前記基板上に互いに交差する第1方向及び第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW及び前記第2方向のサイズWを、それぞれ自然数m(m=1~M)、自然数n(n=1~N)で除した(W/m)及び(W/n)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1m(m=1~M)及びp2n(n=1~N)として順次算出することと、
     前記複数の候補p1m(m=1~M)に自然数i(i=1~I)を順次乗じたi・p1m、及び前記複数の候補p2n(n=1~N)に自然数j(j=1~J)を順次乗じたj・p2nを、前記基板と平行な所定面内に前記第1方向及び第2方向に配置される複数の仮想点の、前記第1方向のピッチDの候補D1im及び前記第2方向のピッチDの候補D2jnとして算出することと、
     算出された前記ピッチDの候補D1im及び前記ピッチDの候補D2jnのうち、その値が予め定められた条件を満足する候補を、前記ピッチD及び前記ピッチDそれぞれの最終候補として決定するとともに、決定した前記最終候補に従って定まる前記複数の仮想点の少なくとも一部がそれぞれの検出領域内に位置するように前記マーク検出系の前記複数の検出領域の配置を決定し、併せて決定された前記ピッチD及び前記ピッチDそれぞれの前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの複数の候補p1m、p2nを、前記ピッチp及び前記ピッチpの最終候補として決定することと、を含む決定方法。
  71.  前記複数の仮想点の少なくとも一部のそれぞれが、前記複数の検出領域の検出中心と一致するように、前記マーク検出系の前記複数の検出領域の配置を決定する請求項70に記載の決定方法。
  72.  複数の区画領域が規定される基板上の複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を決定する決定方法であって、
     前記基板上に互いに交差する第1方向及び第2方向に沿って2次元配列される前記複数の区画領域のサイズに基づいて、前記複数の検出領域の配置を決定する決定方法。
  73.  前記複数の検出領域は、前記第1方向に離れた複数の検出領域と、前記第2方向に離れた複数の検出領域とを有し、
     前記区画領域のサイズは、前記第1方向のサイズと前記第2方向のサイズとを含み、
     前記第1方向のサイズに基づいて前記第1方向に離れた複数の検出領域の配置を決定し、
     前記第2方向のサイズに基づいて前記第2方向に離れた複数の検出領域の配置を決定する請求項72に記載の決定方法。
  74.  前記第1方向のサイズに基づいて前記第1方向に離れた複数の検出領域のピッチを決定し、
     前記第2方向のサイズに基づいて前記第2方向に離れた複数の検出領域のピッチを決定する請求項73に記載の決定方法。
  75.  前記複数の検出領域は、第1検出領域と、前記第1検出領域に対して前記第1方向に離れた第2検出領域と、前記第2検出領域に対して前記第2方向に離れた第3検出領域を含む請求項72~74のいずれか一項に記載の決定方法。
  76.  前記区画領域の前記第1方向のサイズ及び前記第2方向のサイズをそれぞれW、Wとして、前記複数の検出領域の前記第1方向のピッチ、前記第2方向のピッチをそれぞれD、Dとし、前記複数の検出領域の配置の決定は、下式(c)、(d)を満たすように、前記区画領域のサイズW、Wに基づいて、前記複数の検出領域のピッチD、Dを決定することを含む請求項72~75のいずれか一項に記載の決定方法。
    /i(iは自然数)=W/m(mは自然数)……(c)
    /j(jは自然数)=W/n(nは自然数)……(d)
  77.  複数の区画領域が規定される基板上の複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を決定する決定方法であって、
     前記複数の検出領域は、所定面内の第1方向に離れた複数の検出領域と前記所定面内で前記第1方向と交差する第2方向に離れた複数の検出領域を含み、
     前記複数の検出領域の前記第1方向のピッチをD、前記第2方向のピッチをDとして、前記基板上に配列される前記複数の区画領域の前記第1方向のサイズをW、前記第2方向のサイズをWとし、
     前記複数の検出領域の配置の決定は、下式(c)、(d)を満たすように、前記区画領域のサイズW、Wに基づいて、前記複数の検出領域のピッチD、Dを決定することを含む決定方法。
    /i(iは自然数)=W/m(mは自然数)……(c)
    /j(jは自然数)=W/n(nは自然数)……(d)
