WO2018059484A1 - 阴离子型离子液体聚合物、其制备方法及用途 - Google Patents

阴离子型离子液体聚合物、其制备方法及用途 Download PDF

Info

Publication number
WO2018059484A1
WO2018059484A1 PCT/CN2017/103976 CN2017103976W WO2018059484A1 WO 2018059484 A1 WO2018059484 A1 WO 2018059484A1 CN 2017103976 W CN2017103976 W CN 2017103976W WO 2018059484 A1 WO2018059484 A1 WO 2018059484A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
solid electrolyte
compound
ionic liquid
compound represented
Prior art date
Application number
PCT/CN2017/103976
Other languages
English (en)
French (fr)
Inventor
宋威
谢静
马永军
易观贵
历彪
郭姿珠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610868279.4A external-priority patent/CN107887604B/zh
Priority claimed from CN201610864105.0A external-priority patent/CN107879976B/zh
Priority claimed from CN201610867865.7A external-priority patent/CN107887641A/zh
Priority claimed from CN201610863529.5A external-priority patent/CN107887639B/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018059484A1 publication Critical patent/WO2018059484A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/30Monomers containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of batteries, and in particular to an anionic ionic liquid compound, an anionic ionic liquid polymer, a solid electrolyte containing the polymer and a binder, and their use in a battery.
  • Ionic liquids are usually liquid at room temperature and have low viscosity, non-volatility, non-combustion, low toxicity, high room temperature conductivity and wide electrochemical window. Therefore, ionic liquids are suitable as electrolyte or binder components of batteries.
  • the safety of a lithium ion battery using an ionic liquid as an electrolyte is higher than that of an organic electrolyte battery, but the existing ionic liquid lithium ion battery cannot satisfy the direction in which the battery is lightweight, thinned, and arbitrarily shaped.
  • the more common binders are polyvinylidene fluoride (PVDF), polyacrylates, benzene rubber (SBR), etc. These binders only have a bonding effect and cannot lead to lithium ions.
  • An object of the present disclosure is to provide an ionic liquid compound, a method for preparing the same, and an ionic liquid polymer and a solid electrolyte and a binder containing the ionic liquid polymer, thereby solving ion migration in an existing lithium ion battery Technical problems such as slowness and low conductivity.
  • the present disclosure provides an ionic liquid compound having a structure represented by the following formula (1):
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m ,
  • k is an integer from 1 to 5, and m is an integer from 1 to 20;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the present disclosure provides a method of preparing an ionic liquid compound, the method comprising: reacting a compound of formula (9) with a cation under ion exchange reaction conditions The halide is contacted to obtain a compound of the formula (1):
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m ,
  • k is an integer from 1 to 5, and m is an integer from 1 to 20;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the present disclosure provides an ionic liquid polymer having a structure represented by the following formula (24):
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m , k is an integer from 1 to 5, m is an integer from 1 to 20; R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i +1 or C i F 2i+1 , i is an integer from 0-10;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2 j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently taken from an integer of from 1 to 10;
  • n is such that the anionic ionic liquid polymer has a molecular weight of from 1 to 500,000.
  • the present disclosure provides a method for preparing an anionic ionic liquid polymer, comprising: contacting a compound represented by the formula (1) with a polymerization initiator under polymerization conditions to obtain a formula (24)
  • Z is C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m , m is an integer from 1 to 20; k is an integer from 1 to 5;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the present disclosure provides an ionic liquid compound of the structure represented by the formula (1) and a preparation method thereof, and provides an ionic liquid polymer of the structure represented by the formula (24) and a method for producing the same, the ionic liquid
  • the anion center of the compound and the ionic liquid polymer is a perfluorosulfonimide ion having a weak coordination ability, which reduces the binding ability of the anion center to Li + and improves the solid electrolyte of the polymer containing the ionic liquid polymer.
  • the ionic liquid polymer of the present disclosure is combined with a lithium salt to form a polymer solid electrolyte containing an ionic liquid-polyionic liquid composite, and the ionic liquid-polyionic liquid composite has a micro liquid phase structure, It can further improve the conductivity of the electrolyte and the number of Li + migration.
  • the present disclosure provides the use of the ionic liquid polymer described above in capacitors, solid state batteries, and fuel cells.
  • the present disclosure provides a solid electrolyte comprising the ionic liquid polymer described above.
  • the present disclosure provides the use of the above solid electrolyte in the preparation of a solid state battery.
  • the present disclosure provides a solid state battery comprising a positive electrode sheet, a negative electrode sheet, and an electrolyte layer, wherein the electrolyte layer contains the above solid electrolyte.
  • the solid electrolyte of the present disclosure includes an anionic ionic liquid polymer and an inorganic solid electrolyte or a lithium salt, and a perfluorosulfonimide ion having a weak coordination ability is selected as an anion center of the anionic ionic liquid polymer. Its binding ability to Li + is small, which is favorable for the conductivity of the solid electrolyte and the increase of the Li + migration number.
  • the anionic ionic liquid polymer and the inorganic solid electrolyte can be compounded in a wide range of ratios, which can further improve the ionic conductivity and mechanical properties of the composite solid electrolyte.
  • the ionic liquid-polyionic liquid composite formed by the combination of the anionic ionic liquid polymer and the small molecule lithium salt has a micro liquid phase structure, which can further improve the electrical conductivity and the Li + migration number of the polymer solid electrolyte.
  • the present disclosure provides a battery electrode binder comprising the above ionic liquid polymer.
  • the present disclosure provides an electrode including a current collector and an active material layer formed on a surface of the current collector, the active material layer including an active material and a binder, and the binder is adhered to the battery electrode Conjunction.
  • the present disclosure provides a lithium ion battery comprising a battery case, a pole core and an electrolyte, the core and the electrolyte being sealed and housed in a battery case, the pole core including a positive electrode, a negative electrode, and a positive electrode and A separator between the negative electrodes, the positive electrode and/or the negative electrode being the above electrode.
  • the present disclosure adopts an anionic ionic liquid polymer having a strong ion-conducting type as a novel polymer binder for a positive or negative electrode of a lithium ion battery, and a perfluorosulfonimide polyanion type polymer having a weak coordination type used in the technical solution.
  • the ionic liquid has good compatibility with the electrode slurry, ensures good realization of the process, and has strong adhesion after drying, the electrode active material does not fall off, and the cycle performance of the battery is excellent, especially the bonding of the present disclosure.
  • the agent has a good lithium ion conduction capability, which does not hinder the insertion or removal of the positive (negative) polar active material by Li + , and is advantageous for improving the rate performance of the battery.
  • FIG. 1 is a schematic structural view of a solid state battery in an embodiment of the present disclosure.
  • FIG. 2 is a schematic view showing the microstructure of a positive electrode sheet of a solid state battery (composite solid electrolyte) in an embodiment of the present disclosure.
  • FIG 3 is a schematic view showing the microstructure of a positive electrode sheet of a solid state battery (polymer solid electrolyte) in another specific embodiment of the present disclosure.
  • the present disclosure provides an ionic liquid compound having a structure represented by the following formula (1):
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m ,
  • k is an integer from 1 to 5, and m is an integer from 1 to 20;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the compound may be one selected from the group consisting of the following formula (M1)-formula (M12):
  • the present disclosure provides a method of preparing an ionic liquid compound, the method comprising: reacting a compound of formula (9) with a cation under ion exchange reaction conditions The halide is contacted to obtain a compound of the formula (1):
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m ,
  • k is an integer from 1 to 5, and m is an integer from 1 to 20;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • Halide can be a compound represented by the formula (9) and the cation-containing compound
  • the molar ratio of the halide may be 1: (1.0 - 1.2).
  • the ion exchange reaction may be carried out under the following conditions: a reaction temperature of 0 to 60 ° C, a reaction time of 1 to 24 hours, and a solvent of at least one of water, dichloromethane, chloroform, acetonitrile, nitromethane and acetone.
  • the preparation method of the compound represented by the formula (9) includes: bringing the compound represented by the formula (10) to a compound represented by the formula (11) or a compound represented by the formula (12) under Grignard reaction conditions. contact:
  • Z 1 is C m H 2m , C m F 2m or (OCH 2 CH 2 ) m ;
  • Z 2 is (CH 2 CH 2 O) m or
  • k is an integer from 1 to 5, and m is an integer from 1 to 20;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer.
  • the molar ratio of the compound represented by the formula (10) to the compound represented by the formula (11) or the compound represented by the formula (12) may be 1: (1 - 1.2).
  • the Grignard reaction may be carried out under the following conditions: a reaction temperature of -20 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of at least one of tetrahydrofuran, diethyl ether, toluene and acetonitrile.
  • the method for preparing the compound represented by the formula (10) may include: contacting the compound represented by the formula (13) with magnesium metal under a Grignard reaction condition;
  • R f is C h F 2h+1 .
  • the molar ratio of the compound represented by the formula (13) to the metal magnesium may be 1: (1-3).
  • the Grignard reaction condition may be: the reaction temperature is -20 ° C to 100 ° C, the reaction time is 1-24 h, the solvent is at least one of tetrahydrofuran, diethyl ether, toluene and acetonitrile, and the initiator is iodine, bromine and At least one of 1,2-dibromoethane.
  • the preparation method of the compound represented by the formula (9) may include: contacting the compound represented by the formula (14) with a base under an acid-base neutralization reaction condition:
  • Z 3 is k and R f have the same definitions as described above.
  • the base may be at least one selected from the group consisting of potassium carbonate, potassium hydrogencarbonate, and potassium hydroxide; the molar ratio of the compound represented by the formula (14) to the neutralizing agent may be 1: (1) -2).
  • the neutralization reaction may be carried out under the following conditions: a reaction temperature of -20 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of at least one of water, acetonitrile, nitromethane and acetone.
  • the method for preparing the compound represented by the formula (14) may include: urging the compound represented by the formula (15) Contact with acetylene under the conditions of addition reaction:
  • R f has the same definition as described above.
  • the molar ratio of the compound represented by the formula (15) to acetylene may be 1: (1 - 1.5).
  • the addition reaction may be carried out under the following conditions: a reaction temperature of 150 to 300 ° C, a reaction time of 10 to 24 hours, and a catalyst of zinc acetate.
  • the method for producing the compound represented by the formula (15) may include: bringing the compound represented by the formula (16) into contact with an oxidizing agent under an oxidation reaction condition to obtain a compound represented by the formula (15):
  • R f has the same definition as described above.
  • the oxidizing agent may be potassium permanganate and/or potassium dichromate, and the molar ratio of the compound represented by the formula (16) to the oxidizing agent may be 1: (1-3).
  • the oxidation reaction may be carried out under the following conditions: a reaction temperature of 0 to 200 ° C, a reaction time of 1 to 24 hours, and a solvent of water.
  • the preparation method of the compound represented by the formula (13) or the formula (16) may include: contacting the compound represented by the formula (17) with a neutralizing agent under neutralization reaction conditions:
  • V is CH 3 or Cl
  • R f is C h F 2h+1
  • h is an integer of 0-10.
  • the neutralizing agent may be at least one selected from the group consisting of potassium carbonate and potassium hydrogen carbonate potassium hydroxide; the molar ratio of the compound represented by the formula (17) to the neutralizing agent may be 1: ( 1-2).
  • the neutralization reaction may be carried out under the following conditions: a reaction temperature of -20 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of at least one of water, acetonitrile, nitromethane and acetone.
  • the method for preparing the compound represented by the formula (17) may include: contacting a compound represented by the formula (18) with a compound represented by the formula (19) under a substitution reaction condition to obtain a formula (17).
  • V is CH 3 or Cl
  • R f is a C h F 2h + 1
  • h is an integer of 1-10.
  • the molar ratio of the compound represented by the formula (18) to the compound represented by the formula (19) may be 1: (0.8-1).
  • the substitution reaction may be carried out under the following conditions: a reaction temperature of 0 to 200 ° C, a reaction time of 1 to 24 hours, a solvent of acetonitrile and/or nitromethane, and a catalyst of pyridine and/or triethylamine.
  • the preparation method of the compound represented by formula (13) or formula (16) may include: contacting the compound represented by formula (21) with a neutralizing agent under neutralization reaction conditions:
  • V is CH 3 or Cl; R f is F.
  • the neutralizing agent may be at least one selected from the group consisting of potassium carbonate, potassium hydrogencarbonate, and potassium hydroxide; the molar ratio of the compound represented by the formula (21) to the neutralizing agent may be 1: (1-2).
  • the neutralization reaction may be carried out under the following conditions: a reaction temperature of -20 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of at least one of water, acetonitrile, nitromethane and acetone.
  • the preparation method of the compound represented by the formula (21) may include: contacting a compound represented by the formula (22) with a fluorinating reagent under a fluorination reaction condition to obtain a compound represented by the formula (21):
  • V is CH 3 or Cl.
  • the fluorinating agent is at least one selected from the group consisting of SbF3, AsF3, KF, NaF and LiF; the molar ratio of the compound represented by the formula (22) to the fluorinating agent is 1: (1) 1.5).
  • the fluorination reaction is carried out under the conditions of a reaction temperature of -50 ° C to 100 ° C, a reaction time of 1 to 24 h, and a solvent of acetonitrile and/or nitromethane.
  • the preparation method of the compound represented by the formula (22) may include: contacting a compound represented by the formula (23) with a substitution reagent under a substitution reaction condition to obtain a compound represented by the formula (22):
  • V is CH 3 or Cl.
  • substitution reagent may be thionyl chloride and chlorosulfonic acid, and the molar ratio of the compound represented by the formula (23) to the thionyl chloride and the chlorosulfonic acid may be 1: (1-5): ( 1-1.5).
  • the substitution reaction may be carried out under the following conditions: a reaction temperature of 0 to 200 ° C and a reaction time of 1 to 24 h.
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (1), the method comprising the steps of:
  • the compound represented by the formula (23) in the presence of a substitution reaction solvent, the compound represented by the formula (23) is contacted with a substitution reaction reagent under the substitution reaction conditions; to prepare a compound of the formula (22);
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (1), the method comprising the steps of:
  • the compound represented by the formula (23) in the presence of a substitution reaction solvent, the compound represented by the formula (23) is contacted with a substitution reaction reagent under the substitution reaction conditions; to prepare a compound of the formula (22);
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (1), the method comprising the steps of:
  • the present disclosure provides a method of preparing an ionic liquid compound having a structure as shown in formula (1), the method comprising the steps of:
  • the compound represented by the formula (17) in the presence of a neutralization reaction solvent, under the neutralization reaction conditions, the compound represented by the formula (17) can be used Contacting the base of the neutralization reaction to cause a neutralization reaction of the compound represented by the formula (17); to prepare a compound represented by the formula (13);
  • the present disclosure provides an ionic liquid polymer having a structure represented by the following formula (24):
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m , k is an integer from 1 to 5, m is an integer from 1 to 20; R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i +1 or C i F 2i+1 , i is an integer from 0-10;
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2 j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently taken from an integer of from 1 to 10;
  • n is such that the molecular weight of the ionic liquid polymer is from 1 to 500,000.
  • the present disclosure provides a method of preparing an ionic liquid polymer, the method comprising: contacting a compound represented by the formula (1) with a polymerization initiator under polymerization conditions to obtain a formula (24) Ionic liquid polymer:
  • Z is a single bond, C m H 2m , C m F 2m , (CH 2 CH 2 O) m , (OCH 2 CH 2 ) m , m is an integer from 1 to 20; k is an integer from 1 to 5;
  • R f is C h F 2h+1 , h is an integer from 0 to 10; R f1 , R f2 and R f3 are each independently C i H 2i+1 or C i F 2i+1 , i is 0-10 Integer
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C j H 2j+1 or (CH 2 CH 2 O) j CH 3 , and j are each independently an integer of from 1 to 10.
  • the polymerization reaction conditions may be: the reaction temperature is 0-150 ° C, the reaction time is 1-24 h, and the polymerization reaction is reversed. It should be carried out under solvent-free conditions or in the presence of a solvent which is at least one of water, methanol, ethanol, butanol, acetonitrile, acetone, dichloromethane, chloroform, nitromethane, benzene and toluene.
  • the initiator is at least one of azobisisobutyronitrile, azobisisoheptanenitrile, potassium persulfate, t-butyl peroxybenzoate, and dibenzoyl peroxide.
  • the present disclosure provides the use of the ionic liquid polymers described above in capacitors, solid state batteries, and fuel cells.
  • the present disclosure provides a solid electrolyte comprising the ionic liquid polymer described above.
  • the solid electrolyte is a composite solid electrolyte including an inorganic solid electrolyte having a weight ratio of 1: (0.01 to 99).
  • the composite solid electrolyte of the present disclosure comprises an anionic ionic liquid polymer and an inorganic solid electrolyte, by selecting a perfluorosulfonimide ion having a weak coordination ability as an anion center of the anionic ionic liquid polymer, which is bound to Li + The ability is small, which is beneficial to the improvement of the electrical conductivity and Li + migration number of the composite solid electrolyte; the anionic ionic liquid polymer and the inorganic solid electrolyte can be compounded in a wide range of ratios, which can further improve the ionic conductivity of the composite solid electrolyte. And mechanical properties.
  • the inorganic solid electrolyte is selected from the group consisting of a Perovskite type inorganic solid electrolyte, a Garnet type inorganic solid electrolyte, a NASCION type inorganic solid electrolyte, a LISCION type inorganic solid electrolyte, an Argyrodite type inorganic solid electrolyte, a Li-Nitride type inorganic solid electrolyte, At least one of a Li-Hydride-based inorganic solid electrolyte and a Li-halide-based inorganic solid electrolyte.
  • the inorganic-free solid electrolyte include Li 7 La 3 Zr 2 O 12 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 3 PS 4 , Li 9.6 P 3 S 12 , and Li 7 P 3 .
  • the particle diameter of the inorganic solid electrolyte may vary over a wide range, and for example, the inorganic solid electrolyte may have a particle diameter of 10 nm to 100 ⁇ m. Alternatively, the inorganic solid electrolyte may have a particle diameter of less than 10 ⁇ m. Alternatively, the inorganic solid electrolyte may have a particle diameter of between 100 nm and 2 ⁇ m. In the above optional particle size range, the inorganic solid electrolyte can be mixed and dispersed uniformly with the anionic ionic liquid polymer, which is favorable for forming a uniformly distributed composite solid electrolyte, thereby improving the ionic conductivity of the composite solid electrolyte.
  • the solid electrolyte is a polymer solid electrolyte including a lithium salt, and the weight ratio of the anionic ionic liquid polymer to the lithium salt is 1: (0.01-9).
  • the polymer solid electrolyte of the present disclosure comprises an anionic ionic liquid polymer and a lithium salt, by selecting a perfluorosulfonimide ion having a weak coordination ability as an anion center of the anionic ionic liquid polymer, which is bound to Li + The ability is small, which is beneficial to the improvement of the conductivity and Li + migration number of the polymer solid electrolyte; the ionic liquid-polyionic liquid composite formed by the combination of the anionic ionic liquid polymer and the small molecule lithium salt has a micro liquid phase structure, The conductivity and Li + migration number of the polymer solid electrolyte can be further improved.
  • the lithium salt may be of a kind well known to those skilled in the art, and the present disclosure does not particularly require as long as Li + in the lithium salt can be dissociated.
