WO2018059491A1 - 离子液体聚合物、其制备方法及用途 - Google Patents

离子液体聚合物、其制备方法及用途 Download PDF

Info

Publication number
WO2018059491A1
WO2018059491A1 PCT/CN2017/104003 CN2017104003W WO2018059491A1 WO 2018059491 A1 WO2018059491 A1 WO 2018059491A1 CN 2017104003 W CN2017104003 W CN 2017104003W WO 2018059491 A1 WO2018059491 A1 WO 2018059491A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
solid electrolyte
ionic liquid
compound
lithium
Prior art date
Application number
PCT/CN2017/104003
Other languages
English (en)
French (fr)
Inventor
宋威
谢静
马永军
易观贵
历彪
郭姿珠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610868279.4A external-priority patent/CN107887604B/zh
Priority claimed from CN201610867865.7A external-priority patent/CN107887641A/zh
Priority claimed from CN201610863529.5A external-priority patent/CN107887639B/zh
Priority claimed from CN201610864136.6A external-priority patent/CN107879977B/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018059491A1 publication Critical patent/WO2018059491A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6856Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of batteries, and in particular to an ionic liquid compound, an ionic liquid polymer, a solid electrolyte containing the polymer, and a binder, and their use in a battery.
  • Ionic liquids are usually liquid at room temperature and have low viscosity, non-volatility, non-combustion, low toxicity, high room temperature conductivity and wide electrochemical window. Therefore, ionic liquids are suitable as electrolyte or binder components of batteries.
  • the safety of a lithium ion battery using an ionic liquid as an electrolyte is higher than that of an organic electrolyte battery, but the existing ionic liquid lithium ion battery cannot satisfy the direction in which the battery is lightweight, thinned, and arbitrarily shaped.
  • the more common binders are polyvinylidene fluoride (PVDF), polyacrylates, benzene rubber (SBR), etc. These binders only have a bonding effect and cannot lead to lithium ions.
  • An object of the present disclosure is to provide an ionic liquid compound, a method for preparing the same, and an ionic liquid polymer and a solid electrolyte and a binder containing the ionic liquid polymer, thereby solving ion migration in an existing lithium ion battery Technical problems such as slowness and low conductivity.
  • the present disclosure provides an ionic liquid compound having a structure represented by the following formula (1):
  • R f is C h F 2h+1 , and h is an integer of 0-10;
  • Z is at least one of Cl, Br, I, and OH;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the present disclosure provides a method of preparing an ionic liquid compound, the method comprising: reacting a compound of formula (9) with a cation under ion exchange reaction conditions The halide is contacted to obtain a compound of the formula (10):
  • R f is C h F 2h+1 , h is an integer from 0 to 10; Z 1 is at least one of Cl, Br and I;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the present disclosure provides an ionic liquid polymer having a structure represented by the following formula (24):
  • W is m is each independently an integer from 1 to 20, and each X is independently C q H 2q or C q F 2q , q are each independently an integer of from 1 to 10;
  • n is such that the molecular weight of the ionic liquid polymer is from 10,000 to 500,000.
  • the present disclosure provides a method of preparing an ionic liquid polymer comprising: reacting a compound of formula (1) with H 2 N(X) m NH 2 , HO(X) m under condensation polymerization conditions Contacting at least one of OH and HO(CH 2 CH 2 O) m H to obtain an ionic liquid polymer of the formula (20):
  • R f is C h F 2h+1 , and h is an integer of 0-10;
  • W is m is each independently an integer from 1 to 20, and each X is independently C q H 2q or C q F 2q , q are each independently an integer of from 1 to 10;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10;
  • n is such that the molecular weight of the ionic liquid polymer is from 10,000 to 500,000.
  • the present disclosure provides an ionic liquid compound having the structure represented by the formula (1) and a preparation method thereof, and provides an ionic liquid polymer having a structure represented by the formula (20) and a preparation method thereof, and the preparation method
  • the anion center of the compound and the ionic liquid polymer is a perfluorosulfonimide ion having a weak coordination ability, which reduces the binding ability of the anion center to Li + and improves the solid electrolyte of the polymer containing the ionic liquid polymer.
  • the ionic liquid polymer of the present disclosure is combined with a lithium salt to form a polymer solid electrolyte containing an ionic liquid-polyionic liquid composite, and the ionic liquid-polyionic liquid composite has a micro liquid phase structure, It can further improve the conductivity of the electrolyte and the number of Li + migration.
  • the present disclosure provides the use of the ionic liquid polymer described above in capacitors, solid state batteries, and fuel cells.
  • the present disclosure provides a solid electrolyte comprising the ionic liquid polymer described above.
  • the present disclosure provides the use of the above solid electrolyte in the preparation of a solid state battery.
  • the present disclosure provides a solid state battery comprising a positive electrode sheet, a negative electrode sheet, and an electrolyte layer, wherein the electrolyte layer contains the above solid electrolyte.
  • the solid electrolyte of the present disclosure includes an ionic liquid polymer and an inorganic solid electrolyte or a lithium salt, by selecting a perfluorosulfonimide ion having a weak coordination ability as an anion center of the ionic liquid polymer, which is for Li
  • the lower binding capacity of + contributes to the improvement of the conductivity of the solid electrolyte and the number of Li + migration.
  • the ionic liquid polymer and the inorganic solid electrolyte can be compounded in a wide range of ratios, and the ionic conductivity and mechanical properties of the composite solid electrolyte can be further improved.
  • the ionic liquid-polyionic liquid composite formed by the combination of the ionic liquid polymer and the small molecule lithium salt has a micro liquid phase structure, which can further improve the electrical conductivity and the Li + migration number of the polymer solid electrolyte.
  • the present disclosure provides a battery electrode binder comprising the above ionic liquid polymer.
  • the present disclosure provides an electrode including a current collector and an active material layer formed on a surface of the current collector, the active material layer including an active material and a binder, and the binder is adhered to the battery electrode Conjunction.
  • the present disclosure provides a lithium ion battery comprising a battery case, a pole core and an electrolyte, the core and the electrolyte being sealed and housed in a battery case, the pole core including a positive electrode, a negative electrode, and a positive electrode and A separator between the negative electrodes, the positive electrode and/or the negative electrode being the above electrode.
  • the present disclosure uses a ionic liquid polymer having a strong ion-conducting type as a novel polymer binder for a positive or negative electrode of a lithium ion battery, and a perfluorosulfonimide polyanionic polyionic liquid containing a weak coordination type used in the technical solution. It has good compatibility with the electrode slurry, ensures good realization of the process, and has strong adhesion after drying, the electrode active material does not fall off, and the cycle performance of the battery is excellent, especially the binder of the present disclosure has Better lithium ion conduction capability, which does not hinder Li + insertion or removal of positive (negative) active materials, and is beneficial to improve the rate performance of the battery.
  • FIG. 1 is a schematic structural view of a solid state battery in an embodiment of the present disclosure.
  • FIG. 2 is a schematic view showing the microstructure of a positive electrode sheet of a solid state battery (composite solid electrolyte) in an embodiment of the present disclosure.
  • FIG 3 is a schematic view showing the microstructure of a positive electrode sheet of a solid state battery (polymer solid electrolyte) in another specific embodiment of the present disclosure.
  • the present disclosure provides an ionic liquid compound having a structure represented by the following formula (1):
  • R f is C h F 2h+1 , and h is an integer of 0-10;
  • Z is at least one of Cl, Br, I, and OH;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the compound may be one selected from the group consisting of the following formula (M1)-formula (M4):
  • the present disclosure provides a method of preparing an ionic liquid compound, the method comprising: reacting a compound of formula (9) with a cation under ion exchange reaction conditions The halide is contacted to obtain a compound of the formula (10):
  • R f is C h F 2h+1 , h is an integer from 0 to 10; Z 1 is at least one of Cl, Br and I;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • Halide can be a compound represented by the formula (9) and the cation-containing compound
  • the molar ratio of the halide may be 1: (1.0 - 1.2).
  • the ion exchange reaction may be carried out under the following conditions: a reaction temperature of 0-60 ° C, a reaction time of 1-24 h, and a solvent of at least one of water, dichloromethane, chloroform, acetonitrile, nitromethane, and acetone.
  • a reaction temperature of 0-60 ° C
  • a reaction time of 1-24 h
  • the method for preparing the compound represented by the formula (9) comprises: contacting the compound represented by the formula (12) with a halogenating agent under a halogenation reaction condition:
  • R f is C h F 2h+1 and h is an integer of 0-10.
  • the halogenating agent may be at least one selected from the group consisting of PX 5 and/or POX 3 and X is Cl, Br and I; the molar ratio of the compound represented by the formula (12) to the halogenating agent may be 1 :(2-6).
  • the halogenation reaction may be carried out under the following conditions: a reaction temperature of 0 to 200 ° C, a reaction time of 1 to 24 hours, and a solvent of at least one of dichloromethane, chloroform, acetonitrile, nitromethane and acetone.
  • the preparation method of the compound represented by the formula (12) includes contacting the compound represented by the formula (13) with a base under neutralization reaction conditions:
  • R f is C h F 2h+1 and h is an integer of 0-10.
  • the base may be at least one selected from the group consisting of potassium carbonate, potassium hydrogencarbonate and potassium hydroxide; the molar ratio of the compound represented by the formula (13) to the base may be 1: (3-6) ).
  • the neutralization reaction may be carried out under the following conditions: a reaction temperature of -20 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of at least one of water, acetonitrile, nitromethane and acetone.
  • the preparation method of the compound represented by the formula (13) includes contacting the compound represented by the formula (14) with an oxidizing agent under an oxidation reaction condition:
  • R f is C h F 2h+1 and h is an integer of 0-10.
  • the oxidizing agent may be at least one selected from the group consisting of potassium permanganate and/or potassium dichromate, and the molar ratio of the compound represented by the formula (14) to the oxidizing agent may be 1: (2-6). .
  • the oxidation reaction may be carried out under the following conditions: a reaction temperature of 0 to 200 ° C, a reaction time of 1 to 24 hours, and a solvent of water.
  • the preparation method of the compound represented by the formula (14) includes contacting the compound represented by the formula (15) with a fluorinating reagent under a fluorination reaction condition:
  • R f is F.
  • the fluorinating agent may be at least one selected from the group consisting of SbF 3 , AsF 3 , KF, NaF, and LiF; the molar ratio of the compound represented by the formula (15) to the fluorinating agent may be 1 :(1-1.5).
  • the fluorination reaction may be carried out under the following conditions: a reaction temperature of -50 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of acetonitrile or nitromethane.
  • the method for preparing the compound represented by the formula (15) further comprises: contacting the compound represented by the formula (16) with a substitution reagent under a substitution reaction condition:
  • substitution reagent may be dichloro sulfoxide and chlorosulfonic acid, the compound represented by the formula (16) and the thionyl sulfoxide.
  • the molar ratio to chlorosulfonic acid may be 1: (1-5): (1-1.5).
  • the substitution reaction may be carried out under the conditions of a reaction temperature of 0 to 200 ° C and a reaction time of 1 to 24 hours.
  • the preparation method of the compound represented by the formula (16) includes contacting the compound represented by the formula (17) with a substitution reagent under a substitution reaction condition:
  • the substitution reagent may be liquid ammonia, and the molar ratio of the compound represented by the formula (17) to the substitution reagent may be 1: (2-5).
  • the substitution reaction may be carried out under the following conditions: a reaction temperature of -50 ° C to 0 ° C, a reaction time of 1 to 24 h, and a solvent of at least one of acetonitrile, nitromethane and tetrahydrofuran.
  • the method for preparing the compound represented by the formula (14) may further comprise: contacting the compound represented by the formula (18) with the compound represented by the formula (17) under the substitution reaction conditions:
  • R f is C h F 2h+1 and h is an integer of 1-10.
  • the molar ratio of the compound represented by the formula (18) to the compound represented by the formula (17) may be 1: (0.8-1).
  • the substitution reaction may be carried out under the following conditions: a reaction temperature of 0 to 200 ° C, a reaction time of 1 to 24 hours, a solvent of acetonitrile and/or nitromethane, and a catalyst of pyridine and/or triethylamine.
  • the present disclosure also provides a method of preparing an ionic liquid compound, the method comprising: contacting a compound of formula (10) with water under hydrolysis reaction conditions to obtain an ionic liquid compound of formula (19):
  • R f is C h F 2h+1 , h is an integer from 0 to 10; Z 1 is at least one of Cl, Br and I, and Z 2 is OH;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the hydrolysis reaction may be carried out under the following conditions: a reaction temperature of 0 to 60 ° C and a reaction time of 1 to 24 hours.
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (10), the method comprising the steps of:
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (10), the method comprising the steps of:
  • the compound represented by the formula (15) is contacted with a fluorinating reagent in the presence of a fluorination reaction solvent under a fluorination reaction condition; to prepare a compound of the formula (14);
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (19), the method comprising the steps of:
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (19), the method comprising the steps of:
  • the compound represented by the formula (15) is contacted with a fluorinating reagent in the presence of a fluorination reaction solvent under a fluorination reaction condition; to prepare a compound of the formula (14);
  • the present disclosure provides an ionic liquid polymer having a structure represented by the following formula (20):
  • W is m is each independently an integer from 1 to 20, and each X is independently C q H 2q or C q F 2q , q are each independently an integer of from 1 to 10;
  • n is such that the molecular weight of the ionic liquid polymer is from 10,000 to 500,000.
  • the ionic liquid polymer may be one selected from the group consisting of the following formula (P1)-formula (P6):
  • the present disclosure provides a method of preparing an ionic liquid polymer, the method comprising: reacting a compound of formula (1) with H 2 N(X) m NH 2 , HO (X) under condensation polymerization conditions Contacting at least one of m OH and HO(CH 2 CH 2 O) m H to obtain an ionic liquid polymer of the formula (20):
  • R f is C h F 2h+1 , and h is an integer of 0-10;
  • W is m is each independently an integer from 1 to 20, and each X is independently C q H 2q or C q F 2q , q are each independently an integer of from 1 to 10;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10;
  • n is such that the molecular weight of the ionic liquid polymer is from 10,000 to 500,000.
  • the molar ratio of the compound represented by formula (1) to H 2 N(X) m NH 2 is 1: (1-1.5);
  • the molar ratio of the compound represented by the formula (1) to HO(X) m OH is 1: (1-1.5);
  • the molar ratio of the compound represented by the formula (1) to HO(CH 2 CH 2 O) m H is 1: (1 - 1.5).
  • the condensation polymerization reaction condition may be: the reaction temperature is 150-350 ° C, the reaction time is 5-24 h, and the solvent is at least one of methanol, ethanol, n-propanol, isopropanol and butanol, and condensation
  • the polymerization catalyst is selected from the group consisting of cesium acetate and/or sodium hypophosphite.
  • the present disclosure provides the use of the ionic liquid polymers described above in capacitors, solid state batteries, and fuel cells.
  • the present disclosure provides a polymer solid electrolyte comprising the ionic liquid polymer described above.
  • the solid electrolyte is a polymer solid electrolyte including a lithium salt, and the weight ratio of the anionic ionic liquid polymer to the lithium salt is 1: (0.01-9).
  • the polymer solid electrolyte of the present disclosure comprises an anionic ionic liquid polymer and a lithium salt, by selecting a perfluorosulfonimide ion having a weak coordination ability as an anion center of the anionic ionic liquid polymer, which is bound to Li + The ability is small, which is beneficial to the improvement of the conductivity and Li + migration number of the polymer solid electrolyte; the ionic liquid-polyionic liquid composite formed by the combination of the anionic ionic liquid polymer and the small molecule lithium salt has a micro liquid phase structure, The conductivity and Li + migration number of the polymer solid electrolyte can be further improved.
  • the lithium salt may be of a kind well known to those skilled in the art, and the present disclosure does not particularly require as long as Li + in the lithium salt can be dissociated.
  • the lithium salt may be a perfluoroalkyl trifluoroborate selected from LiBF 3 R F , a perfluoroalkyl pentafluorophosphate represented by LiPF 5 R F , lithium bis(oxalate) borate, and difluorooxalic acid borate.
  • the lithium salt is selected from the group consisting of lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide, and lithium bis(fluorosulfonyl)imide. At least one.
  • the solid electrolyte is a composite solid electrolyte including an inorganic solid electrolyte having a weight ratio of 1: (0.01 to 99).
  • the composite solid electrolyte of the present disclosure comprises an anionic ionic liquid polymer and an inorganic solid electrolyte, by selecting a perfluorosulfonimide ion having a weak coordination ability as an anion center of the anionic ionic liquid polymer, which is bound to Li + The ability is small, which is beneficial to the improvement of the electrical conductivity and Li + migration number of the composite solid electrolyte; the anionic ionic liquid polymer and the inorganic solid electrolyte can be compounded in a wide range of ratios, which can further improve the ionic conductivity of the composite solid electrolyte. And mechanical properties.
  • the inorganic solid electrolyte is selected from the group consisting of a Perovskite type inorganic solid electrolyte, a Garnet type inorganic solid electrolyte, a NASCION type inorganic solid electrolyte, a LISCION type inorganic solid electrolyte, an Argyrodite type inorganic solid electrolyte, a Li-Nitride type inorganic solid electrolyte, At least one of a Li-Hydride-based inorganic solid electrolyte and a Li-halide-based inorganic solid electrolyte.
  • the inorganic-free solid electrolyte include Li 7 La 3 Zr 2 O 12 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 3 PS 4 , Li 9.6 P 3 S 12 , and Li 7 P 3 .
  • the particle diameter of the inorganic solid electrolyte may vary over a wide range, and for example, the inorganic solid electrolyte may have a particle diameter of 10 nm to 100 ⁇ m. Alternatively, the inorganic solid electrolyte may have a particle diameter of less than 10 ⁇ m. Alternatively, the inorganic solid electrolyte may have a particle diameter of between 100 nm and 2 ⁇ m. In the above optional particle size range, the inorganic solid electrolyte can be mixed and dispersed uniformly with the anionic ionic liquid polymer, which is favorable for forming a uniformly distributed composite solid electrolyte, thereby improving the ionic conductivity of the composite solid electrolyte.
  • the content of the anionic ionic liquid polymer and the lithium salt in the polymer solid electrolyte may vary within a wide range.
  • the weight ratio of the anionic ionic liquid polymer to the lithium salt may be 1: (0.01) -9).
  • the anionic ionic liquid polymer and the lithium salt in the above content range are easily combined to form a micro liquid phase structure of the ionic liquid-ionic liquid polymer composite, which is advantageous for improving the electrical conductivity and the Li + migration number.
  • the content of the anionic ionic liquid polymer and the inorganic solid electrolyte in the composite solid electrolyte can vary over a wide range.
  • the weight ratio of the anionic ionic liquid polymer to the inorganic solid electrolyte may be 1: (0.01-99), optionally 1: (0.1-20), alternatively 1: (0.1-10).
  • the anionic ionic liquid polymer and the inorganic solid electrolyte in the above content range can form a composite solid electrolyte having suitable mechanical strength and ionic conductivity.
  • the preparation method of the solid electrolyte can be a preparation method well known to those skilled in the art, for example, a solid electrolyte can be prepared by the following steps:
  • the electrolyte solution is uniformly dispersed on a Teflon plate and the solvent is volatilized to obtain a composite solid electrolyte or a polymer solid electrolyte.
  • the solvent may be at least one selected from the group consisting of acetonitrile, dimethyl sulfoxide, tetrahydrofuran, and N,N-dimethylformamide.
  • the environmental conditions in the preparation process may be: the content of H 2 O is less than 0.5 ppm, and the content of O 2 is less than 0.5 ppm.
  • the present disclosure also provides the use of the above composite solid electrolyte or polymer solid electrolyte in the preparation of a solid state battery.
  • the present disclosure also provides a solid state battery including a positive electrode sheet, a negative electrode sheet, and an electrolyte layer containing the above composite solid electrolyte or polymer solid electrolyte.
  • the solid state battery may include a positive electrode sheet 1, a negative electrode sheet 2, and a positive electrode sheet 1 and a negative electrode. Electrolyte layer 3 between pole pieces 2.
  • a composite solid electrolyte or a polymer solid electrolyte may be disposed in the electrolyte layer 3, and both the positive electrode sheet 1 and the negative electrode sheet 2 are in direct contact with the electrolyte layer, thereby improving the stability of the contact interface and enabling the solid state battery.
  • the current inside can be evenly distributed, thereby improving the cycle charge and discharge performance of the solid state battery.
  • the composite solid electrolyte or the polymer solid electrolyte may also be disposed in at least a portion of the positive electrode sheet.
  • the positive electrode sheet may contain the above-described composite solid electrolyte, positive electrode active material, and conductive agent.
  • the positive electrode sheet may contain the above-described polymer solid electrolyte, positive electrode active material, and conductive agent.