  78.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定装置であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、下式(a)、(b)を満たす、前記複数のマークの前記ピッチp及び前記ピッチpを算出する算出手段を備えた決定装置。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  79.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置を決定する決定装置であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチD、前記サイズW及び前記サイズWに基づいて、下式(a)、(b)を満たす、前記複数のマークの前記ピッチp及び前記ピッチpの少なくとも1つの候補を算出する算出手段を備えた決定装置。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  80.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定装置であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチDに基づいて、下式(a)、(b)を満たす、前記サイズW及び前記サイズWと、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpとを算出する算出手段を備えた決定装置。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  81.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定装置であって、
     前記複数の検出領域の所定面内で交差する第1方向及び第2方向のピッチをそれぞれD、Dとし、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとし、前記ピッチD、前記ピッチDに基づいて、下式(a)、(b)を満たす、前記サイズW及び前記サイズWそれぞれの少なくとも1つの候補と、それに対応する、前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの少なくとも1つの候補とを算出する算出手段を備えた決定装置。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  82.  複数の検出領域を有するマーク検出系を用いて検出するための複数のマークの、複数の区画領域が規定される基板上での配置と前記区画領域のサイズを決定する決定装置であって、
     前記複数の検出領域それぞれに含まれる点を含む所定面内で互いに交差する第1方向及び第2方向に配置された複数の仮想点の、前記第1方向のピッチD、及び前記第2方向のピッチDの入力に応答して、前記ピッチD及び前記ピッチDを、それぞれ自然数i(i=1~I)、j(j=1~J)で除した(D/i)及び(D/j)を、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1i、p2jとして順次算出する第1の算出手段と、
     前記複数の候補p1iに自然数m(m=1~M)を順次乗じたm・p1i、及び前記複数の候補p2jに自然数n(n=1~N)を順次乗じたn・p2jを、前記基板上に、前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW及び前記第2方向のサイズWそれぞれの候補として算出する第2の算出手段と、
     算出された前記サイズWの候補及び前記サイズWの候補のうち、その値が予め定められた条件を満足する候補を、前記サイズW及び前記サイズWそれぞれの最終候補として決定するとともに、決定した前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpの候補p1i、p2jを、前記ピッチp及び前記ピッチpそれぞれの最終候補として決定する決定手段と、を備える決定装置。
  83.  前記決定された前記サイズW及び前記サイズWそれぞれの最終候補と、前記ピッチp及び前記ピッチpそれぞれの最終候補とに基づいて、前記区画領域上に前記ピッチp及び前記ピッチpで複数のマークが前記第1方向及び第2方向に2次元配列されたマークレイアウト情報を作成する作成手段をさらに備える請求項82に記載の決定装置。
  84.  前記作成された前記マークレイアウト情報を、表示画面上に表示する表示手段を、更に備える請求項83に記載の決定装置。
  85.  基板上に複数の区画領域とともに配置される複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を、前記複数のマークの配置とともに決定する決定装置であって、
     前記基板上に互いに交差する第1方向及び第2方向に沿って2次元配列される前記複数の区画領域の前記第1方向のサイズW及び前記第2方向のサイズWの入力に応答して、前記サイズWを自然数m(m=1~M)で除した(W/m)及び前記サイズWを自然数n(n=1~N)で除したW/nを、前記基板上に配置される前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1m(m=1~M)及びp2n(n=1~N)として順次算出する第1の演算手段と、
     前記複数の候補p1m(m=1~M)に自然数i(i=1~I)を順次乗じたi・p1m、及び前記複数の候補p2n(n=1~N)に自然数j(j=1~J)を順次乗じたj・p2nを、前記基板と平行な所定面内に前記第1方向及び第2方向に配置される複数の仮想点の、前記第1方向のピッチDの候補D1im及び前記第2方向のピッチDの候補D2jnとして算出する第2の演算手段と、
     算出された前記ピッチDの候補D1im及び前記ピッチDの候補D2jnのうち、その値が予め定められた条件を満足する候補を、前記ピッチD及び前記ピッチDそれぞれの最終候補として決定するとともに、決定した前記最終候補に従って定まる前記複数の仮想点の少なくとも一部がそれぞれの検出領域内に位置するように前記マーク検出系の前記複数の検出領域の配置を決定し、併せて決定された前記ピッチD及び前記ピッチDそれぞれの前記最終候補に対応する前記複数のマークの前記第1方向のピッチp及び前記第2方向のピッチpそれぞれの複数の候補p1m、p2nを、前記ピッチp及び前記ピッチpそれぞれの最終候補として決定する決定手段と、を備える決定装置。