  • the lithium salt may be a perfluoroalkyl trifluoroborate selected from LiBF 3 R F , a perfluoroalkyl pentafluorophosphate represented by LiPF 5 R F , lithium bis(oxalate) borate, and difluorooxalic acid borate.
  • the lithium salt is selected from the group consisting of lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide, and lithium bis(fluorosulfonyl)imide. At least one.
  • the structure of the anionic ionic liquid polymer is any one selected from the structures represented by the following formula (P1)-formula (P14):
  • the content of the anionic ionic liquid polymer and the inorganic solid electrolyte in the composite solid electrolyte can vary over a wide range.
  • the weight ratio of the anionic ionic liquid polymer to the inorganic solid electrolyte may be 1: (0.01-99), optionally 1: (0.1-20), alternatively 1: (0.1-10).
  • the anionic ionic liquid polymer and the inorganic solid electrolyte in the above content range can form a composite solid electrolyte having suitable mechanical strength and ionic conductivity.
  • the content of the anionic ionic liquid polymer and the lithium salt in the polymer solid electrolyte may vary within a wide range.
  • the weight ratio of the anionic ionic liquid polymer to the lithium salt may be 1: (0.01) -9).
  • the anionic ionic liquid polymer and the lithium salt in the above content range are easily combined to form a micro liquid phase structure of the ionic liquid-ionic liquid polymer composite, which is advantageous for improving the electrical conductivity and the Li + migration number.
  • the preparation method of the solid electrolyte can be a preparation method well known to those skilled in the art, for example, a solid electrolyte can be prepared by the following steps:
  • the electrolyte solution is uniformly dispersed on a Teflon plate and the solvent is volatilized to obtain a composite solid electrolyte or a polymer solid electrolyte.
  • the solvent may be at least one selected from the group consisting of acetonitrile, dimethyl sulfoxide, tetrahydrofuran, and N,N-dimethylformamide.
  • the environmental conditions in the preparation process may be: the content of H 2 O is less than 0.5 ppm, and the content of O 2 is less than 0.5 ppm.
  • the present disclosure also provides the use of the above composite solid electrolyte or polymer solid electrolyte in the preparation of a solid state battery.
  • the present disclosure also provides a solid state battery including a positive electrode sheet, a negative electrode sheet, and an electrolyte layer containing the above composite solid electrolyte or polymer solid electrolyte.
  • the solid state battery may include a positive electrode sheet 1, a negative electrode sheet 2, and an electrolyte layer 3 disposed between the positive electrode sheet 1 and the negative electrode sheet 2.
  • a composite solid electrolyte or a polymer solid electrolyte may be disposed in the electrolyte layer 3, and both the positive electrode sheet 1 and the negative electrode sheet 2 are in direct contact with the electrolyte layer, thereby improving the stability of the contact interface and enabling the solid state battery.
  • the current inside can be evenly distributed, thereby improving the cycle charge and discharge performance of the solid state battery.
  • the composite solid electrolyte or the polymer solid electrolyte may also be disposed in at least a portion of the positive electrode sheet.
  • the positive electrode sheet may contain the above-described composite solid electrolyte, positive electrode active material, and conductive agent.
  • the positive electrode sheet may contain the above-described polymer solid electrolyte, positive electrode active material, and conductive agent.
  • the composite solid electrolyte or the polymer solid electrolyte and the positive electrode active material and the conductive agent are uniformly distributed, so that the current can be uniformly distributed on the surface of the positive electrode sheet, wherein the content of the composite solid electrolyte or the polymer solid electrolyte, the positive electrode active material and the conductive agent can be Change in a wide range.
  • the weight ratio of the composite solid electrolyte or the polymer solid electrolyte, the positive electrode active material and the conductive agent may be 1: (0.01-99): (0.01-99), optionally 1: (0.01-40): (0.01- 40), optional 1: (0.1-20): (0.1-10).
  • the ionic liquid polymer and the positive electrode active material and the conductive agent are combined to form a positive electrode sheet structure model as shown in FIG. 1 , which is advantageous for improving the capacity and charge and discharge efficiency of the positive electrode sheet.
  • the positive electrode active material may be of a type well known to those skilled in the art, for example, the positive electrode active material may be selected from the group consisting of LiM 1 PO 4 , Li 2 M 2 SiO 4 , LiAl 1-w Co w O 2 and LiNi x . At least one of Co y Mn z O 2 ; wherein M 1 and M 2 are each independently selected from at least one of Fe, Co, Ni, and Mn; 0 ⁇ w ⁇ 1; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1.
  • the positive electrode active material may be first coated with a coating material, and the coating material may be at least one selected from the group consisting of Li 2 CO 3 , Li 4 Ti 5 O 12 and LiNbO 3 . Kind.
  • the meaning of the conductive agent is well known to those skilled in the art, and may be a conventional kind of conductive agent, and the present disclosure does not particularly require.
  • the conductive agent may be selected from the group consisting of acetylene black, carbon nanotubes, and graphene. At least one of them.
  • the negative electrode sheet may contain lithium metal, and further, the negative electrode sheet may further contain lithium and at least An alloy of other metals.
  • the at least one other metal in the alloy may be indium, but the alloy type is not limited thereto, that is, an alloy sheet formed of any metal capable of forming an alloy with lithium metal and lithium may be used as the negative electrode sheet.
  • the negative electrode sheet may be a sheet composed of a negative electrode material, a conductive agent, and the above-described composite solid electrolyte or polymer solid electrolyte.
  • the relative content of the composite solid electrolyte or the polymer solid electrolyte, the anode material, and the conductive agent may vary within a wide range.
  • the weight ratio of the composite solid electrolyte or the polymer solid electrolyte, the anode material, and the conductive agent may be 1: (0.01-99): (0.01-99), and optionally 1: (0.01-20): (0.01-20 ), optional 1: (0.1-10): (0.1-10).
  • a negative electrode sheet composed of a composite solid electrolyte or a polymer solid electrolyte, a negative electrode material, and a conductive agent in the above content range is advantageous for increasing the capacity of the solid state battery.
  • the anode material may be a conventional anode material species for lithium ion batteries well known to those skilled in the art, for example, the anode material may be selected from the group consisting of graphite, silicon, silicon carbon, tin, tin carbon, and lithium titanate. At least one of them.
  • the structure of the solid state battery may be a conventional structure of a solid state battery well known to those skilled in the art.
  • the thickness of the positive electrode sheet may be 1-1000 ⁇ m, and the thickness of the electrolyte layer may be 1-1000 ⁇ m.
  • the thickness may be 1-1000 ⁇ m.
  • the thickness of the positive electrode sheet may be 1-200 ⁇ m, the thickness of the electrolyte layer may be 1-200 ⁇ m, and the thickness of the negative electrode sheet may be 1-200 ⁇ m.
  • the solid state battery can have a suitable capacity and volume within the above optional thickness range.
  • solid state batteries can be prepared as follows:
  • the composite solid electrolyte sheet or the polymer solid electrolyte sheet is placed between the positive electrode sheet and the negative electrode sheet to assemble a solid battery.
  • the above preparation method may further include: dissolving and mixing the polymer ionic liquid and the inorganic particles or the lithium salt in a third solvent to obtain a third solution, and adding the negative electrode to the third solution.
  • the material and the conductive agent obtain a second slurry, and the second slurry is uniformly coated on the aluminum foil to obtain a negative electrode sheet.
  • the environmental conditions of step a and step c may be H 2 O content of less than 0.5 ppm and O 2 content of less than 0.5 ppm;
  • the environmental conditions in b may be: relative humidity of 0.1-5% and dew point of -70 to -75 °C.
  • the coating thickness of the first slurry may be 45-50 ⁇ m in the step b.
  • the first solvent, the second solvent, and the third solvent may be the same or different, and may each independently be selected from at least acetonitrile, dimethyl sulfoxide, tetrahydrofuran, and N,N-dimethylformamide.
  • acetonitrile dimethyl sulfoxide
  • tetrahydrofuran tetrahydrofuran
  • N,N-dimethylformamide N,N-dimethylformamide
  • the present disclosure provides a battery electrode binder comprising the anionic ionic liquid polymer described above.
  • any one selected from the structures represented by the following (P1)-formula (P14) may be used:
  • the molecular weight of the anionic ionic liquid polymer is from 100,000 to 300,000, further improving the performance of the battery.
  • the battery electrode binder has an average particle diameter of from 400 nm to 800 nm, further optimizing the performance of the electrode. Better The example can be used at 500 nm.
  • the present disclosure may employ an anionic ionic liquid polymer alone as a binder for a battery electrode, or may be combined with other binders.
  • the optional battery electrode binder of the present disclosure further includes polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the amount of the composite is relative to 100 parts by weight of the anionic ionic liquid polymer
  • the polyvinylidene fluoride content is 0.01-9900, optionally 0.01-500; vinylidene fluoride and hexafluoropropylene
  • the content of the copolymer is 0.01-9900, optionally 0.01-500; the content of styrene-butadiene rubber is 0.01-9900, optionally 0.01-500; the content of polyacrylate polymer is 0.01-9900, optional 0.01 -500, there is an interaction between various binders, and the composite of the binder can ensure the stable adhesion of the electrode material on the current collector, and can also reduce the hindrance of the binder to the lithium material deintercalation process. .
  • the present disclosure also provides an electrode comprising a current collector and an active material layer formed on a surface of the current collector, the active material layer comprising an active material and a binder, the binder being adhered to the battery electrode Conjunction.
  • Collectors are well known to those skilled in the art. For example, copper foil, nickel foam, aluminum foil, and the like.
  • Active materials are also known to those skilled in the art and are materials capable of deintercalating lithium ions. It is classified into a positive electrode active material and a negative electrode active material.
  • the active material is a positive electrode active material
  • the conductive material layer is further included in the active material layer.
  • the positive active material may be of a type well known to those skilled in the art, and the optional positive active material of the present disclosure is selected from the group consisting of LiM 1 PO 4 , Li 2 M 2 SiO 4 , LiAl 1-w Co w O 2 and LiNi x Co y Mn At least one of z O 2 ; wherein M 1 and M 2 are each independently selected from at least one of Fe, Co, Ni, and Mn; 0 ⁇ w ⁇ 1; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1.
  • the positive electrode active material may be first coated with a coating material, and the coating material may be at least one selected from the group consisting of Li 2 CO 3 , Li 4 Ti 5 O 12 and LiNbO 3 . Kind.
  • the meaning of the conductive agent is well known to those skilled in the art, and may be a conventional kind of conductive agent, and the present disclosure does not particularly require.
  • the conductive agent may be selected from the group consisting of acetylene black, super P, carbon nanotube, At least one of graphene and carbon nanofibers.
  • the active material is the negative electrode active material
  • the optional negative active material of the present disclosure is at least one selected from the group consisting of graphite, silicon, silicon carbon, tin, tin carbon, and lithium titanate.
  • the ionic liquid polymer and the negative electrode active material in the above content range are advantageous for mentioning The capacity of high lithium ion batteries.
  • the active material layer may also contain a conductive agent, and the conductive agent may be at least one of acetylene black, super P, carbon nanotubes, graphene, carbon nanofibers, optionally, active
  • the present disclosure may be a preparation method well known to those skilled in the art, and the present disclosure of coating, drying, and slurry mixing is not limited.
  • the present disclosure also provides a lithium ion battery including a battery case, a pole core and an electrolyte, the core and the electrolyte being sealed and housed in a battery case, the pole core including a positive electrode, a negative electrode, and a positive electrode and a negative electrode
  • the positive electrode is the corresponding positive electrode and/or the negative electrode is the corresponding negative electrode.
  • the separator may be selected from various separators used in lithium ion batteries known to those skilled in the art, such as polyolefin microporous membrane (PP), polyethylene felt (PE), glass fiber mat or ultrafine glass fiber paper or PP/PE. /PP.
  • the membrane is PP/PE/PP.
  • the electrolyte contains a lithium salt and a non-aqueous solvent, and the lithium salt may be lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, aluminate.
  • the nonaqueous solvent may be ⁇ -butyrolactone, ethyl methyl carbonate or methyl propyl carbonate , dipropyl carbonate, anhydride, N-methylpyrrolidone, N-methylformamide, N-methylacetamide, acetonitrile, N,N-dimethylformamide, sulfolane, dimethyl sulfoxide, sulfurous acid One or more of a methyl ester and other fluorine-containing, sulfur-containing or unsaturated bond-containing cyclic organic esters.
  • the concentration of the lithium salt in the electrolyte may be from 0.3 to 4 moles per liter, alternatively from 0.5 to 2 moles per liter.
  • the present disclosure is not limited, and various battery cases known to those skilled in the art, such as a hard case such as a steel case or an aluminum case, or a soft package such as an aluminum plastic film, may be used, and the shape and size may be designed according to actual conditions. .
  • the method for preparing the above lithium ion battery is also a method known to those skilled in the art. Generally, the method comprises sequentially winding a positive electrode, a negative electrode and a separator between the positive electrode and the negative electrode to form a pole core, and the core is placed. Into the battery can, an electrolyte is added, and then sealed, wherein the method of winding and sealing is well known to those skilled in the art.
  • the amount of the electrolyte used is a conventional amount.
  • the battery electrode binder of the present disclosure is not limited to such a liquid lithium ion battery, and can also be applied to a solid lithium ion battery.
  • the electrolyte is sandwiched between the positive and negative electrodes of the solid lithium ion battery, and the electrolyte can be a liquid electrolyte.
  • the conductive salt may be lithium perfluoroalkyltrifluoroborate LiBF 3 R
  • the polymer electrolyte may be an electrolyte composed of an ethylene oxide segment or a polyionic liquid and a small lithium salt as described above, and the composite electrolyte may be a mixture of the above polymer electrolyte and various non-conductive solids.
  • the ionic solids are mainly metal oxides (such as: Al 2 O 3 , TiO 2 , Fe x O, etc.), non-metal oxides (such as SiO 2 , B 2 O 3 , etc.), non-metallic sulfides (such as TiS 2 , FeS, etc., Metal-organic Frameworks (eg, MOF-177, Cu-BTTri, Mg 2 (dobdc), etc.).
  • the inorganic solid electrolyte includes a Perovskite type inorganic solid electrolyte (for example, Li 3x La (2/3)-x ⁇ (1/3)-2x TiO 3 (where 0 ⁇ x ⁇ 0.16, LLTO for short), etc.), Garnet type inorganic solid state Electrolytes (eg, Li 7 La 3 Zr 2 O 12 (LLZO), etc.), NASCION type inorganic solid electrolytes (eg, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (abbreviated as LATP), etc.), LISCION type inorganic solid electrolytes (such as: sulfur-based electrolyte Li 3 PS 4, Li 9.6 P 3 S 12, Li 7 P 3 S 11, Li 11 Si 2 PS 12, Li 10 SiP2S 12, Li 10 SnP 2 S 12, Li 10 GeP 2 S 12 Li 10 Si 0.5 Ge 0.5 P 2 S 12 , Li 10 Ge 0.5 Sn 0.5 P 2 S 12 , Li 10 Si 0.5 Sn 0.5 P 2 S 12 , Li 9.
  • This example is intended to illustrate the preparation of the ionic liquid compound of the present disclosure.
  • Example A1 The preparation method of Example A1 was employed, except that 4-chloro-1-butene was replaced with an equivalent amount of 4-chloro-3,3-difluoro-4,4-difluoro-1-butene.
  • Example A2 The preparation method of Example A2 was employed, except that 4-chloro-1-butene was replaced with an equivalent amount of 4-chloro-3,3-difluoro-4,4-difluoro-1-butene.
  • This embodiment is for explaining the preparation method of the ionic liquid polymer, the polymer solid electrolyte, and the solid state battery of the present disclosure.
  • the ionic liquid polymer prepared above was 7.509 g and 3.741 g of LiFSI, and 20 mL of acetonitrile was added thereto and stirred for 10 hours. Thereafter, the translucent homogeneous solution was poured onto a Teflon plate, and the solvent was naturally volatilized to finally obtain a white film-like polymer solid electrolyte AE1.
  • the above operation was carried out in a glove box (H 2 O ⁇ 0.5 ppm, O 2 ⁇ 0.5 ppm).
  • Example A13 The method of Example A13 was employed, except that the ionic liquid compound M1 was replaced with an equivalent amount of the ionic liquid compound M2-M12, respectively, to obtain an ionic liquid polymer P2-P12, a polymer solid electrolyte AE2-AE12, and a solid state, respectively.
  • a solid battery AB14 was prepared from a solid polymer electrolyte in the same manner as in Example A13.
  • HPG hyperbranched polyglycidol
  • HPG hyperbranched polyglycidol
  • HPG-C1 chlorinated hyperbranched polyglycidol
  • a solid battery AB15 was prepared from an ionic liquid polymer in the same manner as in Example A13.
  • the electrical conductivity of the polymer solid electrolytes AE1-AE15 obtained in Examples A13 to A24 and Comparative Examples A1 to A3 were respectively tested.
  • the test method is electrochemical impedance method.
  • the test conditions include: taking the above electrolytes AE1-AE15 and the stainless steel sheets to form a blocking battery, and the battery structure is SS
  • the electrochemical impedance test was carried out at a frequency range of 1 Hz to 8 MHz at 25 ° C, and the room temperature ionic conductivity of the electrolyte was calculated based on the measured electrolyte impedance and the formula (1).
  • is the ionic conductivity of the electrolyte
  • the unit is S ⁇ cm -1
  • l is the thickness of the electrolyte membrane
  • the unit is cm
  • R is the bulk impedance of the electrolyte measured by electrochemical impedance method, the unit is ⁇ (or S -1 )
  • S is the contact area of the electrolyte with the stainless steel sheet, and the unit is cm 2 ; the test results are shown in Table 1.
  • Electrolyte number AE1 AE2 AE3 AE4 AE5 ⁇ (S/cm) 5.4 ⁇ 10 -5 6.0 ⁇ 10 -5 7.5 ⁇ 10 -5 8.0 ⁇ 10 -5 2.0 ⁇ 10 -4
  • the solid-state batteries AB1-AB15 were charged from a constant current of 3.0 V to 4.2 V at a rate of 0.1 C, and then charged at a constant voltage of 4.2 V to a threshold of 0.01 C, and then allowed to stand for 5 minutes, and finally 0.1 C, 0.2 C, and 0.5, respectively.
  • the discharge rate of C, 1C, 2C, and 5C was discharged to 3.0V.
  • Table 2 The test results are listed in Table 2.
  • the solid-state batteries AB1-AB15 were charged from a constant current of 3.0 V to 4.2 V at a rate of 0.2 C, respectively, and then allowed to stand for 5 minutes. Then, it was charged at a constant voltage of 4.2 V to 0.02 C, and finally discharged to 3.0 V at a rate of 0.2 C, and finally allowed to stand for 5 minutes. This cycle is 100 times, and the test results are listed in Table 3.
  • a solid electrolyte obtained by complexing an ionic liquid of a fluorosulfonimide anion center with a lithium salt or a natural rubber (Comparative Example A2) and a polymer solid electrolyte containing a cationic ionic liquid polymer and a lithium salt (Comparative Example A3)
  • the polymer solid electrolyte prepared by the ionic liquid polymer of the present disclosure has high electrical conductivity, and the solid state battery prepared by the polymer solid electrolyte has good rate performance and cycle performance.
