WO2018056243A1 - 複合成形体および複合成形体の製造方法 - Google Patents

複合成形体および複合成形体の製造方法 Download PDF

Info

Publication number
WO2018056243A1
WO2018056243A1 PCT/JP2017/033647 JP2017033647W WO2018056243A1 WO 2018056243 A1 WO2018056243 A1 WO 2018056243A1 JP 2017033647 W JP2017033647 W JP 2017033647W WO 2018056243 A1 WO2018056243 A1 WO 2018056243A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
resin
composite molded
molded body
fiber
Prior art date
Application number
PCT/JP2017/033647
Other languages
English (en)
French (fr)
Inventor
享起 谷口
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2018500596A priority Critical patent/JP6365798B1/ja
Publication of WO2018056243A1 publication Critical patent/WO2018056243A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation

Definitions

  • the present invention relates to a composite molded body and a method for producing the composite molded body.
  • structural materials used for aircraft and automobiles are required to be further reduced in weight.
  • the fuel consumption of aircraft and automobiles can be reduced.
  • a fiber reinforced resin obtained by mixing a reinforced fiber such as glass fiber and a resin such as polypropylene has been proposed (for example, see Patent Document 1).
  • the fibers are entangled with each other in all three-dimensional directions. Thereby, reinforcement of fiber reinforced resin is achieved.
  • the fiber reinforced resin may not be able to play a role as a structural material.
  • An object of the present invention is to provide a composite molded body that achieves both weight reduction and high mechanical strength, and a composite molded body manufacturing method that can efficiently manufacture the composite molded body.
  • the first region includes a first resin
  • the composite molded body according to (1) wherein the second region includes a second resin different from the first resin.
  • the first region includes a first fiber
  • each of the second regions has a hexagonal shape.
  • the hollow region that is hollow and the solid region that is solid are included, and the hollow in plan view Obtaining a first intermediate in which the regions are regularly arranged;
  • a step of obtaining the second intermediate by making the second dispersion while supplying the second dispersion containing the second resin and the second fiber to the hollow region;
  • the manufacturing method of the composite molded object characterized by having.
  • the present invention it is possible to obtain a composite molded body that achieves both weight reduction and high mechanical strength. Moreover, according to this invention, the said composite molded object can be manufactured efficiently.
  • FIG. 1 is a perspective view showing an embodiment of a composite molded body of the present invention.
  • 2 is a plan view and a cross-sectional view of the composite molded body shown in FIG.
  • FIG. 3 is a partial enlarged view schematically showing a portion surrounded by a one-dot chain line B of the composite molded body shown in FIG.
  • FIG. 4 is a view for explaining a method for manufacturing the composite molded body shown in FIG. 1 (first embodiment of the method for manufacturing a composite molded body of the present invention).
  • FIG. 5 is a view for explaining a method for producing the composite molded body shown in FIG. 1 (first embodiment of the method for producing a composite molded body of the present invention).
  • FIG. 6 is a view for explaining a method for manufacturing the composite molded body shown in FIG. 1 (first embodiment of the method for manufacturing a composite molded body of the present invention).
  • FIG. 7 is a view for explaining a method for manufacturing the composite molded body shown in FIG. 1 (first embodiment of the method for manufacturing a composite molded body of the present invention).
  • FIG. 8 is a partially enlarged view of a portion surrounded by an alternate long and short dash line C in FIG.
  • FIG. 9 is a view for explaining a method for producing the composite molded body shown in FIG. 1 (second embodiment of the method for producing a composite molded body of the present invention).
  • FIG. 10 is a view for explaining a method for producing the composite molded body shown in FIG. 1 (second embodiment of the method for producing a composite molded body of the present invention).
  • FIG. 11 is a view for explaining a method for manufacturing the composite molded body shown in FIG. 1 (second embodiment of the method for manufacturing a composite molded body of the present invention).
  • FIG. 1 is a perspective view showing an embodiment of a composite molded body of the present invention
  • FIG. 2 is a plan view and a cross-sectional view of the composite molded body shown in FIG. 1
  • FIG. 3 is a composite molded body shown in FIG. It is the elements on larger scale which show typically the part enclosed with the dashed-dotted line B of the body.
  • the composite molded body 1 shown in FIGS. 1 to 3 has a sheet shape, and the shape of the main surface of the composite molded body 1 in a plan view is a rectangle as shown in FIG. 2 (a).
  • Such a composite molded body 1 includes a high density region (first region) 2 having a high density and a low density region (second region) 3 having a relatively lower density than the first region 2. Contains. Although these 1st area
  • region 3 are not specifically limited, Each has the same structure in the thickness direction. 1 and 2, relatively dense dots are attached to the first region 2, and relatively sparse dots are attached to the second region 3.
  • the first region 2 according to the present embodiment includes the first resin 21 and the first fibers 22.
  • the second region 3 according to the present embodiment includes the second resin 31 and the second fiber 32.
  • the second regions 3 are regularly arranged in a plan view.
  • the area ratio of the second region 3 in the composite molded body 1 (the ratio of the area of the second region 3 to the area of the main surface of the composite molded body 1 in plan view) is 20 to 90%.
  • the first region 2 is a plate-like member whose main surface has a rectangular shape in plan view.
  • the outer shape of the main surface matches the outer shape of the composite molded body 1 in plan view.
  • the first region 2 includes a plurality of through holes 25 for enclosing the second region 3 therein.
  • the through holes 25 each have a regular hexagonal shape in plan view, and are regularly arranged so as to be separated from each other.
  • the first region 2 includes the first resin 21 and the first fibers 22.
  • Such a first region 2 is compounded by the dispersion of the first fibers 22 in the matrix of the first resin 21, and exhibits high mechanical properties. Thereby, the mechanical characteristic of the composite molded object 1 can be improved more.
  • the first fibers 22 contribute to improving the mechanical properties and thermal conductivity of the first region 2.
  • Such a first fiber 22 is obtained, for example, by cutting a fiber yarn or a long fiber bundle into a predetermined length.
  • the average length of the first fibers 22 is not particularly limited, but is preferably 1 mm or more, more preferably 2 mm or more, and further preferably 4 mm or more.
  • the average length of the first fibers 22 can be sufficiently enhanced.
  • the first fibers 22 can sufficiently compensate for it.
  • the first region 2 having particularly good mechanical characteristics is obtained.
  • the upper limit value of the average length of the first fibers 22 is not particularly limited, but is preferably, for example, 100 mm or less, and more preferably 50 mm or less.
  • the average length of the 1st fiber 22 is measured as follows. About 100 or more arbitrary 1st fibers 22 taken out by melt
  • the average diameter of the first fibers 22 is not particularly limited, but is preferably about 1 to 100 ⁇ m, and more preferably about 5 to 80 ⁇ m. By setting the average diameter of the first fibers 22 within the above range, the moldability when manufacturing the first region 2 can be improved while enhancing the mechanical properties of the first region 2.
  • the average diameter of the first fibers 22 is measured as follows. About 100 or more arbitrary 1st fibers 22 taken out by melt
  • the ratio of the length to the diameter of the first fibers 22 is preferably 10 or more, and more preferably 100 or more. Thereby, the 1st fiber 22 exhibits the above effects more certainly.
  • first fibers 22 include glass fibers, carbon fibers, aluminum fibers, copper fibers, stainless steel fibers, brass fibers, titanium fibers, steel fibers, and metal fibers such as phosphor bronze fibers, cotton fibers, and silk.
  • Fiber natural fiber such as wood fiber, ceramic fiber such as alumina fiber, wholly aromatic polyamide (aramid), wholly aromatic polyester, wholly aromatic polyester amide, wholly aromatic polyether, wholly aromatic polycarbonate, wholly aromatic Polyazomethine, polyphenylene sulfide (PPS), poly (para-phenylenebenzobisthiazole) (PBZT), polybenzimidazole (PBI), polyetheretherketone (PEEK), polyamideimide (PAI), polyimide, polytetrafluoroethylene (PTFE), poly (para-feni Organic fibers such as N-2,6-benzobisoxazole) (PBO), etc., and one of these or one containing at least one (a mixture of a plurality of types of fibers)
  • inorganic fibers such as glass fibers, carbon fibers, metal fibers, and ceramic fibers are preferably used.
  • inorganic fibers that are excellent in mechanical properties such as tensile strength, the mechanical properties of the first region 2 can be particularly enhanced.
  • the first fiber 22 may be subjected to a surface treatment such as a coupling agent treatment, a surfactant treatment, an ultraviolet irradiation treatment, an electron beam irradiation treatment, or a plasma irradiation treatment as necessary.
  • a surface treatment such as a coupling agent treatment, a surfactant treatment, an ultraviolet irradiation treatment, an electron beam irradiation treatment, or a plasma irradiation treatment as necessary.
  • coupling agents include N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropylmethyl.
  • the first region 2 can be further reduced in weight.
  • organic fibers have various mechanical properties, and many have higher mechanical properties than inorganic fibers. Therefore, it is possible to realize a composite molded body 1 that achieves both high weight reduction and high mechanical properties by optimal selection of organic fibers.
  • the content of the first fibers 22 in the first region 2 is not particularly limited, but is preferably about 5 to 300% by volume of the first resin 21, more preferably about 10 to 150% by volume, More preferably, it is about 20 to 90% by volume.
  • the content of the first fibers 22 within the above range, the quantitative balance between the first resin 21 and the first fibers 22 is optimized. For this reason, the mechanical characteristics of the first region 2 can be particularly enhanced. That is, when the content of the first fiber 22 is below the lower limit, the content of the first fiber 22 is relatively insufficient, so the composition of the first resin 21, the length of the first fiber 22, the constituent material, etc. Depending on the case, the mechanical characteristics of the first region 2 may be deteriorated.
  • the content of the first fiber 22 exceeds the upper limit, the content of the first resin 21 is relatively insufficient, so the composition of the first resin 21, the length of the first fiber 22, the constituent material, etc. Depending on the case, the mechanical characteristics of the first region 2 may be deteriorated.