  86.  複数の区画領域が規定される基板上の複数のマークを検出するのに用いられるマーク検出系の複数の検出領域の配置を決定する決定装置であって、
     前記複数の検出領域は、所定面内の第1方向に離れた複数の検出領域と前記所定面内で前記第1方向と交差する第2方向に離れた複数の検出領域を含み、
     前記複数の検出領域の前記第1方向のピッチをD、前記第2方向のピッチをD、前記基板上に配列される前記複数の区画領域の前記第1方向のサイズをW、前記第2方向のサイズをWとして、
    下式(c)、(d)を満たすように、前記区画領域のサイズW、Wに基づいて、前記複数の検出領域のピッチD、Dを決定する決定装置。
    /i(iは自然数)=W/m(mは自然数)……(c)
    /j(jは自然数)=W/n(nは自然数)……(d)
  87.  請求項1~33のいずれか一項に記載のレイアウト情報提供方法、または請求項41~77のいずれか一項に記載の決定方法を、コンピュータに実行させるためのプログラム。
  88.  請求項87に記載のプログラムが記録されたコンピュータによる読取りが可能な情報記録媒体。
  89.  基板を露光して前記基板上に複数の区画領域を形成する露光装置であって、
     複数の検出領域を有するマーク検出系と、
     前記マーク検出系を用いて検出するための複数のマークの配置、または前記マーク検出系を用いて検出するための複数のマークの配置と前記複数のマークが形成される区画領域のサイズを決定する請求項78~86のいずれか一項に記載の決定装置と、を備える露光装置。
  90.  エネルギビームで基板を露光する露光装置であって、
     複数の検出領域を有するマーク検出系と、
     前記基板を保持する保持部を有し、前記複数の検出領域に対して移動可能なステージと、を備え、
     前記複数の検出領域は、第1検出領域と、前記第1検出領域に対して第1方向に離れた第2検出領域と、前記第1検出領域に対して、前記第1方向と交差する第2方向に離れた第3検出領域とを有し、
     前記ステージの第1位置への移動により、前記第1、第2、第3検出領域のそれぞれで、前記基板上の少なくとも1つのマークが検出可能であり、
     前記ステージの前記第1位置から前記第2位置への移動により、前記第1、第2、第3検出領域のそれぞれで、前記基板上の少なくとも1つのマークが検出可能である露光装置。
  91.  前記第1位置への前記ステージの移動と前記第1位置から前記第2位置への前記ステージの移動の少なくとも一方は、前記第1方向および前記第2方向に交差する方向への移動を含む請求項90に記載の露光装置。
  92.  前記基板上には、請求項1~33のいずれか一項に記載の方法により提供されるレイアウト情報に基づいて複数のマークが形成されている請求項90又は91に記載の露光装置。
  93.  前記基板上には、請求項41~77のいずれか一項に記載の決定方法により決定された配置に基づいて複数のマークが形成されている請求項90又は91に記載の露光装置。
  94.  エネルギビームで基板を露光する露光装置であって、
     複数の検出領域を有するマーク検出系と、
     前記基板を保持する保持部を有し、前記複数の検出領域に対して移動可能なステージと、を備え、
     前記複数の検出領域は、所定面内の第1方向に離れた複数の検出領域と前記所定面内で前記第1方向と交差する第2方向に離れた複数の検出領域を含み、
     前記複数の検出領域の前記第1方向のピッチをD、前記第2方向のピッチをD、前記基板上に配列される前記複数の区画領域の前記第1方向のサイズをW、前記第2方向のサイズをWとして、
     下式(c)、(d)を満たすように、ピッチD、Dで前記複数の検出領域の配置が決定された露光装置。
    /i(iは自然数)=W/m(mは自然数)……(c)
    /j(jは自然数)=W/n(nは自然数)……(d)
  95.  所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向に交差する第2方向にピッチDで設定された複数の検出領域を有するマーク検出系を用いて検出するための、基板上に形成される複数のマークのレイアウト方法であって、
     前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記ピッチp及びpを定めるレイアウト方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  96.  所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向と交差する第2方向にピッチDで設定された複数の仮想点のうち、少なくとも2点にそれぞれの検出中心が一致する複数の検出領域を有するマーク検出系を用いて検出するための、基板上に形成される複数のマークのレイアウト方法であって、
     前記所定面と平行に配置された前記基板上に前記複数のマークが前記第1方向にピッチpでかつ前記第2方向にピッチpで形成され、前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される複数の区画領域それぞれの前記第1方向のサイズをW、前記第2方向のサイズをWとしたとき、