  • the composite solid electrolyte or the polymer solid electrolyte and the positive electrode active material and the conductive agent are uniformly distributed, so that the current can be uniformly distributed on the surface of the positive electrode sheet, wherein the content of the composite solid electrolyte or the polymer solid electrolyte, the positive electrode active material and the conductive agent can be Change in a wide range.
  • the weight ratio of the composite solid electrolyte or the polymer solid electrolyte, the positive electrode active material and the conductive agent may be 1: (0.01-99): (0.01-99), optionally 1: (0.01-40): (0.01- 40), optional 1: (0.1-20): (0.1-10).
  • the ionic liquid polymer and the positive electrode active material and the conductive agent are combined to form a positive electrode sheet structure model as shown in FIG. 1 , which is advantageous for improving the capacity and charge and discharge efficiency of the positive electrode sheet.
  • the positive electrode active material may be of a type well known to those skilled in the art, for example, the positive electrode active material may be selected from the group consisting of LiM 1 PO 4 , Li 2 M 2 SiO 4 , LiAl 1-w Co w O 2 and LiNi x . At least one of Co y Mn z O 2 ; wherein M 1 and M 2 are each independently selected from at least one of Fe, Co, Ni, and Mn; 0 ⁇ w ⁇ 1; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1.
  • the positive electrode active material may be first coated with a coating material, and the coating material may be at least one selected from the group consisting of Li 2 CO 3 , Li 4 Ti 5 O 12 and LiNbO 3 . Kind.
  • the meaning of the conductive agent is well known to those skilled in the art, and may be a conventional kind of conductive agent, and the present disclosure does not particularly require.
  • the conductive agent may be selected from the group consisting of acetylene black, carbon nanotubes, and graphene. At least one of them.
  • the negative electrode sheet may contain lithium metal, and further, the negative electrode sheet may further contain an alloy of lithium and at least one other metal.
  • the at least one other metal in the alloy may be indium, but the alloy type is not limited thereto, that is, an alloy sheet formed of any metal capable of forming an alloy with lithium metal and lithium may be used as the negative electrode sheet.
  • the negative electrode sheet may be a sheet composed of a negative electrode material, a conductive agent, and the above-described composite solid electrolyte or polymer solid electrolyte.
  • the relative content of the composite solid electrolyte or the polymer solid electrolyte, the anode material, and the conductive agent may vary within a wide range.
  • the weight ratio of the composite solid electrolyte or the polymer solid electrolyte, the anode material, and the conductive agent may be 1: (0.01-99): (0.01-99), and optionally 1: (0.01-20): (0.01-20 ), optional 1: (0.1-10): (0.1-10).
  • a negative electrode sheet composed of a composite solid electrolyte or a polymer solid electrolyte, a negative electrode material, and a conductive agent in the above content range is advantageous for increasing the capacity of the solid state battery.
  • the anode material may be a conventional anode material species for lithium ion batteries well known to those skilled in the art, for example, the anode material may be selected from the group consisting of graphite, silicon, silicon carbon, tin, tin carbon, and lithium titanate. At least one of them.
  • the structure of the solid state battery may be a conventional structure of a solid state battery well known to those skilled in the art.
  • the thickness of the positive electrode sheet may be 1-1000 ⁇ m, and the thickness of the electrolyte layer may be 1-1000 ⁇ m.
  • the thickness may be 1-1000 ⁇ m.
  • the thickness of the positive electrode sheet may be 1-200 ⁇ m, the thickness of the electrolyte layer may be 1-200 ⁇ m, and the thickness of the negative electrode sheet may be 1-200 ⁇ m.
  • the solid state battery can have a suitable capacity and volume within the above optional thickness range.
  • solid state batteries can be prepared as follows:
  • the composite solid electrolyte sheet or the polymer solid electrolyte sheet is placed between the positive electrode sheet and the negative electrode sheet to assemble a solid battery.
  • the above preparation method may further include: dissolving and mixing the polymer ionic liquid and the inorganic particles or the lithium salt in a third solvent to obtain a third solution, and adding the negative electrode to the third solution.
  • the material and the conductive agent obtain a second slurry, and the second slurry is uniformly coated on the aluminum foil to obtain a negative electrode sheet.
  • the environmental conditions of the steps a and c may be H 2 O content less than 0.5 ppm, O 2 content less than 0.5 ppm;
  • the environmental conditions in b may be: relative humidity of 0.1-5% and dew point of -70 to -75 °C.
  • the coating thickness of the first slurry may be 45-50 ⁇ m in the step b.
  • the first solvent, the second solvent, and the third solvent may be the same or different, and may each independently be selected from at least acetonitrile, dimethyl sulfoxide, tetrahydrofuran, and N,N-dimethylformamide.
  • acetonitrile dimethyl sulfoxide
  • tetrahydrofuran tetrahydrofuran
  • N,N-dimethylformamide N,N-dimethylformamide
  • the present disclosure provides a battery electrode binder comprising the anionic ionic liquid polymer described above.
  • the molecular weight of the ionic liquid polymer is from 100,000 to 300,000, further improving the performance of the battery.
  • the battery electrode binder has an average particle diameter of from 400 nm to 800 nm, further optimizing the performance of the electrode.
  • the preferred embodiment can employ 500 nm.
  • the present disclosure may use an anionic ionic liquid polymer alone as a binder for a battery electrode, or may be bonded to other materials.
  • Conjunct compounding, for example, the optional battery electrode binder of the present disclosure further comprises polyvinylidene fluoride (PVDF for short), vinylidene fluoride and hexafluoropropylene copolymer (PVDF-HFP for short), styrene butadiene rubber (SBR for short) Or one or more of polyacrylate polymers (abbreviated as PA).
  • PVDF polyvinylidene fluoride
  • PVDF-HFP vinylidene fluoride and hexafluoropropylene copolymer
  • SBR styrene butadiene rubber
  • PA polyacrylate polymers
  • the amount of the composite is relative to 100 parts by weight of the anionic ionic liquid polymer
  • the polyvinylidene fluoride content is 0.01-9900, optionally 0.01-500; vinylidene fluoride and hexafluoropropylene
  • the content of the copolymer is 0.01-9900, optionally 0.01-500; the content of styrene-butadiene rubber is 0.01-9900, optionally 0.01-500; the content of polyacrylate polymer is 0.01-9900, optional 0.01 -500, there is an interaction between various binders, and the composite of the binder can ensure the stable adhesion of the electrode material on the current collector, and can also reduce the hindrance of the binder to the lithium material deintercalation process. .
  • the present disclosure also provides an electrode comprising a current collector and an active material layer formed on a surface of the current collector, the active material layer comprising an active material and a binder, the binder being adhered to the battery electrode Conjunction.
  • Collectors are well known to those skilled in the art. For example, copper foil, nickel foam, aluminum foil, and the like.
  • Active materials are also known to those skilled in the art and are materials capable of deintercalating lithium ions. It is classified into a positive electrode active material and a negative electrode active material.
  • the active material is a positive electrode active material
  • the conductive material layer is further included in the active material layer.
  • the positive active material may be of a type well known to those skilled in the art, and the optional positive active material of the present disclosure is selected from the group consisting of LiM 1 PO 4 , Li 2 M 2 SiO 4 , LiAl 1-w Co w O 2 and LiNi x Co y Mn At least one of z O 2 ; wherein M 1 and M 2 are each independently selected from at least one of Fe, Co, Ni, and Mn; 0 ⁇ w ⁇ 1; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1.
  • the positive electrode active material may be first coated with a coating material, and the coating material may be at least one selected from the group consisting of Li 2 CO 3 , Li 4 Ti 5 O 12 and LiNbO 3 . Kind.
  • the meaning of the conductive agent is well known to those skilled in the art, and may be a conventional kind of conductive agent, and the present disclosure does not particularly require.
  • the conductive agent may be selected from the group consisting of acetylene black, super P, carbon nanotube, At least one of graphene and carbon nanofibers.
  • the active material is the negative electrode active material
  • the optional negative active material of the present disclosure is at least one selected from the group consisting of graphite, silicon, silicon carbon, tin, tin carbon, and lithium titanate.
  • the ionic liquid polymer and the negative electrode active material in the above content range are advantageous for increasing the capacity of the lithium ion battery.
  • the active material layer may also contain a conductive agent, and the conductive agent may be at least one of acetylene black, super P, carbon nanotubes, graphene, carbon nanofibers, optionally, active
  • the present disclosure may be a preparation method well known to those skilled in the art, and the present disclosure of coating, drying, and slurry mixing is not limited.
  • the present disclosure also provides a lithium ion battery including a battery case, a pole core and an electrolyte, the core and the electrolyte being sealed and housed in a battery case, the pole core including a positive electrode, a negative electrode, and a positive electrode and a negative electrode
  • the positive electrode is the corresponding positive electrode and/or the negative electrode is the corresponding negative electrode.
  • the separator may be selected from various separators used in lithium ion batteries known to those skilled in the art, such as polyolefin microporous membrane (PP), polyethylene felt (PE), glass fiber mat or ultrafine glass fiber paper or PP/PE. /PP.
  • the membrane is PP/PE/PP.
  • the electrolyte contains a lithium salt and a non-aqueous solvent, and the lithium salt may be lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, aluminate.
  • the nonaqueous solvent may be ⁇ -butyrolactone, ethyl methyl carbonate or methyl propyl carbonate , dipropyl carbonate, anhydride, N-methylpyrrolidone, N-methylformamide, N-methylacetamide, acetonitrile, N,N-dimethylformamide, sulfolane, dimethyl sulfoxide, sulfurous acid One or more of a methyl ester and other fluorine-containing, sulfur-containing or unsaturated bond-containing cyclic organic esters.
  • the concentration of the lithium salt in the electrolyte may be from 0.3 to 4 moles per liter, alternatively from 0.5 to 2 moles per liter.
  • the present disclosure is not limited, and various battery cases known to those skilled in the art, such as a hard case such as a steel case or an aluminum case, or a soft package such as an aluminum plastic film, may be used, and the shape and size may be designed according to actual conditions. .
  • the method for preparing the above lithium ion battery is also a method known to those skilled in the art. Generally, the method comprises sequentially winding a positive electrode, a negative electrode and a separator between the positive electrode and the negative electrode to form a pole core, and the core is placed. Into the battery can, an electrolyte is added, and then sealed, wherein the method of winding and sealing is well known to those skilled in the art.
  • the amount of the electrolyte used is a conventional amount.
  • the battery electrode binder of the present disclosure is not limited to such a liquid lithium ion battery, and can also be applied to a solid lithium ion battery.
  • the electrolyte is sandwiched between the positive and negative electrodes of the solid lithium ion battery, and the electrolyte can be a liquid electrolyte.
  • the conductive salt may be lithium perfluoroalkyltrifluoroborate LiBF 3 R
  • the polymer electrolyte may be an electrolyte composed of an ethylene oxide segment or a polyionic liquid and a small lithium salt as described above, and the composite electrolyte may be a mixture of the above polymer electrolyte and various non-conductive solids.
  • the ionic solids are mainly metal oxides (such as: Al 2 O 3 , TiO 2 , Fe x O, etc.), non-metal oxides (such as SiO 2 , B 2 O 3 , etc.), non-metallic sulfides (such as TiS 2 , FeS, etc., metal-organic frameworks (eg, MOF-177, Cu-BTTri, Mg 2 (dobdc), etc.).
  • the inorganic solid electrolyte includes a Perovskite type inorganic solid electrolyte (for example, Li 3x La (2/3)-x ⁇ (1/3)-2x TiO 3 (where 0 ⁇ x ⁇ 0.16, LLTO for short), etc.), Garnet type inorganic solid state Electrolytes (eg, Li 7 La 3 Zr 2 O 12 (LLZO), etc.), NASCION type inorganic solid electrolytes (eg, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (abbreviated as LATP), etc.), LISCION type inorganic solid electrolytes (such as: sulfur-based electrolyte Li 3 PS 4, Li 9.6 P 3 S 12, Li 7 P 3 S 11, Li 11 Si 2 PS 12, Li 10 SiP2S 12, Li 10 SnP 2 S 12, Li 10 GeP 2 S 12 Li 10 Si 0.5 Ge 0.5 P 2 S 12 , Li 10 Ge 0.5 Sn 0.5 P 2 S 12 , Li 10 Si 0.5 Sn 0.5 P 2 S 12 , Li 9.
  • This example is intended to illustrate the preparation of the ionic liquid compound of the present disclosure.
  • This example is intended to illustrate the preparation of the ionic liquid polymer of the present disclosure.
  • This example is intended to illustrate the preparation of the ionic liquid polymer of the present disclosure.
  • This example is intended to illustrate the preparation of the ionic liquid polymer of the present disclosure.
  • This example is intended to illustrate the preparation of the ionic liquid polymer of the present disclosure.
  • This embodiment is for explaining a method of preparing a polymer solid electrolyte and a solid battery of the present disclosure.
  • Example 11 The method of Example 11 was employed except that the ionic liquid polymer P1 was replaced with an equivalent amount of the ionic liquid polymer P2-P6, respectively, to obtain a polymer solid electrolyte AE2-AE6 and a solid battery AB2-AB6, respectively.
  • a solid battery AB8 was prepared from a solid polymer electrolyte in the same manner as in Example A11.
  • HPG hyperbranched polyglycidol
  • HPG hyperbranched polyglycidol
  • HPG-C1 chlorinated hyperbranched polyglycidol
  • a solid battery AB9 was prepared from an ionic liquid polymer in the same manner as in Example A11.
  • the test method is electrochemical impedance method.
  • the test conditions include: taking the above electrolytes AE1-AE6 and the stainless steel sheets to form a blocking battery, and the battery structure is SS
  • the electrochemical impedance test was carried out at a frequency range of 1 Hz to 8 MHz at 25 ° C, and the room temperature ionic conductivity of the electrolyte was calculated based on the measured electrolyte impedance and the formula (1).
  • is the ionic conductivity of the electrolyte
  • the unit is S cm -1
  • l is the thickness of the electrolyte membrane
  • the unit is cm
  • R is the bulk impedance of the electrolyte measured by electrochemical impedance method, the unit is ⁇ (or S - 1 )
  • S is the contact area of the electrolyte with the stainless steel sheet, the unit is cm 2 ; the test results are listed in Table 1.
  • Electrolyte number AE1 AE2 AE3 AE4 AE5 ⁇ (S/cm) 8.5 ⁇ 10 -5 9.2 ⁇ 10 -5 9.1 ⁇ 10 -5 9.3 ⁇ 10 -5 1.2 ⁇ 10 -4
  • Electrolyte number AE6 AE7 AE8 AE9 ⁇ (S/cm) 1.5 ⁇ 10 -4 6 ⁇ 10 -6 5.1 ⁇ 10 -7 4.6 ⁇ 10 -5
  • the solid-state batteries AB1-AB9 were charged from a constant current of 3.0 V to 4.2 V at a rate of 0.1 C, respectively, and then charged at a constant voltage of 4.2 V to a threshold of 0.01 C, and then allowed to stand for 5 minutes, and finally 0.1 C, 0.2 C, and 0.5, respectively.
  • the discharge rate of C, 1C, 2C, and 5C was discharged to 3.0V.
  • Table 2 The test results are listed in Table 2.
  • the solid-state batteries AB1-AB9 were charged from a constant current of 3.0 V to 4.2 V at a rate of 0.2 C, respectively, and then allowed to stand for 5 minutes, then charged at a constant voltage of 4.2 V to 0.02 C, and finally discharged at a rate of 0.2 C to 3.0. V, finally let stand for 5 minutes. This cycle is 100 times, and the test results are listed in Table 3.
  • a solid electrolyte obtained by complexing an ionic liquid of a fluorosulfonimide anion center with a lithium salt or a natural rubber (Comparative Example A2) and a polymer solid electrolyte containing a cationic ionic liquid polymer and a lithium salt (Comparative Example A3)
  • the polymer solid electrolyte prepared by the ionic liquid polymer of the present disclosure has high electrical conductivity, and the solid state battery prepared by the polymer solid electrolyte has good rate performance and cycle performance.
  • a solid battery BB4 was prepared from a solid polymer electrolyte in the same manner as in Example B1.
  • HPG hyperbranched polyglycidol
  • HPG hyperbranched polyglycidol
  • HPG-C1 chlorinated hyperbranched polyglycidol
  • a solid battery BB5 was prepared from an ionic liquid polymer in the same manner as in Example B1.
  • the electrical conductivity of the polymer solid electrolytes BE1-BE5 obtained in Examples B1-B2 and Comparative Examples B1-B3 were tested separately.
  • the test method is electrochemical impedance method.
  • the test conditions include: taking the above electrolytes BE1-BE5 and assembling the stainless steel sheets into a blocking battery, and the battery structure is SS
  • the electrochemical impedance test was carried out at a frequency range of 1 Hz to 8 MHz at 25 ° C, and the room temperature ionic conductivity of the electrolyte was calculated based on the measured electrolyte impedance and the formula (1).
  • is the ionic conductivity of the electrolyte
  • the unit is S cm -1
  • l is the thickness of the electrolyte membrane
  • the unit is cm
  • R is the bulk impedance of the electrolyte measured by electrochemical impedance method, the unit is ⁇ (or S - 1 )
  • S is the contact area of the electrolyte with the stainless steel sheet, and the unit is cm 2 ; the test results are shown in Table 4.
  • the battery rate performance test was performed on the solid batteries obtained in Examples B1 to B2 and Comparative Examples B1 to B3.
  • the solid batteries obtained in Examples B1-B2 and Comparative Examples B1-B3 were respectively charged from a constant current of 3.0 V at a rate of 0.1 C to 4.2V, then charged at 4.2V constant voltage to 0.01C cutoff, then left to stand for 5 minutes, and finally discharged to 3.0V at a magnification of 0.1C, 0.2C, 0.5C, 1C, 2C, 5C.
  • the test results are listed in Table 5.
  • the battery cycle performance test was performed on the solid batteries obtained in Examples B1-B2 and Comparative Examples B1-B3.
  • Example B1-B2 Comparative Example B1-B3
  • the solid electrolyte of the fluorosulfonimide anion center ionic liquid combined with the lithium salt and the natural rubber Comparative Example B2
  • the polymer solid electrolyte containing the cationic ionic liquid polymer and the lithium salt composite Comparative Example B3
  • the polymer solid electrolyte prepared by the ionic liquid polymer of the present disclosure has high electrical conductivity, and the solid state battery prepared by the polymer solid electrolyte has good rate performance and cycle performance.
  • a solid battery CB4 was prepared from the solid polymer electrolyte by the method of Example C1.
  • HPG hyperbranched polyglycidol
  • HPG hyperbranched polyglycidol
  • HPG-C1 chlorinated hyperbranched polyglycidol
  • a solid state battery CB5 was prepared from the ionic liquid polymer by the method of Example C1.
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • poly(diallyldimethylammonium chloride) available from Aldrich, #409022, a weight average molecular weight ranging from about 200,000 to about 350,000
  • the white crystals thus obtained were filtered and dried in a vacuum oven at 105 ° C to obtain poly(diallyldimethylammonium) TFSI represented by formula D4.
  • Poly(diallyl II) The yield of methylammonium)TFSI is about 93.5 wt% and n is about 2,500.
  • EC ethylene carbonate
  • DEC carbonic acid
  • Diethyl ester A mixed solvent of FEC (fluoroethylene carbonate) was added to dimethylformamide (DMF) in a weight ratio of
  • the solution was then stirred at room temperature (20 ° C) for about 1 hour to prepare a composition for forming a composite electrolyte.
  • a lithium metal film having a thickness of 40 micrometers ( ⁇ m) on a copper current collector was coated with the composition by using a doctor blade, dried at a high temperature (40 ° C), and vacuum dried at room temperature (20 ° C, 12 hours).
  • a negative electrode having a structure including a 15 ⁇ m thick composite electrolyte layer coated on lithium metal was prepared.
  • the content of alumina in the composite electrolyte layer was about 60% by weight based on the total weight of the alumina and the polymer ionic liquid.
  • Each of the copper current collector and the SUS current collector was coated with the composition prepared above by using a doctor blade, dried at a high temperature (40 ° C), and vacuum dried at room temperature (25 ° C, 12 hours) to prepare a coating comprising the coating.
  • the content of alumina in the composite electrolyte layer is about 60% by weight based on the total weight of the alumina and the polymer ionic liquid.
  • the electrical conductivity of the electrolytes CE1-CE6 obtained in Examples C1-C2 and Comparative Examples C1-C4 were tested separately.
  • the test method is electrochemical impedance method.
  • the test conditions include: taking the above electrolytes CE1-CE6 and the stainless steel sheets to form a blocking battery, and the battery structure is SS
  • the electrochemical impedance test was carried out at a frequency range of 1 Hz to 8 MHz at 25 ° C, and the room temperature ionic conductivity of the electrolyte was calculated based on the measured electrolyte impedance and the formula (1).
  • is the ionic conductivity of the electrolyte
  • the unit is S ⁇ cm -1
  • l is the thickness of the electrolyte membrane
  • the unit is cm
  • R is the bulk impedance of the electrolyte measured by electrochemical impedance method, the unit is ⁇ (or S -1 )
  • S is the contact area of the electrolyte with the stainless steel sheet, and the unit is cm 2 ; the test results are shown in Table 7.
  • the batteries obtained in Examples C1-C2 and Comparative Examples C1-C4 were respectively charged from a constant current of 3.0 V to 4.2 V at a rate of 0.1 C, and then charged at a constant voltage of 4.2 V to a cutoff of 0.01 C, followed by standing for 5 minutes. Finally, discharge was performed to 3.0 V at a magnification of 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, and 5 C, respectively.
  • the test results are listed in Table 8.
  • a solid electrolyte obtained by complexing an ionic liquid of a fluorosulfonimide anion center with a lithium salt or a natural rubber (Comparative Example C2), a composite solid electrolyte containing a cationic ionic liquid polymer and a lithium salt (Comparative Example C3), and a solution electrolyte (Comparative Example C4)
  • the composite solid electrolyte prepared by the ionic liquid polymer of the present disclosure has a higher electrical conductivity, and the solid state battery prepared by the composite solid electrolyte has good rate performance and cycle performance.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the ionic polymer was prepared by the same method as in Example 1 of CN105449218A (the polysulfone main chain was the main chain, and the fluorine-containing sulfonimide lithium salt was grafted on the side chain, and the molecular formula was -[(Ar) )-CF 2 CF 2 OCF 2 CF 2 SO 2 N(Li)SO 2 C 7 H 7 ] n )
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • a graphene-ionic liquid polymer composite was prepared by the same method as in Example 1 of CN102763251A.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the battery prepared by the invention has excellent rate performance, good bonding performance of the battery binder, and good cycle performance of the battery.