  • the shape of the first fiber 22 shown in FIG. 3 is an example, and is not limited to the linear shape as illustrated, and may be any shape.
  • the first fibers 22 may be oriented in any direction in the first region 2, but are preferably oriented so as to be parallel to the surface (main surface) of the first region 2. Is preferred. Thereby, toughness can be improved in the tensile direction of the surface of the first region 2. In addition, the wear resistance of the surface of the first region 2 is increased.
  • the first resin 21 imparts moldability and shape retention to the first region 2 or functions as a binder that binds the first fibers 22 together. Therefore, the first resin 21 is not particularly limited as long as it has such a function.
  • the first resin 21 preferably contains at least one of phenolic resin, epoxy resin and bismaleimide resin. Thereby, the mechanical characteristics and heat resistance of the first region 2 can be particularly enhanced.
  • phenolic resins include phenol novolak resins, cresol novolak resins, bisphenol A novolak resins, novolak phenol resins such as arylalkylene type novolak resins, unmodified resole phenol resins, tung oil, linseed oil, walnut oil, and the like.
  • resol type phenol resins such as modified oil-modified resol phenol resins.
  • a novolak type phenol resin is preferably used from the viewpoint of cost and moldability.
  • the weight average molecular weight of the phenolic resin is not particularly limited, but is preferably about 1000 to 15000.
  • the weight average molecular weight of a phenol-type resin is less than the said lower limit, the viscosity of the 1st resin 21 will become low too much and there exists a possibility that shaping
  • the weight average molecular weight of the phenolic resin exceeds the upper limit, the viscosity of the first resin 21 becomes too high, and the moldability of the first region 2 during the production of the composite molded body 1 may be reduced. is there.
  • the weight average molecular weight of the phenolic resin can be determined as a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • epoxy resin examples include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type and bisphenol AD type, novolak type epoxy resins such as phenol novolak type and cresol novolak type, brominated bisphenol A type, brominated type Examples thereof include brominated epoxy resins such as phenol novolac type, biphenyl type epoxy resins, naphthalene type epoxy resins, and tris (hydroxyphenyl) methane type epoxy resins.
  • bisphenol type epoxy resins such as bisphenol A type, bisphenol F type and bisphenol AD type
  • novolak type epoxy resins such as phenol novolak type and cresol novolak type
  • brominated bisphenol A type brominated type
  • brominated epoxy resins such as phenol novolac type, biphenyl type epoxy resins, naphthalene type epoxy resins, and tris (hydroxyphenyl) methane type epoxy resins.
  • bisphenol type epoxy resin and novolac type epoxy resin are preferably used from the viewpoint of high fluidity and moldability.
  • a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, and a cresol novolak type epoxy resin having a relatively low molecular weight are more preferably used.
  • phenol novolac type epoxy resins and cresol novolac type epoxy resins are more preferably used, and tris (hydroxyphenyl) methane type epoxy resins are particularly preferably used.
  • the bismaleimide-based resin is not particularly limited as long as it is a resin having maleimide groups at both ends of the molecular chain, for example, those having a benzene ring are preferable, and those represented by the following general formula (1) are more preferable. Preferably used.
  • R 1 to R 4 represent a hydrocarbon group having 1 to 4 carbon atoms which may have a substituent or a hydrogen atom.
  • R 5 represents a divalent organic group.
  • the bismaleimide resin may have maleimide groups in addition to both ends of the molecular chain.
  • the organic group is a hydrocarbon group that may contain atoms other than carbon atoms, and examples of atoms other than carbon atoms include O, S, and N.
  • R 5 preferably has a main chain structure in which a methylene group, an aromatic ring, and an ether bond (—O—) are bonded in any order, and has at least one of a substituent and a side chain on the main chain. May be.
  • the total number of methylene groups, aromatic rings and ether bonds contained in the main chain structure is 15 or less.
  • the substituent or side chain include a hydrocarbon group having 3 or less carbon atoms, a maleimide group, and a phenylene group.
  • bismaleimide resins include N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, and 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, m-phenylenebismaleimide, p-phenylenebismaleimide, 4-methyl-1,3-phenylenebismaleimide, N, N′-ethylenedimaleimide, N, N′-hexamethylene Examples thereof include dimaleimide.
  • a curing agent is used in combination with the first resin 21 as necessary.
  • a novolac type phenol resin is used as the first resin 21
  • hexamethylenetetramine is usually used as the curing agent.
  • the curing agent may be an amine compound such as aliphatic polyamine, aromatic polyamine, or diciamine diamide, alicyclic acid anhydride, aromatic acid anhydride.
  • An acid anhydride such as a product, a polyphenol compound such as a novolak type phenol resin, an imidazole compound, or the like is used.
  • a novolak type phenol resin is preferably used from the viewpoints of handleability and environmental aspects.
  • a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, and a tris (hydroxyphenyl) methane type epoxy resin are used as the epoxy resin, as a curing agent, from the viewpoint that the heat resistance of the cured product is easily improved.
  • a novolac type phenol resin is preferably used.
  • an imidazole compound is used as the curing agent.
  • curing agent the 1 type (s) or 2 or more types of what was mentioned above are used.
  • the first resin 21 may particularly contain a thermoplastic resin.
  • region 2 can be improved especially and the 1st area
  • the first resin 21 includes super engineering plastic among thermoplastic resins.
  • super engineering plastics include polysulfone, polyether sulfone, polyphenylene sulfide, polyether ether ketone, polyarylate, polyamide imide, polyether imide, polyether ether ketone, liquid crystal polymer, and fluororesin.
  • the melting point of the first resin 21 is not particularly limited, but is preferably 200 to 400 ° C., more preferably 210 to 390 ° C., and further preferably 260 to 380 ° C.
  • the melting point of the first resin 21 is not particularly limited, but is preferably 200 to 400 ° C., more preferably 210 to 390 ° C., and further preferably 260 to 380 ° C.
  • the melting point of the first resin 21 is below the lower limit, the dimensional accuracy of the composite molded body 1 at high temperatures may be lowered depending on the configuration of the first region 2 and the configuration of other parts. On the other hand, although the melting point of the first resin 21 may exceed the upper limit, some physical properties (for example, impact resistance) may be reduced accordingly.
  • the melting point of the first resin 21 is a crystalline melting point in principle, and can be measured by, for example, a differential scanning calorimeter (DSC-2920, manufactured by TA Instruments).
  • the melting point of the first resin 21 in the present invention includes the glass transition temperature. This glass transition temperature can also be measured by the differential scanning calorimeter.
  • the melting point of the first resin 21 in the present invention is the heat resistance temperature of the cured product of the thermosetting resin. Shall be included. This heat resistant temperature is the deflection temperature under load specified in the general test method for thermoplastics of JIS K 6911: 1995.
  • Pulp is a fiber material having a fibril structure and is different from the first fiber 22. Pulp can be obtained, for example, by mechanically or chemically fibrillating the fiber material.
  • Examples of the pulp include cellulose fibers such as linter pulp and wood pulp, natural fibers such as kenaf, jute and bamboo, para-type wholly aromatic polyamide fibers (aramid fibers) and copolymers thereof, aromatic polyester fibers, Examples include fibrillated organic fibers such as polybenzazole fibers, meta-type aramid fibers and copolymers thereof, acrylic fibers, acrylonitrile fibers, polyimide fibers, polyamide fibers, and at least one of these is Used.
  • cellulose fibers such as linter pulp and wood pulp
  • natural fibers such as kenaf, jute and bamboo
  • para-type wholly aromatic polyamide fibers (aramid fibers) and copolymers thereof aromatic polyester fibers
  • fibrillated organic fibers such as polybenzazole fibers, meta-type aramid fibers and copolymers thereof, acrylic fibers, acrylonitrile fibers, polyimide fibers, polyamide fibers, and at least one of these is Used.
  • the pulp content in the first region 2 is not particularly limited, but is preferably about 0.5 to 10% by mass of the first resin 21, and more preferably about 1 to 8% by mass. More preferably, it is about 1.5 to 5% by mass. Thereby, the 1st area
  • the first region 2 may contain a flocculant as necessary.
  • the flocculant examples include a cationic polymer flocculant, an anionic polymer flocculant, a nonionic polymer flocculant, and an amphoteric polymer flocculant, and at least one of these is used.
  • cationic polyacrylamide cationic polyacrylamide
  • anionic polyacrylamide Hoffman polyacrylamide
  • mannic polyacrylamide mannic polyacrylamide
  • amphoteric copolymerized polyacrylamide cationized starch
  • amphoteric starch polyethylene oxide and the like
  • the content of the flocculant in the first region 2 is not particularly limited, but is preferably about 0.01 to 1.5% by mass of the first resin 21 and about 0.05 to 1% by mass. More preferably, it is about 0.1 to 0.5% by mass.
  • the first region 2 is manufactured by, for example, a papermaking method, the dehydration process or the like can be easily and stably performed, and the first region 2 that is finally uniform and excellent in mechanical properties is obtained. .
  • the first region 2 may contain other additives as necessary.
  • additives examples include fillers, metal powders, antioxidants, ultraviolet absorbers, flame retardants, mold release agents, plasticizers, curing catalysts, curing aids, pigments, light resistance agents, antistatic agents, and antibacterial agents. , Conductive agents, dispersants and the like, and at least one of them is used.
  • examples of the curing aid include imidazole compounds, tertiary amine compounds, organic phosphorus compounds, magnesium oxide, and the like.
  • an inorganic filler for example, an organic filler, or the like is used.
  • constituent materials include oxides such as titanium oxide, alumina, silica, zirconia, magnesium oxide, and calcium oxide, nitrides such as boron nitride, aluminum nitride, and silicon nitride, barium sulfate, and sulfuric acid.