     前記ピッチpは、p=D/i(iは自然数)かつp=W/m(mは自然数)を満たし、前記ピッチpは、p=D/j(jは自然数)かつp=W/n(nは自然数)を満たすように前記ピッチp及びpを定めるレイアウト方法。
  97.  前記複数の区画領域のそれぞれには、該区画領域と同じサイズ又は一回り小さいサイズのパターン形成領域とともに、複数の前記マークが形成される請求項95又は96に記載のレイアウト方法。
  98.  前記区画領域内に前記2次元配置された少なくとも4つの前記マークが位置する請求項95~97のいずれか一項に記載のレイアウト方法。
  99.  所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向に交差する第2方向にピッチDで設定された複数の検出領域を有するマーク検出系を用いて基板上に形成された複数のマークを検出するマーク検出方法であって、
     前記基板上に前記第1方向及び前記第2方向に沿って2次元配列される前記複数の区画領域それぞれの前記第1方向及び第2方向のサイズをそれぞれW、Wとし、さらに前記基板上に配置される前記複数のマークの前記第1方向及び前記第2方向のピッチをそれぞれp、pとして、下式(a)、(b)を満たすように、前記基板に複数のマークが形成され、 前記基板の前記所定面内の位置情報を、位置検出系を用いて検出しつつ、前記マーク検出系を用いて前記複数の検出領域のそれぞれで前記基板上の少なくとも1つの前記マークを並行して検出するマーク検出方法。
    =D/i(iは自然数)=W/m(mは自然数)……(a)
    =D/j(jは自然数)=W/n(nは自然数)……(b)
  100.  所定面内の第1方向にピッチDでかつ前記所定面内で前記第1方向に交差する第2方向にピッチDで設定された複数の仮想点のうち、少なくとも2点にそれぞれの検出中心が一致する複数の検出領域を有するマーク検出系を用いて基板上に形成された複数のマークを検出するマーク検出方法であって、
     前記基板上に前記第1方向及び前記第2方向に沿って配列される複数の区画領域それぞれの前記第1方向のサイズをW、前記第2方向のサイズをWとしたとき、前記基板上には、前記複数のマークが前記第1方向にピッチp=D/i(iは自然数)=W/m(mは自然数)でかつ前記第2方向にピッチp=D/j(jは自然数)=W/n(nは自然数)で形成され、
     前記基板の前記所定面内の位置情報を、位置検出系を用いて検出しつつ、前記マーク検出系を用いて前記複数の検出領域のそれぞれで前記基板上の少なくとも1つの前記マークを並行して検出するマーク検出方法。
  101.  前記複数の区画領域それぞれに前記第1方向及び前記第2方向に沿って少なくとも4つの前記マークが配置される請求項100に記載のマーク検出方法。
  102.  前記検出することでは、画像処理方式の前記マーク検出系を用いて、前記複数の検出領域のそれぞれで前記基板上の少なくとも1つの前記マークが並行して検出される請求項100又は101に記載のマーク検出方法。
  103.  前記複数のマークは、回折格子マークであり、
     前記検出することでは、前記複数の検出領域のそれぞれで、前記基板上に形成された前記回折格子マークに計測ビームを照射するとともに、前記複数の検出領域のそれぞれに位置する前記回折格子マークからの戻りビームを受光する請求項100又は101に記載のマーク検出方法。
  104.  前記検出することでは、前記基板と前記計測ビームとを前記所定面内で所定方向に相対移動しつつ、前記マーク検出系を用いて前記回折格子マークが検出される請求項103に記載のマーク検出方法。
  105.  前記基板上に形成された前記複数のマークのうちの少なくとも一部のマークを請求項99~104のいずれか一項に記載のマーク検出方法により検出することと、
     前記マークの検出結果に基づいて、前記基板を移動して、前記基板をエネルギビームで露光することと、を含む露光方法。
  106.  請求項89~94のいずれか一項に記載の露光装置を用いて、または請求項105に記載の露光方法を用いて前記基板を露光することと、
     露光された前記基板を現像することと、
    を含むデバイス製造方法。
PCT/JP2017/033376 2016-09-27 2017-09-15 決定方法及び装置、プログラム、情報記録媒体、露光装置、レイアウト情報提供方法、レイアウト方法、マーク検出方法、露光方法、並びにデバイス製造方法 WO2018061811A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197011426A KR102556130B1 (ko) 2016-09-27 2017-09-15 결정 방법 및 장치, 프로그램, 정보 기록 매체, 노광 장치, 레이아웃 정보 제공 방법, 레이아웃 방법, 마크 검출 방법, 노광 방법, 그리고 디바이스 제조 방법
JP2018542387A JP7081490B2 (ja) 2016-09-27 2017-09-15 レイアウト情報提供方法、レイアウト情報、決定方法、プログラム、並びに情報記録媒体
CN201780059332.9A CN109791368B (zh) 2016-09-27 2017-09-15 决定方法及装置、程序、信息记录媒体、曝光装置、布局信息提供方法、布局方法、标记检测方法、曝光方法、以及器件制造方法