Abstract

一种离子液体化合物、由其制备得到的离子液体聚合物、含该聚合物的固态电解质、电池电极粘结剂和电池被公开。具体地,提供了式(1)所示的离子液体化合物及其制备方法,并且提供了式(20)所示的离子液体聚合物及其制备方法。

Description

离子液体聚合物、其制备方法及用途
相关申请的交叉引用
本公开主张在2016年9月29日在中国提交的中国专利申请号No.201610864136.6、No.201610868279.4、No.201610867865.7和No.201610863529.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电池领域,具体地,涉及一种离子液体化合物、离子液体聚合物、含该聚合物的固态电解质和粘合剂以及它们在电池中的应用。
背景技术
离子液体室温下通常为液态,并且具有黏度低、不挥发、不燃烧、毒性小、室温电导率高及电化学窗口宽等特点,因此离子液体适合作为电池的电解质或粘结剂的成分。离子液体作为电解质的锂离子电池的安全性较有机电解质电池要高,但是现有的离子液体锂离子电池无法满足电池向轻量化、薄膜化及形状任意化发展的方向。较常见的粘结剂有聚偏氟乙烯(PVDF)类、聚丙烯酸酯类、苯橡胶(SBR)等,这类粘结剂仅有粘结作用,其不能导锂离子。随着锂离子电池在各领域的广泛引用,对其性能的要求也都提出了更高的要求,特别是航空、交通等领域的应用,例如汽车动力电池等大型设备对电池的充放电倍率性能要求较高,其需要电池的快速充放电,对电池的各部分的导电性提出了更高的要求。
发明内容
本公开的目的是提供一种离子液体化合物、其制备方法,以及一种离子液体聚合物和含有该离子液体聚合物的固态电解质和粘结剂,由此解决现有的锂离子电池中离子迁移慢、电导率低等技术问题。
为了实现上述目的,一方面本公开提供一种离子液体化合物,该化合物具有如下式(1)所示的结构:
Figure PCTCN2017104003-appb-000001
其中,Rf为ChF2h+1,h为0-10的整数;
Z为Cl、Br、I和OH中的至少一种;
阳离子
Figure PCTCN2017104003-appb-000002
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000003
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
第二方面,本公开提供一种制备离子液体化合物的方法,该方法包括:使式(9)所示的化合物在离子交换反应条件下与含有阳离子
Figure PCTCN2017104003-appb-000004
的卤化物接触得到式(10)所示的化合物:
Figure PCTCN2017104003-appb-000005
其中,Rf为ChF2h+1,h为0-10的整数;Z1为Cl、Br和I中的至少一种;
阳离子
Figure PCTCN2017104003-appb-000006
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000007
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
第三方面,本公开提供一种离子液体聚合物,该离子液体聚合物具有如下式(24)所示的结构:
Figure PCTCN2017104003-appb-000008
其中,W为
Figure PCTCN2017104003-appb-000009
m各自独立地为1-20的整数,X各自独立地为CqH2q或CqF2q,q各自独立地为1-10的整数;
阳离子
Figure PCTCN2017104003-appb-000010
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000011
n的取值使得所述离子液体聚合物的分子量为1万-50万。
第四方面,本公开提供一种制备离子液体聚合物的方法,包括:使式(1)所示的化合物在缩合聚合反应条件下与H2N(X)mNH2、HO(X)mOH和HO(CH2CH2O)mH中的至少一种接触,得到式(20)所示的离子液体聚合物:
Figure PCTCN2017104003-appb-000012
其中,Rf为ChF2h+1,h为0-10的整数;
W为
Figure PCTCN2017104003-appb-000013
m各自独立地为1-20的整数,X各自独立地为CqH2q或CqF2q,q各自独立地为1-10的整数;
阳离子
Figure PCTCN2017104003-appb-000014
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000015
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数;
n的取值使得所述离子液体聚合物的分子量为1万-50万。
通过上述技术方案,本公开提供了具有式(1)所示结构的离子液体化合物及其制备方法,并且提供了具有式(20)所示结构的离子液体聚合物及其制备方法,该离子液体化合物和离子液体聚合物的阴离子中心为配位能力较弱的全氟磺酰亚胺离子,减小了阴离子中心对Li+的束缚能力,提高了含有该离子液体聚合物的聚合物固态电解质的电导率和Li+迁移数;本公开的离子液体聚合物与锂盐复合后形成含有离子液体-聚离子液体复合物的聚合物固态电解质,离子液体-聚离子液体复合物具有微液相结构,能进一步提升电解质的电导率以及Li+迁移数。
第五方面,本公开提供上述的离子液体聚合物在电容器、固态电池和燃料电池中的应用。
第六方面,本公开提供一种固态电解质,所述固态电解质包括上述的离子液体聚合物。
第七方面,本公开提供了上述的固态电解质在制备固态电池的用途。
第八方面,本公开提供一种固态电池,包括正极片、负极片和电解质层,其中所述电解质层含有上述固态电解质。
通过上述技术方案,本公开的固态电解质包括离子液体聚合物和无机固态电解质或锂盐,通过选取配位能力较弱的全氟磺酰亚胺离子作为离子液体聚合物的阴离子中心,其对于Li+的束缚能力较小,有利于固态电解质的电导率和Li+迁移数的提高。离子液体聚合物与无机固态电解质可以在较宽的比例范围内复合,可以进一步提高复合固态电解质的离子电导率和机械性能。离子液体聚合物与小分子锂盐复合后形成的离子液体-聚离子液体复合物具有微液相结构,可以进一步提升聚合物固态电解质的电导率和Li+迁移数。
第九方面,本公开提供一种电池电极粘结剂,所述粘结剂包括上述的离子液体聚合物。
第十方面,本公开提供一种电极,包括集电体和形成在集电体表面上的活性材料层,所述活性材料层包括活性材料和粘结剂,所述粘结剂上述电池电极粘结剂。
第十一方面,本公开提供一种锂离子电池,包括电池壳、极芯和电解液,所述极芯和电解液密封容纳在电池壳内,所述极芯包括正极、负极及位于正极和负极之间的隔膜,所述正极和/或负极为上述电极。
本公开采用具有强导离子型的离子液体聚合物作为锂离子电池正或负极的新型聚合物粘结剂,技术方案采用的含弱配位类型的全氟磺酰亚胺类聚阴离子型聚离子液体与电极浆料 具有较好的相容性,保证工艺的良好实现,而且干燥后具有较强的粘结性,电极活性材料不脱落,电池的循环性能优,特别是本公开的粘结剂具有较好的锂离子导通能力,其不会阻碍Li+嵌入或者脱出正(负)极活性物质,有利于提高电池的倍率性能。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开的一种具体实施方式中固态电池的结构示意图。
图2是本公开的一种具体实施方式中固态电池的正极片的微观结构示意图(复合固态电解质)。
图3是本公开的另一种具体实施方式中固态电池的正极片的微观结构示意图(聚合物固态电解质)。
附图标记说明
1 正极片  2 负极片  3电解质层
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合具体实施方式,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本公开,并不用于限定本公开。
为了实现上述目的,一方面本公开提供一种离子液体化合物,该化合物具有如下式(1)所示的结构:
Figure PCTCN2017104003-appb-000016
其中,Rf为ChF2h+1,h为0-10的整数;
Z为Cl、Br、I和OH中的至少一种;
阳离子
Figure PCTCN2017104003-appb-000017
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000018
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
根据本公开,具体地,该化合物可以为选自如下式(M1)-式(M4)中的一种:
Figure PCTCN2017104003-appb-000019
另一方面,本公开提供一种制备离子液体化合物的方法,该方法包括:使式(9)所示的化合物在离子交换反应条件下与含有阳离子
Figure PCTCN2017104003-appb-000020
的卤化物接触得到式(10)所示的化合物:
Figure PCTCN2017104003-appb-000021
其中,Rf为ChF2h+1,h为0-10的整数;Z1为Cl、Br和I中的至少一种;
阳离子
Figure PCTCN2017104003-appb-000022
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000023
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
可选地,所述含有阳离子
Figure PCTCN2017104003-appb-000024
的卤化物可以为
Figure PCTCN2017104003-appb-000025
式(9)所示的化合物与所述含有阳离子
Figure PCTCN2017104003-appb-000026
的卤化物的摩尔比可以为1:(1.0-1.2)。
可选地,所述离子交换反应的条件可以为:反应温度为0-60℃,反应时间为1-24h,溶剂为水、二氯甲烷、氯仿、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(9)所示的化合物的制备方法包括:使式(12)所示的化合物在卤化反应条件下与卤化试剂接触:
Figure PCTCN2017104003-appb-000027
其中,Rf为ChF2h+1,h为0-10的整数。
可选地,所述卤化试剂可以为选自PX5和/或POX3,X为Cl、Br和I中的至少一种;式(12)所示的化合物与卤化试剂的摩尔比可以为1:(2-6)。
可选地,所述卤化反应的条件可以为:反应温度为0-200℃,反应时间为1-24h,溶剂为二氯甲烷、氯仿、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(12)所示的化合物的制备方法包括:使式(13)所示的化合物在中和反应条件下与碱接触:
Figure PCTCN2017104003-appb-000028
其中,Rf为ChF2h+1,h为0-10的整数。
可选地,所述碱可以为选自碳酸钾、碳酸氢钾和氢氧化钾中的至少一种;式(13)所示的化合物与所述碱的摩尔比可以为1:(3-6)。
可选地,所述中和反应的条件可以为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(13)所示的化合物的制备方法包括:使式(14)所示的化合物在氧化反应条件下与氧化剂接触:
Figure PCTCN2017104003-appb-000029
其中,Rf为ChF2h+1,h为0-10的整数。
可选地,所述氧化剂可以为选自高锰酸钾和/或重铬酸钾中的至少一种,式(14)所示的化合物与氧化剂的摩尔比可以为1:(2-6)。
可选地,所述氧化反应的条件可以为:反应温度为0-200℃,反应时间为1-24h,溶剂为水。
可选地,式(14)所示的化合物的制备方法包括:使式(15)所示的化合物在在氟代反应条件下与氟代试剂接触:
Figure PCTCN2017104003-appb-000030
式(14)中,Rf为F。
可选地,所述氟代试剂可以为选自SbF3、AsF3、KF、NaF和LiF中的至少一种;式(15)所示的化合物与所述氟代试剂的摩尔比可以为1:(1-1.5)。
可选地,所述氟代反应的条件可以为:反应温度为-50℃至100℃,反应时间为1-24h,溶剂为乙腈或硝基甲烷。
可选地,式(15)所示的化合物的制备方法还包括:使式(16)所示的化合物在取代反应条件下与取代试剂接触:
Figure PCTCN2017104003-appb-000031
可选地,所述取代试剂可以为二氯亚砜和氯磺酸,式(16)所示的化合物与二氯亚砜 和氯磺酸的摩尔比可以为1:(1-5):(1-1.5)。
可选地,所述取代反应的条件可以为:反应温度为0-200℃,反应时间为1-24h。
可选地,式(16)所示的化合物的制备方法包括:使式(17)所示的化合物在取代反应条件下与取代试剂接触:
Figure PCTCN2017104003-appb-000032
可选地,所述取代试剂可以为液氨,式(17)所示的化合物与所述取代试剂的摩尔比可以为1:(2-5)。
可选地,所述取代反应的条件可以为:反应温度为-50℃至0℃,反应时间为1-24h,溶剂为乙腈、硝基甲烷和四氢呋喃中的至少一种。
可选地,式(14)所示的化合物的制备方法还可以包括:使式(18)所示的化合物在取代反应条件下与式(17)所示的化合物接触:
Figure PCTCN2017104003-appb-000033
其中,Rf为ChF2h+1,h为1-10的整数。
可选地,式(18)所示的化合物与式(17)所示的化合物的摩尔比可以为1:(0.8-1)。
可选地,所述取代反应的条件可以为:反应温度为0-200℃,反应时间为1-24h,溶剂为乙腈和/或硝基甲烷,催化剂为吡啶和/或三乙胺中。
另一方面,本公开还提供一种制备离子液体化合物的方法,该方法包括:式(10)所示的化合物在水解反应条件下与水接触得到式(19)所示的离子液体化合物:
Figure PCTCN2017104003-appb-000034
其中,Rf为ChF2h+1,h为0-10的整数;Z1为Cl、Br和I中的至少一种,Z2为OH;
阳离子
Figure PCTCN2017104003-appb-000035
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000036
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
可选地,所述水解反应的条件可以为:反应温度为0-60℃,反应时间为1-24h。
根据本公开特别优选的一种实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(10)所示,该方法包括如下步骤:
S1、在取代反应溶剂存在下,在取代反应条件下,将式(17)所示的化合物与式(18)所示的化合物接触;以制备式(14)所示化合物;
S2、在氧化反应溶剂存在下,在氧化反应条件下,将式(14)所示化合物与氧化剂接触;以制备式(13)所示化合物;
S3、在中和反应溶剂存在下,在中和反应条件下,将式(13)所示的化合物与碱接触;以制备式(12)所示化合物;
S4、在卤化反应溶剂存在下,在卤化反应条件下,将式(12)所示化合物与卤化试剂接触;以制备式(9)所示化合物;
S5、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017104003-appb-000037
的卤化物接触;以制备式(10)所示化合物。
根据本公开特别优选的一种实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(10)所示,该方法包括如下步骤:
S1、在取代反应溶剂存在下,在取代反应条件下,将式(17)所示的化合物与取代试剂接触;以制备式(16)所示化合物;
S2、在取代反应溶剂存在下,在取代反应条件下,将式(16)所示的化合物与取代试剂接触;以制备式(15)所示化合物;
S3在氟代反应溶剂存在下,在氟代反应条件下,将式(15)所示化合物与氟代试剂接触;以制备式(14)所示化合物;
S4、在氧化反应溶剂存在下,在氧化反应条件下,将式(14)所示化合物与氧化剂接触;以制备式(13)所示化合物;
S5、在中和反应溶剂存在下,在中和反应条件下,将式(13)所示的化合物与碱接触;以制备式(12)所示化合物;
S6、在卤化反应溶剂存在下,在卤化反应条件下,将式(12)所示化合物与卤化试剂接触;以制备式(9)所示化合物;
S7、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017104003-appb-000038
的卤化物接触;以制备式(10)所示化合物。
根据本公开特别优选的一种实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(19)所示,该方法包括如下步骤:
S1、在取代反应溶剂存在下,在取代反应条件下,将式(17)所示的化合物与式(18)所示的化合物接触;以制备式(14)所示化合物;
S2、在氧化反应溶剂存在下,在氧化反应条件下,将式(14)所示化合物与氧化剂接触;以制备式(13)所示化合物;
S3、在中和反应溶剂存在下,在中和反应条件下,将式(13)所示的化合物与碱接触;以制备式(12)所示化合物;
S4、在卤化反应溶剂存在下,在卤化反应条件下,将式(12)所示化合物与卤化试剂接触;以制备式(9)所示化合物;
S5、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017104003-appb-000039
的卤化物接触;以制备式(10)所示化合物;
S6、在水解反应条件下,将式(10)所示的化合物与水接触;以制备式(19)所示化合物。
根据本公开特别优选的一种实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(19)所示,该方法包括如下步骤:
S1、在取代反应溶剂存在下,在取代反应条件下,将式(17)所示的化合物与取代试剂接触;以制备式(16)所示化合物;
S2、在取代反应溶剂存在下,在取代反应条件下,将式(16)所示的化合物与取代试 剂接触;以制备式(15)所示化合物;
S3在氟代反应溶剂存在下,在氟代反应条件下,将式(15)所示化合物与氟代试剂接触;以制备式(14)所示化合物;
S4、在氧化反应溶剂存在下,在氧化反应条件下,将式(14)所示化合物与氧化剂接触;以制备式(13)所示化合物;
S5、在中和反应溶剂存在下,在中和反应条件下,将式(13)所示的化合物与碱接触;以制备式(12)所示化合物;
S6、在卤化反应溶剂存在下,在卤化反应条件下,将式(12)所示化合物与卤化试剂接触;以制备式(9)所示化合物;
S7、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017104003-appb-000040
的卤化物接触;以制备式(10)所示化合物。
S8、在水解反应条件下,将式(10)所示的化合物与水接触;以制备式(19)所示化合物。
另一方面,本公开提供一种离子液体聚合物,该离子液体聚合物具有如下式(20)所示的结构:
Figure PCTCN2017104003-appb-000041
其中,W为
Figure PCTCN2017104003-appb-000042
m各自独立地为1-20的整数,X各自独立地为CqH2q或CqF2q,q各自独立地为1-10的整数;
阳离子
Figure PCTCN2017104003-appb-000043
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000044
Figure PCTCN2017104003-appb-000045
n的取值使得所述离子液体聚合物的分子量为1万-50万。
根据本公开,该离子液体聚合物可以为选自如下式(P1)-式(P6)中的一种:
Figure PCTCN2017104003-appb-000046
另一方面,本公开提供一种制备离子液体聚合物的方法,该方法包括:使式(1)所示的化合物在缩合聚合反应条件下与H2N(X)mNH2、HO(X)mOH和HO(CH2CH2O)mH中的至少 一种接触,得到式(20)所示的离子液体聚合物:
Figure PCTCN2017104003-appb-000047
其中,Rf为ChF2h+1,h为0-10的整数;
W为
Figure PCTCN2017104003-appb-000048
m各自独立地为1-20的整数,X各自独立地为CqH2q或CqF2q,q各自独立地为1-10的整数;
阳离子
Figure PCTCN2017104003-appb-000049
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017104003-appb-000050
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数;
n的取值使得所述离子液体聚合物的分子量为1万-50万。
可选地,式(1)所示的化合物与H2N(X)mNH2的摩尔比为1:(1-1.5);
式(1)所示的化合物与HO(X)mOH的摩尔比为1:(1-1.5);
式(1)所示的化合物与HO(CH2CH2O)mH的摩尔比为1:(1-1.5)。
可选地,所述缩合聚合反应条件可以为:反应温度为150-350℃,反应时间为5-24h,溶剂为甲醇、乙醇、正丙醇、异丙醇和丁醇中的至少一种,缩合聚合催化剂为选自乙酸锑和/或次磷酸钠。
另一方面,本公开提供上述的离子液体聚合物在电容器、固态电池和燃料电池中的应用。
另一方面,本公开提供一种聚合物固态电解质,所述聚合物固态电解质包括上述的离子液体聚合物。
根据本公开的实施例,所述固态电解质为包括锂盐的聚合物固态电解质,所述阴离子型离子液体聚合物和锂盐的重量比为1:(0.01-9)。