  • the ionic liquid polymer P, the polymer solid electrolyte BE2 and the solid were prepared in the same manner as in Example B1. State battery BB2. The difference is that the weight ratio of the ionic liquid polymer P to the lithium salt LiFSI in the polymer solid electrolyte BE2 is 1:2; the weight of the polymer solid electrolyte, the positive electrode active material and the conductive agent in the positive electrode sheet of the solid battery BB2 The ratio is 3:6.5:0.5, except that the weight ratio of the ionic liquid polymer P to the lithium salt LiFSI in the polymer solid electrolyte is 1:2.
  • An ionic liquid polymer P, a polymer solid electrolyte BE3, and a solid battery BB3 were prepared in the same manner as in Example B1. The difference is that the weight ratio of the ionic liquid polymer P to the lithium salt LiFSI in the polymer solid electrolyte BE3 is 1:0.01; the weight of the polymer solid electrolyte, the positive electrode active material and the conductive agent in the positive electrode sheet of the solid battery BB3 The ratio is 3:6.5:0.5, except that the weight ratio of the ionic liquid polymer P to the lithium salt LiFSI in the polymer solid electrolyte is 1:0.01.
  • An ionic liquid polymer P, a polymer solid electrolyte BE4, and a solid battery BB4 were prepared in the same manner as in Example B1. The difference is that the weight ratio of the polymer solid electrolyte, the positive electrode active material, and the conductive agent in the positive electrode sheet of the solid battery BB4 is 1:8.5:0.5.
  • a solid battery BB6 was prepared from a solid polymer electrolyte in the same manner as in Example B1.
  • HPG hyperbranched polyglycidol
  • HPG hyperbranched polyglycidol
  • HPG-C1 chlorinated hyperbranched polyglycidol
  • the electrical conductivity of the polymer solid electrolyte obtained in Examples B1-B4 and Comparative Examples B1-B3 was tested separately.
  • the test method is electrochemical impedance method.
  • the test conditions include: taking the above electrolytes BE1-BE7 and assembling the stainless steel sheets into a blocking battery, and the battery structure is SS
  • the electrochemical impedance test was carried out at a frequency range of 1 Hz to 8 MHz at 25 ° C, and the room temperature ionic conductivity of the electrolyte was calculated based on the measured electrolyte impedance and the formula (1).
  • is the ionic conductivity of the electrolyte
  • the unit is S cm-1
  • l is the thickness of the electrolyte membrane
  • the unit is cm
  • R is the bulk impedance of the electrolyte measured by electrochemical impedance method, the unit is ⁇ (or S- 1)
  • S is the contact area of the electrolyte with the stainless steel sheet, the unit is cm2; the test results are listed in Table 4.
  • the battery rate performance test was performed on the solid batteries obtained in Examples B1 to B4 and Comparative Examples B1 to B3.
  • the battery cycle performance test was performed on the solid batteries obtained in Examples B1 to B4 and Comparative Examples B1 to B3.
  • An ionic liquid polymer P, a composite solid electrolyte CE2, and a solid battery CB2 were prepared in the same manner as in Example C1. The difference is that the weight ratio of the ionic liquid polymer P to the inorganic solid electrolyte Li 10 Sn 2 PS 12 in the composite solid electrolyte CE2 is 1:0.1; the solid electrolyte, the positive active material and the composite active material in the positive electrode of the solid battery CB2 The weight ratio of the conductive agent was 3:6.5:0.5.
  • An ionic liquid polymer P, a composite solid electrolyte CE3, and a solid battery CB3 were prepared in the same manner as in Example C1. The difference is that the weight ratio of the ionic liquid polymer P to the inorganic solid electrolyte Li 10 Sn 2 PS 12 in the composite solid electrolyte CE3 is 1:5; the solid electrolyte, the positive active material and the composite active material in the positive electrode of the solid battery CB3 The weight ratio of the conductive agent was 3:6.5:0.5.
  • An ionic liquid polymer P, a composite solid electrolyte CE4, and a solid battery CB4 were prepared in the same manner as in Example C1. The difference is that the weight ratio of the composite solid electrolyte, the positive electrode active material, and the conductive agent in the positive electrode sheet of the solid battery CB4 is 1:8.5:0.5.
  • a solid battery CB6 was prepared from the solid polymer electrolyte by the method of Example C1.
  • HPG hyperbranched polyglycidol
  • HPG hyperbranched polyglycidol
  • HPG-C1 chlorinated hyperbranched polyglycidol
  • a solid state battery CB7 was prepared from the ionic liquid polymer by the method of Example C1.
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • poly(diallyldimethylammonium chloride) available from Aldrich, #409022, a weight average molecular weight ranging from about 200,000 to about 350,000
  • the white crystals thus obtained were filtered and dried in a vacuum oven at 105 ° C to obtain poly(diallyldimethylammonium) TFSI represented by formula D4.
  • Poly(diallyl II) The yield of methylammonium)TFSI is about 93.5 wt% and n is about 2,500.
  • EC ethylene carbonate
  • DEC carbonic acid
  • Diethyl ester A mixed solvent of FEC (fluoroethylene carbonate) was added to dimethylformamide (DMF) in a weight ratio of
  • the solution was then stirred at room temperature (20 ° C) for about 1 hour to prepare a composition for forming a composite electrolyte.
  • a lithium metal film having a thickness of 40 micrometers ( ⁇ m) on a copper current collector was coated with the composition by using a doctor blade, dried at a high temperature (40 ° C), and vacuum dried at room temperature (20 ° C, 12 hours).
  • a negative electrode having a structure including a 15 ⁇ m thick composite electrolyte layer coated on lithium metal was prepared.
  • the content of alumina in the composite electrolyte layer is about 60% by weight based on the total weight of the alumina and the polymer ionic liquid.
  • Each of the copper current collector and the SUS current collector was coated with the composition prepared above by using a doctor blade, dried at a high temperature (40 ° C), and vacuum dried at room temperature (25 ° C, 12 hours) to prepare a coating comprising the coating.
  • the electrical conductivity of the polymer solid electrolytes CE1-CE7 obtained in Examples C1-C4 and Comparative Examples C1-C3 and the solution electrolyte CE8 obtained in Comparative Example C4 were tested, respectively.
  • the test method is an electrochemical impedance method.
  • the test conditions include: the above electrolytes CE1-CE7 are assembled with a stainless steel sheet to form a blocking battery, and the battery structure is SS
  • the electrochemical impedance test was carried out at a frequency range of 1 Hz to 8 MHz at 25 ° C, and the room temperature ionic conductivity of the electrolyte was calculated based on the measured electrolyte impedance and the formula (1).
  • is the ionic conductivity of the electrolyte
  • the unit is S ⁇ cm -1
  • l is the thickness of the electrolyte membrane
  • the unit is cm
  • R is the bulk impedance of the electrolyte measured by electrochemical impedance method, the unit is ⁇ (or S -1 )
  • S is the contact area of the electrolyte with the stainless steel sheet, and the unit is cm 2 ; the test results are shown in Table 7.
  • the batteries obtained in Examples C1 to C4 and Comparative Examples C1 to C4 were respectively charged from a constant current of 3.0 V to 4.2 V at a rate of 0.1 C, and then charged at a constant voltage of 4.2 V to a value of 0.01 C, and then allowed to stand for 5 minutes. Finally, discharge was performed to 3.0 V at a magnification of 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, and 5 C, respectively.
  • the test results are listed in Table 8.
  • a solid electrolyte obtained by complexing an ionic liquid of a fluorosulfonimide anion center with a lithium salt or a natural rubber (Comparative Example C2), a composite solid electrolyte containing a cationic ionic liquid polymer and a lithium salt (Comparative Example C3), and a solution electrolyte (Comparative Example C4)
  • the composite solid electrolyte prepared by the ionic liquid polymer of the present disclosure has a higher electrical conductivity, and the solid state battery prepared by the composite solid electrolyte has good rate performance and cycle performance.
  • LiPF 6 / EC-DMC-VC (1V: 1V: 0.02V) having the above positive electrode ( ⁇ 15mm), the above negative electrode ( ⁇ 15mm), PE separator ( ⁇ 18mm), and LiPF 6 concentration of 1M was assembled into CR2025. Button battery. This procedure was carried out in a glove box (H 2 O ⁇ 0.5 ppm, O 2 ⁇ 0.5 ppm).
  • the button cell was prepared in the same manner as in Example D1 except that the preparation of the positive electrode in the step (2) was carried out, taking 4.5 g of the ionic liquid polymer P, 5 g of LiCoO 2 , 0.5 g of acetylene black, that is, the ionic liquid polymer P, The weight ratio of the positive electrode active material to the conductive agent was 9:10:1.
  • a button cell was prepared in the same manner as in Example D1 except that the preparation of the positive electrode in the step (2) was carried out, taking 0.3 g of the ionic liquid polymer P, 9.2 g of LiCoO 2 , 0.5 g of acetylene black, that is, an ionic liquid polymer. P, the weight ratio of the positive active material to the conductive agent is 0.6: 18.4:1.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the ionic polymer was prepared by the same method as in Example 1 of CN105449218A (the polysulfone main chain was the main chain, and the fluorine-containing sulfonimide lithium salt was grafted on the side chain, and the molecular formula was -[(Ar) )-CF 2 CF 2 OCF 2 CF 2 SO 2 N(Li)SO 2 C 7 H 7 ] n )
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • a graphene-ionic liquid polymer composite was prepared by the same method as in Example 1 of CN102763251A.
  • the positive electrode sheet ( ⁇ 15 mm), the negative electrode sheet ( ⁇ 15 mm), the PE separator ( ⁇ 18 mm), and the liquid electrolyte (LiPF 6 / EC-DMC-VC (1V: 1V: 0.02 V)) having a LiPF 6 concentration of 1 M were assembled.
  • the battery prepared by the present disclosure has excellent rate performance, good bonding performance of the battery binder, and good cycle performance of the battery.

Abstract

公开了阴离子型离子液体化合物、由其制备得到的阴离子型离子液体聚合物、含该聚合物的固态电解质、电池电极粘结剂和电池。具体地提供了式(1)所示的结构的阴离子型离子液体化合物及其制备方法,并且提供了式(24)所示的结构的阴离子型离子液体聚合物及其制备方法。

Description

阴离子型离子液体聚合物、其制备方法及用途
相关申请的交叉引用
本公开主张在2016年9月29日在中国提交的中国专利申请号No.201610864105.0、No.201610868279.4、No.201610867865.7和No.201610863529.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电池领域,具体地,涉及一种阴离子型离子液体化合物、阴离子型离子液体聚合物、含该聚合物的固态电解质和粘合剂以及它们在电池中的应用。
背景技术
离子液体室温下通常为液态,并且具有黏度低、不挥发、不燃烧、毒性小、室温电导率高及电化学窗口宽等特点,因此离子液体适合作为电池的电解质或粘结剂的成分。离子液体作为电解质的锂离子电池的安全性较有机电解质电池要高,但是现有的离子液体锂离子电池无法满足电池向轻量化、薄膜化及形状任意化发展的方向。较常见的粘结剂有聚偏氟乙烯(PVDF)类、聚丙烯酸酯类、苯橡胶(SBR)等,这类粘结剂仅有粘结作用,其不能导锂离子。随着锂离子电池在各领域的广泛引用,对其性能的要求也都提出了更高的要求,特别是航空、交通等领域的应用,例如汽车动力电池等大型设备对电池的充放电倍率性能要求较高,其需要电池的快速充放电,对电池的各部分的导电性提出了更高的要求。