US16/351,081 US20190279940A1 (en) 2016-09-27 2019-03-12 Determination method and apparatus, program, information recording medium, exposure apparatus, layout information providing method, layout method, mark detection method, exposure method, and device manufacturing method
US17/354,016 US11742299B2 (en) 2016-09-27 2021-06-22 Determination method and apparatus, program, information recording medium, exposure apparatus, layout information providing method, layout method, mark detection method, exposure method, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016188889 2016-09-27
JP2016-188889 2016-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/351,081 Continuation US20190279940A1 (en) 2016-09-27 2019-03-12 Determination method and apparatus, program, information recording medium, exposure apparatus, layout information providing method, layout method, mark detection method, exposure method, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2018061811A1 true WO2018061811A1 (ja) 2018-04-05

Family

ID=61759384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033376 WO2018061811A1 (ja) 2016-09-27 2017-09-15 決定方法及び装置、プログラム、情報記録媒体、露光装置、レイアウト情報提供方法、レイアウト方法、マーク検出方法、露光方法、並びにデバイス製造方法

Country Status (6)

Country Link
US (2) US20190279940A1 (ja)
JP (1) JP7081490B2 (ja)
KR (1) KR102556130B1 (ja)
CN (1) CN109791368B (ja)
TW (1) TWI790211B (ja)
WO (1) WO2018061811A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107278279B (zh) * 2015-02-23 2020-07-03 株式会社尼康 基板处理系统及基板处理方法、以及组件制造方法
CN111158220A (zh) * 2015-02-23 2020-05-15 株式会社尼康 测量装置及方法、光刻系统、曝光装置及方法
CN111760795B (zh) * 2019-07-16 2022-02-01 北京京东乾石科技有限公司 用于分拣货物的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817725A (ja) * 1994-07-04 1996-01-19 Nikon Corp 露光装置
JPH1079435A (ja) * 1996-09-03 1998-03-24 Mitsubishi Electric Corp 半導体開発情報統合装置
JP2002139847A (ja) * 2000-10-31 2002-05-17 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2005026615A (ja) * 2003-07-02 2005-01-27 Nikon Corp ステージ装置及び露光装置、計測方法
JP2008242356A (ja) * 2007-03-29 2008-10-09 Fujifilm Corp 描画データ作成方法および描画データ作成装置
JP2010268005A (ja) * 2004-10-28 2010-11-25 Asml Netherlands Bv リソグラフィ機器及び方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
US4861162A (en) 1985-05-16 1989-08-29 Canon Kabushiki Kaisha Alignment of an object
US5151750A (en) 1989-04-14 1992-09-29 Nikon Corporation Alignment apparatus
KR100300618B1 (ko) 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