  • Sulfides such as iron and copper sulfate, hydroxides such as aluminum hydroxide and magnesium hydroxide, minerals such as kaolinite, talc, natural mica and synthetic mica, carbides such as silicon carbide, etc. Is mentioned.
  • these powders may be subjected to a surface treatment such as a coupling agent treatment.
  • metal powder glass beads, milled carbon, graphite, polyvinyl butyral, wood powder, etc. may be used as the filler.
  • examples of the mold release agent include zinc stearate, calcium stearate, magnesium stearate and the like.
  • examples of the coupling agent include an epoxy silane coupling agent, a cationic silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and the like.
  • Examples of the flame retardant include metal hydroxides such as aluminum hydroxide and magnesium hydroxide, antimony compounds, halogen compounds, phosphorus compounds, nitrogen compounds, and boron compounds.
  • the second region 3 is disposed (inserted) in the through hole 25 formed in the first region 2 described above. Accordingly, the second region 3 is a plate-like member whose main surface has a regular hexagonal shape in plan view (see FIG. 2A). A plurality of through holes 25 are provided, and the second region 3 is disposed in each through hole 25. For this reason, the second regions 3 are regularly arranged while being separated from each other. In addition, since the second region 3 is surrounded by the first region 2, even if the mechanical strength of the second region 3 is low, the influence is affected by the composite molded body 1. It becomes difficult to reach the whole.
  • Such a second region 3 has a relatively lower density than the first region 2. For this reason, although it depends on the constituent materials of the first region 2 and the second region 3, the specific gravity of the composite molded body 1 can be reduced as the area ratio of the second region 3 increases. Thereby, the composite molded object 1 in which weight reduction was achieved is obtained. For this reason, from the viewpoint of weight reduction, the area ratio of the second region 3 is preferably as high as possible. However, if the area ratio of the second region 3 is too high, the mechanical strength of the composite molded body 1 may be reduced. There is.
  • the constituent material of the second region 3 is not particularly limited as long as the material has a lower density than the constituent material of the first region 2, and may be an organic material or an inorganic material, but preferably the second material.
  • Resin 31 and second fiber 32 are included.
  • the second region 3 is light in weight, the second region 3 is compounded by the dispersion of the second fibers 32 in the matrix of the second resin 31 and exhibits relatively high mechanical properties. Thereby, while contributing to the weight reduction of the composite molded object 1, it can suppress that a mechanical characteristic falls by providing the 2nd area
  • the second region 3 the volume of the first region 2 that tends to be relatively expensive can be reduced accordingly. Thereby, cost reduction of the composite molded object 1 can be achieved. That is, since most of the mechanical characteristics of the composite molded body 1 can be secured by the first region 2, the constituent material is selected with the highest priority given to the low density for the second region 3. It becomes possible to do. Therefore, the selection range of the material used for the second region 3 is very wide, which is advantageous in reducing the cost. Further, by providing the second region 3, it is possible to easily increase the size of the composite molded body 1 while suppressing the mass.
  • the first resin 21 described above may be included in the second region 3 so as to be mixed.
  • the 1st field 2 and the 2nd field 3 become easy to be unified by the 1st resin 21 contained in common.
  • the 1st field 2 and the 2nd field 3 are joined more firmly, and the reliability of compound fabrication object 1 can be raised more.
  • the first region 2 described above may contain the second resin 31 so as to be mixed.
  • the 1st field 2 and the 2nd field 3 become easy to be unified by the 2nd resin 31 contained in common.
  • the 1st field 2 and the 2nd field 3 are joined more firmly, and the reliability of compound fabrication object 1 can be raised more.
  • the first resin 21 and the second resin 31 are preferably the same type of resin. Thereby, the 1st area
  • the second region 3 may include a hole inside. Thereby, the density of the 2nd field 3 can further be reduced.
  • This hole is a hole included in the second region 3.
  • this hole may be a space (closed cell) in which one or more of the holes are connected to each other, and a space (open cell) communicating with the outside of the system. It may be.
  • the number of closed cells is larger than that of open cells means that the total area occupied by closed cells is larger than the total area occupied by open cells when the cross section of the second region 3 is enlarged.
  • the average diameter of the pores is not particularly limited, but is preferably about 2 to 300 ⁇ m, and more preferably about 5 to 200 ⁇ m.
  • hole can be made to make compatible. That is, when the average diameter of the holes is less than the lower limit value, it may be difficult to reduce the weight of the second region 3 depending on the porosity.
  • the average diameter of the holes is obtained as an average value of the diameters (equivalent circle diameters) of circles having the same area as each hole from the cross section of the second region 3. .
  • the porosity of the second region 3 is not particularly limited, but is preferably about 5 to 90%, more preferably about 10 to 87.5%, and more preferably about 15 to 85%. Further preferred. By setting the porosity within the above range, the weight reduction of the second region 3 and the mechanical characteristics can be achieved in a balanced manner. That is, if the porosity is lower than the lower limit, the weight of the second region 3 may be insufficient depending on the composition of the second resin 31, the length of the second fibers 32, the constituent material, and the like. . On the other hand, if the porosity exceeds the upper limit, the mechanical properties of the second region 3 may be deteriorated depending on the composition of the second resin 31, the length of the second fibers 32, the constituent material, and the like.
  • the porosity of the second region 3 is obtained, for example, as the ratio of the area occupied by the holes (the area ratio of the holes) in the cross-sectional area of the second region 3.
  • the second fibers 32 contribute to increasing the mechanical properties and thermal conductivity of the second region 3.
  • the second fibers 32 for example, those obtained by cutting fiber yarns or long fiber bundles into a predetermined length are used.
  • the average length of the second fibers 32 is not particularly limited, and may be longer or shorter than the average length of the first fibers 22.
  • the average length of the second fibers 32 is preferably about 1 to 90% of the average length of the first fibers 22, more preferably about 3 to 70%, and more preferably about 5 to 50%. More preferably.
  • the elastic modulus of the second region 3 can be optimized. Thereby, the mechanical characteristic of the composite molded object 1 can be improved more.
  • the average length of the second fibers 32 is preferably about 5 to 500 ⁇ m, and more preferably about 10 to 300 ⁇ m. As a result, for example, when trying to reduce the density by forming holes in the second region 3, it becomes easier to hermetically seal the holes, and while reducing the density of the second region 3, mechanically It becomes easy to improve the characteristics.
  • the average length of the second fibers 32 is the length of any 100 or more second fibers 32 taken out by dissolving the second resin 31 in the second region 3 or the like, The average value.
  • the average diameter of the second fibers 32 is not particularly limited, but is preferably about 5 to 20 ⁇ m, more preferably about 6 to 18 ⁇ m, and further preferably about 7 to 16 ⁇ m. Thereby, an appropriate elastic modulus is given to the second region 3. If the average diameter of the second fibers 32 is less than the lower limit value, the elastic modulus of the second region 3 may decrease depending on the material, length, and the like of the second fibers 32. If the average diameter exceeds the upper limit, depending on the length of the second fiber 32 and the like, the moldability when manufacturing the second region 3 may be reduced.
  • the average diameter of the second fibers 32 is the average of the diameters of any 100 or more second fibers 32 taken out by dissolving the second resin 31 in the second region 3 and the like. It means the value that was made.
  • a second fiber 32 for example, one of those described above as the first fiber 22, or one containing at least one (a mixture of a plurality of types of fibers) is used.
  • the second fibers 32 may be the same type of fibers as the first fibers 22 or may be different types of fibers.
  • the second region 3 and the first region 2 The mechanical properties required in Therefore, by making the first fiber 22 and the second fiber 32 different in kind, optimum mechanical characteristics are imparted to the respective parts. As a result, for example, it is possible to optimize such that a lighter fiber is used for the second fiber 32 and a fiber having higher toughness is used for the first fiber 22.
  • the second fiber 32 may be subjected to a surface treatment such as a coupling agent treatment, a surfactant treatment, an ultraviolet irradiation treatment, an electron beam irradiation treatment, or a plasma irradiation treatment as necessary.
  • a surface treatment such as a coupling agent treatment, a surfactant treatment, an ultraviolet irradiation treatment, an electron beam irradiation treatment, or a plasma irradiation treatment as necessary.
  • the content of the second fibers 32 in the second region 3 is not particularly limited, but is preferably about 5 to 300% by volume of the second resin 31, more preferably about 10 to 150% by volume, More preferably, it is about 20 to 90% by volume.
  • the quantitative balance between the second resin 31 and the second fibers 32 is optimized, so that the mechanical characteristics of the second region 3 are particularly high. Can be increased. That is, when the content of the second fiber 32 is below the lower limit, the content of the second fiber 32 is relatively insufficient, so the composition of the second resin 31, the length of the second fiber 32, the constituent material, and the like. Depending on the case, the mechanical characteristics of the second region 3 may be deteriorated.
  • the content of the second fiber 32 exceeds the upper limit, the content of the second resin 31 is relatively insufficient, so the composition of the second resin 31, the length of the second fiber 32, the constituent material, etc. Depending on the case, the mechanical characteristics of the second region 3 may be deteriorated.
  • shape of the second fiber 32 shown in FIG. 3 is an example, and is not limited to the linear shape as illustrated, and may be any shape.
  • the second fibers 32 may be oriented in any direction in the second region 3, but are preferably randomly oriented regardless of the direction. As a result, the second region 3 has no structural anisotropy and is isotropic in mechanical characteristics. As a result, even if the stress is concentrated on a part of the second region 3, the second region 3 is hardly damaged. And the reliability of the composite molded object 1 can be improved more.
  • the second resin 31 is not particularly limited, and one of those described above as the first resin 21 or one containing at least one (a mixture of plural types of resins) is used.
  • the second resin 31 may be the same type of resin as the first resin 21 or may be a different type of resin.
  • the second region 3 and the first region 2 The mechanical properties required in Therefore, by making the first resin 21 and the second resin 31 different in kind, optimum mechanical characteristics are imparted to the respective parts.