发明内容
本公开的目的是提供一种离子液体化合物、其制备方法,以及一种离子液体聚合物和含有该离子液体聚合物的固态电解质和粘结剂,由此解决现有的锂离子电池中离子迁移慢、电导率低等技术问题。
为了实现上述目的,一方面,本公开提供一种离子液体化合物,该化合物具有如下式(1)所示的结构:
Figure PCTCN2017103976-appb-000001
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000002
k为1-5的整数,m为1-20的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000003
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000004
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
第二方面,本公开提供一种制备离子液体化合物的方法,该方法包括:使式(9)所示的化合物在离子交换反应条件下与含有阳离子
Figure PCTCN2017103976-appb-000005
的卤化物接触得到式(1)所示的化合物:
Figure PCTCN2017103976-appb-000006
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000007
k为1-5的整数,m为1-20的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000008
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000009
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
第三方面,本公开提供一种离子液体聚合物,该离子液体聚合物具有如下式(24)所示的结构:
Figure PCTCN2017103976-appb-000010
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000011
k为1-5的整数,m为1-20的整数;Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000012
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000013
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地取自1-10的整数;
n的取值使得所述阴离子型离子液体聚合物的分子量为1-50万。
第四方面,本公开提供一种制备阴离子型离子液体聚合物的方法,包括:使式(1)所示的化合物在聚合反应条件下与聚合反应引发剂接触,得到式(24)所示的阴离子型离子液体聚合物:
Figure PCTCN2017103976-appb-000014
其中,Z为CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000015
m为1-20的整数;k为1-5的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000016
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000017
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
通过上述技术方案,本公开提供了式(1)所示的结构的离子液体化合物及其制备方法,并且提供了式(24)所示的结构的离子液体聚合物及其制备方法,该离子液体化合物和离子液体聚合物的阴离子中心为配位能力较弱的全氟磺酰亚胺离子,减小了阴离子中心对Li+的束缚能力,提高了含有该离子液体聚合物的聚合物固态电解质的电导率和Li+迁移数;本公开的离子液体聚合物与锂盐复合后形成含有离子液体-聚离子液体复合物的聚合物固态电解质,离子液体-聚离子液体复合物具有微液相结构,能进一步提升电解质的电导率以及Li+迁移数。
第五方面,本公开提供上述的离子液体聚合物在电容器、固态电池和燃料电池中的应用。
第六方面,本公开提供一种固态电解质,所述固态电解质包括上述的离子液体聚合物。
第七方面,本公开提供了上述的固态电解质在制备固态电池的用途。
第八方面,本公开提供一种固态电池,包括正极片、负极片和电解质层,其中所述电解质层含有上述固态电解质。
通过上述技术方案,本公开的固态电解质包括阴离子型离子液体聚合物和无机固态电解质或锂盐,通过选取配位能力较弱的全氟磺酰亚胺离子作为阴离子型离子液体聚合物的阴离子中心,其对于Li+的束缚能力较小,有利于固态电解质的电导率和Li+迁移数的提高。阴离子型离子液体聚合物与无机固态电解质可以在较宽的比例范围内复合,可以进一步提高复合固态电解质的离子电导率和机械性能。阴离子型离子液体聚合物与小分子锂盐复合后形成的离子液体-聚离子液体复合物具有微液相结构,可以进一步提升聚合物固态电解质的电导率和Li+迁移数。
第九方面,本公开提供一种电池电极粘结剂,所述粘结剂包括上述的离子液体聚合物。
第十方面,本公开提供一种电极,包括集电体和形成在集电体表面上的活性材料层,所述活性材料层包括活性材料和粘结剂,所述粘结剂上述电池电极粘结剂。
第十一方面,本公开提供一种锂离子电池,包括电池壳、极芯和电解液,所述极芯和电解液密封容纳在电池壳内,所述极芯包括正极、负极及位于正极和负极之间的隔膜,所述正极和/或负极为上述电极。
本公开采用具有强导离子型的阴离子型离子液体聚合物作为锂离子电池正或负极的新型聚合物粘结剂,技术方案采用的含弱配位类型的全氟磺酰亚胺类聚阴离子型聚离子液体与电极浆料具有较好的相容性,保证工艺的良好实现,而且干燥后具有较强的粘结性,电极活性材料不脱落,电池的循环性能优,特别是本公开的粘结剂具有较好的锂离子导通能力,其不会阻碍Li+嵌入或者脱出正(负)极活性物质,有利于提高电池的倍率性能。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开的一种具体实施方式中固态电池的结构示意图。
图2是本公开的一种具体实施方式中固态电池的正极片的微观结构示意图(复合固态电解质)。
图3是本公开的另一种具体实施方式中固态电池的正极片的微观结构示意图(聚合物固态电解质)。
附图标记说明
1正极片  2负极片  3电解质层
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合具体实施方式,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本公开,并不用于限定本公开。
为了实现上述目的,一方面本公开提供一种离子液体化合物,该化合物具有如下式(1)所示的结构:
Figure PCTCN2017103976-appb-000018
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000019
k为1-5的整数,m为1-20的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000020
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000021
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
根据本公开,具体地,该化合物可以为选自如下式(M1)-式(M12)中的一种:
Figure PCTCN2017103976-appb-000022
Figure PCTCN2017103976-appb-000023
Figure PCTCN2017103976-appb-000024
另一方面,本公开提供一种制备离子液体化合物的方法,该方法包括:使式(9)所示的化合物在离子交换反应条件下与含有阳离子
Figure PCTCN2017103976-appb-000025
的卤化物接触得到式(1)所示的化合物:
Figure PCTCN2017103976-appb-000026
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000027
(和权利要求1相比,在这个权利要求中限定了两个式子,“各自独立地”从逻辑上来将是可以这样限定的,然而,如果考虑实质内容的话,此处其实是限定(9)可以通过例子交换获得(1),那么在两个式子中Z、k、m的值应该是不变的,因此建议删除“各自独立地”的限定)
k为1-5的整数,m为1-20的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000028
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000029
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
可选地,所述含有阳离子
Figure PCTCN2017103976-appb-000030
的卤化物可以为
Figure PCTCN2017103976-appb-000031
式(9)所示的化合物与所述含有阳离子
Figure PCTCN2017103976-appb-000032
的卤化物的摩尔比可以为1:(1.0-1.2)。
可选地,离子交换反应的条件可以为:反应温度为0-60℃,反应时间为1-24h,溶剂为水、二氯甲烷、氯仿、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(9)所示的化合物的制备方法包括:使式(10)所示的化合物在格氏反应条件下与式(11)所示的化合物或式(12)所示的化合物接触:
Figure PCTCN2017103976-appb-000033
其中,Z1为CmH2m、CmF2m或(OCH2CH2)m;Z2为(CH2CH2O)m
Figure PCTCN2017103976-appb-000034
k为1-5的整数,m为1-20的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数。
可选地,所述式(10)所示的化合物与式(11)所示的化合物或式(12)所示的化合物的摩尔比可以为1:(1-1.2)。
可选地,格氏反应的条件可以为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为四氢呋喃、乙醚、甲苯和乙腈中的至少一种。
可选地,式(10)所示的化合物的制备方法可以包括:使式(13)所示的化合物在格氏反应条件下与金属镁接触;
Figure PCTCN2017103976-appb-000035
式(13)中,Rf为ChF2h+1
可选地,式(13)所示的化合物与金属镁的摩尔比可以为1:(1-3)。
可选地,格氏反应条件可以为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为四氢呋喃、乙醚、甲苯和乙腈中的至少一种,引发剂为碘、溴和1,2-二溴乙烷中的至少一种。
可选地,式(9)所示的化合物的制备方法可以包括:使式(14)所示的化合物在酸碱中和反应条件下与碱接触:
Figure PCTCN2017103976-appb-000036
式(14)中,Z3
Figure PCTCN2017103976-appb-000037
k和Rf具有与上述相同的定义。
可选地,所述碱可以为选自碳酸钾、碳酸氢钾和氢氧化钾中的至少一种;式(14)所示的化合物与所述中和试剂的摩尔比可以为1:(1-2)。
可选地,中和反应的条件可以为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(14)所示的化合物的制备方法可以包括:使式(15)表示的化合物在催 化加成反应条件下与乙炔接触:
Figure PCTCN2017103976-appb-000038
式(15)中,Rf具有与上述相同的定义。
可选地,式(15)所示的化合物与乙炔的摩尔比可以为1:(1-1.5)。
可选地,加成反应的条件可以为:反应温度为150-300℃,反应时间为10-24h,催化剂为乙酸锌。
可选地,式(15)所示的化合物的制备方法可以包括:使式(16)表示的化合物在氧化反应条件下与氧化剂接触得到式(15)所示的化合物:
Figure PCTCN2017103976-appb-000039
式(16)中,Rf具有与上述相同的定义。
可选地,所述氧化剂可以为高锰酸钾和/或重铬酸钾,式(16)所示的化合物与氧化剂的摩尔比可以为1:(1-3)。
可选地,氧化反应的条件可以为:反应温度为0-200℃,反应时间为1-24h,溶剂为水。
可选地,式(13)或式(16)所示的化合物的制备方法可以包括:使式(17)所示的化合物在中和反应条件下与中和试剂接触得:
Figure PCTCN2017103976-appb-000040
其中,V为CH3或Cl,Rf为ChF2h+1,h为0-10的整数。
可选地,所述中和试剂可以为选自碳酸钾、碳酸氢钾氢氧化钾中的至少一种;式(17)所示的化合物与所述中和试剂的摩尔比可以为1:(1-2)。
可选地,中和反应的条件可以为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(17)所示的化合物的制备方法可以包括:使式(18)所示的化合物在取代反应条件下与式(19)所示的化合物接触得到式(17)所示的化合物:
Figure PCTCN2017103976-appb-000041
其中,V为CH3或Cl,Rf为ChF2h+1,h为1-10的整数。
可选地,式(18)所示的化合物与式(19)所示的化合物的摩尔比可以为1:(0.8-1)。
可选地,取代反应的条件可以为:反应温度为0-200℃,反应时间为1-24h,溶剂为乙腈和/或硝基甲烷,催化剂为吡啶和/或三乙胺。
可选地,式(13)或式(16)所示的化合物的制备方法可以包括:使式(21)所示的化合物在中和反应条件下与中和试剂接触:
Figure PCTCN2017103976-appb-000042
其中,V为CH3或Cl;Rf为F。
可选地,所述中和试剂可以为选自碳酸钾、碳酸氢钾和氢氧化钾中的至少一种;式(21)所示的化合物与所述中和试剂的摩尔比可以为1:(1-2)。
可选地,中和反应的条件可以为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
可选地,式(21)所示的化合物的制备方法可以包括:使式(22)所示的化合物在氟代反应条件下与氟代试剂接触得到式(21)所示的化合物:
Figure PCTCN2017103976-appb-000043
其中,V为CH3或Cl。
可选地,所述氟代试剂为选自SbF3、AsF3、KF、NaF和LiF中的至少一种;式(22)所示的化合物与所述氟代试剂的摩尔比为1:(1-1.5)。
可选地,氟代反应的条件为:反应温度为-50℃至100℃,反应时间为1-24h,溶剂为乙腈和/或硝基甲烷。
可选地,式(22)所示的化合物的制备方法可以包括:使式(23)所示的化合物在取代反应条件下与取代试剂接触得到式(22)所示的化合物:
Figure PCTCN2017103976-appb-000044
其中,V为CH3或Cl。
可选地,所述取代试剂可以为二氯亚砜和氯磺酸,式(23)所示的化合物与二氯亚砜和氯磺酸的摩尔比可以为1:(1-5):(1-1.5)。
可选地,取代反应的条件可以为:反应温度为0-200℃,反应时间为1-24h。
根据本公开的实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(1)所示,该方法包括如下步骤:
S1、在取代反应溶剂存在下,在取代反应条件下,将式(23)所示的化合物与取代反应试剂接触;以制备式(22)所示化合物;
S2、在氟代反应溶剂存在下,以及在氟代反应条件下,将式(22)所示的化合物与氟代试剂接触;以制备式(21)所示化合物;
S3、在中和反应溶剂的存在下,在中和反应条件下,将式(21)所示化合物与能够用于中和反应的碱接触,使式(21)所示化合物发生中和反应;以制备式(16)所示的化合物;
S4、在加成氧化反应溶剂存在下,在氧化反应条件下,将式(16)所示化合物与氧化剂接触;以制备式(15)所示化合物;
S5、将式(15)所示的化合物在催化加成反应条件下,与乙炔接触;以制备式(14)所示化合物;
S6、在酸碱中和反应溶剂存在下,在酸碱中和反应条件下,将式(14)所示的化合物与碱接触;以制备式(9)所示化合物;
S7、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017103976-appb-000045
的卤化物接触;以制备式(1)所示化合物。
根据本公开的实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(1)所示,该方法包括如下步骤:
S1、在取代反应溶剂存在下,在取代反应条件下,将式(23)所示的化合物与取代反应试剂接触;以制备式(22)所示化合物;
S2、在氟代反应溶剂存在下,以及在氟代反应条件下,将式(22)所示的化合物与氟代试剂接触;以制备式(21)所示化合物;
S3、在中和反应溶剂的存在下,在中和反应条件下,将式(21)所示化合物与能够用于中和反应的碱接触,使式(21)所示化合物发生中和反应;以制备式(13)所示的化合物;
S4、在格氏反应溶剂存在下,在格氏反应条件下,将式(13)所示化合物与金属镁接触;以制备式(10)所示化合物;
S5、将式(10)所示的化合物在格氏反应条件下,与式(11)所示的化合物或式(12)所示的化合物接触;以制备式(9)所示化合物;
S6、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017103976-appb-000046
的卤化物接触;以制备式(1)所示化合物。
根据本公开的实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(1)所示,该方法包括如下步骤:
S1、在取代反应溶剂和取代反应催化剂存在下,在取代反应条件下,将式(18)所示的化合物与式(19)所示的化合物接触;以制备式(17)所示化合物;
S2、在中和反应溶剂的存在下,在中和反应条件下,将式(17)所示化合物与能够用于中和反应的碱接触,使式(17)所示化合物发生中和反应;以制备式(16)所示的化合物;
S3、在加成氧化反应溶剂存在下,在氧化反应条件下,将式(16)所示化合物与氧化剂接触;以制备式(15)所示化合物;
S4、将式(15)所示的化合物在催化加成反应条件下,与乙炔接触;以制备式(14)所示化合物;
S5、在酸碱中和反应溶剂存在下,在酸碱中和反应条件下,将式(14)所示的化合物与碱接触;以制备式(9)所示化合物;
S6、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017103976-appb-000047
的卤化物接触;以制备式(1)所示化合物。
根据本公开的实施方式,本公开提供一种制备离子液体化合物的方法,该离子液体化合物的结构如式(1)所示,该方法包括如下步骤:
S1、在取代反应溶剂和取代反应催化剂存在下,在取代反应条件下,将式(18)所示的化合物与式(19)所示的化合物接触;以制备式(17)所示化合物;
S2、在中和反应溶剂的存在下,在中和反应条件下,将式(17)所示化合物与能够用 于中和反应的碱接触,使式(17)所示化合物发生中和反应;以制备式(13)所示的化合物;
S3、在格氏反应溶剂存在下,在格氏反应条件下,将式(13)所示化合物与金属镁接触;以制备式(10)所示化合物;
S4、将式(10)所示的化合物在格氏反应条件下,与式(11)所示的化合物或式(12)所示的化合物接触;以制备式(9)所示化合物;
S5、在离子交换反应溶剂存在下,在离子交换反应条件下,将式(9)所示的化合物与含有阳离子
Figure PCTCN2017103976-appb-000048
的卤化物接触;以制备式(1)所示化合物。
另一方面,本公开提供一种离子液体聚合物,该离子液体聚合物具有如下式(24)所示的结构:
Figure PCTCN2017103976-appb-000049
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000050
k为1-5的整数,m为1-20的整数;Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000051
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000052
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地取自1-10的整数;
n的取值使得所述离子液体聚合物的分子量为1-50万。
另一方面,本公开提供一种制备离子液体聚合物的方法,该方法包括:使式(1)所示的化合物在聚合反应条件下与聚合反应引发剂接触,得到式(24)所示的离子液体聚合物:
Figure PCTCN2017103976-appb-000053
其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
Figure PCTCN2017103976-appb-000054
m为1-20的整数;k为1-5的整数;
Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
阳离子
Figure PCTCN2017103976-appb-000055
具有如下式(2)-式(8)所示的结构:
Figure PCTCN2017103976-appb-000056
其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
可选地,聚合反应条件可以为:反应温度为0-150℃,反应时间为1-24h,所述聚合反 应在无溶剂条件下或溶剂存在下进行,所述溶剂为水、甲醇、乙醇、丁醇、乙腈、丙酮、二氯甲烷、氯仿、硝基甲烷、苯和甲苯中的至少一种,聚合反应引发剂为偶氮二异丁腈、偶氮二异庚腈、过硫酸钾、过氧化苯甲酸叔丁酯和过氧化二苯甲酰中的至少一种。
另一方面,本公开提供上述的离子液体聚合物在电容器、固态电池和燃料电池中的应用。
另一方面,本公开提供一种固态电解质,所述固态电解质包括上述的离子液体聚合物。
根据本公开的实施例,所述固态电解质为包括无机固态电解质的复合固态电解质,所述阴离子型离子液体聚合物和无机固态电解质的重量比为1:(0.01-99)。
本公开的复合固态电解质包括阴离子型离子液体聚合物和无机固态电解质,通过选取配位能力较弱的全氟磺酰亚胺离子作为阴离子型离子液体聚合物的阴离子中心,其对于Li+的束缚能力较小,有利于复合固态电解质的电导率和Li+迁移数的提高;阴离子型离子液体聚合物与无机固态电解质可以在较宽的比例范围内复合,可以进一步提高复合固态电解质的离子电导率和机械性能。
可选地,所述无机固态电解质为选自Perovskite型无机固态电解质、Garnet型无机固态电解质、NASCION型无机固态电解质、LISCION型无机固态电解质、Argyrodite型无机固态电解质、Li-Nitride类无机固态电解质、Li-Hydride类无机固态电解质和Li-halide类无机固态电解质中的至少一种。
作为上述无无机固态电解质的具体例子,可以举出Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3、Li3PS4、Li9.6P3S12、Li7P3S11、Li11Si2PS12、Li10SiP2S12、Li10SnP2S12、Li10GeP2S12、Li10Si0.5Ge0.5P2S12、Li10Ge0.5Sn0.5P2S12、Li10Si0.5Sn0.5P2S12、Li9.54Si1.74P1.44S11.7Cl0.3、Li6PS5Br、Li6PS5Br、Li7PS6、Li7PS5I、Li7PO5Cl、Li3N、Li7PN4、LiSi2N3、LiPN2、Li2NH、Li3(NH2)2I、LiBH4、LiAlH4、LiNH2、Li2CdCl4、Li2MgCl4、Li2ZnCl4和Li3xLa(2/3)-x(1/3)-2xTiO3中的至少一种,其中0<x<0.16。□为空位或晶体缺陷,但是本公开的无机固态电解质并不限于此。
根据本公开的实施例,所述无机固态电解质的粒径可以在很大范围内变化,例如,无机固态电解质的粒径可以10nm-100μm。可选地,无机固态电解质的粒径可以小于10μm。可选地,无机固态电解质的粒径可以在100nm-2μm之间。上述可选的粒径范围内,无机固态电解质可以与阴离子型离子液体聚合物混合分散均匀,有利于形成分布均匀的复合固态电解质,从而提高复合固态电解质的离子电导率。
根据本公开的实施例,所述固态电解质为包括锂盐的聚合物固态电解质,所述阴离子型离子液体聚合物和锂盐的重量比为1:(0.01-9)。
本公开的聚合物固态电解质包括阴离子型离子液体聚合物和锂盐,通过选取配位能力较弱的全氟磺酰亚胺离子作为阴离子型离子液体聚合物的阴离子中心,其对于Li+的束缚能力较小,有利于聚合物固态电解质的电导率和Li+迁移数的提高;阴离子型离子液体聚合物与小分子锂盐复合后形成的离子液体-聚离子液体复合物具有微液相结构,可以进一步提升聚合物固态电解质的电导率和Li+迁移数。