本公开的聚合物固态电解质包括阴离子型离子液体聚合物和锂盐,通过选取配位能力较弱的全氟磺酰亚胺离子作为阴离子型离子液体聚合物的阴离子中心,其对于Li+的束缚能力较小,有利于聚合物固态电解质的电导率和Li+迁移数的提高;阴离子型离子液体聚合物与小分子锂盐复合后形成的离子液体-聚离子液体复合物具有微液相结构,可以进一步提升聚合物固态电解质的电导率和Li+迁移数。
根据本公开,所述锂盐可以为本领域技术人员所熟知的种类,本公开不做特别的要求,只要满足锂盐中的Li+可以解离即可。例如,锂盐可以为选自如LiBF3RF所示的全氟烷基三氟硼酸锂、如LiPF5RF所示的全氟烷基五氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂和如(RFSO2)2NLi所示的双全氟烷基磺酰亚胺锂中的至少一种;其中,RF为ClF2l+1,l各自独立地为0-10的整数。
具体地,锂盐为选自四氟硼酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、双(三氟甲基磺酰)亚胺锂和双(氟磺酰)亚胺锂中的至少一种。
根据本公开的实施例,所述固态电解质为包括无机固态电解质的复合固态电解质,所述阴离子型离子液体聚合物和无机固态电解质的重量比为1:(0.01-99)。
本公开的复合固态电解质包括阴离子型离子液体聚合物和无机固态电解质,通过选取配位能力较弱的全氟磺酰亚胺离子作为阴离子型离子液体聚合物的阴离子中心,其对于Li+的束缚能力较小,有利于复合固态电解质的电导率和Li+迁移数的提高;阴离子型离子液体聚合物与无机固态电解质可以在较宽的比例范围内复合,可以进一步提高复合固态电解质的离子电导率和机械性能。
可选地,所述无机固态电解质为选自Perovskite型无机固态电解质、Garnet型无机固态电解质、NASCION型无机固态电解质、LISCION型无机固态电解质、Argyrodite型无机固态电解质、Li-Nitride类无机固态电解质、Li-Hydride类无机固态电解质和Li-halide类无机固态电解质中的至少一种。
作为上述无无机固态电解质的具体例子,可以举出Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3、Li3PS4、Li9.6P3S12、Li7P3S11、Li11Si2PS12、Li10SiP2S12、Li10SnP2S12、Li10GeP2S12、Li10Si0.5Ge0.5P2S12、Li10Ge0.5Sn0.5P2S12、Li10Si0.5Sn0.5P2S12、Li9.54Si1.74P1.44S11.7Cl0.3、Li6PS5Br、Li6PS5Br、Li7PS6、 Li7PS5I、Li7PO5Cl、Li3N、Li7PN4、LiSi2N3、LiPN2、Li2NH、Li3(NH2)2I、LiBH4、LiAlH4、LiNH2、Li2CdCl4、Li2MgCl4、Li2ZnCl4和Li3xLa(2/3)-x(1/3)-2xTiO3中的至少一种,其中0<x<0.16。□为空位或晶体缺陷,但是本公开的无机固态电解质并不限于此。
根据本公开的实施例,所述无机固态电解质的粒径可以在很大范围内变化,例如,无机固态电解质的粒径可以10nm-100μm。可选地,无机固态电解质的粒径可以小于10μm。可选地,无机固态电解质的粒径可以在100nm-2μm之间。上述可选的粒径范围内,无机固态电解质可以与阴离子型离子液体聚合物混合分散均匀,有利于形成分布均匀的复合固态电解质,从而提高复合固态电解质的离子电导率。
根据本公开,聚合物固态电解质中阴离子型离子液体聚合物和锂盐的含量可以在很大范围内变化,可选地,阴离子型离子液体聚合物和锂盐的重量比可以为1:(0.01-9)。上述含量范围内的阴离子型离子液体聚合物和锂盐容易复合形成离子液体-离子液体聚合物复合物的微液相结构,有利于提高电导率和Li+迁移数。
根据本公开,复合固态电解质中阴离子型离子液体聚合物和无机固态电解质的含量可以在很大范围内变化。可选地,阴离子型离子液体聚合物和无机固态电解质的重量比可以1:(0.01-99),可选为1:(0.1-20),可选为1:(0.1-10)。上述含量范围内的阴离子型离子液体聚合物和无机固态电解质可以形成具有适宜机械强度和离子电导率的复合固态电解质。
固态电解质的制备方法可以为本领域技术人员所熟知的制备方法,例如,可以按照以下步骤制备固态电解质:
(1)使所述聚合物离子液体与无机固态电解质或锂盐在溶剂中溶解并混合均匀,得到电解质溶液;
(2)使所述电解质溶液均匀分散在特氟龙板上并使所述溶剂挥发,得到复合固态电解质或聚合物固态电解质。
其中,溶剂可以为选自乙腈、二甲基亚砜、四氢呋喃和N,N-二甲基甲酰胺中的至少一种。
其中,为了降低环境杂质的影响,进一步提高复合固态电解质或聚合物固态电解质的电导率,制备过程中的环境条件可以为:H2O的含量小于0.5ppm,O2含量小于0.5ppm。
本公开还提供上述复合固态电解质或聚合物固态电解质在制备固态电池的用途。
本公开还提供一种固态电池,该固态电池包括正极片、负极片和电解质层,电解质层含有上述的复合固态电解质或聚合物固态电解质。
例如,如图1所示,固态电池可以包括正极片1、负极片2,以及设置在正极片1与负 极片2之间的电解质层3。在所述固态电池中,复合固态电解质或聚合物固态电解质可以设置于电解质层3中,所述正极片1与负极片2均与电解质层直接接触,提高了接触界面的稳定性,使固态电池内的电流可以均匀分布,从而改善固态电池的循环充放电性能。
进一步地,复合固态电解质或聚合物固态电解质还可以设置于至少一部分正极片中。如图2所示,正极片中可以含有上述的复合固态电解质、正极活性物质和导电剂。如图3所示,正极片中可以含有上述的聚合物固态电解质、正极活性物质和导电剂。此时复合固态电解质或聚合物固态电解质和正极活性物质、导电剂分布均匀,可以使电流在正极片表面均匀分布,其中,复合固态电解质或聚合物固态电解质、正极活性物质和导电剂的含量可以在很大范围内变化。例如,复合固态电解质或聚合物固态电解质、正极活性物质和导电剂的重量比可以为1:(0.01-99):(0.01-99),可选为1:(0.01-40):(0.01-40),可选为1:(0.1-20):(0.1-10)。在上述可选的含量范围内,有利于离子液体聚合物和正极活性物质及导电剂复合形成如图1所示的正极片结构模型,有利于提高正极片的容量和充放电效率。
根据本公开,正极活性物质可以为本领域技术人员所熟知的种类,例如,正极活性物质可以为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。
其中,为了进一步提高正极活性物质的稳定性,正极活性物质也可以为先经过包覆材料包覆,包覆材料可以选自Li2CO3、Li4Ti5O12和LiNbO3中的至少一种。
根据本公开,导电剂的含义为本领域技术人员所熟知,可以为常规种类的导电剂,本公开不做特别的要求,例如,导电剂可以为选自乙炔黑、碳纳米管和石墨烯中的至少一种。
根据本公开,负极片可以为含有锂金属,此外,负极片中还可以进一步含有锂与至少一种其他金属的合金。所述合金中的所述至少一种其他金属可以为铟,但合金种类不限于此,即可以使用能与锂金属形成合金的任意金属与锂形成合金片作为负极片。
在本公开的另一种实施方式中,负极片可以为由负极材料、导电剂及上述的复合固态电解质或聚合物固态电解质组成的片。其中,复合固态电解质或聚合物固态电解质、负极材料和导电剂的相对含量可以在很大范围内变化。例如,复合固态电解质或聚合物固态电解质、负极材料和导电剂的重量比可以为1:(0.01-99):(0.01-99),可选为1:(0.01-20):(0.01-20),可选为1:(0.1-10):(0.1-10)。上述含量范围的复合固态电解质或聚合物固态电解质、负极材料和导电剂组成的负极片有利于提高固态电池的容量。
根据本公开,负极材料可以为本领域技术人员所熟知的用于锂离子电池的常规负极材料种类,例如,负极材料可以为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。
根据本公开,固态电池的结构可以为本领域技术人员所熟知的固态电池的常规结构,可选地,正极片的厚度可以为1-1000μm,电解质层的厚度可以为1-1000μm,负极片的厚度可以为1-1000μm,可选地,正极片的厚度可以为1-200μm,电解质层的厚度可以为1-200μm,负极片的厚度可以为1-200μm。上述可选的厚度范围内,固态电池可以具有适宜的容量和体积。
固态电池的制备方法也为本领域技术人员所熟知,例如,固态电池可以按照如下方法制备:
a.使所述聚合物离子液体与无机颗粒或锂盐在第一溶剂中溶解并混合均匀,得到第一溶液,使所述第一溶液均匀分散在特氟龙板上并使所述第一溶剂挥发,得到复合固态电解质片或聚合物固态电解质片;
b.使所述聚合物离子液体和无机颗粒或锂盐在第二溶剂中溶解并混合均匀,得到第二溶液,向所述第二溶液中加入所述正极活性物质和导电剂,得到第一浆料,使所述第一浆料均匀涂布在铝箔上,得到正极片;
c.使所述复合固态电解质片或聚合物固态电解质片置于所述正极片和负极片中间,组装得到固态电池。
根据本公开,上述制备方法还可以包括:使所述聚合物离子液体和无机颗粒或锂盐在第三溶剂中溶解并混合均匀,得到第三溶液,向所述第三溶液中加入所述负极材料和导电剂,得到第二浆料,使所述第二浆料均匀涂布在铝箔上,得到负极片。
其中,为了降低环境杂质的影响,进一步提高复合固态电解质或聚合物固态电解质的电导率,步骤a和步骤c的环境条件可以为H2O的含量小于0.5ppm,O2含量小于0.5ppm;步骤b中的环境条件可以为:相对湿度0.1-5%,露点为-70至-75℃。
其中,为了得到厚度适宜的正极片,步骤b中,第一浆料的涂布厚度可以为45-50μm。
根据本公开,上述第一溶剂、第二溶剂和第三溶剂可以相同或不同,且可以各自独立地选自乙腈、二甲基亚砜、四氢呋喃和N,N-二甲基甲酰胺中的至少一种。
另一方面,本公开提供了一种电池电极粘结剂,其包括上述的阴离子型离子液体聚合物。
进一步地,离子液体聚合物的分子量为10万-30万,进一步提高电池的性能。
可选地,电池电极粘结剂的平均粒径为400nm-800nm,进一步优化电极的性能。较佳实施例可以采用500nm。
本公开可以采用阴离子型离子液体聚合物单独作为电池电极的粘结剂,也可以与其他粘 结剂复合,例如,本公开可选电池电极粘结剂还包括聚偏二氟乙烯(简称PVDF)、偏二氟乙烯与六氟丙烯共聚物(简称PVDF-HFP)、丁苯橡胶(简称SBR)或聚丙烯酸酯类聚合物(简称PA)中的一种或几种。可选地,复合的量为相对于100重量份的阴离子型离子液体聚合物,所述聚偏二氟乙烯的含量为0.01-9900,可选为0.01-500;偏二氟乙烯与六氟丙烯共聚物的含量为0.01-9900,可选为0.01-500;丁苯橡胶的含量为0.01-9900,可选为0.01-500;聚丙烯酸酯类聚合物的含量为0.01-9900,可选为0.01-500,各种粘结剂之间存在相互作用,通过粘结剂的复合既可以保证电极材料在集电体上的稳固附着,又可以降低粘结剂对电极材料脱嵌锂过程的阻碍作用。
本公开还提供了一种电极,其包括集电体和形成在集电体表面上的活性材料层,所述活性材料层包括活性材料和粘结剂,所述粘结剂为上述电池电极粘结剂。
集电极为本领域技术人员所公知的。例如铜箔、泡沫镍、铝箔等。
活性材料亦为本领技术人员所公知的,为可以脱嵌锂离子的物质。其分为正极活性材料和负极活性材料。
当活性材料为正极活性材料时,即电极为正极时,一般活性材料层中还包括导电剂,可选地,活性材料层中各组分重量比为正极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。上述可选的含量范围内,有利于离子液体聚合物和正极活性材料及导电剂复合,有利于提高正极片的容量和充放电效率。
正极活性材料可以为本领域技术人员所熟知的种类,本公开可选正极活性材料为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。其中,为了进一步提高正极活性材料的稳定性,正极活性物质也可以为先经过包覆材料包覆,包覆材料可以选自Li2CO3、Li4Ti5O12和LiNbO3中的至少一种。
根据本公开,导电剂的含义为本领域技术人员所熟知,可以为常规种类的导电剂,本公开不做特别的要求,例如,导电剂可以为选自乙炔黑、super P、碳纳米管、石墨烯、碳纳米纤维中的至少一种。
当活性材料为负极活性材料时,即电极为负极时,可选地,活性材料层中各组分重量比为负极活性材料:粘结剂=100:0.1~900。本公开可选负极活性材料为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。上述含量范围的离子液体聚合物和负极活性材料有利于提高锂离子电池的容量。当活性材料为负极活性材料时,活性材料层中也可以含有导电剂,导电剂可以为乙炔黑、super P、碳纳米管、石墨烯、碳纳米纤维中的至少一种,可选地,活性 材料层中各组分重量比为负极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。
电极的制备方法本公开可以为本领域技术人员所熟知的制备方法,涂覆、干燥及浆料的混合等本公开均没有限制。
本公开同时提供了一种锂离子电池,其包括电池壳、极芯和电解液,所述极芯和电解液密封容纳在电池壳内,所述极芯包括正极、负极及位于正极和负极之间的隔膜,所述正极为上述对应的正极电极和/或所述负极为上述对应的负极电极。
隔膜可以选自本领域技术人员公知的锂离子电池中所用的各种隔膜,例如聚烯烃微多孔膜(PP)、聚乙烯毡(PE)、玻璃纤维毡或超细玻璃纤维纸或PP/PE/PP。作为一种可选的实施方式,所述隔膜为PP/PE/PP。电解液含有锂盐和非水溶剂,锂盐可以为六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂、三氟甲基磺酸锂、全氟丁基磺酸锂、铝酸锂、氯铝酸锂、氟代磺酰亚胺锂、氯化锂和碘化锂中的一种或几种;非水溶剂可以为γ-丁内酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丙酯、酸酐、N-甲基吡咯烷酮、N-甲基甲酰胺、N-甲基乙酰胺、乙腈、N,N-二甲基甲酰胺、环丁砜、二甲亚砜、亚硫酸二甲酯以及其它含氟、含硫或含不饱和键的环状有机酯中的一种或几种。锂盐在电解液中的浓度可以为0.3-4摩尔/升,可选为0.5-2摩尔/升。壳体本公开没有限制,可以采用本领域技术人员公知的各种电池壳体,例如钢壳或铝壳等硬壳,也可以为铝塑膜等软包装壳,形状和大小可根据实际情形进行设计。上述锂离子电池的制备方法也为本领域的技术人员所公知的方法,一般来说,该方法包括将正极、负极和位于正极与负极之间的隔膜依次卷绕形成极芯,将极芯置入电池壳中,加入电解液,然后密封,其中,卷绕和密封的方法为本领域人员所公知。电解液的用量为常规用量。
当然,本公开的电池电极粘结剂并不局限于此种液态锂离子电池,也可以应用于固态锂离子电池,固态锂离子电池的正负极之间夹持电解质,电解质可以为液态电解质、聚合物电解质、无机固态电解质、复合电解质中的一种或几种。液态电解质可以由导电盐、溶剂和添加剂构成,导电盐可以为全氟烷基三氟硼酸锂LiBF3Rf(其中Rf=CiF2i+1,i=0~10)、全氟烷基五氟磷酸锂LiPF5Rf(其中Rf=CiF2i+1,i=0~10)、双草酸硼酸锂(简称LiBOB)、二氟草酸硼酸锂(简称LiDFOB)、双(三氟甲基磺酰)亚胺锂(简称LiTFSI)、双(氟磺酰)亚胺锂(简称LiFSI)等;溶剂为碳酸酯类溶剂EC、DEC、DMC等;添加剂为VC等。聚合物电解质可以为含氧化乙烯链段的聚合物或者聚离子液体与上述小分子锂盐组成的电解质,复合电解质可以为上述聚合物电解质与各种非导离子固体之间的混合,这些非导离子固体主要为金属氧化物(如:Al2O3、TiO2、FexO等)、非金属氧化物(如SiO2、B2O3等)、非金属硫化物(如:TiS2、FeS等)、金属有机框架化合物(Metal-organic Frameworks)(如:MOF-177、Cu-BTTri、 Mg2(dobdc)等)。无机固态电解质包括Perovskite型无机固态电解质(如:Li3xLa(2/3)-x(1/3)-2xTiO3(其中0<x<0.16,简称LLTO)等)、Garnet型无机固态电解质(如:Li7La3Zr2O12(简称LLZO)等)、NASCION型无机固态电解质(如:Li1.3Al0.3Ti1.7(PO4)3(简称LATP)等)、LISCION型无机固态电解质(如:硫系电解质Li3PS4、Li9.6P3S12、Li7P3S11、Li11Si2PS12、Li10SiP2S12、Li10SnP2S12、Li10GeP2S12、Li10Si0.5Ge0.5P2S12、Li10Ge0.5Sn0.5P2S12、Li10Si0.5Sn0.5P2S12、Li9.54Si1.74P1.44S11.7Cl0.3等)、Argyrodite型无机固态电解质(如:Li6PS5Br、Li6PS5Br、Li7PS6、Li7PS5I、Li7PO5Cl)、Li-Nitride类无机固态电解质(如:Li3N、Li7PN4、LiSi2N3、LiPN2)、Li-Hydride类无机固态电解质(如:Li2NH、Li3(NH2)2I、LiBH4、LiAlH4、LiNH2等)、Li-halide类无机固态电解质(如:Li2CdCl4、Li2MgCl4、Li2ZnCl4等)等。上述电池的制备为本领域技术人员公知,在此不再赘述。
以下通过实施例进一步详细说明本公开,但是本公开并不因此而受到任何限制。
发明示例
实施例A1
本实施例用于说明本公开的离子液体化合物的制备方法。
Figure PCTCN2017104003-appb-000051
Figure PCTCN2017104003-appb-000052
取2.0467g(10mmol)的3,5-二甲基苯磺酰氯与0.5109g(30mmol)液氨在-35℃下反应12h,得到化合物1a(1.6672g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,2H);
取1.8524g(10mmol)的化合物1a与2.3794g(20mmol)二氯亚砜、1.2817g(11mmol)氯磺酸在100℃下反应12h,得到化合物1b(2.5538g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,1H);
取2.8375g(10mmol)的化合物1b与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物1c(2.4057g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,1H);
取2.6730g(10mmol)的化合物1c与3.7927g(24mmol)KMnO4在100℃下反应12h,得到化合物1d(2.9453g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H)、2.0(s,1H);
取3.2726g(10mmol)的化合物1d与5.5284g(40mmol)K2CO3在25℃下反应2h,得到化合物1e(3.6535g g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=8.76(s,2×1H)、8.4(s,1H);
取3.6535g(10mmol)的化合物1e与4.1648g(20mmol)PCl5在60℃下反应12h,得到化合物1f(3.6203g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=9.11(s,2×1H)、8.9(s,1H);
取4.0225g(10mmol)的化合物1f与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应2h,得到化合物M1(4.2688g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=9.11(s,2×1H)、8.94(s,1H)、8.90(s,1H)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A2
Figure PCTCN2017104003-appb-000053
取1.8718g(10mmol)的三氟甲磺酰胺一氢钾与2.2514g(11mmol)的3,5-二甲基苯磺酰氯80℃下反应12h,得到化合物2a(2.8558g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,1H);
取3.1731g(10mmol)的化合物2a与3.7927g(24mmol)KMnO4在100℃下反应12h,得到化合物2b(3.3954g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H)、2.0(s,1H);
取3.7727g(10mmol)的化合物2b与5.5284g(40mmol)K2CO3在25℃下反应2h,得到化合物2c(4.9154g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=8.76(s,2×1H)、8.4(s,1H);
取4.9154g(10mmol)的化合物2c与4.1648g(20mmol)PCl5在60℃下反应12h,得到化合物2d(4.0703g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=9.11(s,2×1H)、8.9(s,1H);
取4.5225g(10mmol)的化合物2d与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应2h,得到化合物M2(4.7189g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=9.11(s,2×1H)、8.94(s,1H)、8.90(s,1H)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A3
Figure PCTCN2017104003-appb-000054