  • a lighter resin can be used for the second resin 31, while a resin with higher impact resistance can be used for the first resin 21.
  • the reliability of the composite molded object 1 can be improved more.
  • the second region 3 may contain other additives as necessary.
  • additives for example, as in the first region 2, for example, fillers, metal powders, antioxidants, ultraviolet absorbers, flame retardants, mold release agents, plasticizers, curing catalysts, curing aids, pigments, light resistance Agents, antistatic agents, antibacterial agents, conductive agents, dispersants and the like, and at least one of them is used.
  • the second region 3 including the above components is provided side by side with the first region 2, and at this time, the second region 3 is regularly arranged.
  • “regular” means a state in which the pattern of the second region 3 is repeatedly arranged.
  • the patterns of the adjacent second regions 3 may have the same shape or different shapes.
  • the two patterns need only be arranged repeatedly as a set.
  • a slight positional deviation is allowed.
  • a deviation of ⁇ 20% is allowed with reference to the position based on the rules.
  • This ratio is a ratio with respect to the length of the second region 3 in the direction in which the second regions 3 are arranged, and the direction of deviation is not limited.
  • the area ratio of the second region 3 is set to 20 to 90%.
  • the balance between the first region 2 and the second region 3 is optimized. As a result, a composite molded body 1 in which both weight reduction and high mechanical strength are compatible is obtained.
  • the area ratio of the second region 3 is preferably 30 to 85%, more preferably 50 to 90%.
  • the area ratio of the second region 3 is below the lower limit value, the benefits of weight reduction by the second region 3 cannot be sufficiently received, and the composite molded body 1 may not be reduced in weight.
  • the area ratio of the second region 3 exceeds the upper limit, the proportion of the first region 2 is relatively decreased, and the mechanical strength of the composite molded body 1 may be decreased.
  • the outer shape of the first region 2 is not particularly limited, and other than a rectangle, for example, a square such as a square, a parallelogram, and a rhombus, a polygon such as a pentagon and a hexagon, a perfect circle, It may be an ellipse, a circle such as an ellipse, or any other shape.
  • the outer shape of the second region 3 is not particularly limited, and is a shape other than a hexagon, for example, a square, a rectangle, a parallelogram, a square such as a rhombus, a polygon such as a pentagon, an octagon, a true Although it may be a circle, an ellipse, a circle such as an ellipse, or any other shape, it is preferably a hexagon. That is, it is preferable that the second regions 3 having a hexagonal shape are arranged so as to be separated from each other via the first region 2.
  • hexagonal corner shape may be chamfered or rounded if necessary.
  • the second region 3 and the through hole 25 may be in a so-called fitted state, or may be in a state of being bonded via an inclusion such as an adhesive.
  • the composite molded body 1 has been described above, but the composite molded body 1 can be applied to any structure.
  • an interior material for transportation equipment can be exemplified. Specifically, cabin ceiling panel, cabin interior panel, cabin floor, cockpit ceiling panel, cockpit interior panel, cockpit floor, baggage locker wall, storage locker wall, door lining, window cover, captain's seat, co-pilot Seats, passenger cabin seats, various seats such as passenger seats, various interior materials for aircraft such as restroom interior materials, automotive interior materials, marine interior materials, railroad interior materials, spacecraft interior materials, etc. Is mentioned. All such interior materials for transport equipment are required to be lightweight and have high mechanical strength from the viewpoint of safety and transport efficiency. For this reason, the composite molded object of this invention is used suitably.
  • the composite molded body 1 preferably has the following characteristics.
  • the density of the composite molded body 1 is not particularly limited, but is preferably about 0.05 to 1.6 g / cm 3 , more preferably about 0.1 to 1.55 g / cm 3 , More preferably, it is about 0.2 to 1.5 g / cm 3 .
  • a composite molded body 1 that achieves both weight reduction and improved mechanical properties is obtained.
  • the density is measured according to a test method defined as A method in JIS K 7112: 1999.
  • the bending strength of the composite molded body 1 is not particularly limited, but is preferably about 50 to 400 MPa, more preferably about 70 to 350 MPa, and further preferably about 100 to 300 MPa. Thereby, the composite molded body 1 having sufficiently high mechanical properties can be obtained.
  • the bending strength of the composite molded body 1 is measured at room temperature (25 ° C.) according to a test method defined in ISO 178: 2001.
  • the specific strength of the composite compact 1 is not particularly limited, but is preferably 30 ⁇ 400MPa ⁇ (g / cm 3) about -1, is 40 ⁇ 350MPa ⁇ (g / cm 3) about -1 Is more preferably about 50 to 300 MPa ⁇ (g / cm 3 ) ⁇ 1 , and particularly preferably about 50 to 250 MPa ⁇ (g / cm 3 ) ⁇ 1 .
  • the composite molded body 1 in which both weight reduction and improvement in mechanical properties are achieved is obtained. If the specific strength is below the lower limit, it can be said that the bending strength is small for a heavy weight, so that it becomes unsuitable as a composite molded body 1 in an industrial field where both weight reduction and high mechanical properties are required.
  • the specific strength of the composite molded body 1 can be obtained by dividing the bending strength (unit: MPa) by the density (unit: g / cm 3 ).
  • the specific elastic modulus of the composite molded body 1 is not particularly limited, but is preferably about 2 to 30 GPa ⁇ (g / cm 3 ) ⁇ 1 , preferably about 3 to 25 GPa ⁇ (g / cm 3 ) ⁇ 1 . More preferably, it is about 4 to 20 GPa ⁇ (g / cm 3 ) ⁇ 1 .
  • the specific elastic modulus of the composite molded body 1 can be obtained by dividing the bending elastic modulus (unit: GPa) by the density (unit: g / cm 3 ). And a bending elastic modulus is measured according to the test method prescribed
  • both the first region 2 and the second region 3 include a resin and a fiber
  • the present invention is not limited to such a configuration.
  • the second region 3 may be composed only of resin
  • the first region 2 may be composed only of resin
  • FIG. 4 to 7 are views for explaining a method of manufacturing the composite molded body 1 shown in FIG. 1 (first embodiment of the method of manufacturing a composite molded body of the present invention).
  • FIG. 8 is a partially enlarged view of a portion surrounded by an alternate long and short dash line C in FIG.
  • the method for manufacturing the composite molded body 1 according to the present embodiment includes a first region 61 including the solid region 41 and the hollow region 42 by making the first dispersion 61 including the first resin 21 and the first fiber 22.
  • the second intermediate 4b is obtained by making the second dispersion 62 while supplying the second dispersion 62 containing the second resin 31 and the second fiber 32 to the hollow region 42, and obtaining the first intermediate 4a.
  • a first dispersion 61 containing the first resin 21, the first fibers 22, and a dispersion medium 51 for dispersing them is prepared (see FIG. 4).
  • the prepared first dispersion 61 is sufficiently stirred and mixed.
  • the first dispersion 61 may contain the above-described flocculant, pulp, other additives, and the like as necessary.
  • the shape of the first resin 21 in this step is not particularly limited, and is, for example, a particle shape (powder) such as a substantially spherical particle shape or a thin film particle shape, or a fiber shape.
  • a particle shape such as a substantially spherical particle shape or a thin film particle shape, or a fiber shape.
  • thermosetting resin 21 contains a thermosetting resin
  • the thermosetting resin is a semi-hardened state.
  • the semi-cured thermosetting resin is formed into a desired shape by heating and pressurization after the first intermediate 4a is manufactured, and then cured. Thereby, the composite molded object 1 which utilized the characteristic of the thermosetting resin will be obtained.
  • the first fiber 22 for example, a fiber having a higher melting point than the first resin 21 is used.
  • the first resin 21 can be selectively melted when the first intermediate body 4a and the second intermediate body 4b are pressure-molded while being heated in a process described later. it can.
  • the first resin 21 can be melted and dispersed around the first fibers 22, and a homogeneous composite molded body 1 can be obtained.
  • the melting point of the first fiber 22 may be higher than the melting point of the first resin 21, but the difference is preferably 10 ° C. or higher, more preferably 50 ° C. or higher.
  • the dispersion medium 51 a material that is difficult to dissolve the first resin 21 and the first fiber 22 and that hardly volatilizes in the process of dispersing the first resin 21 and the first fiber 22 is preferably used. Moreover, what is easy to remove a solvent is used preferably. From this viewpoint, the boiling point of the dispersion medium 51 is preferably about 50 to 200 ° C.
  • Examples of the dispersion medium 51 include alcohols such as water, ethanol, 1-propanol, 1-butanol, and ethylene glycol, ketones such as acetone, methyl ethyl ketone, 2-heptanone, and cyclohexanone, ethyl acetate, butyl acetate, and acetoacetate.
  • Examples include esters such as methyl acetate, ethers such as tetrahydrofuran, isopropyl ether, dioxane, and furfural, and at least one of these is used.
  • Water is preferably used. Water is useful as the dispersion medium 51 because it is readily available, has a low environmental impact, and is highly safe.
  • the content of the dispersion medium 51 in the first dispersion 61 is not particularly limited, but is preferably about 0.05 to 3% by mass, and about 0.1 to 2% by mass with respect to the total solid content. More preferably.
  • the prepared first dispersion 61 is made. Thereby, the 1st intermediate body 4a containing the solid area
  • a container 70 having a bottom surface provided with a filter 71 is prepared.
  • the first dispersion 61 is supplied into the container 70. Then, the dispersion medium 51 in the first dispersion 61 is discharged from the bottom surface of the container 70 to the outside through the filter 71. Thereby, the 1st resin 21 and the 1st fiber 22 which are dispersoids in the 1st dispersion liquid 61 remain on filter 71, as shown in Drawing 5 (papermaking). The first intermediate 4a is obtained on the filter 71 as described above.
  • a mask 72 having a shielding portion corresponding to the hollow region 42 is disposed in advance.