根据本公开,所述锂盐可以为本领域技术人员所熟知的种类,本公开不做特别的要求,只要满足锂盐中的Li+可以解离即可。例如,锂盐可以为选自如LiBF3RF所示的全氟烷基三氟硼酸锂、如LiPF5RF所示的全氟烷基五氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂和如(RFSO2)2NLi所示的双全氟烷基磺酰亚胺锂中的至少一种;其中,RF为ClF2l+1,l各自独立地为0-10的整数。
具体地,锂盐为选自四氟硼酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、双(三氟甲基磺酰)亚胺锂和双(氟磺酰)亚胺锂中的至少一种。
根据本公开,作为上述阴离子型离子液体聚合物的具体例子,所述阴离子型离子液体聚合物的结构为选自如下式(P1)-式(P14)所示结构中的任意一种:
Figure PCTCN2017103976-appb-000057
Figure PCTCN2017103976-appb-000058
Figure PCTCN2017103976-appb-000059
Figure PCTCN2017103976-appb-000060
根据本公开,复合固态电解质中阴离子型离子液体聚合物和无机固态电解质的含量可以在很大范围内变化。可选地,阴离子型离子液体聚合物和无机固态电解质的重量比可以1:(0.01-99),可选为1:(0.1-20),可选为1:(0.1-10)。上述含量范围内的阴离子型离子液体聚合物和无机固态电解质可以形成具有适宜机械强度和离子电导率的复合固态电解质。
根据本公开,聚合物固态电解质中阴离子型离子液体聚合物和锂盐的含量可以在很大范围内变化,可选地,阴离子型离子液体聚合物和锂盐的重量比可以为1:(0.01-9)。上述含量范围内的阴离子型离子液体聚合物和锂盐容易复合形成离子液体-离子液体聚合物复合物的微液相结构,有利于提高电导率和Li+迁移数。
固态电解质的制备方法可以为本领域技术人员所熟知的制备方法,例如,可以按照以下步骤制备固态电解质:
(1)使所述聚合物离子液体与无机固态电解质或锂盐在溶剂中溶解并混合均匀,得到电解质溶液;
(2)使所述电解质溶液均匀分散在特氟龙板上并使所述溶剂挥发,得到复合固态电解质或聚合物固态电解质。
其中,溶剂可以为选自乙腈、二甲基亚砜、四氢呋喃和N,N-二甲基甲酰胺中的至少一种。
其中,为了降低环境杂质的影响,进一步提高复合固态电解质或聚合物固态电解质的电导率,制备过程中的环境条件可以为:H2O的含量小于0.5ppm,O2含量小于0.5ppm。
本公开还提供上述复合固态电解质或聚合物固态电解质在制备固态电池的用途。
本公开还提供一种固态电池,该固态电池包括正极片、负极片和电解质层,电解质层含有上述的复合固态电解质或聚合物固态电解质。
例如,如图1所示,固态电池可以包括正极片1、负极片2,以及设置在正极片1与负极片2之间的电解质层3。在所述固态电池中,复合固态电解质或聚合物固态电解质可以设置于电解质层3中,所述正极片1与负极片2均与电解质层直接接触,提高了接触界面的稳定性,使固态电池内的电流可以均匀分布,从而改善固态电池的循环充放电性能。
进一步地,复合固态电解质或聚合物固态电解质还可以设置于至少一部分正极片中。如图2所示,正极片中可以含有上述的复合固态电解质、正极活性物质和导电剂。如图3所示,正极片中可以含有上述的聚合物固态电解质、正极活性物质和导电剂。此时复合固态电解质或聚合物固态电解质和正极活性物质、导电剂分布均匀,可以使电流在正极片表面均匀分布,其中,复合固态电解质或聚合物固态电解质、正极活性物质和导电剂的含量可以在很大范围内变化。例如,复合固态电解质或聚合物固态电解质、正极活性物质和导电剂的重量比可以为1:(0.01-99):(0.01-99),可选为1:(0.01-40):(0.01-40),可选为1:(0.1-20):(0.1-10)。在上述可选的含量范围内,有利于离子液体聚合物和正极活性物质及导电剂复合形成如图1所示的正极片结构模型,有利于提高正极片的容量和充放电效率。
根据本公开,正极活性物质可以为本领域技术人员所熟知的种类,例如,正极活性物质可以为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。
其中,为了进一步提高正极活性物质的稳定性,正极活性物质也可以为先经过包覆材料包覆,包覆材料可以选自Li2CO3、Li4Ti5O12和LiNbO3中的至少一种。
根据本公开,导电剂的含义为本领域技术人员所熟知,可以为常规种类的导电剂,本公开不做特别的要求,例如,导电剂可以为选自乙炔黑、碳纳米管和石墨烯中的至少一种。
根据本公开,负极片可以为含有锂金属,此外,负极片中还可以进一步含有锂与至少 一种其他金属的合金。所述合金中的所述至少一种其他金属可以为铟,但合金种类不限于此,即可以使用能与锂金属形成合金的任意金属与锂形成合金片作为负极片。
在本公开的另一种实施方式中,负极片可以为由负极材料、导电剂及上述的复合固态电解质或聚合物固态电解质组成的片。其中,复合固态电解质或聚合物固态电解质、负极材料和导电剂的相对含量可以在很大范围内变化。例如,复合固态电解质或聚合物固态电解质、负极材料和导电剂的重量比可以为1:(0.01-99):(0.01-99),可选为1:(0.01-20):(0.01-20),可选为1:(0.1-10):(0.1-10)。上述含量范围的复合固态电解质或聚合物固态电解质、负极材料和导电剂组成的负极片有利于提高固态电池的容量。
根据本公开,负极材料可以为本领域技术人员所熟知的用于锂离子电池的常规负极材料种类,例如,负极材料可以为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。
根据本公开,固态电池的结构可以为本领域技术人员所熟知的固态电池的常规结构,可选地,正极片的厚度可以为1-1000μm,电解质层的厚度可以为1-1000μm,负极片的厚度可以为1-1000μm,可选地,正极片的厚度可以为1-200μm,电解质层的厚度可以为1-200μm,负极片的厚度可以为1-200μm。上述可选的厚度范围内,固态电池可以具有适宜的容量和体积。
固态电池的制备方法也为本领域技术人员所熟知,例如,固态电池可以按照如下方法制备:
a.使所述聚合物离子液体与无机颗粒或锂盐在第一溶剂中溶解并混合均匀,得到第一溶液,使所述第一溶液均匀分散在特氟龙板上并使所述第一溶剂挥发,得到复合固态电解质片或聚合物固态电解质片;
b.使所述聚合物离子液体和无机颗粒或锂盐在第二溶剂中溶解并混合均匀,得到第二溶液,向所述第二溶液中加入所述正极活性物质和导电剂,得到第一浆料,使所述第一浆料均匀涂布在铝箔上,得到正极片;
c.使所述复合固态电解质片或聚合物固态电解质片置于所述正极片和负极片中间,组装得到固态电池。
根据本公开,上述制备方法还可以包括:使所述聚合物离子液体和无机颗粒或锂盐在第三溶剂中溶解并混合均匀,得到第三溶液,向所述第三溶液中加入所述负极材料和导电剂,得到第二浆料,使所述第二浆料均匀涂布在铝箔上,得到负极片。
其中,为了降低环境杂质的影响,进一步提高复合固态电解质或聚合物固态电解质的电导率,步骤a和步骤c的环境条件可以为H2O的含量小于0.5ppm,O2含量小于0.5ppm; 步骤b中的环境条件可以为:相对湿度0.1-5%,露点为-70至-75℃。
其中,为了得到厚度适宜的正极片,步骤b中,第一浆料的涂布厚度可以为45-50μm。
根据本公开,上述第一溶剂、第二溶剂和第三溶剂可以相同或不同,且可以各自独立地选自乙腈、二甲基亚砜、四氢呋喃和N,N-二甲基甲酰胺中的至少一种。
另一方面,本公开提供了一种电池电极粘结剂,其包括上述的阴离子型离子液体聚合物。
根据本公开,作为上述阴离子型离子液体聚合物的具体例子,可以为选自如下(P1)-式(P14)所示结构中的任意一种:
Figure PCTCN2017103976-appb-000061
Figure PCTCN2017103976-appb-000062
Figure PCTCN2017103976-appb-000063
进一步地,阴离子型离子液体聚合物的分子量为10万-30万,进一步提高电池的性能。
可选地,电池电极粘结剂的平均粒径为400nm-800nm,进一步优化电极的性能。较佳实 施例可以采用500nm。
本公开可以采用阴离子型离子液体聚合物单独作为电池电极的粘结剂,也可以与其他粘结剂复合,例如,本公开可选电池电极粘结剂还包括聚偏二氟乙烯(简称PVDF)、偏二氟乙烯与六氟丙烯共聚物(简称PVDF-HFP)、丁苯橡胶(简称SBR)或聚丙烯酸酯类聚合物(简称PA)中的一种或几种。可选地,复合的量为相对于100重量份的阴离子型离子液体聚合物,所述聚偏二氟乙烯的含量为0.01-9900,可选为0.01-500;偏二氟乙烯与六氟丙烯共聚物的含量为0.01-9900,可选为0.01-500;丁苯橡胶的含量为0.01-9900,可选为0.01-500;聚丙烯酸酯类聚合物的含量为0.01-9900,可选为0.01-500,各种粘结剂之间存在相互作用,通过粘结剂的复合既可以保证电极材料在集电体上的稳固附着,又可以降低粘结剂对电极材料脱嵌锂过程的阻碍作用。
本公开还提供了一种电极,其包括集电体和形成在集电体表面上的活性材料层,所述活性材料层包括活性材料和粘结剂,所述粘结剂为上述电池电极粘结剂。
集电极为本领域技术人员所公知的。例如铜箔、泡沫镍、铝箔等。
活性材料亦为本领技术人员所公知的,为可以脱嵌锂离子的物质。其分为正极活性材料和负极活性材料。
当活性材料为正极活性材料时,即电极为正极时,一般活性材料层中还包括导电剂,可选地,活性材料层中各组分重量比为正极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。上述可选的含量范围内,有利于离子液体聚合物和正极活性材料及导电剂复合,有利于提高正极片的容量和充放电效率。
正极活性材料可以为本领域技术人员所熟知的种类,本公开可选正极活性材料为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。其中,为了进一步提高正极活性材料的稳定性,正极活性物质也可以为先经过包覆材料包覆,包覆材料可以选自Li2CO3、Li4Ti5O12和LiNbO3中的至少一种。
根据本公开,导电剂的含义为本领域技术人员所熟知,可以为常规种类的导电剂,本公开不做特别的要求,例如,导电剂可以为选自乙炔黑、super P、碳纳米管、石墨烯、碳纳米纤维中的至少一种。
当活性材料为负极活性材料时,即电极为负极时,可选地,活性材料层中各组分重量比为负极活性材料:粘结剂=100:0.1~900。本公开可选负极活性材料为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。上述含量范围的离子液体聚合物和负极活性材料有利于提 高锂离子电池的容量。当活性材料为负极活性材料时,活性材料层中也可以含有导电剂,导电剂可以为乙炔黑、super P、碳纳米管、石墨烯、碳纳米纤维中的至少一种,可选地,活性材料层中各组分重量比为负极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。
电极的制备方法本公开可以为本领域技术人员所熟知的制备方法,涂覆、干燥及浆料的混合等本公开均没有限制。
本公开同时提供了一种锂离子电池,其包括电池壳、极芯和电解液,所述极芯和电解液密封容纳在电池壳内,所述极芯包括正极、负极及位于正极和负极之间的隔膜,所述正极为上述对应的正极电极和/或所述负极为上述对应的负极电极。
隔膜可以选自本领域技术人员公知的锂离子电池中所用的各种隔膜,例如聚烯烃微多孔膜(PP)、聚乙烯毡(PE)、玻璃纤维毡或超细玻璃纤维纸或PP/PE/PP。作为一种可选的实施方式,所述隔膜为PP/PE/PP。电解液含有锂盐和非水溶剂,锂盐可以为六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂、三氟甲基磺酸锂、全氟丁基磺酸锂、铝酸锂、氯铝酸锂、氟代磺酰亚胺锂、氯化锂和碘化锂中的一种或几种;非水溶剂可以为γ-丁内酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丙酯、酸酐、N-甲基吡咯烷酮、N-甲基甲酰胺、N-甲基乙酰胺、乙腈、N,N-二甲基甲酰胺、环丁砜、二甲亚砜、亚硫酸二甲酯以及其它含氟、含硫或含不饱和键的环状有机酯中的一种或几种。锂盐在电解液中的浓度可以为0.3-4摩尔/升,可选为0.5-2摩尔/升。壳体本公开没有限制,可以采用本领域技术人员公知的各种电池壳体,例如钢壳或铝壳等硬壳,也可以为铝塑膜等软包装壳,形状和大小可根据实际情形进行设计。上述锂离子电池的制备方法也为本领域的技术人员所公知的方法,一般来说,该方法包括将正极、负极和位于正极与负极之间的隔膜依次卷绕形成极芯,将极芯置入电池壳中,加入电解液,然后密封,其中,卷绕和密封的方法为本领域人员所公知。电解液的用量为常规用量。
当然,本公开的电池电极粘结剂并不局限于此种液态锂离子电池,也可以应用于固态锂离子电池,固态锂离子电池的正负极之间夹持电解质,电解质可以为液态电解质、聚合物电解质、无机固态电解质、复合电解质中的一种或几种。液态电解质可以由导电盐、溶剂和添加剂构成,导电盐可以为全氟烷基三氟硼酸锂LiBF3Rf(其中Rf=CiF2i+1,i=0~10)、全氟烷基五氟磷酸锂LiPF5Rf(其中Rf=CiF2i+1,i=0~10)、双草酸硼酸锂(简称LiBOB)、二氟草酸硼酸锂(简称LiDFOB)、双(三氟甲基磺酰)亚胺锂(简称LiTFSI)、双(氟磺酰)亚胺锂(简称LiFSI)等;溶剂为碳酸酯类溶剂EC、DEC、DMC等;添加剂为VC等。聚合物电解质可以为含氧化乙烯链段的聚合物或者聚离子液体与上述小分子锂盐组成的电解质,复合电解质可以为上述聚合物电解质与各种非导离子固体之间的混合,这些非导离子固体主要为金属 氧化物(如:Al2O3、TiO2、FexO等)、非金属氧化物(如SiO2、B2O3等)、非金属硫化物(如:TiS2、FeS等)、金属有机框架化合物(Metal-organic Frameworks)(如:MOF-177、Cu-BTTri、Mg2(dobdc)等)。无机固态电解质包括Perovskite型无机固态电解质(如:Li3xLa(2/3)-x(1/3)-2xTiO3(其中0<x<0.16,简称LLTO)等)、Garnet型无机固态电解质(如:Li7La3Zr2O12(简称LLZO)等)、NASCION型无机固态电解质(如:Li1.3Al0.3Ti1.7(PO4)3(简称LATP)等)、LISCION型无机固态电解质(如:硫系电解质Li3PS4、Li9.6P3S12、Li7P3S11、Li11Si2PS12、Li10SiP2S12、Li10SnP2S12、Li10GeP2S12、Li10Si0.5Ge0.5P2S12、Li10Ge0.5Sn0.5P2S12、Li10Si0.5Sn0.5P2S12、Li9.54Si1.74P1.44S11.7Cl0.3等)、Argyrodite型无机固态电解质(如:Li6PS5Br、Li6PS5Br、Li7PS6、Li7PS5I、Li7PO5Cl)、Li-Nitride类无机固态电解质(如:Li3N、Li7PN4、LiSi2N3、LiPN2)、Li-Hydride类无机固态电解质(如:Li2NH、Li3(NH2)2I、LiBH4、LiAlH4、LiNH2等)、Li-halide类无机固态电解质(如:Li2CdCl4、Li2MgCl4、Li2ZnCl4等)等。上述电池的制备为本领域技术人员公知,在此不再赘述。
以下通过实施例进一步详细说明本公开,但是本公开并不因此而受到任何限制。
发明示例
实施例A1
本实施例用于说明本公开的离子液体化合物的制备方法。
Figure PCTCN2017103976-appb-000064
Figure PCTCN2017103976-appb-000065
取1.9164g(10mmol)的对氯苯磺酰胺与2.3794g(20mmol)二氯亚砜、1.3982g(12mmol)氯磺酸在150℃下反应12h,得到化合物1a(2.6113g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.87(d,2×1H)、7.55(d,2×1H)、2.0(s,1H);
取2.9014g(10mmol)的化合物1a与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物1b(2.4632g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.87(d,2×1H)、7.55(d,2×1H)、2.0(s,1H);
取2.7369g(10mmol)的化合物1b与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物1c(3.1178g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=7.87(d,2×1H)、7.55(d,2×1H);
取3.1178g(10mmol)的化合物1c与0.2917g(12mmol)金属Mg在0℃下反应4h,得到化合物1d(3.3609g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=7.9(d,2×1H)、7.5(d,2×1H);
取3.3609g(10mmol)的化合物1d与1.0866g(12mmol)4-氯-1-丁烯在0℃下反应4h,得到化合物1e(2.9828g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.40(d,2×1H)、5.70(m,1H)、5.03(q,1H)、4.97(q,1H)、2.59(t,2H)、2.29(m,2H);
取3.3142g(10mmol)的化合物1e与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M1(3.6314g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.40(d,2×1H)、5.70(m,1H)、5.03(q,1H)、4.97(q,1H)、4.38(q,2H)、4.03(s,3H)、2.59(t,2H)、2.29(m,2H)、1.56(t,3H)。
实施例A2
Figure PCTCN2017103976-appb-000066
取1.8718g(10mmol)的三氟甲磺酰胺一氢钾与2.3218g(11mmol)对氯苯磺酰氯在80℃下反应12h,得到化合物2a(2.9133g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.87(d,2×1H)、7.55(d,2×1H)、2.0(s,1H);
取3.2370g(10mmol)的化合物2a与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物2b(3.6179g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=δ=7.87(d,2×1H)、7.55(d,2×1H);
取3.6179g(10mmol)的化合物2b与0.2917g(12mmol)金属Mg在0℃下反应4h,得到化合物2c(3.8610g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=δ=7.9(d,2×1H)、7.5(d,2×1H);
取3.8610g(10mmol)的化合物2c与1.0866g(12mmol)4-氯-1-丁烯在0℃下反应4h,得到化合物2d(3.4329g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.40(d,2×1H)、5.70(m,1H)、5.03(q,1H)、4.97(q,1H)、2.59(t,2H)、2.29(m,2H);
取3.8143g(10mmol)的化合物2d与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M2(4.0815g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.40(d,2×1H)、5.70(m, 1H)、5.03(q,1H)、4.97(q,1H)、4.38(q,2H)、4.03(s,3H)、2.59(t,2H)、2.29(m,2H)、1.56(t,3H)。
实施例A3
采用实施例A1的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的4-氯-3,3-二氟-4,4-二氟-1-丁烯,得到本实施例的离子液体化合物M3(4.2791g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.40(d,2×1H)、5.91(q,1H)、5.57(q,1H)、5.46(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A4
采用实施例A2的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的4-氯-3,3-二氟-4,4-二氟-1-丁烯,得到本实施例的离子液体化合物M4(4.7291g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.40(d,2×1H)、5.91(q,1H)、5.57(q,1H)、5.46(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A5
采用实施例A1的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的化合物5a,得到本实施例的离子液体化合物M5(7.3436g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.82(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.05(d,2×1H)、5.70(q,1H)、5.03(q,1H)、4.97(q,1H)、4.38(q,2H)、4.11(t,2H)、4.03(s,3H)、3.79(t,2H)、3.54(t,16×2H)、3.41(t,2H)、2.13(t,2H)、1.56(t,3H)。
Figure PCTCN2017103976-appb-000067
实施例A6
采用实施例A2的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的化合物5a,得到本实施例的离子液体化合物M6(7.7937g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.82(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.05(d,2×1H)、5.70(q,1H)、5.03(q,1H)、4.97(q,1H)、4.38(q,2H)、4.11(t,2H)、4.03(s,3H)、3.79(t,2H)、3.54(t,16×2H)、3.41(t,2H)、2.13(t,2H)、1.56(t,3H)。
实施例A7
采用实施例A1的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的化合物7a,得到本实施例的离子液体化合物M7(7.3436g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.40(d,2×1H)、6.47(q,1H)、4.38(q,2H)、4.18(q,1H)、4.13(t,2H)、4.04(q,1H)、4.03(s,3H)、3.74(t,2H)、3.70(t,2H)、3.54(t,16×2H)、 2.72(t,2H)、1.56(t,3H)。
Figure PCTCN2017103976-appb-000068
实施例A8
采用实施例A2的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的化合物7a,得到本实施例的离子液体化合物M8(7.7937g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.40(d,2×1H)、6.47(q,1H)、4.38(q,2H)、4.18(q,1H)、4.13(t,2H)、4.04(q,1H)、4.03(s,3H)、3.74(t,2H)、3.70(t,2H)、3.54(t,16×2H)、2.72(t,2H)、1.56(t,3H)。
实施例A9
采用实施例A1的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的丙烯酸,得到本实施例的离子液体化合物M9(3.7751g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.90(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.35(d,2×1H)、6.26(q,1H)、6.03(q,1H)、5.71(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A10
采用实施例A2的制备方法,所不同的是,将4-氯-1-丁烯替换为等当量的丙烯酸,得到本实施例的离子液体化合物M10(4.2251g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.90(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.35(d,2×1H)、6.26(q,1H)、6.03(q,1H)、5.71(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A11