取4.7431g(10mmol)的化合物M1与0.3604g(20mmol)的水在25℃下反应12h,本实施例的离子液体化合物M3(4.3742g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=11.00(s,2×1H)、9.14(s,2×1H)、9.00(s,1H)、8.94(s,1H)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A4
Figure PCTCN2017104003-appb-000055
取5.2432g(10mmol)的化合物M2与0.3604g(20mmol)的水在25℃下反应12h,本实施例的离子液体化合物M4(4.8742g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=11.00(s,2×1H)、9.14(s,2×1H)、9.00(s,1H)、8.94(s,1H)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A5
本实施例用于说明本公开的离子液体聚合物的制备方法。
Figure PCTCN2017104003-appb-000056
取4.7431g(10mmol)(或4.3742g(10mmol))的离子液体化合物M1(或M3)与0.6828g(11mmol)HO(CH2)2OH和0.05g乙酸锑催化剂,在250℃下进行缩合聚合反应12h,得到本实施例的离子液体聚合物P1(3.9602g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
实施例A6
本实施例用于说明本公开的离子液体聚合物的制备方法。
Figure PCTCN2017104003-appb-000057
取5.2432g(10mmol)(或4.8742g(10mmol))的离子液体化合物M2(或M4)与0.6828g(11mmol)HO(CH2)2OH在250℃下进行缩合聚合反应12h,得到本实施例的离子液体聚合物P2(4.4103g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
实施例A7
本实施例用于说明本公开的离子液体聚合物的制备方法。
Figure PCTCN2017104003-appb-000058
取4.7431g(10mmol)(或4.3742g(10mmol))的离子液体化合物M1(或M3)与0.6611g(11mmol)H2N(CH2)2NH2和0.25g次磷酸钠催化剂,在250℃下进行缩合聚合反应12h,得到本实施例的离子液体聚合物P3(4.9584g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
实施例A8
本实施例用于说明本公开的离子液体聚合物的制备方法。
Figure PCTCN2017104003-appb-000059
取5.2432g(10mmol)(或4.8742g(10mmol))的离子液体化合物M2(或M4)与0.6611g(11mmol)H2N(CH2)2NH2在250℃下进行缩合聚合反应12h,得到本实施例的离子液体聚合物P4(4.4085g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
实施例A9
Figure PCTCN2017104003-appb-000060
取4.7431g(10mmol)(或4.3742g(10mmol))的离子液体化合物M1(或M3)与5.0410g(11mmol)HO(CH2CH2O)10H在250℃下进行缩合聚合反应12h,得到本实施例的离子液体聚合物P5(8.0288g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
实施例A10
Figure PCTCN2017104003-appb-000061
取5.2432g(10mmol)(或4.8742g(10mmol))的离子液体化合物M2(或M4)与0.6611g(11mmol)HO(CH2CH2O)10H在250℃下进行缩合聚合反应12h,得到本实施例的离子液体聚合物P6(8.4789g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
实施例A11
本实施例用于说明本公开的聚合物固态电解质和固态电池的制备方法。
(1)聚合物固态电解质的制备:
取7.509g上述制备的离子液体聚合物P1和3.741g LiFSI,并加入20mL乙腈搅拌10h。 之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质AE1。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(2)正极片的制备
取2.002g上述离子液体聚合物、0.998g LiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池AB1。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例A12-A16
采用实施例11中的方法,所不同的是,将离子液体聚合物P1分别替换为等当量的离子液体聚合物P2-P6,分别得到聚合物固态电解质AE2-AE6以及固态电池AB2-AB6。
对比例A1
(1)PEO-LiTFSI聚合物固态电解质的制备:
取4.240g PEO(分子量600000g/mol)、1g LiFSI,然后向其中加入10mL乙腈,之后搅拌24h。把得到的无色半透明溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质AE7。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。(2)正极片的制备
取2.427gPEO、0.573g LiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池AB7。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例A2
(1)将1.0g环氧化天然橡胶加入到烧杯中,并加入4mL二甲苯,6mL四氢呋喃,使橡胶溶胀。约2h后,对混合物进行磁力搅拌,直至橡胶完全溶解。在搅拌过程中,不断加入混合溶剂。
(2)将0.25mol离子液体1-羧甲基-3-甲基咪唑双(三氟甲磺酰)亚胺盐和0.0625mol锂 盐双(三氟甲烷磺酰)亚胺基锂盐(LiNTf2)溶于20mL四氢呋喃溶剂中,磁力搅拌0.5h。
(3)将(2)所得的溶液加入到6.58×10-3mol环氧化天然橡胶(ENR50)溶液中继续搅拌2h。
(4)将所得的混合溶液浇铸到聚四氟乙烯模具中,放到通风橱中自然挥发12h。然后转移到真空烘箱中40℃下干燥24h,得到本对比例的固态聚合物电解质AE8。
(5)采用与实施例A11相同的方法由固态聚合物电解质制备固态电池AB8。
对比例A3
将恒压漏斗、球形冷凝管、蒸馏装置和100mL三口烧瓶在烘箱中烘烤3小时后,向其中加入0.12g(1mmol)三羟甲基丙烷,除氧通氮气,反复三次,加入0.55mL无水甲醇和0.45mL甲醇钾溶液,搅拌反应0.5小时蒸出甲醇。升温到90℃,然后在12h内逐滴加入12mL缩水甘油,然后继续加热搅拌反应12h,加入一定量甲醇然后蒸干,放入45℃真空烘箱中烘12h。得到透明、粘稠、无色液体超支化聚缩水甘油(HPG)。根据元素分析:C49.00%,H8.51%,042.49%。GPC测得数均分子量为1719,分子量分布为1.37。每个超支化分子含有24个羟基分子。
在装有磁子的500mL干燥单口瓶中加入10g超支化聚缩水甘油(HPG),加入300mL氯化亚砜,氮气保护下,80℃加热回流24h,然后减压蒸馏出未反应氯化亚砜,真空烘箱干燥24h,得到黄色粘稠液体氯化超支化聚缩水甘油(HPG-C1)。1H NMR计算结果表明,羟基全部被氯化。
在装有磁子的250mL二口烧瓶加入5g氯化超支化聚缩水甘油(HPG-C1),加入20mL N,N-二甲基甲酰胺,在冰水浴中冷却,在氮气条件下缓慢加入N-甲基咪唑([MeIm]/[C1]=1.5:1),然后搅拌加热反应8h,冷却到室温,加压蒸出N,N-二甲基甲酰胺,用适量丙酮多次洗涤粗产物,过滤,真空干燥,得到黄色黏度低的离子液体聚合物[HPG-MeIm]Cl。DSC测得玻璃化转变温度为-18℃,TGA测得初始分解温度为169℃。
在装有磁子的50mL单口瓶中加入0.3g离子液体聚合物,然后加入0.1g双三氟甲基磺酰亚胺锂,5mL N,N-二甲基甲酰胺,强烈搅拌至聚合物和锂盐完全溶解,将溶液倒入聚四氟乙烯磨具中,室温挥发12h除去大部分溶剂,然后60℃真空干燥24h,得到本对比例的离子液体聚合物电解质AE9。
采用与实施例A11相同的方法由离子液体聚合物制备固态电池AB9。
测试实施例A1
对实施例A11-A16和对比例A1-A3中得到的聚合物固态电解质AE1-AE9的电导率分 别进行测试。测试方法为电化学阻抗法,测试条件包括:取上述电解质AE1-AE6分别与不锈钢片组装成阻塞电池,电池结构为SS|Solid electrolytes|SS。于25℃下在1Hz到8MHz的频率范围内进行电化学阻抗测试,依据所测电解质阻抗和公式(1)计算电解质的室温离子电导率。
σ=l/RS  公式(1)
其中σ为电解质的离子电导率,单位为S cm-1;l为电解质膜的厚度,单位为cm;R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解质与不锈钢片的接触面积,单位为cm2;测试结果列于表1。
表1
电解质编号 AE1 AE2 AE3 AE4 AE5
σ(S/cm) 8.5×10-5 9.2×10-5 9.1×10-5 9.3×10-5 1.2×10-4
电解质编号 AE6 AE7 AE8 AE9  
σ(S/cm) 1.5×10-4 6×10-6 5.1×10-7 4.6×10-5  
测试实施例A2
对实施例A11-A16和对比例A1-A3中得到的固态电池AB1-AB9进行电池倍率性能测试:
使固态电池AB1-AB9分别以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V。测试结果列于表2。
表2
Figure PCTCN2017104003-appb-000062
Figure PCTCN2017104003-appb-000063
测试实施例A3
对实施例A11-A16和对比例A1-A3中得到的固态电池AB1-AB9分别进行电池循环性能测试:
使固态电池AB1-AB9分别以0.2C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.02C截止,最后以0.2C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次,测试结果列于表3。
表3
Figure PCTCN2017104003-appb-000064
根据表1-3,从实施例A11-A16和对比例A1-A3的数据对比可以看出,相对于PEO和锂盐物理共混复合的聚合物固态电解质(对比例A1)、含有小分子全氟磺酰亚胺阴离子中心的离子液体与锂盐、天然橡胶复合得到的固态电解质(对比例A2)以及含有阳离子型离子液体聚合物与锂盐复合的聚合物固态电解质(对比例A3)相比,本公开的离子液体聚合物制备的聚合物固态电解质具有较高的电导率,由聚合物固态电解质制备的固态电池具有良好的倍率性能和循环性能。
实施例B1
(1)离子液体聚合物的制备:
Figure PCTCN2017104003-appb-000065
取2.0467g(10mmol)的3,5-二甲基苯磺酰氯与0.5109g(30mmol)液氨在-35℃下反应12h,得到化合物a(1.6672g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,2H);
取1.8524g(10mmol)的化合物a与2.3794g(20mmol)二氯亚砜、1.2817g(11mmol)氯磺酸在100℃下反应12h,得到化合物b(2.5538g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,1H);
取2.8375g(10mmol)的化合物b与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物c(2.4057g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、 2.35(s,2×3H)、2.0(s,1H);
取2.6730g(10mmol)的化合物c与3.7927g(24mmol)KMnO4在100℃下反应12h,得到化合物d(2.9453g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H)、2.0(s,1H);
取3.2726g(10mmol)的化合物d与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物M3(3.6535g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H);
取3.6535g(10mmol)的离子液体化合物M与0.6828g(11mmol)HO(CH2)2OH和0.05g乙酸锑催化剂,在250℃下进行缩合聚合反应12h,得到离子液体聚合物p(3.3116g,收率90%);1H NMR(400MHz,CDCl3,ppm),1H NMR(400MHz,CDCl3,ppm),δ=8.87(s)、8.60(s)、8.00(s)、3.50(m);
取3.6795g(单体为10mmol)的离子液体聚合物p与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体聚合物P(3.9602g,收率90%,重均分子量为30万),平均粒径500nm;1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
(2)聚合物固态电解质的制备:
取9.910g上述制备的离子液体聚合物P和3.741gLiFSI,并加入20mL乙腈搅拌10h。之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质BE1。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备。
取2.178g上述离子液体聚合物P、0.822gLiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。正极片中聚合物固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5。
(4)固态电池的组装
取上述聚合物固态电解质片(Φ上述聚合)、上述正极片(Φ、上述正)和锂片(Φ和锂片()组装成CR2025的扣式电池BB1。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例B2
(1)离子液体聚合物的制备:
Figure PCTCN2017104003-appb-000066
取3.6535g(10mmol)的离子液体化合物M与0.6611g(11mmol)H2N(CH2)2NH2和0.25g次磷酸钠催化剂,在250℃下进行缩合聚合反应12h,得到离子液体聚合物p(3.3098g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.87(s)、8.60(s)、8.00(s)、3.50(m);
取3.6776g(单体为10mmol)的离子液体聚合物p与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体聚合物P(4.9584g,收率90%,重均分子量为3万),平均粒径500nm。;1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
(2)聚合物固态电解质的制备:
取9.870g(20mmol)上述制备的离子液体聚合物P和3.741g(20mmol)LiFSI,并加入20mL乙腈搅拌10h。之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质BE2。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备
取2.175g上述离子液体聚合物P、0.825gLiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。正极片中聚合物固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5。
(4)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池BB2。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例B1
(1)PEO-LiTFSI聚合物固态电解质的制备:
取4.240g PEO(分子量600000g/mol)、1g LiFSI,然后向其中加入10mL乙腈,之后 搅拌24h。把得到的无色半透明溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质BE3。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(2)正极片的制备
取2.427gPEO、0.573gLiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池BB3。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例B2
(1)将1.0g环氧化天然橡胶加入到烧杯中,并加入4mL二甲苯,6mL四氢呋喃,使橡胶溶胀。约2h后,对混合物进行磁力搅拌,直至橡胶完全溶解。在搅拌过程中,不断加入混合溶剂。
(2)将0.25mol离子液体1-羧甲基-3-甲基咪唑双(三氟甲磺酰)亚胺盐和0.0625mol锂盐双(三氟甲烷磺酰)亚胺基锂盐(LiNTf2)溶于20mL四氢呋喃溶剂中,磁力搅拌0.5h。
(3)将(2)所得的溶液加入到6.58×10-3mol环氧化天然橡胶(ENR50)溶液中继续搅拌2h。
(4)将所得的混合溶液浇铸到聚四氟乙烯模具中,放到通风橱中自然挥发12h。然后转移到真空烘箱中40℃下干燥24h,得到本对比例的固态聚合物电解质BE4。
(5)采用与实施例B1相同的方法由固态聚合物电解质制备固态电池BB4。
对比例B3
将恒压漏斗、球形冷凝管、蒸馏装置和100mL三口烧瓶在烘箱中烘烤3小时后,向其中加入0.12g(1mmol)三羟甲基丙烷,除氧通氮气,反复三次,加入0.55mL无水甲醇和0.45mL甲醇钾溶液,搅拌反应0.5小时蒸出甲醇。升温到90℃,然后在12h内逐滴加入12mL缩水甘油,然后继续加热搅拌反应12h,加入一定量甲醇然后蒸干,放入45℃真空烘箱中烘12h。得到透明、粘稠、无色液体超支化聚缩水甘油(HPG)。根据元素分析:C49.00%,H8.51%,042.49%。GPC测得数均分子量为1719,分子量分布为1.37。每个超支化分子含有24个羟基分子。
在装有磁子的500mL干燥单口瓶中加入10g超支化聚缩水甘油(HPG),加入300mL氯化亚砜,氮气保护下,80℃加热回流24h,然后减压蒸馏出未反应氯化亚砜,真空烘箱干燥24h,得到黄色粘稠液体氯化超支化聚缩水甘油(HPG-C1)。1H NMR计算结果表明,羟基全部被氯化。
在装有磁子的250mL二口烧瓶加入5g氯化超支化聚缩水甘油(HPG-C1),加入20mLN,N-二甲基甲酰胺,在冰水浴中冷却,在氮气条件下缓慢加入N-甲基咪唑([MeIm]/[C1]=1.5:1),然后搅拌加热反应8h,冷却到室温,加压蒸出N,N-二甲基甲酰胺,用适量丙酮多次洗涤粗产物,过滤,真空干燥,得到黄色黏度低的离子液体聚合物[HPG-MeIm]Cl。DSC测得玻璃化转变温度为-18℃,TGA测得初始分解温度为169℃。
在装有磁子的50mL单口瓶中加入0.3g离子液体聚合物,然后加入0.1g双三氟甲基磺酰亚胺锂,5mLN,N-二甲基甲酰胺,强烈搅拌至聚合物和锂盐完全溶解,将溶液倒入聚四氟乙烯磨具中,室温挥发12h除去大部分溶剂,然后60℃真空干燥24h,得到本对比例的离子液体聚合物电解质BE5。
采用与实施例B1相同的方法由离子液体聚合物制备固态电池BB5。
测试实施例B1
对实施例B1-B2和对比例B1-B3中得到的聚合物固态电解质BE1-BE5的电导率分别进行测试。测试方法为电化学阻抗法,测试条件包括:取上述电解质BE1-BE5分别与不锈钢片组装成阻塞电池,电池结构为SS|Solid electrolytes|SS。于25℃下在1Hz到8MHz的频率范围内进行电化学阻抗测试,依据所测电解质阻抗和公式(1)计算电解质的室温离子电导率。
σ=l/RS公式(1)
其中σ为电解质的离子电导率,单位为S cm-1;l为电解质膜的厚度,单位为cm;R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解质与不锈钢片的接触面积,单位为cm2;测试结果列于表4。
表4
电解质编号 BE1 BE2 BE3 BE4 BE5
σ(S/cm) 2.7×10-3 4.5×10-3 6×10-6 5.1×10-7 4.6×10-5
测试实施例B2
对实施例B1-B2和对比例B1-B3中得到的固态电池进行电池倍率性能测试。
使实施例B1-B2和对比例B1-B3中得到的固态电池分别以0.1C的倍率从3.0V恒流充电到 4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V。测试结果列于表5。
表5
Figure PCTCN2017104003-appb-000067
测试实施例B3
对实施例B1-B2和对比例B1-B3中得到的固态电池进行电池循环性能测试。