  • the dispersoid in the first dispersion 61 is filtered out and remains on the filter 71 in the portion of the mask 72 where there is no shielding portion.
  • the dispersoid does not stay in the portion where the shielding portion of the mask 72 is present.
  • FIG. 6B a solid region 41 corresponding to a portion of the mask 72 having no shielding portion is formed, and a hollow region 42 corresponding to a portion of the mask 72 having a shielding portion is formed. Is done. And by removing these from the filter 71, the 1st intermediate body 4a shown in FIG.6 (c) is obtained.
  • the first intermediate 4a may further contain a thermoplastic resin having a lower melting point than the first resin 21 (hereinafter referred to as “low melting point resin”).
  • low melting point resin a thermoplastic resin having a lower melting point than the first resin 21
  • the shape retention of the first intermediate 4a can be further enhanced. That is, when the first intermediate 4a is heated at a temperature lower than the heating temperature in pressure molding (for example, drying), the low melting point resin melts and the first fibers 22, the first resins 21 or the first resin are melted. 21 and the first fiber 22 are bound. Thereby, the 1st intermediate body 4a becomes easy to maintain the shape. As a result, the dimensional accuracy and mechanical properties of the composite molded body 1 finally obtained are hardly lowered.
  • the composite molded body 1 is less likely to lose its shape, the composite molded body 1 can be easily gripped and the portability is increased. Thereby, the operation
  • the shape of the low melting point resin before melting is not particularly limited, and may be in the form of particles (powder) such as substantially spherical particles or thin film particles, or may be in the form of fibers.
  • the content of the low melting point resin in the composite molded body 1 is not particularly limited, but is preferably about 0.5 to 30% by volume, more preferably about 1 to 20% by volume, and 2 to 10%. More preferably, it is about volume%. Thereby, the effect of improving the shape retention of the composite molded body 1 by adding the low-melting point resin is ensured sufficiently and without impairing the effects described above.
  • the melting point of the low melting point resin is preferably about 10 to 250 ° C. lower than the melting point of the first resin 21, and preferably about 50 to 200 ° C. Due to such a difference in melting point, the low melting point resin is melted in a process such as drying, and is easily decomposed and removed during pressure molding. For this reason, the function which a low melting-point resin has can be exhibited to the maximum. That is, the machine is such that the low melting point resin maintains its shape before the first intermediate body 4a is pressure-molded, and the low-melting point resin is present after the first intermediate body 4a is pressure-molded. Deterioration of the mechanical characteristics can be suppressed.
  • the first intermediate 4a obtained in this way may or may not contain the dispersion medium 51.
  • a second dispersion 62 containing the second resin 31, the second fibers 32, and a dispersion medium 52 for dispersing them is prepared.
  • the prepared second dispersion 62 is sufficiently stirred and mixed.
  • the second dispersion 62 may contain the above-described flocculant, pulp, other additives, and the like as necessary.
  • the shape of the second resin 31 in this step is not particularly limited, and is, for example, a particle shape (powder) such as a substantially spherical particle shape or a thin film particle shape, or a fiber shape.
  • a particle shape such as a substantially spherical particle shape or a thin film particle shape, or a fiber shape.
  • thermosetting resin 31 contains a thermosetting resin
  • the thermosetting resin is a semi-hardened state.
  • the semi-cured thermosetting resin is formed into a desired shape by heating and pressurization after the second intermediate 4b is manufactured, and then cured. Thereby, the composite molded object 1 which utilized the characteristic of the thermosetting resin will be obtained.
  • the second fiber 32 for example, a fiber having a higher melting point than the second resin 31 is used.
  • the second resin 31 can be selectively melted. it can.
  • the second resin 31 can be melted and dispersed around the second fibers 32, and a homogeneous composite molded body 1 can be obtained.
  • the melting point of the second fiber 32 only needs to be higher than the melting point of the second resin 31, but the difference is preferably 10 ° C. or more, more preferably 50 ° C. or more.
  • the dispersion medium 52 is appropriately selected from those listed as the dispersion medium 51.
  • the content of the dispersion medium 52 in the second dispersion liquid 62 is not particularly limited, but is preferably about 0.05 to 3% by mass, and preferably about 0.1 to 2% by mass with respect to the total solid content. More preferably.
  • the prepared second dispersion liquid 62 is made.
  • the dispersoid in the second dispersion liquid 62 is filtered out in the hollow region 42 and remains on the filter 71 as shown in FIG. 7B.
  • a solid region 43 is formed so as to fill the hollow region 42.
  • the 3rd intermediate body 4c which the 1st intermediate body 4a and the 2nd intermediate body 4b combined is obtained (refer FIG.7 (b)).
  • the first intermediate body 4a includes a solid region 41 including the first resin 21 and the first fibers 22, and the second intermediate body 4b is illustrated in FIG. As described above, the solid region 43 including the second resin 31 and the second fiber 32 is included.
  • the low melting point resin mentioned above may be contained in the 2nd intermediate body 4b as needed.
  • this low melting-point resin it is the same as that of the description in the 1st intermediate body 4a mentioned above.
  • the second intermediate 4b obtained in this way may or may not contain the dispersion medium 52.
  • the second intermediate 4b may be subjected to a temporary pressure forming process (press process). Thereby, the shape retention property of the 2nd intermediate body 4b can be improved more, and handleability becomes still more favorable.
  • the shape of the second resin 31 a fiber shape is particularly preferably employed.
  • the 2nd intermediate body 4b with especially small apparent density can be obtained.
  • region 3 with a small density can be obtained through the press molding mentioned later.
  • the average length of the fibrous second resin 31 is not particularly limited, but is preferably 1 mm or more, more preferably 2 mm or more, and further preferably 4 mm or more.
  • the average length of the fibrous second resin 31 is preferably 1 mm or more, more preferably 2 mm or more, and further preferably 4 mm or more.
  • the upper limit value of the average length of the second resin 31 having a fibrous shape is not particularly limited, but is preferably, for example, 100 mm or less, and more preferably 50 mm or less.
  • the average length of the second resin 31 having a fibrous shape refers to a value obtained by measuring the length of the arbitrary second resin 31 having 100 or more fibrous shapes and averaging the lengths.
  • the average length of the second resin 31 in the form of a fiber is preferably about 10 to 1000%, more preferably about 20 to 500% of the average length of the second fibers 32.
  • the degree of entanglement between the second resin 31 and the second fiber 32 that are in the form of fibers becomes more conspicuous, so that the shape retention of the second intermediate body 4b becomes better and a wider range of voids.
  • a second intermediate 4b that can easily produce the second region 3 of the porosity is obtained.
  • the average diameter of the fibrous second resin 31 is not particularly limited, but is preferably about 1 to 100 ⁇ m, and more preferably about 5 to 80 ⁇ m.
  • the fibrous second resin 31 itself has a certain degree of mechanical strength, so that the fibers in the second intermediate 4b It becomes easy to maintain the state in which the second resin 31 having the shape is uniformly dispersed. As a result, the range of porosity that can be realized in the second region 3 to be manufactured can be made wider.
  • the average diameter of the second resin 31 having a fibrous shape refers to a value obtained by measuring and averaging the diameters of arbitrary 100 or more second resins 31 having a fibrous shape.
  • the ratio of the length to the diameter of the second resin 31 in the fibrous form is preferably 10 or more, and more preferably 100 or more.
  • the second dispersion liquid 62 may include thermally expandable microcapsules.
  • the thermally expandable microcapsule is a particle obtained by microencapsulating a volatile liquid foaming agent with a thermoplastic shell polymer having gas barrier properties.
  • Such a thermally expandable microcapsule functions as a foaming agent by the following mechanism. That is, while the outer shell of the capsule is softened by heating, the liquid foaming agent contained in the capsule is vaporized and the pressure is increased. As a result, the capsule expands and hollow spherical particles are formed. The hollow spherical particles remain even after the pressure molding, and consequently contribute to reducing the density of the second region 3. Therefore, the second region 3 having a low density can be obtained.
  • liquid blowing agent examples include low-boiling hydrocarbons such as isopentane, isobutane, and isopropane.
  • thermoplastic shell polymer examples include polyacrylonitrile, vinylidene chloride-acrylonitrile copolymer, vinylidene chloride-methyl methacrylate copolymer, vinylidene chloride-ethyl methacrylate, acrylonitrile-methyl methacrylate copolymer, acrylonitrile-ethyl methacrylate, and the like. These may be used alone or in combination of two or more.
  • thermally expandable microcapsule examples include EXPANSEL (manufactured by Nippon Ferrite Co., Ltd.), Microsphere F50, Microsphere F60 (above, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.), Advancel EM (manufactured by Sekisui Chemical Co., Ltd.) Commercial products can be used.
  • the content of the thermally expandable microcapsule is preferably about 0.05 to 10% by mass, more preferably about 0.1 to 5% by mass of the second resin 31. Thereby, a certain degree of mechanical strength can be ensured while reducing the density of the second region 3.
  • a third intermediate 4c composed of the first intermediate 4a and the second intermediate 4b is disposed between the forming die 74 and the forming die 75, Press molding. Thereby, the composite molded object 1 shown in FIG.2 (b) is obtained.
  • the third intermediate body 4c disposed between the forming die 74 and the forming die 75 lowers the forming die 74 as indicated by an arrow P shown in FIG. Compressed between. Since it heats simultaneously at this time, at least one part of the 1st resin 21 contained in the 1st intermediate body 4a fuse
  • the second resin 31 contained in the second intermediate body 4b melts and flows between the second fibers 32. Thereafter, the second resin 31 is cured, so that the second fibers 32 are bound to each other by the second resin 31. Thereby, the 2nd field 3 is obtained from the 2nd intermediate 4b. As a result, a composite molded body 1 in which the first region 2 and the second region 3 are combined is obtained.
  • the 1st resin 21 mixes with the 2nd area
  • the first region 2 and the second region 3 are integrated, and the composite molded body 1 shown in FIG. 2B is obtained.