Figure PCTCN2017103976-appb-000069
Figure PCTCN2017103976-appb-000070
取1.7122g(10mmol)的对甲基苯磺酰胺与2.3794g(20mmol)二氯亚砜、1.2817g(11mmol)氯磺酸在100℃下反应12h,得到化合物11a(2.4276g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.81(d,2×1H)、7.34(d,2×1H)、2.35(s,3H)、2.0(s,1H);
取2.6973g(10mmol)的化合物11a与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物11b(2.2794g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.81(d,2×1H)、7.34(d,2×1H)、2.35(s,3H)、2.0(s,1H);
取2.5327g(10mmol)的化合物11b与1.8964g(12mmol)KMnO4在100℃下反应12h,得到化合物11c(2.5493g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,1H)、8.41(d,2×1H)、8.14(d,2×1H)、2.0(s,1H);
取2.8325g(10mmol)的化合物11c与0.7812g(30mmol)乙炔在乙酸锌催化下,200℃下反应24h,得到化合物11d(1.5465g,收率50%);1H NMR(400MHz,CDCl3,ppm),δ=8.41(d,2×1H)、8.14(d,2×1H)、7.52(q,1H)、5.04(q,1H)、4.67(q,1H)、2.0(s,1H);
取3.0929g(10mmol)的化合物11d与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物11e(3.4738g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=8.41(d,2×1H)、8.14(d,2×1H)、7.52(q,1H)、5.04(q,1H)、4.67(q,1H);
取3.4738g(10mmol)的化合物11e与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M11(3.7751g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、8.41(d,2×1H)、8.14(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.52(q,1H)、5.04(q,1H)、4.67(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A12
Figure PCTCN2017103976-appb-000071
取1.8718g(10mmol)的三氟甲磺酰胺一氢钾与2.0972g(11mmol)对甲苯磺酰氯在80℃下反应12h,得到化合物12a(2.7295g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.81(d,2×1H)、7.34(d,2×1H)、2.35(s,3H)、2.0(s,1H);
取3.0328g(10mmol)的化合物12a与1.8964g(12mmol)KMnO4在100℃下反应12h,得到化合物12b(2.9993g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=11(s,1H)、8.41(d,2×1H)、8.14(d,2×1H)、2.0(s,1H);
取3.3326g(10mmol)的化合物12b与0.7812g(30mmol)乙炔在乙酸锌催化下,200℃下反应24h,得到化合物12c(1.7965g,收率50%);1H NMR(400MHz,CDCl3,ppm),δ=8.41(d,2×1H)、8.14(d,2×1H)、7.52(q,1H)、5.04(q,1H)、4.67(q,1H)、2.0(s,1H);
取3.5930g(10mmol)的化合物12c与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物12d(3.9739g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=8.41(d,2×1H)、8.14(d,2×1H)、7.52(q,1H)、5.04(q,1H)、4.67(q,1H);
取3.9739g(10mmol)的化合物12d与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M12(4.2251g,收率90%);1H NMR(400MHz, CDCl3,ppm),δ=8.94(s,1H)、8.41(d,2×1H)、8.14(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.52(q,1H)、5.04(q,1H)、4.67(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
实施例A13
本实施例用于说明本公开的离子液体聚合物、聚合物固态电解质和固态电池的制备方法。
(1)离子液体聚合物P1的制备:
取8.069g(20mmol)的离子液体化合物M1和0.033g(0.2mmol)引发剂偶氮二异丁腈,然后混合均匀。之后在70℃下加热搅拌反应24h。以上操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。反应结束后,把得到的固体用10mL丙酮溶解,然后加入50mL乙醚进行重结晶,反复重结晶三次,然后把得到的固体进行真空干燥,得到白色粉末状的离子液体聚合物P1。
(2)聚合物固态电解质AE1的制备:
取上述制备的离子液体聚合物7.509g和3.741g LiFSI,并加入20mL乙腈搅拌10h。之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质AE1。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备
取2.002g上述离子液体聚合物、0.998g LiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池AB1。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例A14-A24
采用实施例A13中的方法,所不同的是,将离子液体化合物M1分别替换为等当量的离子液体化合物M2-M12,分别得到离子液体聚合物P2-P12、聚合物固态电解质AE2-AE12以及固态电池AB2-AB12。
对比例A1
(1)PEO-LiTFSI聚合物固态电解质的制备:
取4.240g PEO(分子量600000g/mol)、1g LiFSI,然后向其中加入10mL乙腈,之后搅 拌24h。把得到的无色半透明溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质AE13。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(2)正极片的制备
取2.427gPEO、0.573g LiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池B13。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例A2
(1)将1.0g环氧化天然橡胶加入到烧杯中,并加入4mL二甲苯,6mL四氢呋喃,使橡胶溶胀。约2h后,对混合物进行磁力搅拌,直至橡胶完全溶解。在搅拌过程中,不断加入混合溶剂。
(2)将0.25mol离子液体1-羧甲基-3-甲基咪唑双(三氟甲磺酰)亚胺盐和0.0625mol锂盐双(三氟甲烷磺酰)亚胺基锂盐(LiNTf2)溶于20mL四氢呋喃溶剂中,磁力搅拌0.5h。
(3)将(2)所得的溶液加入到6.58×10-3mol环氧化天然橡胶(ENR50)溶液中继续搅拌2h。
(4)将所得的混合溶液浇铸到聚四氟乙烯模具中,放到通风橱中自然挥发12h。然后转移到真空烘箱中40℃下干燥24h,得到本对比例的固态聚合物电解质AE14。
(5)采用与实施例A13相同的方法由固态聚合物电解质制备固态电池AB14。
对比例A3
将恒压漏斗、球形冷凝管、蒸馏装置和100mL三口烧瓶在烘箱中烘烤3小时后,向其中加入0.12g(1mmol)三羟甲基丙烷,除氧通氮气,反复三次,加入0.55mL无水甲醇和0.45mL甲醇钾溶液,搅拌反应0.5小时蒸出甲醇。升温到90℃,然后在12h内逐滴加入12mL缩水甘油,然后继续加热搅拌反应12h,加入一定量甲醇然后蒸干,放入45℃真空烘箱中烘12h。得到透明、粘稠、无色液体超支化聚缩水甘油(HPG)。根据元素分析:C49.00%,H8.51%,042.49%。GPC测得数均分子量为1719,分子量分布为1.37。每个超支化分子含有24个羟基分子。
在装有磁子的500mL干燥单口瓶中加入10g超支化聚缩水甘油(HPG),加入300mL氯 化亚砜,氮气保护下,80℃加热回流24h,然后减压蒸馏出未反应氯化亚砜,真空烘箱干燥24h,得到黄色粘稠液体氯化超支化聚缩水甘油(HPG-C1)。1H NMR计算结果表明,羟基全部被氯化。
在装有磁子的250mL二口烧瓶加入5g氯化超支化聚缩水甘油(HPG-C1),加入20mL N,N-二甲基甲酰胺,在冰水浴中冷却,在氮气条件下缓慢加入N-甲基咪唑([MeIm]/[C1]=1.5:1),然后搅拌加热反应8h,冷却到室温,加压蒸出N,N-二甲基甲酰胺,用适量丙酮多次洗涤粗产物,过滤,真空干燥,得到黄色黏度低的离子液体聚合物[HPG-MeIm]Cl。DSC测得玻璃化转变温度为-18℃,TGA测得初始分解温度为169℃。
在装有磁子的50mL单口瓶中加入0.3g离子液体聚合物,然后加入0.1g双三氟甲基磺酰亚胺锂,5mL N,N-二甲基甲酰胺,强烈搅拌至聚合物和锂盐完全溶解,将溶液倒入聚四氟乙烯磨具中,室温挥发12h除去大部分溶剂,然后60℃真空干燥24h,得到本对比例的离子液体聚合物电解质AE15。
采用与实施例A13相同的方法由离子液体聚合物制备固态电池AB15。
测试实施例A1
对实施例A13-A24和对比例A1-A3中得到的聚合物固态电解质AE1-AE15的电导率分别进行测试。测试方法为电化学阻抗法,测试条件包括:取上述电解质AE1-AE15分别与不锈钢片组装成阻塞电池,电池结构为SS|Solid electrolytes|SS。于25℃下在1Hz到8MHz的频率范围内进行电化学阻抗测试,依据所测电解质阻抗和公式(1)计算电解质的室温离子电导率。
σ=l/RS  公式(1)
其中σ为电解质的离子电导率,单位为S·cm-1;l为电解质膜的厚度,单位为cm;R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解质与不锈钢片的接触面积,单位为cm2;测试结果列于表1。
表1
电解质编号 AE1 AE2 AE3 AE4 AE5
σ(S/cm) 5.4×10-5 6.0×10-5 7.5×10-5 8.0×10-5 2.0×10-4
电解质编号 AE6 AE7 AE8 AE9 AE10
σ(S/cm) 2.5×10-4 1.8×10-4 2.3×10-4 7.6×10-5 7.9×10-5
电解质编号 AE11 AE12 AE13 AE14 AE15
σ(S/cm) 7.3×10-5 7.8×10-5 6×10-6 5.1×10-7 4.6×10-5
测试实施例A2
对实施例A13-A24和对比例A1-A3中得到的固态电池AB1-AB15进行电池倍率性能测试:
使固态电池AB1-AB15分别以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V。测试结果列于表2。
表2
Figure PCTCN2017103976-appb-000072
测试实施例A3
对实施例A13-A24和对比例A1-A3中得到的固态电池AB1-AB15分别进行电池循环性能测试:
使固态电池AB1-AB15分别以0.2C的倍率从3.0V恒流充电到4.2V,之后静置5分钟, 然后于4.2V恒压充电至0.02C截止,最后以0.2C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次,测试结果列于表3。
表3
电池编号 AB1 AB2 AB3 AB4 AB5
100次循环后剩余比容量/mAh·g-1 110 112 115 117 125
电池编号 AB6 AB7 AB8 AB9 AB10
100次循环后剩余比容量/mAh·g-1 108 109 112 114 118
电池编号 AB11 AB12 AB13 AB14 AB15
100次循环后剩余比容量/mAh·g-1 116 119 105 103 108
根据表1-3,从实施例A13-A24与对比例A1-A3的数据对比可以看出,相对于PEO和锂盐物理共混复合的聚合物固态电解质(对比例A1)、含有小分子全氟磺酰亚胺阴离子中心的离子液体与锂盐、天然橡胶复合得到的固态电解质(对比例A2)以及含有阳离子型离子液体聚合物与锂盐复合的聚合物固态电解质(对比例A3)相比,本公开的离子液体聚合物制备的聚合物固态电解质具有较高的电导率,由聚合物固态电解质制备的固态电池具有良好的倍率性能和循环性能。
实施例B1
(1)离子液体聚合物的制备
Figure PCTCN2017103976-appb-000073
取2.0266g(10mmol)的对乙烯苯磺酰胺与2.3794g(20mmol)二氯亚砜、1.3982g(12mmol)氯磺酸在100℃下反应12h,得到化合物1(2.5357g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、2.0(s,1H);
取2.8174g(10mmol)的化合物1与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合 物b(2.3875g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、2.0(s,1H);
取2.6528g(10mmol)的化合物b与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物1(3.0337g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H);
取3.0337g(10mmol)的化合物1与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M(3.3790g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
取8.069g(20mmol)的离子液体化合物M和0.033g(0.2mmol)引发剂偶氮二异丁腈,然后混合均匀。之后在70℃下加热搅拌反应24h。以上操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。反应结束后,把得到的固体用10mL丙酮溶解,然后加入50mL乙醚进行重结晶,反复重结晶三次,然后把得到的固体进行真空干燥,得到白色粉末状的离子液体聚合物P1(重均分子量30万)。
(2)聚合物固态电解质的制备
取8.069g离子液体聚合物P1和3.741gLiFSI,并加入20mL乙腈搅拌10h得到半透明的均匀溶液,将半透明的均匀溶液倒在特氟龙板上使溶剂自然挥发,得到白色薄膜状的聚合物固态电解质BE1。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备
取2.002g上述离子液体聚合物P1、0.998gLiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。正极片中聚合物固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5。
(4)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池BB1。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例B2
采用与实施例B1相同的方法制备得到离子液体聚合物P、聚合物固态电解质BE2和固 态电池BB2。所不同的是,在聚合物固态电解质BE2中离子液体聚合物P与锂盐LiFSI的重量比为1:2;在固态电池BB2的正极片中聚合物固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5,只是聚合物固态电解质中离子液体聚合物P与锂盐LiFSI的重量比为1:2。
实施例B3
采用与实施例B1相同的方法制备得到离子液体聚合物P、聚合物固态电解质BE3和固态电池BB3。所不同的是,在聚合物固态电解质BE3中离子液体聚合物P与锂盐LiFSI的重量比为1:0.01;在固态电池BB3的正极片中聚合物固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5,只是聚合物固态电解质中离子液体聚合物P与锂盐LiFSI的重量比为1:0.01。
实施例B4
采用与实施例B1相同的方法制备得到离子液体聚合物P、聚合物固态电解质BE4和固态电池BB4。所不同的是,在固态电池BB4的正极片中聚合物固态电解质、正极活性物质和导电剂的重量比为1:8.5:0.5。
对比例B1
(1)PEO-LiTFSI聚合物固态电解质的制备:
取4.240g PEO(分子量600000g/mol)、1g LiFSI,然后向其中加入10mL乙腈,之后搅拌24h。把得到的无色半透明溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质BE5。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(2)正极片的制备
取2.427gPEO、0.573gLiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池BB5。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例B2
(1)将1.0g环氧化天然橡胶加入到烧杯中,并加入4mL二甲苯,6mL四氢呋喃,使 橡胶溶胀。约2h后,对混合物进行磁力搅拌,直至橡胶完全溶解。在搅拌过程中,不断加入混合溶剂。
(2)将0.25mol离子液体1-羧甲基-3-甲基咪唑双(三氟甲磺酰)亚胺盐和0.0625mol锂盐双(三氟甲烷磺酰)亚胺基锂盐(LiNTf2)溶于20mL四氢呋喃溶剂中,磁力搅拌0.5h。
(3)将(2)所得的溶液加入到6.58×10-3mol环氧化天然橡胶(ENR50)溶液中继续搅拌2h。
(4)将所得的混合溶液浇铸到聚四氟乙烯模具中,放到通风橱中自然挥发12h。然后转移到真空烘箱中40℃下干燥24h,得到本对比例的固态聚合物电解质BE6。
(5)采用与实施例B1相同的方法由固态聚合物电解质制备固态电池BB6。
对比例B3
将恒压漏斗、球形冷凝管、蒸馏装置和100mL三口烧瓶在烘箱中烘烤3小时后,向其中加入0.12g(1mmol)三羟甲基丙烷,除氧通氮气,反复三次,加入0.55mL无水甲醇和0.45mL甲醇钾溶液,搅拌反应0.5小时蒸出甲醇。升温到90℃,然后在12h内逐滴加入12mL缩水甘油,然后继续加热搅拌反应12h,加入一定量甲醇然后蒸干,放入45℃真空烘箱中烘12h。得到透明、粘稠、无色液体超支化聚缩水甘油(HPG)。根据元素分析:C49.00%,H8.51%,042.49%。GPC测得数均分子量为1719,分子量分布为1.37。每个超支化分子含有24个羟基分子。
在装有磁子的500mL干燥单口瓶中加入10g超支化聚缩水甘油(HPG),加入300mL氯化亚砜,氮气保护下,80℃加热回流24h,然后减压蒸馏出未反应氯化亚砜,真空烘箱干燥24h,得到黄色粘稠液体氯化超支化聚缩水甘油(HPG-C1)。1H NMR计算结果表明,羟基全部被氯化。
在装有磁子的250mL二口烧瓶加入5g氯化超支化聚缩水甘油(HPG-C1),加入20mLN,N-二甲基甲酰胺,在冰水浴中冷却,在氮气条件下缓慢加入N-甲基咪唑([MeIm]/[C1]=1.5:1),然后搅拌加热反应8h,冷却到室温,加压蒸出N,N-二甲基甲酰胺,用适量丙酮多次洗涤粗产物,过滤,真空干燥,得到黄色黏度低的离子液体聚合物[HPG-MeIm]Cl。DSC测得玻璃化转变温度为-18℃,TGA测得初始分解温度为169℃。
在装有磁子的50mL单口瓶中加入0.3g离子液体聚合物,然后加入0.1g双三氟甲基磺酰亚胺锂,5mLN,N-二甲基甲酰胺,强烈搅拌至聚合物和锂盐完全溶解,将溶液倒入聚四氟乙烯磨具中,室温挥发12h除去大部分溶剂,然后60℃真空干燥24h,得到本对比例的离子液体聚合物电解质BE7。
采用与实施例B1相同的方法由离子液体聚合物制备固态电池BB7
测试实施例B1
对实施例B1-B4和对比例B1-B3中得到的聚合物固态电解质的电导率分别进行测试。测试方法为电化学阻抗法,测试条件包括:取上述电解质BE1-BE7分别与不锈钢片组装成阻塞电池,电池结构为SS|Solid electrolytes|SS。于25℃下在1Hz到8MHz的频率范围内进行电化学阻抗测试,依据所测电解质阻抗和公式(1)计算电解质的室温离子电导率。
σ=l/RS公式(1)
其中σ为电解质的离子电导率,单位为S cm-1;l为电解质膜的厚度,单位为cm;R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解质与不锈钢片的接触面积,单位为cm2;测试结果列于表4。
表4
电解质编号 E1 E2 E3 E4
σ(S/cm) 2.2×10-3 4.3×10-3 5.6×10-4 2.2×10-3
电解质编号 E5 E6 E7  
σ(S/cm) 6×10-6 5.1×10-7 4.6×10-5  
测试实施例B2
对实施例B1-B4和对比例B1-B3中得到的固态电池进行电池倍率性能测试。
使实施例B1-B4和对比例B1-B3中得到的固态电池分别以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V。测试结果列于表5。
表5
Figure PCTCN2017103976-appb-000074
Figure PCTCN2017103976-appb-000075
测试实施例B3
对实施例B1-B4和对比例B1-B3中得到的固态电池进行电池循环性能测试。
使实施例B1-B4和对比例B1-B3中得到的固态电池以0.2C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.02C截止,最后以0.2C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次,测试结果列于表6。
表6
Figure PCTCN2017103976-appb-000076
根据表4-6,从实施例B1-B4和对比例B1-B3的数据对比可以看出,相对于PEO和锂盐物理共混复合的聚合物固态电解质(对比例B1)、含有小分子全氟磺酰亚胺阴离子中心的离子液体与锂盐、天然橡胶复合得到的固态电解质(对比例B2)以及含有阳离子型离子液体聚合物与锂盐复合的聚合物固态电解质(对比例B3)相比,本公开的离子液体聚合物制备的聚合物固态电解质具有较高的电导率,由聚合物固态电解质制备的固态电池具有良好的倍率性能和循环性能。
实施例C1
(1)离子液体聚合物的制备:
Figure PCTCN2017103976-appb-000077
取2.0266g(10mmol)的对乙烯苯磺酰胺与2.3794g(20mmol)二氯亚砜、1.3982g(12mmol)氯磺酸在100℃下反应12h,得到化合物1(2.5357g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、2.0(s,1H);
取2.8174g(10mmol)的化合物1与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物b(2.3875g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、2.0(s,1H);
取2.6528g(10mmol)的化合物b与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物1(3.0337g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H);
取3.0337g(10mmol)的化合物1与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M(3.3790g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
取8.069g(20mmol)的离子液体化合物M和0.033g(0.2mmol)引发剂偶氮二异丁腈,然后混合均匀。之后在70℃下加热搅拌反应24h。以上操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。反应结束后,把得到的固体用10mL丙酮溶解,然后加入50mL乙醚进行重结晶,反复重结晶三次,然后把得到的固体进行真空干燥,得到白色粉末状的离子液体聚合物P(重均分子量30万)。