使实施例B1-B2和对比例B1-B3中得到的固态电池以0.2C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.02C截止,最后以0.2C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次,测试结果列于表6。
表6
Figure PCTCN2017104003-appb-000068
根据表4-6,从实施例B1-B2和对比例B1-B3的数据对比可以看出,相对于PEO和锂盐物理共混复合的聚合物固态电解质(对比例B1)、含有小分子全氟磺酰亚胺阴离子中心的离子液体与锂盐、天然橡胶复合得到的固态电解质(对比例B2)以及含有阳离子型离子液体聚合物与锂盐复合的聚合物固态电解质(对比例B3)相比,本公开的离子液体聚合物制备的聚合物固态电解质具有较高的电导率,由聚合物固态电解质制备的固态电池具有良好的倍率性能和循环性能。
实施例C1
(1)离子液体聚合物的制备:
Figure PCTCN2017104003-appb-000069
取2.0467g(10mmol)的3,5-二甲基苯磺酰氯与0.5109g(30mmol)液氨在-35℃下反应12h,得到化合物a(1.6672g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,2H);
取1.8524g(10mmol)的化合物a与2.3794g(20mmol)二氯亚砜、1.2817g(11mmol)氯磺酸在100℃下反应12h,得到化合物b(2.5538g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,1H);
取2.8375g(10mmol)的化合物b与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物c(2.4057g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、 2.35(s,2×3H)、2.0(s,1H);
取2.6730g(10mmol)的化合物c与3.7927g(24mmol)KMnO4在100℃下反应12h,得到化合物d(2.9453g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H)、2.0(s,1H);
取3.2726g(10mmol)的化合物d与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物M(3.6535g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H);
取3.6535g(10mmol)的离子液体化合物M与0.6828g(11mmol)HO(CH2)2OH和0.05g乙酸锑催化剂,在250℃下进行缩合聚合反应12h,得到离子液体聚合物p(3.3116g,收率90%);1H NMR(400MHz,CDCl3,ppm),1H NMR(400MHz,CDCl3,ppm),δ=8.87(s)、8.60(s)、8.00(s)、3.50(m);
取3.6795g(单体为10mmol)的离子液体聚合物p与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体聚合物P(3.9602g,收率90%,重均分子量为30万);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
(2)复合固态电解质的制备:
取1g上述制备的离子液体聚合物P和9g Li10Sn2PS12,并加入20mL乙腈搅拌10h。之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质CE1。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备
取0.3g上述离子液体聚合物P、2.7g Li10Sn2PS12和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)固态电池的组装
取上述复合固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池CB1。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例C2
(1)离子液体聚合物的制备:
Figure PCTCN2017104003-appb-000070
取3.6535g(10mmol)的离子液体化合物M与0.6611g(11mmol)H2N(CH2)2NH2和0.25g次磷酸钠催化剂,在250℃下进行缩合聚合反应12h,得到离子液体聚合物p(3.3098g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.87(s)、8.60(s)、8.00(s)、3.50(m);
取3.6776g(单体为10mmol)的离子液体聚合物p与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体聚合物P(4.9584g,收率90%,重均分子量为30万);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
(2)复合固态电解质的制备:
取1g上述制备的离子液体聚合物P和9g Li10Sn2PS12,并加入20mL乙腈搅拌10h。之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质CE2。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备
取0.3g上述离子液体聚合物P、2.7g Li10Sn2PS12和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)固态电池的组装
取上述复合固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池CB2。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例C1
(1)PEO-LiTFSI聚合物固态电解质的制备:
取4.240g PEO(分子量600000g/mol)、1g LiFSI,然后向其中加入10mL乙腈,之后搅拌24h。把得到的无色半透明溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状 的聚合物固态电解质CE3。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(2)正极片的制备
取2.427gPEO、0.573g LiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池CB3。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例C2(CN 104362373 A)
(1)将1.0g环氧化天然橡胶加入到烧杯中,并加入4mL二甲苯,6mL四氢呋喃,使橡胶溶胀。约2h后,对混合物进行磁力搅拌,直至橡胶完全溶解。在搅拌过程中,不断加入混合溶剂。
(2)将0.25mol离子液体1-羧甲基-3-甲基咪唑双(三氟甲磺酰)亚胺盐和0.0625mol锂盐双(三氟甲烷磺酰)亚胺基锂盐(LiNTf2)溶于20mL四氢呋喃溶剂中,磁力搅拌0.5h。
(3)将(2)所得的溶液加入到6.58×10-3mol环氧化天然橡胶(ENR50)溶液中继续搅拌2h。
(4)将所得的混合溶液浇铸到聚四氟乙烯模具中,放到通风橱中自然挥发12h。然后转移到真空烘箱中40℃下干燥24h,得到本对比例的固态聚合物电解质CE4。
(5)采用实施例C1的方法由固态聚合物电解质制备固态电池CB4。
对比例C3
将恒压漏斗、球形冷凝管、蒸馏装置和100mL三口烧瓶在烘箱中烘烤3小时后,向其中加入0.12g(1mmol)三羟甲基丙烷,除氧通氮气,反复三次,加入0.55mL无水甲醇和0.45mL甲醇钾溶液,搅拌反应0.5小时蒸出甲醇。升温到90℃,然后在12h内逐滴加入12mL缩水甘油,然后继续加热搅拌反应12h,加入一定量甲醇然后蒸干,放入45℃真空烘箱中烘12h。得到透明、粘稠、无色液体超支化聚缩水甘油(HPG)。根据元素分析:C49.00%,H8.51%,042.49%。GPC测得数均分子量为1719,分子量分布为1.37。每个超支化分子含有24个羟基分子。
在装有磁子的500mL干燥单口瓶中加入10g超支化聚缩水甘油(HPG),加入300mL氯化亚砜,氮气保护下,80℃加热回流24h,然后减压蒸馏出未反应氯化亚砜,真空烘箱干燥24h,得到黄色粘稠液体氯化超支化聚缩水甘油(HPG-C1)。1H NMR计算结果表明,羟基全 部被氯化。
在装有磁子的250mL二口烧瓶加入5g氯化超支化聚缩水甘油(HPG-C1),加入20mL N,N-二甲基甲酰胺,在冰水浴中冷却,在氮气条件下缓慢加入N-甲基咪唑([MeIm]/[C1]=1.5:1),然后搅拌加热反应8h,冷却到室温,加压蒸出N,N-二甲基甲酰胺,用适量丙酮多次洗涤粗产物,过滤,真空干燥,得到黄色黏度低的离子液体聚合物[HPG-MeIm]Cl。DSC测得玻璃化转变温度为-18℃,TGA测得初始分解温度为169℃。
在装有磁子的50mL单口瓶中加入0.3g离子液体聚合物,然后加入0.1g双三氟甲基磺酰亚胺锂,5mL N,N-二甲基甲酰胺,强烈搅拌至聚合物和锂盐完全溶解,将溶液倒入聚四氟乙烯磨具中,室温挥发12h除去大部分溶剂,然后60℃真空干燥24h,得到本对比例的离子液体聚合物电解质CE5。
采用实施例C1的方法由离子液体聚合物制备固态电池CB5。
对比例C4
将通过将8.52g双(三氟甲磺酰)亚胺锂(LiTFSI)溶解于10mL蒸馏水中制备的溶液和通过将4g聚氯化(二烯丙基二甲基铵)(可得自Aldrich,#409022,重均分子量在约200,000-约350,000范围内,在水中20重量%溶解在100mL蒸馏水中制备的溶液一起置于250mL圆底烧瓶中。将反应混合物在室温下搅拌约1小时以形成白色晶体的沉淀物。将由此获得的白色晶体过滤,并在真空烘箱中在105℃下干燥以获得由式D4表示的聚(二烯丙基二甲基铵)TFSI。聚(二烯丙基二甲基铵)TFSI的产率为约93.5重量%,n为约2,500。
Figure PCTCN2017104003-appb-000071
将聚(二烯丙基二甲基铵)TFSI、具有10纳米(nm)的平均粒径的氧化铝(Al2O3)颗粒(可得自Nanoamor,10nm,99%纯度,160平方米/克(m2/g),Lot#1041-070510)、和液体电解质(其中,1.3摩尔浓度(M)LiPF6溶解于体积比为2:6:2的EC(碳酸亚乙酯):DEC(碳酸二乙酯):FEC(碳酸氟代亚乙酯)的混合溶剂中)以2:3:3的重量比添加到二甲基甲酰胺(DMF)以获得10重量%聚(二烯丙基二甲基铵)TFSI溶液。然后将所述溶液在室温(20℃)下搅拌约1小时以制备用于形成复合电解质的组合物。通过使用刮刀用所述组合物涂覆铜集流体上的具有40微米(μm)厚度的锂金属薄膜,在高温(40℃)下干燥,并在室温下真空干燥(20℃,12小时)以制备具有包括涂覆在锂金属上的15μm厚度的复合电解质层的结构的负极。基于氧化铝和聚 合物离子液体的总重量,复合电解质层中的氧化铝的含量为约60重量%。
通过使用刮刀用在上述制备的组合物涂覆铜集流体和SUS集流体的每一个,在高温(40℃)下干燥,并在室温下真空干燥(25℃,12小时)以制备具有包括涂覆在所述集流体的每一个上的15μm厚度的复合电解质层的结构的电极。基于氧化铝和聚合物离子液体的总重量,复合电解质层中的氧化铝的含量为约60重量%。
使用所制备的电极作为工作电极,使用各自覆盖有锂金属薄层的铜集流体和SUS集流体作为对电极,使用聚丙烯隔板(3501)作为隔板,并使用其中1.3M LiPF6溶解于EC(碳酸亚乙酯)+DEC(碳酸二乙酯)+FEC(碳酸氟代亚乙酯)(体积比为2:6:2)的混合溶剂中的溶液作为电解质CE6以制备硬币电池CB6。
测试实施例C1
对实施例C1-C2和对比例C1-C4中得到的电解质CE1-CE6的电导率分别进行测试。测试方法为电化学阻抗法,测试条件包括:取上述电解质CE1-CE6分别与不锈钢片组装成阻塞电池,电池结构为SS|electrolytes|SS。于25℃下在1Hz到8MHz的频率范围内进行电化学阻抗测试,依据所测电解质阻抗和公式(1)计算电解质的室温离子电导率。
σ=l/RS公式(1)
其中σ为电解质的离子电导率,单位为S·cm-1;l为电解质膜的厚度,单位为cm;R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解质与不锈钢片的接触面积,单位为cm2;测试结果列于表7。
表7
电解质编号 CE1 CE2 CE3 CE4 CE5 CE6
σ(S/cm) 2.6×10-3 4×10-3 6×10-6 5.1×10-7 4.6×10-5 7.2×10-6
测试实施例C2
对实施例C1-C2和对比例C1-C4中得到的电池进行电池倍率性能测试。
使实施例C1-C2和对比例C1-C4中得到的电池分别以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V。测试结果列于表8。
表8
Figure PCTCN2017104003-appb-000072
Figure PCTCN2017104003-appb-000073
测试实施例C3
对实施例C1-C2和对比例C1-C4中得到的电池进行电池循环性能测试。
使实施例C1-C2和对比例C1-C4中得到的电池以0.2C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.02C截止,最后以0.2C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次,测试结果列于表9。
表9
Figure PCTCN2017104003-appb-000074
根据表7-9,从实施例C1-C2和对比例C1-C4的数据对比可以看出,相对于PEO和锂盐物理共混复合的聚合物固态电解质(对比例C1)、含有小分子全氟磺酰亚胺阴离子中心的离子液体与锂盐、天然橡胶复合得到的固态电解质(对比例C2)、含有阳离子型离子液体聚合物与锂盐复合的复合固态电解质(对比例C3)以及溶液电解质(对比例C4)相比,本公开的离子液体聚合物制备的复合固态电解质具有较高的电导率,由复合固态电解质制备的固态电池具有良好的倍率性能和循环性能。
实施例D1
(1)离子液体聚合物的制备:
Figure PCTCN2017104003-appb-000075
取2.0467g(10mmol)的3,5-二甲基苯磺酰氯与0.5109g(30mmol)液氨在-35℃下反应12h,得到化合物a(1.6672g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,2H);
取1.8524g(10mmol)的化合物a与2.3794g(20mmol)二氯亚砜、1.2817g(11mmol)氯磺酸在100℃下反应12h,得到化合物b(2.5538g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、2.35(s,2×3H)、2.0(s,1H);
取2.8375g(10mmol)的化合物3b与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物c(2.4057g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.54(s,2×1H)、6.90(s,1H)、 2.35(s,2×3H)、2.0(s,1H);
取2.6730g(10mmol)的化合物c与3.7927g(24mmol)KMnO4在100℃下反应12h,得到化合物d(2.9453g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H)、2.0(s,1H);
取3.2726g(10mmol)的化合物d与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物M(3.6535g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,2×1H)、9.14(s,2×1H)、9.0(s,1H);
取3.6535g(10mmol)的离子液体化合物M与0.6828g(11mmol)HO(CH2)2OH和0.05g乙酸锑催化剂,在250℃下进行缩合聚合反应12h,得到离子液体聚合物p(3.3116g,收率90%);1H NMR(400MHz,CDCl3,ppm),1H NMR(400MHz,CDCl3,ppm),δ=8.87(s)、8.60(s)、8.00(s)、3.50(m);
取3.6795g(单体为10mmol)的离子液体聚合物p与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体聚合物P(3.9602g,收率90%,重均分子量为30万),平均粒径500nm;1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
(2)正极的制备
取0.5g上述离子液体聚合物P、9g LiCoO2、0.5g乙炔黑以及5g乙腈并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g上述离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g乙腈并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例D2
(1)离子液体聚合物的制备:
Figure PCTCN2017104003-appb-000076
取3.6535g(10mmol)的离子液体化合物M与0.6611g(11mmol)H2N(CH2)2NH2和0.25g次磷酸钠催化剂,在250℃下进行缩合聚合反应12h,得到离子液体聚合物p(3.3098g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.87(s)、8.60(s)、8.00(s)、3.50(m);
取3.6776g(单体为10mmol)的离子液体聚合物p与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体聚合物P(4.9584g,收率90%,重均分子量为3万),平均粒径500nm。;1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.87(s)、8.60(s)、8.00(s)、7.74(s,1H)、7.67(s,1H)、4.38(q,2H)、4.03(s,3H)、3.50(m)、1.56(t,3H)。
(2)正极的制备
取0.5g上述离子液体聚合物P、9g LiCoO2、0.5g乙炔黑以及5g乙腈并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g上述离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g乙腈并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例D1
(1)正极的制备
取0.5g PVDF、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为 -70℃)中进行。
(2)负极的制备
取0.5g PVDF、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例D2(CN105449218A)
(1)采用与CN105449218A中实施例1相同的方法步骤制备离子聚合物(以聚砜主链为主链,侧链上接枝有含氟磺酰亚胺锂盐,其分子式为-[(Ar)-CF2CF2OCF2CF2SO2N(Li)SO2C7H7]n)
(2)正极的制备
取0.5g上述离子聚合物、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g上述离子聚合物、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例D3(CN102763251A)
(1)采用与CN102763251A中实施例1相同的方法步骤制备石墨烯-离子液体聚合物复合材料。
(2)正极的制备
取0.5g PVDF、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用 涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g PVDF、9g上述石墨烯-离子液体聚合物复合材料、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
性能测试
(1)电池倍率性能测试
电池组装好后,先以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V,测试结果如表10。
(2)电池循环性能测试
电池组装好后,先以1C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.01C截止,最后以1C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次。以上电池100次循环测试结果如表10。
表10
Figure PCTCN2017104003-appb-000077
从表10可以看出,本发明制备的电池倍率性能优,电池粘结剂的粘结性能好,电池的循环性能佳。
以上结合附图和表格详细描述了本公开的可选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (62)