US6034378A (en) 1995-02-01 2000-03-07 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
KR100525521B1 (ko) * 1996-10-21 2006-01-27 가부시키가이샤 니콘 노광장치및노광방법
CN1244018C (zh) 1996-11-28 2006-03-01 株式会社尼康 曝光方法和曝光装置
DE69717975T2 (de) 1996-12-24 2003-05-28 Asml Netherlands Bv In zwei richtungen ausgewogenes positioniergerät, sowie lithographisches gerät mit einem solchen positioniergerät
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
CN100578876C (zh) 1998-03-11 2010-01-06 株式会社尼康 紫外激光装置以及使用该紫外激光装置的曝光装置和曝光方法
SG107560A1 (en) 2000-02-25 2004-12-29 Nikon Corp Exposure apparatus and exposure method capable of controlling illumination distribution
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP4714403B2 (ja) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
JP2003271070A (ja) * 2002-03-18 2003-09-25 Seiko Epson Corp 電気光学装置、および電子機器
DE60319462T2 (de) 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
JP4272862B2 (ja) * 2002-09-20 2009-06-03 キヤノン株式会社 位置検出方法、位置検出装置及び露光装置
SG121818A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2495613B1 (en) 2002-11-12 2013-07-31 ASML Netherlands B.V. Lithographic apparatus
CN100370533C (zh) 2002-12-13 2008-02-20 皇家飞利浦电子股份有限公司 用于照射层的方法和用于将辐射导向层的装置
US7355673B2 (en) * 2003-06-30 2008-04-08 Asml Masktools B.V. Method, program product and apparatus of simultaneous optimization for NA-Sigma exposure settings and scattering bars OPC using a device layout
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
CN1862385B (zh) * 2005-04-15 2011-08-24 三星电子株式会社 使用测试特征检测光刻工艺中的焦点变化的系统和方法
SG178791A1 (en) 2006-02-21 2012-03-29 Nikon Corp Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
KR101549709B1 (ko) 2006-11-09 2015-09-11 가부시키가이샤 니콘 유지 장치, 위치 검출 장치 및 노광 장치, 이동 방법, 위치검출 방법, 노광 방법, 검출계의 조정 방법, 그리고 디바이스 제조 방법
JP2008205393A (ja) * 2007-02-22 2008-09-04 Canon Inc アライメントマークの位置検出の条件を決定する方法、露光装置及びデバイスの製造方法
US8098362B2 (en) * 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
CN101788768A (zh) * 2009-01-23 2010-07-28 中芯国际集成电路制造(上海)有限公司 一种曝光方法
US8514395B2 (en) 2009-08-25 2013-08-20 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
WO2012082555A2 (en) * 2010-12-16 2012-06-21 Zygo Corporation Cyclic error compensation in inteferometric encoder systems
WO2014194095A1 (en) * 2013-05-30 2014-12-04 Kla-Tencor Corporation Combined imaging and scatterometry metrology
WO2015120070A1 (en) * 2014-02-05 2015-08-13 Kla-Tencor Corporation Grazing order metrology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817725A (ja) * 1994-07-04 1996-01-19 Nikon Corp 露光装置