  • the heating temperature at this time is appropriately set according to the composition of the first resin 21 and the second resin 31 and the like, but is preferably about 150 to 350 ° C., for example, about 160 to 300 ° C. More preferred.
  • the heating time at this time is appropriately set according to the heating temperature, but is preferably about 1 to 180 minutes, more preferably about 5 to 60 minutes.
  • the pressure applied at this time is appropriately set according to the heating temperature and heating time, but is preferably about 0.05 to 80 MPa, more preferably about 0.1 to 60 MPa.
  • the method of manufacturing the composite molded body 1 is not limited to the above-described method.
  • the second region 3 may be manufactured by a method other than the papermaking method, for example, an injection molding method, an extrusion molding method, or the like.
  • Second Embodiment >> Next, 2nd Embodiment of the manufacturing method of the composite molded object of this invention is described.
  • FIGS. 9 to 11 are diagrams for explaining a method of manufacturing the composite molded body 1 shown in FIG. 1 (second embodiment of the method of manufacturing the composite molded body of the present invention).
  • the method for manufacturing the composite molded body 1 according to the present embodiment includes a first region 61 including the solid region 41 and the hollow region 42 by making the first dispersion 61 including the first resin 21 and the first fiber 22.
  • this embodiment is different from the first embodiment in that the first intermediate body 4a and the second intermediate body 4b are individually formed and then pressure-molded in a state in which they are combined.
  • first intermediate body 4a and the second intermediate body 4b are individually formed and then pressure-molded in a state in which they are combined.
  • the first dispersion 61 is made as shown in FIG. 9A to obtain a temporary intermediate 4a ′ shown in FIG. 9B.
  • the temporary intermediate 4a 'does not include a hollow portion and is entirely solid. Further, the temporary intermediate 4a 'has a sheet shape as shown in FIG.
  • the temporary intermediate 4 a ′ is cut using the cutting tool 8. Then, by cutting out a part of the temporary intermediate 4a ′, a first intermediate 4a including a hollow region 42 that is hollow and a solid region 41 that is solid is obtained (FIG. 9D). )reference).
  • a process of preparing a large amount of the temporary intermediate 4a 'in advance and cutting the temporary intermediate 4a' into a target shape as necessary can be taken. As a result, the papermaking operation can be simplified and the cost can be reduced.
  • the cutting tool 8 may be any means as long as it can cut the temporary intermediate 4a '.
  • a means capable of performing mechanical processing, water jet processing, laser processing, or the like is used.
  • the second dispersion 62 is made as shown in FIG. 10A to obtain a temporary intermediate 4b ′ shown in FIG. 10B.
  • This temporary intermediate 4b 'does not include a hollow portion and is entirely solid. Further, the temporary intermediate 4b 'has a sheet shape as shown in FIG.
  • the temporary intermediate 4 b ′ is cut using the cutting tool 8. Then, a part of the temporary intermediate 4b 'is cut out to obtain a second intermediate 4b including a plurality of solid regions 43 (see FIG. 10D).
  • a process of preparing a large amount of the temporary intermediate 4b 'in advance and cutting the temporary intermediate 4b' into a desired shape can be taken as necessary. As a result, the papermaking operation can be simplified and the cost can be reduced.
  • the second intermediate 4b is disposed in the hollow region 42 of the first intermediate 4a. Specifically, the solid region 43 of the second intermediate body 4 b is fitted into the hollow region 42. Thereby, the hollow region 42 is filled with the solid region 43, and the third intermediate body 4c forming one sheet is obtained (see FIG. 11B).
  • a third intermediate 4c composed of the first intermediate 4a and the second intermediate 4b is disposed between the forming die 74 and the forming die 75.
  • the 3rd intermediate body 4c is pressure-molded by dropping the shaping
  • the composite molded object 1 shown in FIG.2 (b) is obtained.
  • the sheet-like temporary intermediate body 4a ′ and the temporary intermediate body 4b ′ are once formed and then cut to form the first intermediate body 4a and the second intermediate body 4b.
  • the formation of the first intermediate 4a and the second intermediate 4b is not limited to these procedures.
  • the first intermediate body 4a and the second intermediate body 4b are individually formed by disposing the mask 72 on the filter 71, and then the same as step [3] of the present embodiment.
  • the second intermediate 4b may be arranged in the hollow region 42 of the first intermediate 4a.
  • the composite molded body of the present invention may be obtained by adding an arbitrary element to the embodiment.
  • the method for producing a composite molded body of the present invention may be one obtained by adding an arbitrary step to the above embodiment, or may be one in which the order of each step of the above embodiment is changed.
  • a flocculant polyethylene oxide, molecular weight 1000000
  • a flocculant dissolved in water in advance in the obtained first dispersion is 0.2% with respect to the above-described solid content (components other than water in the first dispersion). It added in the ratio of the mass%.
  • the first dispersion liquid to which the flocculant was added was filtered through a 40-mesh metal screen (screen) to obtain an agglomerate.
  • the aggregate was dewatered and pressed at a pressure of 3 MPa to remove water.
  • an area for papermaking is set using a mask.
  • the dehydrated aggregate was dried at 50 ° C. for 5 hours to obtain a first intermediate having the same shape as the first region 2 shown in FIG.
  • a flocculant synthetic smectite: smecton (manufactured by Kunimine Kogyo Co., Ltd.)
  • a flocculant synthetic smectite: smecton (manufactured by Kunimine Kogyo Co., Ltd.)
  • Kunimine Kogyo Co., Ltd. synthetic smectite: smecton (manufactured by Kunimine Kogyo Co., Ltd.)
  • a 30-mesh metal screen was prepared, and the first intermediate was placed thereon.
  • the second dispersion to which the flocculant was added was filtered through a 30-mesh metal screen (screen) to obtain an aggregate.
  • the aggregate was dewatered and pressed at a pressure of 3 MPa to remove water.
  • the dehydrated aggregate is dried at 70 ° C. for 3 hours to obtain a second intermediate having the same shape as the second region 3 shown in FIG. 1, and the first intermediate and the second intermediate are combined. A combined third intermediate was obtained.
  • a third intermediate was placed in the cavity of the mold.
  • the third intermediate was pressure-molded while the mold was heated.
  • the heating temperature at this time was 180 ° C.
  • the applied pressure was 2 MPa
  • the pressing time was 10 minutes.
  • the thermally expandable microcapsules were expanded to form pores.
  • a composite molded body shown in FIG. 1 was obtained.
  • the thickness of this composite molded body was 4 mm.
  • Example 2A-16A and Examples 1B-17B and Comparative Example 5A and Comparative Examples 5B, 7B-8B A composite molded body was obtained in the same manner as in Example 1A, except that the production conditions of the composite molded body were changed as shown in Table 1, Table 2, Table 3 or Table 4.
  • the composite molded body of each example is sufficiently reduced in weight, but is composed only of a comparative object that is not reduced in weight, that is, the first region. It was confirmed that it had a tensile strength comparable to that of the molded body. Further, the composite molded body (Comparative Examples 5A and 5B) in which the area ratio of the second region was 95% was sufficiently reduced in weight, but did not have sufficient tensile strength. On the other hand, the composite molded body (Comparative Examples 7B to 8B) in which the area ratio of the second region was 15% had sufficient tensile strength, but was not sufficiently reduced in weight. From this, it was recognized that this invention can implement
  • the composite molded object of each Example mentioned above is a composite molded object in which all 2nd area
  • the composite molded body of the present invention including a resin and a fiber includes a first region and a second region having a density lower than that of the first region, and the second region is regular in a plan view.