  1. 一种离子液体化合物,具有如下式(1)所示的结构:
    Figure PCTCN2017104003-appb-100001
    其中,Rf为ChF2h+1,h为0-10的整数;
    Z为Cl、Br、I和OH中的至少一种;
    阳离子
    Figure PCTCN2017104003-appb-100002
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017104003-appb-100003
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
  2. 根据权利要求1所述的离子液体化合物,其中所述化合物为选自如下式(M1)-式(M4)中的一种:
    Figure PCTCN2017104003-appb-100004
  3. 一种制备离子液体化合物的方法,包括:使式(9)所示的化合物在离子交换反应条件下与含有阳离子
    Figure PCTCN2017104003-appb-100005
    的卤化物接触得到式(10)所示的化合物:
    Figure PCTCN2017104003-appb-100006
    其中,Rf为ChF2h+1,h为0-10的整数;Z1为Cl、Br和I中的至少一种;
    阳离子
    Figure PCTCN2017104003-appb-100007
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017104003-appb-100008
    Figure PCTCN2017104003-appb-100009
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
  4. 根据权利要求3所述的方法,其中所述含有阳离子
    Figure PCTCN2017104003-appb-100010
    的卤化物为
    Figure PCTCN2017104003-appb-100011
    Figure PCTCN2017104003-appb-100012
    式(9)所示的化合物与所述含有阳离子
    Figure PCTCN2017104003-appb-100013
    的卤化物的摩尔比为1:(1.0-1.2)。
  5. 根据权利要求3或4所述的方法,其中所述离子交换反应的条件为:反应温度为0-60℃,反应时间为1-24h,溶剂为水、二氯甲烷、氯仿、乙腈、硝基甲烷和丙酮中的至少一种。
  6. 根据权利要求3所述的方法,还包括:使式(12)所示的化合物在卤化反应条件下与卤化试剂接触得到式(9)所示的化合物:
    Figure PCTCN2017104003-appb-100014
    其中,Rf为ChF2h+1,h为0-10的整数。
  7. 根据权利要求6所述的方法,其中所述卤化试剂为选自PX5和/或POX3,X为Cl、Br和I中的至少一种;式(12)所示的化合物与卤化试剂的摩尔比为1:(2-6)。
  8. 根据权利要求6或7所述的方法,其中所述卤化反应的条件为:反应温度为0-200℃,反应时间为1-24h,溶剂为二氯甲烷、氯仿、乙腈、硝基甲烷和丙酮中的至少一种。
  9. 根据权利要求6所述的方法,还包括:使式(13)所示的化合物在中和反应条件下 与碱接触得到式(12)所示的化合物:
    Figure PCTCN2017104003-appb-100015
    其中,Rf为ChF2h+1,h为0-10的整数。
  10. 根据权利要求9所述的方法,其中所述碱为选自碳酸钾、碳酸氢钾和氢氧化钾中的至少一种;式(13)所示的化合物与所述碱的摩尔比为1:(3-6)。
  11. 根据权利要求9或10所述的方法,其中所述中和反应的条件为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
  12. 根据权利要求9所述的方法,还包括:使式(14)所示的化合物在氧化反应条件下与氧化剂接触得到式(13)所示的化合物:
    Figure PCTCN2017104003-appb-100016
    其中,Rf为ChF2h+1,h为0-10的整数。
  13. 根据权利要求12所述的方法,其中所述氧化剂为选自高锰酸钾和/或重铬酸钾中的至少一种,式(14)所示的化合物与氧化剂的摩尔比为1:(2-6)。
  14. 根据权利要求12或13所述的方法,其中所述氧化反应的条件为:反应温度为0-200℃,反应时间为1-24h,溶剂为水。
  15. 根据权利要求12所述的方法,还包括:使式(15)所示的化合物在在氟代反应条件下与氟代试剂接触得到式(14)所示的化合物:
    Figure PCTCN2017104003-appb-100017
    式(14)中,Rf为F。
  16. 根据权利要求15所述的方法,其中所述氟代试剂为选自SbF3、AsF3、KF、NaF和LiF中的至少一种;式(15)所示的化合物与所述氟代试剂的摩尔比为1:(1-1.5)。
  17. 根据权利要求15或16所述的方法,其中所述氟代反应的条件为:反应温度为-50℃至100℃,反应时间为1-24h,溶剂为乙腈或硝基甲烷。
  18. 根据权利要求15所述的方法,还包括:使式(16)所示的化合物在取代反应条件下与取代试剂接触得到式(15)所示的化合物:
    Figure PCTCN2017104003-appb-100018
  19. 根据权利要求18所述的方法,其中所述取代试剂为二氯亚砜和氯磺酸,式(16)所示的化合物与二氯亚砜和氯磺酸的摩尔比为1:(1-5):(1-1.5)。
  20. 根据权利要求18或19所述的方法,其中所述取代反应的条件为:反应温度为0-200℃,反应时间为1-24h。
  21. 根据权利要求18所述的方法,还包括:使式(17)所示的化合物在取代反应条件下与取代试剂接触得到式(16)所示的化合物:
    Figure PCTCN2017104003-appb-100019
  22. 根据权利要求21所述的方法,其中所述取代试剂为液氨,式(17)所示的化合物 与所述取代试剂的摩尔比为1:(2-5)。
  23. 根据权利要求21或22所述的方法,其中所述取代反应的条件为:反应温度为-50℃至0℃,反应时间为1-24h,溶剂为乙腈、硝基甲烷和四氢呋喃中的至少一种。
  24. 根据权利要求12所述的方法,其中使式(18)所示的化合物在取代反应条件下与式(17)所示的化合物接触得到式(14)所示的化合物:
    Figure PCTCN2017104003-appb-100020
    其中,Rf为ChF2h+1,h为1-10的整数。
  25. 根据权利要求24所述的方法,其中式(18)所示的化合物与式(17)所示的化合物的摩尔比为1:(0.8-1)。
  26. 根据权利要求24或25所述的方法,其中所述取代反应的条件为:反应温度为0-200℃,反应时间为1-24h,溶剂为乙腈和/或硝基甲烷,催化剂为吡啶和/或三乙胺。
  27. 一种制备离子液体化合物的方法,包括:式(10)所示的化合物在水解反应条件下与水接触得到式(19)所示的离子液体化合物:
    Figure PCTCN2017104003-appb-100021
    其中,Rf为ChF2h+1,h为0-10的整数;Z1为Cl、Br和I中的至少一种,Z2为OH;
    阳离子
    Figure PCTCN2017104003-appb-100022
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017104003-appb-100023
    Figure PCTCN2017104003-appb-100024
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
  28. 根据权利要求27所述的方法,其中所述水解反应的条件为:反应温度为0-60℃,反应时间为1-24h。
  29. 一种离子液体聚合物,具有如下式(20)所示的结构:
    Figure PCTCN2017104003-appb-100025
    其中,W为
    Figure PCTCN2017104003-appb-100026
    m各自独立地为1-20的整数,X各自独立地为CqH2q或CqF2q,q各自独立地为1-10的整数;
    阳离子
    Figure PCTCN2017104003-appb-100027
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017104003-appb-100028
    n的取值使得所述离子液体聚合物的分子量为1万-50万。
  30. 根据权利要求29所述的离子液体聚合物,其中所述离子液体聚合物为选自如下式(P1)-式(P6)中的一种:
    Figure PCTCN2017104003-appb-100029
  31. 一种制备离子液体聚合物的方法,包括:使式(1)所示的化合物在缩合聚合反应条件下与H2N(X)mNH2、HO(X)mOH和HO(CH2CH2O)mH中的至少一种接触,得到式(20)所示的离子液体聚合物:
    Figure PCTCN2017104003-appb-100030
    其中,Rf为ChF2h+1,h为0-10的整数;
    W为
    Figure PCTCN2017104003-appb-100031
    m各自独立地为1-20的整数,X各自独立地为CqH2q或CqF2q,q各自独立地为1-10的整数;
    阳离子
    Figure PCTCN2017104003-appb-100032
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017104003-appb-100033
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数;
    n的取值使得所述离子液体聚合物的分子量为1万-50万。
  32. 根据权利要求31所述的制备方法,其中式(1)所示的化合物与H2N(X)mNH2的摩尔比为1:(1-1.5);
    式(1)所示的化合物与HO(X)mOH的摩尔比为1:(1-1.5);
    式(1)所示的化合物与HO(CH2CH2O)mH的摩尔比为1:(1-1.5)。
  33. 根据权利要求31或32所述的制备方法,其中所述缩合聚合反应条件为:反应温度为150-350℃,反应时间为5-24h,溶剂为甲醇、乙醇、正丙醇、异丙醇和丁醇中的至少一种,缩合聚合催化剂为选自乙酸锑和/或次磷酸钠。
  34. 权利要求29或30所述的离子液体聚合物在电容器、固态电池和燃料电池中的应用。
  35. 一种固态电解质,其中所述聚合物固态电解质包括权利要求29或30所述的离子液体聚合物。
  36. 根据权利要35所述的固态电解质,其中所述固态电解质为包括锂盐的聚合物固态电解质,所述离子液体聚合物和锂盐的重量比为1:(0.01-9)。
  37. 根据权利要36所述的固态电解质,其中所述锂盐为选自如LiBF3RF所示的全氟烷基三氟硼酸锂、如LiPF5RF所示的全氟烷基五氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂和如(RFSO2)2NLi所示的双全氟烷基磺酰亚胺锂中的至少一种;其中,RF为ClF2l+1,l各自独立地为0-10的整数。
  38. 根据权利要求37所述的固态电解质,其中所述锂盐为选自四氟硼酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、双(三氟甲基磺酰)亚胺锂和双(氟磺酰)亚胺锂中的至少一种。
  39. 根据权利要35所述的固态电解质,其中所述固态电解质为包括无机固态电解质的复合固态电解质,所述离子液体聚合物和无机固态电解质的重量比为1:(0.01-99)。
  40. 根据权利要求39所述的固态电解质,其中所述无机固态电解质为选自Perovskite型无机固态电解质、Garnet型无机固态电解质、NASCION型无机固态电解质、LISCION型无机固态电解质、Argyrodite型无机固态电解质、Li-Nitride类无机固态电解质、Li-Hydride类无机固态电解质和Li-halide类无机固态电解质中的至少一种。
  41. 根据权利要求40所述的固态电解质,其中所述无机固态电解质为选自Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3、Li3PS4、Li9.6P3S12、Li7P3S11、Li11Si2PS12、Li10SiP2S12、Li10SnP2S12、Li10GeP2S12、Li10Si0.5Ge0.5P2S12、Li10Ge0.5Sn0.5P2S12、Li10Si0.5Sn0.5P2S12、Li9.54Si1.74P1.44S11.7Cl0.3、Li6PS5Br、Li6PS5Br、Li7PS6、Li7PS5I、Li7PO5Cl、Li3N、Li7PN4、LiSi2N3、LiPN2、Li2NH、Li3(NH2)2I、LiBH4、LiAlH4、LiNH2、Li2CdCl4、Li2MgCl4、Li2ZnCl4和Li3xLa(2/3)-x(1/3)-2xTiO3中的至少一种,其中0<x<0.16。
  42. 根据权利要求39所述的固态电解质,其中所述无机固态电解质的粒径为10nm-100μm。
  43. 权利要求35至42中任一项所述的固态电解质在制备固态电池的用途。
  44. 一种固态电池,包括正极片、负极片和电解质层,其中所述电解质层含有权利要求35至42中任一项所述的固态电解质。
  45. 根据权利要求44所述的固态电池,其中所述正极片含有权利要求35至42中任一项所述的固态电解质、正极活性物质和导电剂,所述固态电解质、正极活性物质和导电剂的 重量比为1:(0.01-99):(0.01-99)。
  46. 根据权利要求45所述的固态电池,其中所述正极活性物质为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。
  47. 根据权利要求44至46中任一项所述的固态电池,其中所述负极片为含锂金属片或为由负极材料、导电剂及权利要求35至42中任一项所述的固态电解质组成的片。
  48. 根据权利要求47所述的固态电池,其中所述负极片为由负极材料、导电剂及权利要求35至42中任一项所述的固态电解质组成的片时,所述固态电解质、负极材料和导电剂的重量比为1:(0.01-99):(0.01-99)。
  49. 根据权利要求48所述的固态电池,其中所述负极材料为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。
  50. 根据权利要求49所述的固态电池,其中所述正极片的厚度为1-1000μm,所述电解质层的厚度为1-1000μm,所述负极片的厚度为1-1000μm。
  51. 一种电池电极粘结剂,包括权利要求29或30所述的离子液体聚合物。
  52. 根据权利要求51所述的电池电极粘结剂,其中所述离子液体聚合物为
    Figure PCTCN2017104003-appb-100034
    所示的离子液体聚合物。
  53. 根据权利要求51所述的电池电极粘结剂,其中所述离子液体聚合物的分子量为10万-30万。
  54. 根据权利要求51所述的电池电极粘结剂,其中所述电池电极粘结剂的平均粒径为400nm-800nm。
  55. 根据权利要求51所述的电池电极粘结剂,其中所述电池电极粘结剂还包括聚偏二氟乙烯、偏二氟乙烯与六氟丙烯共聚物、丁苯橡胶或聚丙烯酸酯类聚合物中的一种或几种。
  56. 根据权利要求55所述的电池电极粘结剂,其中相对于100重量份的离子液体聚合 物,所述聚偏二氟乙烯的含量为0.01-9900;偏二氟乙烯与六氟丙烯共聚物的含量为0.01-9900;丁苯橡胶的含量为0.01-9900;聚丙烯酸酯类聚合物的含量为0.01-9900。
  57. 一种电极,包括集电体和形成在集电体表面上的活性材料层,所述活性材料层包括活性材料和粘结剂,所述粘结剂为权利要求51至56中任一项所述的电池电极粘结剂。
  58. 根据权利要求57所述的电极,其中所述活性材料为正极活性材料,所述活性材料层还包括导电剂,所述活性材料层中各组分重量比为正极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。
  59. 根据权利要求58所述的电极,其中所述正极活性材料为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。
  60. 根据权利要求57所述的电极,其中所述活性材料为负极活性材料,所述活性材料层中各组分重量比为负极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。
  61. 根据权利要求60所述的电极,其中所述负极活性材料为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。
  62. 一种锂离子电池,包括电池壳、极芯和电解液,所述极芯和电解液密封容纳在电池壳内,所述极芯包括正极、负极及位于正极和负极之间的隔膜,所述正极为权利要求57至59中任一项所述的电极和/或所述负极为权利要求57、60至61中任一项所述的电极。
PCT/CN2017/104003 2016-09-29 2017-09-28 离子液体聚合物、其制备方法及用途 WO2018059491A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610868279.4A CN107887604B (zh) 2016-09-29 2016-09-29 一种电池电极粘结剂、电极及锂离子电池
CN201610863529.5 2016-09-29
CN201610864136.6 2016-09-29
CN201610867865.7A CN107887641A (zh) 2016-09-29 2016-09-29 一种聚合物固态电解质和固态电池
CN201610863529.5A CN107887639B (zh) 2016-09-29 2016-09-29 一种复合固态电解质和固态电池
CN201610868279.4 2016-09-29
CN201610867865.7 2016-09-29
CN201610864136.6A CN107879977B (zh) 2016-09-29 2016-09-29 离子液体化合物及制备方法、离子液体聚合物、其用途以及含该聚合物的聚合物固态电解质