(2)复合固态电解质的制备:
取1g上述制备的离子液体聚合物P和9g Li10Sn2PS12,并加入20mL乙腈搅拌10h。之后,把半透明的均匀溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的复合固态电解质CE1。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
(3)正极片的制备
取0.3g上述离子液体聚合物P、2.7gLi10Sn2PS12和10mL乙腈,然后搅拌2h。之后,向其中加入6.5gLiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)固态电池的组装
取上述复合固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池CB1。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例C2
采用与实施例C1相同的方法制备得到离子液体聚合物P、复合固态电解质CE2和固态电池CB2。所不同的是,在复合固态电解质CE2中离子液体聚合物P与无机固态电解质Li10Sn2PS12的重量比为1:0.1;在固态电池CB2的正极片中复合固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5。
实施例C3
采用与实施例C1相同的方法制备得到离子液体聚合物P、复合固态电解质CE3和固态电池CB3。所不同的是,在复合固态电解质CE3中离子液体聚合物P与无机固态电解质Li10Sn2PS12的重量比为1:5;在固态电池CB3的正极片中复合固态电解质、正极活性物质和导电剂的重量比为3:6.5:0.5。
实施例C4
采用与实施例C1相同的方法制备得到离子液体聚合物P、复合固态电解质CE4和固态电池CB4。所不同的是,在固态电池CB4的正极片中复合固态电解质、正极活性物质和导电剂的重量比为1:8.5:0.5。
对比例C1
(1)PEO-LiTFSI聚合物固态电解质的制备:
取4.240g PEO(分子量600000g/mol)、1g LiFSI,然后向其中加入10mL乙腈,之后搅拌24h。把得到的无色半透明溶液倒入特氟龙板上,让溶剂自然挥发,最后得到白色薄膜状的聚合物固态电解质CE5。以上操作过程均在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。(2)正极片的制备
取2.427gPEO、0.573g LiFSI和10mL乙腈,然后搅拌2h。之后,向其中加入6.5g LiCoO2(LiNbO2包覆的钴酸锂)、0.5g乙炔黑并搅拌均匀。最后把该浆料用涂布机均匀地涂在铝箔 上。所涂覆厚度约为50μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)固态电池的组装
取上述聚合物固态电解质片(Φ18mm)、上述正极片(Φ15mm)和锂片(Φ15mm)组装成CR2025的扣式电池CB5。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例C2(CN 104362373A)
(1)将1.0g环氧化天然橡胶加入到烧杯中,并加入4mL二甲苯,6mL四氢呋喃,使橡胶溶胀。约2h后,对混合物进行磁力搅拌,直至橡胶完全溶解。在搅拌过程中,不断加入混合溶剂。
(2)将0.25mol离子液体1-羧甲基-3-甲基咪唑双(三氟甲磺酰)亚胺盐和0.0625mol锂盐双(三氟甲烷磺酰)亚胺基锂盐(LiNTf2)溶于20mL四氢呋喃溶剂中,磁力搅拌0.5h。
(3)将(2)所得的溶液加入到6.58×10-3mol环氧化天然橡胶(ENR50)溶液中继续搅拌2h。
(4)将所得的混合溶液浇铸到聚四氟乙烯模具中,放到通风橱中自然挥发12h。然后转移到真空烘箱中40℃下干燥24h,得到本对比例的固态聚合物电解质CE6。
(5)采用实施例C1的方法由固态聚合物电解质制备固态电池CB6。
对比例C3
将恒压漏斗、球形冷凝管、蒸馏装置和100mL三口烧瓶在烘箱中烘烤3小时后,向其中加入0.12g(1mmol)三羟甲基丙烷,除氧通氮气,反复三次,加入0.55mL无水甲醇和0.45mL甲醇钾溶液,搅拌反应0.5小时蒸出甲醇。升温到90℃,然后在12h内逐滴加入12mL缩水甘油,然后继续加热搅拌反应12h,加入一定量甲醇然后蒸干,放入45℃真空烘箱中烘12h。得到透明、粘稠、无色液体超支化聚缩水甘油(HPG)。根据元素分析:C49.00%,H8.51%,042.49%。GPC测得数均分子量为1719,分子量分布为1.37。每个超支化分子含有24个羟基分子。
在装有磁子的500mL干燥单口瓶中加入10g超支化聚缩水甘油(HPG),加入300mL氯化亚砜,氮气保护下,80℃加热回流24h,然后减压蒸馏出未反应氯化亚砜,真空烘箱干燥24h,得到黄色粘稠液体氯化超支化聚缩水甘油(HPG-C1)。1H NMR计算结果表明,羟基全部被氯化。
在装有磁子的250mL二口烧瓶加入5g氯化超支化聚缩水甘油(HPG-C1),加入20mL N,N-二甲基甲酰胺,在冰水浴中冷却,在氮气条件下缓慢加入N-甲基咪唑([MeIm]/[C1]=1.5:1),然后搅拌加热反应8h,冷却到室温,加压蒸出N,N-二甲基甲酰胺,用适量丙酮多次洗 涤粗产物,过滤,真空干燥,得到黄色黏度低的离子液体聚合物[HPG-MeIm]Cl。DSC测得玻璃化转变温度为-18℃,TGA测得初始分解温度为169℃。
在装有磁子的50mL单口瓶中加入0.3g离子液体聚合物,然后加入0.1g双三氟甲基磺酰亚胺锂,5mL N,N-二甲基甲酰胺,强烈搅拌至聚合物和锂盐完全溶解,将溶液倒入聚四氟乙烯磨具中,室温挥发12h除去大部分溶剂,然后60℃真空干燥24h,得到本对比例的离子液体聚合物电解质CE7。
采用实施例C1的方法由离子液体聚合物制备固态电池CB7。
对比例C4
将通过将8.52g双(三氟甲磺酰)亚胺锂(LiTFSI)溶解于10mL蒸馏水中制备的溶液和通过将4g聚氯化(二烯丙基二甲基铵)(可得自Aldrich,#409022,重均分子量在约200,000-约350,000范围内,在水中20重量%溶解在100mL蒸馏水中制备的溶液一起置于250mL圆底烧瓶中。将反应混合物在室温下搅拌约1小时以形成白色晶体的沉淀物。将由此获得的白色晶体过滤,并在真空烘箱中在105℃下干燥以获得由式D4表示的聚(二烯丙基二甲基铵)TFSI。聚(二烯丙基二甲基铵)TFSI的产率为约93.5重量%,n为约2,500。
Figure PCTCN2017103976-appb-000078
将聚(二烯丙基二甲基铵)TFSI、具有10纳米(nm)的平均粒径的氧化铝(Al2O3)颗粒(可得自Nanoamor,10nm,99%纯度,160平方米/克(m2/g),Lot#1041-070510)、和液体电解质(其中,1.3摩尔浓度(M)LiPF6溶解于体积比为2:6:2的EC(碳酸亚乙酯):DEC(碳酸二乙酯):FEC(碳酸氟代亚乙酯)的混合溶剂中)以2:3:3的重量比添加到二甲基甲酰胺(DMF)以获得10重量%聚(二烯丙基二甲基铵)TFSI溶液。然后将所述溶液在室温(20℃)下搅拌约1小时以制备用于形成复合电解质的组合物。通过使用刮刀用所述组合物涂覆铜集流体上的具有40微米(μm)厚度的锂金属薄膜,在高温(40℃)下干燥,并在室温下真空干燥(20℃,12小时)以制备具有包括涂覆在锂金属上的15μm厚度的复合电解质层的结构的负极。基于氧化铝和聚合物离子液体的总重量,复合电解质层中的氧化铝的含量为约60重量%。
通过使用刮刀用在上述制备的组合物涂覆铜集流体和SUS集流体的每一个,在高温(40℃)下干燥,并在室温下真空干燥(25℃,12小时)以制备具有包括涂覆在所述集流体的每一个上的15μm厚度的复合电解质层的结构的电极。基于氧化铝和聚合物离子液体的总重量, 复合电解质层中的氧化铝的含量为约60重量%。
使用所制备的电极作为工作电极,使用各自覆盖有锂金属薄层的铜集流体和SUS集流体作为对电极,使用聚丙烯隔板(3501)作为隔板,并使用其中1.3M LiPF6溶解于EC(碳酸亚乙酯)+DEC(碳酸二乙酯)+FEC(碳酸氟代亚乙酯)(体积比为2:6:2)的混合溶剂中的溶液作为电解质CE8以制备硬币电池CB8。
测试实施例C1
对实施例C1-C4和对比例C1-C3中得到的聚合物固态电解质CE1-CE7和对比例C4中得到的溶液电解质CE8的电导率分别进行测试。测试方法为电化学阻抗法,测试条件包括:取上述电解质CE1-CE7分别与不锈钢片组装成阻塞电池,电池结构为SS|electrolytes|SS。于25℃下在1Hz到8MHz的频率范围内进行电化学阻抗测试,依据所测电解质阻抗和公式(1)计算电解质的室温离子电导率。
σ=l/RS   公式(1)
其中σ为电解质的离子电导率,单位为S·cm-1;l为电解质膜的厚度,单位为cm;R为通过电化学阻抗法所测得的电解质的本体阻抗,单位为Ω(或S-1);S为电解质与不锈钢片的接触面积,单位为cm2;测试结果列于表7。
表7
电解质编号 CE1 CE2 CE3 CE4
σ(S/cm) 2×10-3 6.3×10-4 9×10-4 2×10-3
电解质编号 CE5 CE6 CE7 CE8
σ(S/cm) 6×10-6 5.1×10-7 4.6×10-5 7.2×10-6
测试实施例C2
对实施例C1-C4和对比例C1-C4中得到的电池进行电池倍率性能测试。
使实施例C1-C4和对比例C1-C4中得到的电池分别以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V。测试结果列于表8。
表8
Figure PCTCN2017103976-appb-000079
Figure PCTCN2017103976-appb-000080
测试实施例C3
对实施例C1-C4和对比例C1-C4中得到的电池进行电池循环性能测试。
使实施例C1-C4和对比例C1-C4得到的电池以0.2C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.02C截止,最后以0.2C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次,测试结果列于表9。
表9
电池编号 实施例C1 实施例C2 实施例C3 实施例C4
100次循环后剩余比容量/mAh·g-1 122 113 118 110
电池编号 对比例C1 对比例C2 对比例C3 对比例C4
100次循环后剩余比容量/mAh·g-1 105 103 108 106
根据表7-9,从实施例C1-C4和对比例C1-C4的数据对比可以看出,相对于PEO和锂盐物理共混复合的聚合物固态电解质(对比例C1)、含有小分子全氟磺酰亚胺阴离子中心的离子液体与锂盐、天然橡胶复合得到的固态电解质(对比例C2)、含有阳离子型离子液体聚合物与锂盐复合的复合固态电解质(对比例C3)以及溶液电解质(对比例C4)相比,本公开的离子液体聚合物制备的复合固态电解质具有较高的电导率,由复合固态电解质制备的固态电池具有良好的倍率性能和循环性能。
实施例D1
(1)离子液体聚合物的制备
Figure PCTCN2017103976-appb-000081
取2.0266g(10mmol)的对乙烯苯磺酰胺与2.3794g(20mmol)二氯亚砜、1.3982g(12mmol)氯磺酸在100℃下反应12h,得到化合物1(2.5357g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、2.0(s,1H);
取2.8174g(10mmol)的化合物1与2.1451g(12mmol)SbF3在60℃下反应12h,得到化合物b(2.3875g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、2.0(s,1H);
取2.6528g(10mmol)的化合物b与1.3821g(10mmol)K2CO3在25℃下反应2h,得到化合物1(3.0337g,收率100%);1H NMR(400MHz,CDCl3,ppm),δ=7.88(d,2×1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H);
取3.0337g(10mmol)的化合物1与1.6128g(11mmol)氯化1-乙基-3-甲基咪唑在25℃下反应12h,得到本实施例的离子液体化合物M(3.3790g,收率90%);1H NMR(400MHz,CDCl3,ppm),δ=8.94(s,1H)、7.88(d,2×1H)、7.74(s,1H)、7.67(s,1H)、7.58(d,2×1H)、6.63(q,1H)、5.61(q,1H)、5.18(q,1H)、4.38(q,2H)、4.03(s,3H)、1.56(t,3H)。
取8.069g(20mmol)的离子液体化合物M和0.033g(0.2mmol)引发剂偶氮二异丁腈,然后混合均匀。之后在70℃下加热搅拌反应24h。以上操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。反应结束后,把得到的固体用10mL丙酮溶解,然后加入50mL乙醚进行重结晶,反复重结晶三次,然后把得到的固体进行真空干燥,得到白色粉末状的离子液体聚合物P(重均分子量30万),平均粒径500nm。
(2)正极的制备
取0.5g上述离子液体聚合物P、9g LiCoO2、0.5g乙炔黑以及5g乙腈并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g上述离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g乙腈并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极(Φ15mm)、上述负极(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例D2
采用与实施例D1相同的方法步骤制备扣式电池,不同的是步骤(2)中正极的制备,取4.5g离子液体聚合物P、5gLiCoO2、0.5g乙炔黑,即离子液体聚合物P、正极活性物质和导电剂的重量比为9:10:1。
实施例D3
采用与实施例D1相同的方法步骤制备扣式电池,不同的是步骤(2)中正极的制备,取0.3g离子液体聚合物P、9.2g LiCoO2、0.5g乙炔黑,即离子液体聚合物P、正极活性物质和导电剂的重量比为0.6:18.4:1。
实施例D4
(1)采用与实施例D1相同的方法制备离子液体聚合物P。
(2)正极的制备
取0.25g PVDF、0.25g离子液体聚合物P、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.25g PVDF、0.25g离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例D5
(1)采用与实施例D1相同的方法制备离子液体聚合物P。
(2)正极的制备
取0.25g PVDF-HFP、0.25g离子液体聚合物P、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.25g PVDF-HFP、0.25g离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例D6
(1)采用与实施例D1相同的方法制备离子液体聚合物P。
(2)正极的制备
取0.5g PVDF、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.25g SBR、0.25g离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
实施例D7
(1)采用与实施例D1相同的方法制备离子液体聚合物P。
(2)正极的制备
取0.25g聚甲基丙烯酸甲酯、0.25g离子液体聚合物P、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.25g聚甲基丙烯酸甲酯、0.25g离子液体聚合物P、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池,此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例D1
(1)正极的制备
取0.5g PVDF、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(2)负极的制备
取0.5g PVDF、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例D2(CN105449218A)
(1)采用与CN105449218A中实施例1相同的方法步骤制备离子聚合物(以聚砜主链为主链,侧链上接枝有含氟磺酰亚胺锂盐,其分子式为-[(Ar)-CF2CF2OCF2CF2SO2N(Li)SO2C7H7]n)
(2)正极的制备
取0.5g上述离子聚合物、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g上述离子聚合物、9g石墨、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
对比例D3(CN102763251A)
(1)采用与CN102763251A中实施例1相同的方法步骤制备石墨烯-离子液体聚合物复合材料。
(2)正极的制备
取0.5g PVDF、9g LiCoO2、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铝箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(3)负极的制备
取0.5g PVDF、9g上述石墨烯-离子液体聚合物复合材料、0.5g乙炔黑以及5g NMP并搅拌分散均匀。最后把该浆料用涂布机均匀地涂在铜箔上。所涂覆厚度约为100μm。以上操作过程均在干燥房(露点为-70℃)中进行。
(4)扣式电池CR2025的组装
取上述正极片(Φ15mm)、上述负极片(Φ15mm)、PE隔膜(Φ18mm)、LiPF6浓度为1M的液态电解液(LiPF6/EC-DMC-VC(1V:1V:0.02V))组装成CR2025的扣式电池。此操作过程在手套箱(H2O<0.5ppm,O2<0.5ppm)中进行。
性能测试
(1)电池倍率性能测试
电池组装好后,先以0.1C的倍率从3.0V恒流充电到4.2V,然后于4.2V恒压充电至0.01C截止,之后静置5分钟,最后分别以0.1C、0.2C、0.5C、1C、2C、5C的倍率进行放电到3.0V, 测试结果如表10。
(2)电池循环性能测试
电池组装好后,先以1C的倍率从3.0V恒流充电到4.2V,之后静置5分钟,然后于4.2V恒压充电至0.01C截止,最后以1C的倍率进行放电到3.0V,最后静置5分钟。如此循环100次。以上电池100次循环测试结果如表10。
表10
Figure PCTCN2017103976-appb-000082
从表10可以看出,本公开制备的电池倍率性能优,电池粘结剂的粘结性能好,电池的循环性能佳。
以上结合附图和表格详细描述了本公开的可选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (69)

  1. 一种阴离子型离子液体化合物,具有如下式(1)所示的结构:
    Figure PCTCN2017103976-appb-100001
    其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
    Figure PCTCN2017103976-appb-100002
    k为1-5的整数,m为1-20的整数;
    Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
    阳离子
    Figure PCTCN2017103976-appb-100003
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017103976-appb-100004
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
  2. 根据权利要求1所述的阴离子型离子液体化合物,其中所述化合物为选自如下式(M1)-式(M12)中的一种:
    Figure PCTCN2017103976-appb-100005
    Figure PCTCN2017103976-appb-100006
  3. 一种制备阴离子型离子液体化合物的方法,包括:使式(9)所示的化合物在离子交换反应条件下与含有阳离子
    Figure PCTCN2017103976-appb-100007
    的卤化物接触得到式(1)所示的化合物:
    Figure PCTCN2017103976-appb-100008
    其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
    Figure PCTCN2017103976-appb-100009
    k为1-5的整数,m为1-20的整数;
    Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
    阳离子
    Figure PCTCN2017103976-appb-100010
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017103976-appb-100011
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
  4. 根据权利要求3所述的方法,其中所述含有阳离子
    Figure PCTCN2017103976-appb-100012
    的卤化物为
    Figure PCTCN2017103976-appb-100013
    Figure PCTCN2017103976-appb-100014
    式(9)所示的化合物与所述含有阳离子
    Figure PCTCN2017103976-appb-100015
    的卤化物的摩尔比为1:(1.0-1.2)。
  5. 根据权利要求3或4所述的方法,其中离子交换反应的条件为:反应温度为0-60℃,反应时间为1-24h,溶剂为水、二氯甲烷、氯仿、乙腈、硝基甲烷和丙酮中的至少一种。
  6. 根据权利要求3所述的方法,还包括:使式(10)所示的化合物在格氏反应条件下 与式(11)所示的化合物或式(12)所示的化合物接触得到式(9)所示的化合物:
    Figure PCTCN2017103976-appb-100016
    其中,Z1为CmH2m、CmF2m或(OCH2CH2)m;Z2为(CH2CH2O)m
    Figure PCTCN2017103976-appb-100017
    k、m、Rf1、Rf2、Rf3和Rf具有与权利要求3中相同的定义。
  7. 根据权利要求6所述的方法,其中所述式(10)所示的化合物与式(11)所示的化合物或式(12)所示的化合物的摩尔比为1:(1-1.2)。
  8. 根据权利要求6或7所述的方法,其中格氏反应的条件为:反应温度为-20至100℃,反应时间为1-24h,溶剂为四氢呋喃、乙醚、甲苯和乙腈中的至少一种。
  9. 根据权利要求6所述的方法,还包括:使式(13)所示的化合物在格氏反应条件下与金属镁接触得到式(10)所示的化合物:
    Figure PCTCN2017103976-appb-100018
    式(13)中,Rf具有与权利要求3中相同的定义。
  10. 根据权利要求9所述的方法,其中式(13)所示的化合物与金属镁的摩尔比为1:(1-3)。
  11. 根据权利要求9或10所述的方法,其中格氏反应条件为:反应温度为-20℃至100℃, 反应时间为1-24h,溶剂为四氢呋喃、乙醚、甲苯和乙腈中的至少一种,引发剂为碘、溴和1,2-二溴乙烷中的至少一种。
  12. 根据权利要求3所述的方法,还包括:使式(14)所示的化合物在酸碱中和反应条件下与碱接触得到式(9)所示的化合物:
    Figure PCTCN2017103976-appb-100019
    式(14)中,Z3
    Figure PCTCN2017103976-appb-100020
    k和Rf具有与权利要求3中相同的定义。
  13. 根据权利要求12所述的方法,其中所述碱为选自碳酸钾、碳酸氢钾和氢氧化钾中的至少一种;式(14)所示的化合物与所述中和试剂的摩尔比为1:(1-2)。
  14. 根据权利要求12或13所述的方法,其中中和反应的条件为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
  15. 根据权利要求12所述的方法,还包括:使式(15)表示的化合物在催化加成反应条件下与乙炔接触得到式(14)所示的化合物:
    Figure PCTCN2017103976-appb-100021
    式(15)中,Rf具有与权利要求3中相同的定义。
  16. 根据权利要求15所述的方法,其中式(15)所示的化合物与乙炔的摩尔比为1:(1-1.5)。
  17. 根据权利要求15或16所述的方法,其中加成反应的条件为:反应温度为150-300℃,反应时间为10-24h,催化剂为乙酸锌。