  • the area ratio of the second region is 20 to 90%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

複合成形体1は、第1樹脂および第1繊維を含み密度が高い第1の領域2と、第2繊維と第2樹脂とを含み第1の領域2よりも相対的に密度が低い第2の領域3と、を有している。また、複合成形体1が平面視されたとき、第2の領域3は規則的に(例えばハニカム構造となるように)配置されており、第2の領域3の面積率は20~90%である。また、第1繊維の平均長さは、1mm以上であるのが好ましい。

Description

複合成形体および複合成形体の製造方法
 本発明は、複合成形体および複合成形体の製造方法に関する。
 例えば航空機や自動車等に用いられる構造材料は、さらなる軽量化が求められている。軽量化によって航空機や自動車の燃料消費量を抑えることができる。
 このような構造材料として、例えば、ガラス繊維等の強化繊維と、ポリプロピレン等の樹脂と、を混合させてなる繊維強化樹脂が提案されている(例えば、特許文献1参照)。特許文献1に記載の繊維強化樹脂では、繊維が3次元のあらゆる方向を向いて相互に絡まっている。これにより、繊維強化樹脂の補強が図られている。
特開2016-016541号公報
 近年、構造材料のさらなる軽量化の要請は強い。このため、繊維強化樹脂の密度をさらに低下させることが求められている。
 しかしながら、繊維強化樹脂の密度を低下させた場合、繊維強化樹脂の機械的強度が低下する。その結果、繊維強化樹脂は、構造材料としての役割を果たせなくなるおそれがある。
 本発明の目的は、軽量化と高い機械的強度とを両立させた複合成形体、および、前記複合成形体を効率よく製造可能な複合成形体の製造方法を提供することにある。
 このような目的は、下記(1)~(11)の本発明により達成される。
 (1) 樹脂と繊維とを含む複合成形体であって、
 第1の領域と、前記第1の領域よりも密度が低い第2の領域と、を含み、
 平面視において前記第2の領域が規則的に配置されており、
 前記第2の領域の面積率が20~90%であることを特徴とする複合成形体。
 (2) 前記第1の領域は、第1樹脂を含み、
 前記第2の領域は、前記第1樹脂とは異なる第2樹脂を含む上記(1)に記載の複合成形体。
 (3) 前記第1樹脂は、熱可塑性樹脂を含む上記(2)に記載の複合成形体。
 (4) 前記第1の領域は、第1繊維を含み、
 前記第2の領域は、前記第1繊維とは異なる第2繊維を含む上記(1)ないし(3)のいずれかに記載の複合成形体。
 (5) 前記第1繊維の平均長さは、1mm以上である上記(4)に記載の複合成形体。
 (6) 前記第1繊維は、無機繊維である上記(4)または(5)に記載の複合成形体。
 (7) 前記第1の領域を介して互いに離間している複数の前記第2の領域を含み、
 前記第2の領域の形状は、それぞれ六角形である上記(1)ないし(6)のいずれかに記載の複合成形体。
 (8) 第1樹脂と第1繊維とを含む第1分散液を抄造することにより、中空になっている中空領域と、中実になっている中実領域と、を含み、平面視において前記中空領域が規則的に配置されてなる第1中間体を得る工程と、
 第2樹脂と第2繊維とを含む第2分散液を前記中空領域に供給しつつ前記第2分散液を抄造することにより、第2中間体を得る工程と、
 前記第1中間体および前記第2中間体を加圧成形することにより、複合成形体を得る工程と、
を有することを特徴とする複合成形体の製造方法。
 (9) 第1樹脂と第1繊維とを含む第1分散液を抄造することにより、中空になっている中空領域と、中実になっている中実領域と、を含み、平面視において前記中空領域が規則的に配置されてなる第1中間体を得る工程と、
 第2樹脂と第2繊維とを含む第2分散液を抄造することにより、第2中間体を得る工程と、
 前記第1中間体の前記中空領域に前記第2中間体を配置する工程と、
 前記第1中間体および前記第2中間体を加圧成形することにより、複合成形体を得る工程と、
を有することを特徴とする複合成形体の製造方法。
 (10) 前記第1中間体および前記第2中間体の少なくとも一方は、仮中間体を切断することによって形成されたものである上記(9)に記載の複合成形体の製造方法。
 (11) 前記中空領域に対応する遮蔽部を備えるマスクを介して前記第1分散液を抄造する上記(8)ないし(10)のいずれかに記載の複合成形体の製造方法。
 本発明によれば、軽量化と高い機械的強度とを両立させた複合成形体が得られる。
 また、本発明によれば、上記複合成形体を効率よく製造することができる。
図1は、本発明の複合成形体の実施形態を示す斜視図である。 図2は、図1に示す複合成形体の平面図および断面図である。 図3は、図2に示す複合成形体の一点鎖線Bで囲まれた部分を模式的に示す部分拡大図である。 図4は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第1実施形態)を説明するための図である。 図5は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第1実施形態)を説明するための図である。 図6は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第1実施形態)を説明するための図である。 図7は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第1実施形態)を説明するための図である。 図8は、図7(b)の一点鎖線Cで囲まれた部分の部分拡大図である。 図9は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第2実施形態)を説明するための図である。 図10は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第2実施形態)を説明するための図である。 図11は、図1に示す複合成形体を製造する方法(本発明の複合成形体の製造方法の第2実施形態)を説明するための図である。
 以下、本発明の複合成形体および複合成形体の製造方法について添付図面に示す好適実施形態に基づいて詳細に説明する。
<複合成形体>
 まず、本発明の複合成形体の実施形態について説明する。
 図1は、本発明の複合成形体の実施形態を示す斜視図であり、図2は、図1に示す複合成形体の平面図および断面図であり、図3は、図2に示す複合成形体の一点鎖線Bで囲まれた部分を模式的に示す部分拡大図である。
 図1~図3に示す複合成形体1は、シート状をなしており、複合成形体1の主面の平面視形状は、図2(a)に示すように、長方形である。
 このような複合成形体1は、密度が高い高密度領域(第1の領域)2と、第1の領域2よりも相対的に密度が低い低密度領域(第2の領域)3と、を含んでいる。これらの第1の領域2および第2の領域3は、特に限定されないが、それぞれその厚さ方向において同じ構造になっている。なお、図1、2では、第1の領域2に対して相対的に密なドットを付し、第2の領域3に対して相対的に疎なドットを付している。
 本実施形態に係る第1の領域2は、第1樹脂21および第1繊維22を含んでいる。また、本実施形態に係る第2の領域3は、第2樹脂31および第2繊維32を含んでいる。
 また、本実施形態に係る複合成形体1は、平面視において、第2の領域3が規則的に配置されている。このように第2の領域3が規則的に配置されていることにより、複合成形体1の全体において、第1の領域2と第2の領域3とをいずれか一方が偏在することなく分布させることになる。そして、複合成形体1における第2の領域3の面積率(平面視において、複合成形体1の主面の面積に対する第2の領域3の面積の割合)は20~90%である。
 このような複合成形体1では、第2の領域3が所定の面積率で均一に含まれているため、その分、全体の比重を低下させることができる。また、第1の領域2も含まれているため、複合成形体1に高い機械的強度が付与される。したがって、複合成形体1では、軽量化と高い機械的強度とが両立している。
 以下、複合成形体1の各部について詳述する。
 (第1の領域)
 まず、第1の領域2について説明する。
 第1の領域2は、平面視において、主面の外形が長方形をなしている板状の部材である。この主面の外形は、平面視における複合成形体1の外形と一致する。
 また、第1の領域2は、内部に第2の領域3を内包するための複数の貫通孔25を備えている。この貫通孔25は、平面視において、それぞれ正六角形をなしており、互いに離間するように規則的に配置されている。
 第1の領域2は、前述したように、第1樹脂21および第1繊維22を含んでいる。このような第1の領域2は、第1樹脂21のマトリックスに第1繊維22が分散することによって複合化され、高い機械的特性を示す。これにより、複合成形体1の機械的特性をより高めることができる。
 -第1繊維-
 第1繊維22は、第1の領域2の機械的特性や熱伝導性を高めることに寄与する。
 このような第1繊維22は、例えば、繊維糸または長い繊維束を所定の長さに切断することによって得られる。
 第1繊維22の平均長さは、特に限定されないが、1mm以上であるのが好ましく、2mm以上であるのがより好ましく、4mm以上であるのがさらに好ましい。第1繊維22の平均長さを前記範囲内に設定することにより、第1の領域2の機械的特性を十分に高めることができる。特に第1樹脂21の機械的特性が比較的低い場合であっても、第1繊維22によってそれを十分に補うことができる。その結果、機械的特性が特に良好な第1の領域2が得られる。
 第1繊維22の平均長さの上限値は、特に限定されないが、例えば100mm以下であるのが好ましく、50mm以下であるのがより好ましい。これにより、第1の領域2を製造するにあたって第1繊維22を分散媒に分散させるとき、その分散性が良好になる。その結果、均質な構造の成形体が得られるため、最終的に機械的特性に優れた第1の領域2が得られる。
 なお、第1繊維22の平均長さは、次のように測定される。第1の領域2の第1樹脂21を溶解する等して取り出された任意の100本以上の第1繊維22について、それらの長さを測定する。得られた長さの測定値を平均した値を第1繊維22の平均長さとする。
 一方、第1繊維22の平均径は、特に限定されないが、1~100μm程度であるのが好ましく、5~80μm程度であるのがより好ましい。第1繊維22の平均径を前記範囲内に設定することにより、第1の領域2の機械的特性を高めつつ、第1の領域2を製造するときの成形性を高めることができる。
 なお、第1繊維22の平均径は、次のように測定される。第1の領域2の第1樹脂21を溶解する等して取り出された任意の100本以上の第1繊維22について、それらの径を測定する。得られた径の測定値を平均した値を第1繊維22の平均径とする。
 また、第1繊維22の径に対する長さの比(長さ/径)は、10以上であるのが好ましく、100以上であるのがより好ましい。これにより、第1繊維22が上記のような効果をより確実に発揮する。
 このような第1繊維22としては、例えば、ガラス繊維、炭素繊維、アルミニウム繊維、銅繊維、ステンレス鋼繊維、黄銅繊維、チタン繊維、鋼繊維、リン青銅繊維のような金属繊維、綿繊維、絹繊維、木質繊維のような天然繊維、アルミナ繊維のようなセラミック繊維、全芳香族ポリアミド(アラミド)、全芳香族ポリエステル、全芳香族ポリエステルアミド、全芳香族ポリエーテル、全芳香族ポリカーボネート、全芳香族ポリアゾメチン、ポリフェニレンスルフィド(PPS)、ポリ(パラ-フェニレンベンゾビスチアゾール)(PBZT)、ポリベンゾイミダゾール(PBI)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリイミド、ポリテトラフルオロエチレン(PTFE)、ポリ(パラ-フェニレン-2,6-ベンゾビスオキサゾール)(PBO)のような有機繊維等が挙げられ、これらのうちの1種、または、少なくとも1種を含むもの(複数種の繊維が混在したもの)が用いられる。