Publications (1)

Publication Number Publication Date
WO2018059491A1 true WO2018059491A1 (zh) 2018-04-05

Family

ID=61763222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104003 WO2018059491A1 (zh) 2016-09-29 2017-09-28 离子液体聚合物、其制备方法及用途

Country Status (1)

Country Link
WO (1) WO2018059491A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019063145A1 (de) * 2017-09-29 2019-04-04 Contitech Ag Elektrode für eine lithium-ionen-batterie
CN113937362A (zh) * 2021-09-24 2022-01-14 中化学南方建设投资有限公司 一种安全高效的聚合物电解质锂电池及其制备方法
CN115286728A (zh) * 2022-09-30 2022-11-04 宁德时代新能源科技股份有限公司 粘结剂、制备方法、正极极片、二次电池及用电装置
CN117039127A (zh) * 2023-09-11 2023-11-10 浙江煌能新能源科技有限公司 一种钠电池复合固态电解质、其制备方法及钠电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087035A (zh) * 2006-06-06 2007-12-12 比亚迪股份有限公司 一种二次锂电池用电解液及含有该电解液的二次锂电池
WO2009152276A2 (en) * 2008-06-10 2009-12-17 University Of North Carolina At Charlotte Photoacid generators and lithographic resists comprising the same
WO2013121219A1 (en) * 2012-02-16 2013-08-22 The Queen's University Of Belfast Ionic liquid separations
CN104031193A (zh) * 2013-03-08 2014-09-10 华中科技大学 一种聚合物离子液体电解质及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087035A (zh) * 2006-06-06 2007-12-12 比亚迪股份有限公司 一种二次锂电池用电解液及含有该电解液的二次锂电池
WO2009152276A2 (en) * 2008-06-10 2009-12-17 University Of North Carolina At Charlotte Photoacid generators and lithographic resists comprising the same
WO2013121219A1 (en) * 2012-02-16 2013-08-22 The Queen's University Of Belfast Ionic liquid separations
CN104031193A (zh) * 2013-03-08 2014-09-10 华中科技大学 一种聚合物离子液体电解质及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019063145A1 (de) * 2017-09-29 2019-04-04 Contitech Ag Elektrode für eine lithium-ionen-batterie
CN113937362A (zh) * 2021-09-24 2022-01-14 中化学南方建设投资有限公司 一种安全高效的聚合物电解质锂电池及其制备方法
CN115286728A (zh) * 2022-09-30 2022-11-04 宁德时代新能源科技股份有限公司 粘结剂、制备方法、正极极片、二次电池及用电装置
CN117039127A (zh) * 2023-09-11 2023-11-10 浙江煌能新能源科技有限公司 一种钠电池复合固态电解质、其制备方法及钠电池
CN117039127B (zh) * 2023-09-11 2024-02-06 浙江煌能新能源科技有限公司 一种钠电池复合固态电解质、其制备方法及钠电池

Similar Documents

Publication Publication Date Title
WO2018059484A1 (zh) 阴离子型离子液体聚合物、其制备方法及用途
WO2018059492A1 (zh) 离子液体聚合物、其制备方法及用途
US10971756B2 (en) Polymer electrolyte, polymer, electrochemical device, and method of preparing the polymer
CN107666011B (zh) 一种非水电解液及非水电解液二次电池
US20170256820A1 (en) Ionic liquid and plastic crystal
JP2016219411A (ja) リチウム金属電池
US20130136972A1 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
WO2018059491A1 (zh) 离子液体聚合物、其制备方法及用途
CN111433962A (zh) 非水电解液电池用电解液和使用了其的非水电解液电池
CN111403809B (zh) 用于锂二次电池的添加剂、电解质和包括其的锂二次电池
US11024840B2 (en) Alkali metal-sulfur secondary battery containing a non-electronically conductive anode-protecting layer
JP2019530166A (ja) 高分子固体電解質及びこれを含むリチウム二次電池
KR20180026356A (ko) 고분자 전해질 및 이를 포함하는 리튬 이차전지
Xu et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries
CN107887604B (zh) 一种电池电极粘结剂、电极及锂离子电池
Dong et al. Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes
JP7314739B2 (ja) リチウム二次電池
JP6607967B2 (ja) 磁性物質を含む二次電池用バインダー
CN109565029A (zh) 制造二次电池的长寿命的电极的方法
JP2013225488A (ja) 非水電解液二次電池
CN111326795B (zh) 用于锂二次电池的添加剂、电解质和包括其的锂二次电池
CN113228373A (zh) 电解质用组合物、非水电解质及非水电解质二次电池
US20200220196A1 (en) Method of improving the charge/discharge cycle life and safety of an alkali metal-sulfur secondary battery
CN117461171A (zh) 基于不饱和脂族烃的涂层材料及其在电化学应用中的用途
KR100897180B1 (ko) 도전제로서 은 나노 입자를 함유하는 양극 합제 및그것으로 구성된 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854941

Country of ref document: EP

Kind code of ref document: A1