  18. 根据权利要求15所述的方法,还包括:使式(16)表示的化合物在氧化反应条件下与氧化剂接触得到式(15)所示的化合物:
    Figure PCTCN2017103976-appb-100022
    式(16)中,Rf具有与权利要求3中相同的定义。
  19. 根据权利要求18所述的方法,其中所述氧化剂为高锰酸钾和/或重铬酸钾,式(16)所示的化合物与氧化剂的摩尔比为1:(1-3)。
  20. 根据权利要求18或19所述的方法,其中氧化反应的条件为:反应温度为0-200℃,反应时间为1-24h,溶剂为水。
  21. 根据权利要求9或18所述的方法,还包括:使式(17)所示的化合物在中和反应条件下与中和试剂接触得到式(13)所示的化合物或式(16)所示的化合物:
    Figure PCTCN2017103976-appb-100023
    其中,V为CH3或Cl,Rf为ChF2h+1,h为0-10的整数。
  22. 根据权利要求21所述的方法,其中所述中和试剂为选自碳酸钾、碳酸氢钾氢氧化钾中的至少一种;式(17)所示的化合物与所述中和试剂的摩尔比为1:(1-2)。
  23. 根据权利要求21或22所述的方法,其中中和反应的条件为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
  24. 根据权利要求21所述的方法,其中使式(18)所示的化合物在取代反应条件下与式(19)所示的化合物接触得到式(17)所示的化合物:
    Figure PCTCN2017103976-appb-100024
    其中,V为CH3或Cl,Rf为ChF2h+1,h为1-10的整数。
  25. 根据权利要求24所述的方法,其中式(18)所示的化合物与式(19)所示的化合物的摩尔比为1:(0.8-1)。
  26. 根据权利要求24或25所述的方法,其中取代反应的条件为:反应温度为0-200℃,反应时间为1-24h,溶剂为乙腈和/或硝基甲烷,催化剂为吡啶和/或三乙胺。
  27. 根据权利要求9或12所述的方法,还包括:使式(21)所示的化合物在中和反应条件下与中和试剂接触得到式(13)所示的化合物或式(16)所示的化合物:
    Figure PCTCN2017103976-appb-100025
    其中,V为CH3或Cl;Rf为F。
  28. 根据权利要求27所述的方法,其中所述中和试剂为选自碳酸钾、碳酸氢钾和氢氧化钾中的至少一种;式(21)所示的化合物与所述中和试剂的摩尔比为1:(1-2)。
  29. 根据权利要求27或28所述的方法,其中中和反应的条件为:反应温度为-20℃至100℃,反应时间为1-24h,溶剂为水、乙腈、硝基甲烷和丙酮中的至少一种。
  30. 根据权利要求27所述的方法,还包括:使式(22)所示的化合物在氟代反应条件下与氟代试剂接触得到式(21)所示的化合物:
    Figure PCTCN2017103976-appb-100026
    其中,V为CH3或Cl。
  31. 根据权利要求30所述的方法,其中所述氟代试剂为选自SbF3、AsF3、KF、NaF、LiF中的至少一种;式(22)所示的化合物与所述氟代试剂的摩尔比为1:(1-1.5)。
  32. 根据权利要求30或31所述的方法,其中氟代反应的条件为:反应温度为-50至100℃,反应时间为1-24h,溶剂为乙腈和/或硝基甲烷。
  33. 根据权利要求30所述的方法,还包括:使式(23)所示的化合物在取代反应条件下与取代试剂接触得到式(22)所示的化合物:
    Figure PCTCN2017103976-appb-100027
    其中,V为CH3或Cl。
  34. 根据权利要求33所述的方法,其中所述取代试剂为二氯亚砜和氯磺酸,式(23)所示的化合物与二氯亚砜和氯磺酸的摩尔比为1:(1-5):(1-1.5)。
  35. 根据权利要求33或34所述的方法,其中取代反应的条件为:反应温度为0-200℃,反应时间为1-24h。
  36. 一种阴离子型离子液体聚合物,具有如下式(24)所示的结构:
    Figure PCTCN2017103976-appb-100028
    其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
    Figure PCTCN2017103976-appb-100029
    k为1-5的整数,m为1-20的整数;Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
    阳离子
    Figure PCTCN2017103976-appb-100030
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017103976-appb-100031
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地取自1-10的整数;
    n的取值使得所述阴离子型离子液体聚合物的分子量为1-50万。
  37. 一种制备阴离子型离子液体聚合物的方法,包括:使式(1)所示的化合物在聚合反应条件下与聚合反应引发剂接触,得到式(24)所示的阴离子型离子液体聚合物:
    Figure PCTCN2017103976-appb-100032
    其中,Z为单键、CmH2m、CmF2m、(CH2CH2O)m、(OCH2CH2)m
    Figure PCTCN2017103976-appb-100033
    m为1-20的整数;k为1-5的整数;
    Rf为ChF2h+1,h为0-10的整数;Rf1、Rf2和Rf3各自独立地为CiH2i+1或CiF2i+1,i为0-10的整数;
    阳离子
    Figure PCTCN2017103976-appb-100034
    具有如下式(2)-式(8)所示的结构:
    Figure PCTCN2017103976-appb-100035
    其中,R1、R2、R3和R4各自独立地选自CjH2j+1或(CH2CH2O)jCH3,j各自独立地为1-10的整数。
  38. 根据权利要求37所述的方法,其中聚合反应条件为:反应温度为0-150℃,反应时间为1-24h,所述聚合反应在无溶剂条件下或溶剂存在下进行,所述溶剂为水、甲醇、乙醇、丁醇、乙腈、丙酮、二氯甲烷、氯仿、硝基甲烷、苯和甲苯中的至少一种,所述聚合反应引发剂为偶氮二异丁腈、偶氮二异庚腈、过硫酸钾、过氧化苯甲酸叔丁酯和过氧化二苯甲酰中的至少一种。
  39. 权利要求36所述的阴离子型离子液体聚合物在电容器、固态电池和燃料电池中的应用。
  40. 一种固态电解质,包括权利要求36所述的阴离子型离子液体聚合物。
  41. 根据权利要40所述的固态电解质,其中所述固态电解质为包括无机固态电解质的复合固态电解质,所述阴离子型离子液体聚合物和无机固态电解质的重量比为1:(0.01-99)。
  42. 根据权利要求41所述的固态电解质,其中所述无机固态电解质为选自Perovskite型无机固态电解质、Garnet型无机固态电解质、NASCION型无机固态电解质、LISCION型无机固态电解质、Argyrodite型无机固态电解质、Li-Nitride类无机固态电解质、Li-Hydride类无机固态电解质和Li-halide类无机固态电解质中的至少一种。
  43. 根据权利要求42所述的固态电解质,其中所述无机固态电解质为选自Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3、Li3PS4、Li9.6P3S12、Li7P3S11、Li11Si2PS12、Li10SiP2S12、Li10SnP2S12、Li10GeP2S12、Li10Si0.5Ge0.5P2S12、Li10Ge0.5Sn0.5P2S12、Li10Si0.5Sn0.5P2S12、Li9.54Si1.74P1.44S11.7Cl0.3、Li6PS5Br、Li6PS5Br、Li7PS6、Li7PS5I、Li7PO5Cl、Li3N、Li7PN4、LiSi2N3、LiPN2、Li2NH、Li3(NH2)2I、LiBH4、LiAlH4、LiNH2、Li2CdCl4、Li2MgCl4、Li2ZnCl4和Li3xLa(2/3)-x(1/3)-2xTiO3中的至少一种,其中0<x<0.16。
  44. 根据权利要求41所述的固态电解质,其中所述无机固态电解质的粒径为10nm-100μm。
  45. 根据权利要40所述的固态电解质,其中所述固态电解质为包括锂盐的聚合物固态电解质,所述阴离子型离子液体聚合物和锂盐的重量比为1:(0.01-9)。
  46. 根据权利要45所述的固态电解质,其中所述锂盐为选自如LiBF3RF所示的全氟烷基三氟硼酸锂、如LiPF5RF所示的全氟烷基五氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂和如(RFSO2)2NLi所示的双全氟烷基磺酰亚胺锂中的至少一种;其中,RF为ClF2l+1,l各自独立地为0-10的整数。
  47. 根据权利要求46所述的固态电解质,其中所述锂盐为选自四氟硼酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、双(三氟甲基磺酰)亚胺锂和双(氟磺酰)亚胺锂中的至少一种。
  48. 根据权利要求40所述的固态电解质,其中所述阴离子型离子液体聚合物的结构为选自如下式(P1)-式(P14)所示结构中的任意一种:
    Figure PCTCN2017103976-appb-100036
    Figure PCTCN2017103976-appb-100037
    Figure PCTCN2017103976-appb-100038
  49. 权利要求40至48中任一项所述的固态电解质在制备固态电池的用途。
  50. 一种固态电池,包括正极片、负极片和电解质层,其中所述电解质层含有权利要 求40至48中任一项所述的固态电解质。
  51. 根据权利要求50所述的固态电池,其中所述正极片含有权利要求40至48中任一项所述的固态电解质、正极活性物质和导电剂,所述固态电解质、正极活性物质和导电剂的重量比为1:(0.01-99):(0.01-99)。
  52. 根据权利要求51所述的固态电池,其中所述正极活性物质为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。
  53. 根据权利要求50至52中任一项所述的固态电池,其中所述负极片为含锂金属片或为由负极材料、导电剂及权利要求40至48中任一项所述的固态电解质组成的片。
  54. 根据权利要求53所述的固态电池,其中所述负极片为由负极材料、导电剂及权利要求40至48中任一项所述的固态电解质组成的片时,所述固态电解质、负极材料和导电剂的重量比为1:(0.01-99):(0.01-99)。
  55. 根据权利要求54所述的固态电池,其中所述负极材料为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。
  56. 根据权利要求55所述的固态电池,其中所述正极片的厚度为1-1000μm,所述电解质层的厚度为1-1000μm,所述负极片的厚度为1-1000μm。
  57. 一种电池电极粘结剂,包括权利要求36所述的阴离子型离子液体聚合物。
  58. 根据权利要求57所述的电池电极粘结剂,其中所述阴离子型离子液体聚合物的结构为选自如下式(P1)-式(P14)所示结构中的任意一种:
    Figure PCTCN2017103976-appb-100039
    Figure PCTCN2017103976-appb-100040
    Figure PCTCN2017103976-appb-100041
    Figure PCTCN2017103976-appb-100042
  59. 根据权利要求58所述的电池电极粘结剂,其中所述阴离子型离子液体聚合物为
    Figure PCTCN2017103976-appb-100043
    所示的阴离子型离子液体聚合物。
  60. 根据权利要求57所述的电池电极粘结剂,其中所述阴离子型离子液体聚合物的分子量为10万-30万。
  61. 根据权利要求57所述的电池电极粘结剂,其中所述电池电极粘结剂的平均粒径为400nm-800nm。
  62. 根据权利要求57所述的电池电极粘结剂,其中所述电池电极粘结剂还包括聚偏二氟乙烯、偏二氟乙烯与六氟丙烯共聚物、丁苯橡胶或聚丙烯酸酯类聚合物中的一种或几种。
  63. 根据权利要求62所述的电池电极粘结剂,其中相对于100重量份的阴离子型离子液体聚合物,所述聚偏二氟乙烯的含量为0.01-9900;偏二氟乙烯与六氟丙烯共聚物的含量为0.01-9900;丁苯橡胶的含量为0.01-9900;聚丙烯酸酯类聚合物的含量为0.01-9900。
  64. 一种电极,包括集电体和形成在集电体表面上的活性材料层,所述活性材料层包括活性材料和粘结剂,所述粘结剂为权利要求57至63中任一项所述的电池电极粘结剂。
  65. 根据权利要求64所述的电极,其中所述活性材料为正极活性材料,所述活性材料层还包括导电剂,所述活性材料层中各组分重量比为正极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。
  66. 根据权利要求65所述的电极,其中所述正极活性材料为选自LiM1PO4、Li2M2SiO4、LiAl1-wCowO2和LiNixCoyMnzO2中的至少一种;其中,M1和M2各自独立地选自Fe、Co、Ni和Mn中的至少一种;0<w≤1;0≤x≤1,0≤y≤1,0≤z≤1。
  67. 根据权利要求64所述的电极,其中所述活性材料为负极活性材料,所述活性材料层中各组分重量比为负极活性材料:导电剂:粘结剂=100:0.1~900:0.1~900。
  68. 根据权利要求67所述的电极,其中所述负极活性材料为选自石墨、硅、硅碳、锡、锡碳和钛酸锂中的至少一种。
  69. 一种锂离子电池,包括电池壳、极芯和电解液,所述极芯和电解液密封容纳在电池壳内,所述极芯包括正极、负极及位于正极和负极之间的隔膜,所述正极为权利要求64至66中任一项所述的电极和/或所述负极为权利要求64、67至68中任一项所述的电极。
PCT/CN2017/103976 2016-09-29 2017-09-28 阴离子型离子液体聚合物、其制备方法及用途 WO2018059484A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610868279.4A CN107887604B (zh) 2016-09-29 2016-09-29 一种电池电极粘结剂、电极及锂离子电池
CN201610864105.0A CN107879976B (zh) 2016-09-29 2016-09-29 离子液体化合物及制备方法、离子液体聚合物以及含该聚合物的聚合物固态电解质
CN201610863529.5 2016-09-29
CN201610867865.7A CN107887641A (zh) 2016-09-29 2016-09-29 一种聚合物固态电解质和固态电池
CN201610863529.5A CN107887639B (zh) 2016-09-29 2016-09-29 一种复合固态电解质和固态电池
CN201610868279.4 2016-09-29
CN201610864105.0 2016-09-29
CN201610867865.7 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018059484A1 true WO2018059484A1 (zh) 2018-04-05

Family

ID=61763210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103976 WO2018059484A1 (zh) 2016-09-29 2017-09-28 阴离子型离子液体聚合物、其制备方法及用途

Country Status (1)

Country Link
WO (1) WO2018059484A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053787A (zh) * 2018-09-18 2018-12-21 天津金牛电源材料有限责任公司 一种二氟草酸硼酸锂的制备方法
CN110336030A (zh) * 2019-06-19 2019-10-15 安徽沃博源科技有限公司 一种锂离子电池的粘结剂及其制备方法
CN111082133A (zh) * 2019-12-02 2020-04-28 常州乾艺智能制造科技有限公司 一种用于固态锂电池的高聚物电解质的制备方法
CN111732724A (zh) * 2020-06-30 2020-10-02 东北师范大学 一种聚芳醚酮单离子聚合物和单离子凝胶聚合物电解质
CN112687794A (zh) * 2020-12-28 2021-04-20 山东科技大学 一种具有自修复能力的柔性忆阻器及制备方法
CN112750951A (zh) * 2020-12-28 2021-05-04 山东科技大学 一种基于有机溶液的柔性忆阻器及制备方法
CN112979873A (zh) * 2021-02-19 2021-06-18 昆山宝创新能源科技有限公司 多元共聚单离子聚合物电解质及其制备方法和应用
CN113571771A (zh) * 2021-02-08 2021-10-29 深圳市研一新材料有限责任公司 锂离子电池用电解液及其制备方法和锂离子电池
CN113937291A (zh) * 2021-09-02 2022-01-14 深圳高能时代科技有限公司 一种用于硫化物全固态电池的电极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082494A (ja) * 1998-09-03 2000-03-21 Sanyo Chem Ind Ltd 難燃性非水電解液およびそれを用いた二次電池
CN1290408A (zh) * 1998-03-24 2001-04-04 美国3M公司 含有混合碳氟/碳氢的酰亚胺和甲基化物的盐的电解质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290408A (zh) * 1998-03-24 2001-04-04 美国3M公司 含有混合碳氟/碳氢的酰亚胺和甲基化物的盐的电解质
JP2000082494A (ja) * 1998-09-03 2000-03-21 Sanyo Chem Ind Ltd 難燃性非水電解液およびそれを用いた二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, JIAYE ET AL.: "Increased Ion Conduction in Dual Cation [Sodium]-[tetraalkylammonium] poly-[4-styrenesulfonyl (trifluoromethylsulfonyl) imidecoethylacrylate] ionomers", J. MATER. CHEM. A., vol. 3, 24 August 2015 (2015-08-24), pages 19989 - 19995, XP055480577 *
OBADIA, MONA M. ET AL.: "Enhancing Properties of Anionic Poly(ionic liquid)s with 1, 2, 3-Triazolium Counter Cations", ACS MACRO LETT., vol. 3, 19 June 2014 (2014-06-19), pages 658 - 662, XP055480580 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053787A (zh) * 2018-09-18 2018-12-21 天津金牛电源材料有限责任公司 一种二氟草酸硼酸锂的制备方法
CN110336030A (zh) * 2019-06-19 2019-10-15 安徽沃博源科技有限公司 一种锂离子电池的粘结剂及其制备方法
CN111082133B (zh) * 2019-12-02 2022-10-28 常州乾艺智能制造科技有限公司 一种用于固态锂电池的高聚物电解质的制备方法
CN111082133A (zh) * 2019-12-02 2020-04-28 常州乾艺智能制造科技有限公司 一种用于固态锂电池的高聚物电解质的制备方法
CN111732724A (zh) * 2020-06-30 2020-10-02 东北师范大学 一种聚芳醚酮单离子聚合物和单离子凝胶聚合物电解质
CN111732724B (zh) * 2020-06-30 2023-01-03 东北师范大学 一种聚芳醚酮单离子聚合物和单离子凝胶聚合物电解质
CN112750951A (zh) * 2020-12-28 2021-05-04 山东科技大学 一种基于有机溶液的柔性忆阻器及制备方法
CN112687794A (zh) * 2020-12-28 2021-04-20 山东科技大学 一种具有自修复能力的柔性忆阻器及制备方法
CN112750951B (zh) * 2020-12-28 2023-01-10 山东科技大学 一种基于有机溶液的柔性忆阻器及制备方法
CN112687794B (zh) * 2020-12-28 2024-03-19 山东科技大学 一种具有自修复能力的柔性忆阻器及制备方法
CN113571771A (zh) * 2021-02-08 2021-10-29 深圳市研一新材料有限责任公司 锂离子电池用电解液及其制备方法和锂离子电池
CN112979873A (zh) * 2021-02-19 2021-06-18 昆山宝创新能源科技有限公司 多元共聚单离子聚合物电解质及其制备方法和应用
CN112979873B (zh) * 2021-02-19 2022-11-22 昆山宝创新能源科技有限公司 多元共聚单离子聚合物电解质及其制备方法和应用
CN113937291A (zh) * 2021-09-02 2022-01-14 深圳高能时代科技有限公司 一种用于硫化物全固态电池的电极材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2018059484A1 (zh) 阴离子型离子液体聚合物、其制备方法及用途
WO2018059492A1 (zh) 离子液体聚合物、其制备方法及用途
CN104221203B (zh) 碱金属‑硫系二次电池
EP3509149B1 (en) Polymer electrolyte, polymer, electrochemical device, and method of preparing the polymer
CN112094372B (zh) 锂离子电池用粘合剂水溶液、负极用浆料、负极、负极用材料以及锂离子电池及其制造方法
US20170256820A1 (en) Ionic liquid and plastic crystal
WO2018059491A1 (zh) 离子液体聚合物、其制备方法及用途
JP2019530166A (ja) 高分子固体電解質及びこれを含むリチウム二次電池
CN111403809B (zh) 用于锂二次电池的添加剂、电解质和包括其的锂二次电池
CN112086619B (zh) 全固态锂电池正极片及其制备方法以及全固态锂电池
CN109599548B (zh) 正极材料及包含所述正极材料的电化学装置
JP2011134492A (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
Xu et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries
CN107887604B (zh) 一种电池电极粘结剂、电极及锂离子电池
Dong et al. Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes
KR101841113B1 (ko) 표면에 이온화된 금속이 코팅되어 있는 리튬 이차전지용 양극 활물질 및 이의 제조 방법
JP6607967B2 (ja) 磁性物質を含む二次電池用バインダー
JP2013225488A (ja) 非水電解液二次電池
JP2021051838A (ja) リチウム二次電池
KR20190107648A (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
CN110383543A (zh) 包含锂锰基氧化物的高电压正极活性材料及其制备方法
CN111326795B (zh) 用于锂二次电池的添加剂、电解质和包括其的锂二次电池
JP2023508037A (ja) 固相-液相ハイブリッド電解質膜及びその製造方法
KR20180124546A (ko) 고분자 고체 전해질 조성물 및 이를 포함하는 고분자 막
CN113228373A (zh) 电解质用组合物、非水电解质及非水电解质二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854934

Country of ref document: EP

Kind code of ref document: A1