JPH1079435A (ja) * 1996-09-03 1998-03-24 Mitsubishi Electric Corp 半導体開発情報統合装置
JP2002139847A (ja) * 2000-10-31 2002-05-17 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2005026615A (ja) * 2003-07-02 2005-01-27 Nikon Corp ステージ装置及び露光装置、計測方法
JP2010268005A (ja) * 2004-10-28 2010-11-25 Asml Netherlands Bv リソグラフィ機器及び方法
JP2008242356A (ja) * 2007-03-29 2008-10-09 Fujifilm Corp 描画データ作成方法および描画データ作成装置

Also Published As

Publication number Publication date
CN109791368B (zh) 2021-11-26
TWI790211B (zh) 2023-01-21
CN109791368A (zh) 2019-05-21
TW201828331A (zh) 2018-08-01
KR20190051054A (ko) 2019-05-14
US20210313278A1 (en) 2021-10-07
KR102556130B1 (ko) 2023-07-14
JP7081490B2 (ja) 2022-06-07
US20190279940A1 (en) 2019-09-12
JPWO2018061811A1 (ja) 2019-07-04
US11742299B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
JP2679186B2 (ja) 露光装置
US11742299B2 (en) Determination method and apparatus, program, information recording medium, exposure apparatus, layout information providing method, layout method, mark detection method, exposure method, and device manufacturing method
TW200935189A (en) Moving body driving system, pattern forming apparatus, exposure apparatus, exposure method and device manufacturing method
JP5609513B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP2008263193A (ja) 露光方法、および電子デバイス製造方法
JP4058405B2 (ja) デバイス製造方法およびこの方法により製造したデバイス
JP5517071B2 (ja) 位置計測方法、並びに露光方法及び装置
CN1462471A (zh) 成像特性的测量方法和曝光方法
CN1918516A (zh) 光刻装置和校准方法
JP4323388B2 (ja) リソグラフィ装置及び集積回路製造方法
JP5045927B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP6855008B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2007025085A (ja) 露光装置、光学素子アレー及びマルチスポットビームジェネレータ、並びにデバイス製造方法
JP2012033921A (ja) 露光装置及びデバイス製造方法
JP2011258922A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2017198793A (ja) 計測装置、露光装置、デバイス製造方法、及びパターン形成方法
JP6744588B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2007221164A (ja) 投影露光装置及び投影露光方法並びに走査露光方法
JP6701597B2 (ja) 露光装置、露光方法、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2022097352A (ja) 露光方法、露光装置、及びデバイス製造方法
JP2014143383A (ja) 面位置検出装置、露光装置、及び、デバイス製造方法
JP2012114279A (ja) 合焦装置、露光装置、及びデバイス製造方法
JP2001338858A (ja) 位置合わせ方法、露光方法、及びデバイス製造方法
JP2014143382A (ja) 面位置検出装置、露光装置、及び、デバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011426

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17855767

Country of ref document: EP

Kind code of ref document: A1