 このうち、第1繊維22としては、ガラス繊維、炭素繊維、金属繊維およびセラミック繊維のような無機繊維が好ましく用いられる。引張強度等の機械的特性に優れている無機繊維を用いることにより、第1の領域2の機械的特性を特に高めることができる。
 なお、第1繊維22には、必要に応じて、カップリング剤処理、界面活性剤処理、紫外線照射処理、電子線照射処理、プラズマ照射処理等の表面処理が施されていてもよい。
 このうち、カップリング剤としては、例えば、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシランのようなアミノ基含有アルコキシシラン、およびそれらの加水分解物等が挙げられ、これらのうちの少なくとも1種を含むものが用いられる。
 一方、前述した有機繊維を用いることにより、第1の領域2のさらなる軽量化を図ることができる。また、有機繊維とは言ってもその機械的特性はさまざまであり、無機繊維よりも高い機械的特性を有するものも多い。したがって、有機繊維の最適な選択によって、軽量化と高い機械的特性とを高度に両立させた複合成形体1を実現することが可能である。
 第1の領域2における第1繊維22の含有量は、特に限定されないが、第1樹脂21の5~300体積%程度であるのが好ましく、10~150体積%程度であるのがより好ましく、20~90体積%程度であるのがさらに好ましい。第1繊維22の含有量を前記範囲内に設定することにより、第1樹脂21と第1繊維22との量的なバランスが最適化される。このため、第1の領域2の機械的特性を特に高めることができる。すなわち、第1繊維22の含有量が前記下限値を下回ると、第1繊維22の含有量が相対的に不足するため、第1樹脂21の組成や第1繊維22の長さ、構成材料等によっては、第1の領域2の機械的特性が低下するおそれがある。一方、第1繊維22の含有量が前記上限値を上回ると、第1樹脂21の含有量が相対的に不足するため、第1樹脂21の組成や第1繊維22の長さ、構成材料等によっては、第1の領域2の機械的特性が低下するおそれがある。
 なお、図3に示す第1繊維22の形状は、一例であり、図示したような直線状には限定されず、いかなる形状であってもよい。
 また、第1繊維22は、第1の領域2中においていかなる方向に配向していてもよいが、好ましくは第1の領域2の表面(主面)と平行になるように配向しているのが好ましい。これにより、第1の領域2の表面の引張方向において靭性を高めることができる。また、第1の領域2の表面の耐摩耗性も高くなる。
 -第1樹脂-
 第1樹脂21は、第1の領域2に成形性や保形性を付与したり、第1繊維22同士を結着するバインダーとして機能したりする。したがって、第1樹脂21としては、このような機能を有するものであれば特に限定されない。例えば、フェノール系樹脂、エポキシ系樹脂、不飽和ポリエステル系樹脂、メラミン系樹脂、ポリウレタン、ビスマレイミド系樹脂のような熱硬化性樹脂、ポリアミド系樹脂(例えばナイロン等)、熱可塑性ウレタン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)、ポリカーボネート、ポリエステル系樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミドのような熱可塑性樹脂等が挙げられる。なお、第1樹脂21は、これらのうちの少なくとも1種を含んでいてもよく、2種以上を含んでいてもよい。
 第1樹脂21は、特にフェノール系樹脂、エポキシ系樹脂およびビスマレイミド系樹脂のうちの少なくとも1種を含むことが好ましい。これにより、第1の領域2の機械的特性および耐熱性を特に高めることができる。
 フェノール系樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アリールアルキレン型ノボラック樹脂のようなノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等が挙げられる。
 これらの中でも、コストおよび成形性の観点から、ノボラック型フェノール樹脂が好ましく用いられる。
 フェノール系樹脂の重量平均分子量は、特に限定されないが、1000~15000程度であるのが好ましい。なお、フェノール系樹脂の重量平均分子量が前記下限値を下回ると、第1樹脂21の粘度が低くなり過ぎて複合成形体1の製造時の第1の領域2の成形が難しくなるおそれがある。一方、フェノール系樹脂の重量平均分子量が前記上限値を上回ると、第1樹脂21の粘度が高くなり過ぎて、複合成形体1の製造時の第1の領域2の成形性が低下するおそれがある。
 フェノール系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定されたポリスチレン換算の重量平均分子量として求めることができる。
 エポキシ系樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型のようなビスフェノール型エポキシ樹脂、フェノールノボラック型、クレゾールノボラック型のようなノボラック型エポキシ樹脂、臭素化ビスフェノールA型、臭素化フェノールノボラック型のような臭素化型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂等が挙げられる。
 これらの中でも、高流動性や成形性等の観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましく用いられる。
 また、比較的分子量の低いビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がより好ましく用いられる。
 さらに、耐熱性の観点から、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がさらに好ましく用いられ、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂が特に好ましく用いられる。
 ビスマレイミド系樹脂としては、例えば、分子鎖の両末端にマレイミド基を有する樹脂であれば、特に限定されないが、ベンゼン環を有するものが好ましく、下記一般式(1)で表されるものがより好ましく用いられる。
[式中、R~Rは、置換基を有していてもよい炭素数1~4の炭化水素基または水素原子を表す。また、Rは、2価の有機基を表す。]
 ただし、ビスマレイミド系樹脂は、分子鎖の両末端以外にマレイミド基を有していてもよい。
 ここで、有機基とは、炭素原子以外の原子を含んでいてもよい炭化水素基であり、炭素原子以外の原子としてはO、S、N等が挙げられる。
 Rは、好ましくはメチレン基と芳香環とエーテル結合(-O-)とが任意の順序で結合した主鎖構造を有し、主鎖上に置換基および側鎖の少なくとも一方を有していてもよい。主鎖構造に含まれるメチレン基と芳香環とエーテル結合との合計数は15個以下である。上記の置換基または側鎖としては、例えば、炭素数3個以下の炭化水素基、マレイミド基、フェニレン基等が挙げられる。
 ビスマレイミド系樹脂としては、例えば、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、N,N’-エチレンジマレイミド、N,N’-ヘキサメチレンジマレイミド等が挙げられる。
 また、第1樹脂21とともに、必要に応じて硬化剤が併用される。
 例えば、第1樹脂21としてノボラック型フェノール樹脂が用いられる場合、硬化剤としては、通常、ヘキサメチレンテトラミンが用いられる。
 また、例えば、第1樹脂21としてエポキシ系樹脂が用いられる場合、硬化剤としては、脂肪族ポリアミン、芳香族ポリアミン、ジシアミンジアミドのようなアミン化合物、脂環族酸無水物、芳香族酸無水物のような酸無水物、ノボラック型フェノール樹脂のようなポリフェノール化合物、イミダゾール化合物等が用いられる。
 これらの中でも、取り扱い性や環境面の観点から、ノボラック型フェノール樹脂が好ましく用いられる。特に、エポキシ系樹脂としてフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、およびトリス(ヒドロキシフェニル)メタン型エポキシ樹脂を用いる場合、硬化剤としては、硬化物の耐熱性がより向上し易いという観点から、ノボラック型フェノール樹脂が好ましく用いられる。
 また、例えば、第1樹脂21としてビスマレイミド系樹脂が用いられる場合、硬化剤としては、イミダゾール化合物が用いられる。
 なお、硬化剤としては、上述したもののうちの1種または2種以上が用いられる。
 一方、第1樹脂21は、特に熱可塑性樹脂を含んでいてもよい。これにより、第1の領域2の成形性を特に高めることができ、より寸法精度が高い第1の領域2が得られる。
 さらに、第1樹脂21は、熱可塑性樹脂の中でもスーパーエンジニアリングプラスチックを含むことが好ましい。これにより、熱可塑性樹脂がもたらす効果に加え、高い機械的特性という効果が第1の領域2に付加されることとなる。なお、スーパーエンジニアリングプラスチックとしては、例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂等が挙げられる。
 第1樹脂21の融点は、特に限定されないが、200~400℃であるのが好ましく、210~390℃であるのがより好ましく、260~380℃であるのがさらに好ましい。このような融点の第1樹脂21を用いることにより、第1の領域2の機械的特性および耐熱性を十分に高めることができる。これにより、耐熱性に優れた複合成形体1が得られる。
 なお、第1樹脂21の融点が前記下限値を下回ると、第1の領域2の構成やその他の部位の構成によっては、複合成形体1の高温時の寸法精度が低下するおそれがある。一方、第1樹脂21の融点は前記上限値を上回ってもよいが、それに伴って一部の物性(例えば耐衝撃性等)が低下するおそれがある。
 ここで、第1樹脂21の融点は、原則として結晶融点のことであり、例えば、示差走査熱量計(DSC-2920、TAインスツルメント社製)により測定できる。
 また、第1樹脂21に結晶融点が存在せずガラス転移温度が存在する場合には、本発明における第1樹脂21の融点はガラス転移温度も含むものとする。このガラス転移温度も、上記の示差走査熱量計により測定可能である。
 さらに、第1樹脂21が熱硬化性樹脂の場合であって結晶融点もガラス転移温度も存在しない場合には、本発明における第1樹脂21の融点は熱硬化性樹脂の硬化物の耐熱温度も含むものとする。この耐熱温度は、JIS K 6911:1995の熱可塑性プラスチック一般試験方法に規定されている荷重たわみ温度とする。
 -パルプ-
 第1の領域2は、必要に応じてパルプを含んでいてもよい。パルプとは、フィブリル構造を有する繊維材料であり、上記第1繊維22とは異なるものである。パルプは、例えば、繊維材料を機械的または化学的にフィブリル化することによって得ることができる。
 パルプとしては、例えば、リンターパルプ、木材パルプのようなセルロース繊維、ケナフ、ジュート、竹のような天然繊維、パラ型全芳香族ポリアミド繊維(アラミド繊維)およびその共重合体、芳香族ポリエステル繊維、ポリベンザゾール繊維、メタ型アラミド繊維およびそれらの共重合体、アクリル繊維、アクリロニトリル繊維、ポリイミド繊維、ポリアミド繊維のような有機繊維等をフィブリル化したものが挙げられ、これらのうちの少なくとも1種が用いられる。
 また、第1の領域2におけるパルプの含有量は、特に限定されないが、第1樹脂21の0.5~10質量%程度であるのが好ましく、1~8質量%程度であるのがより好ましく、1.5~5質量%程度であるのがさらに好ましい。これにより、機械的特性や熱伝導性がより良好な第1の領域2を実現することができる。
 -凝集剤-
 第1の領域2は、必要に応じて凝集剤を含んでいてもよい。
 凝集剤としては、例えば、カチオン性高分子凝集剤、アニオン性高分子凝集剤、ノニオン性高分子凝集剤、両性高分子凝集剤等が挙げられ、これらのうちの少なくとも1種が用いられる。
 より具体的には、例えば、カチオン性ポリアクリルアミド、アニオン性ポリアクリルアミド、ホフマンポリアクリルアミド、マンニックポリアクリルアミド、両性共重合ポリアクリルアミド、カチオン化澱粉、両性澱粉、ポリエチレンオキサイド等が挙げられる。
 また、第1の領域2における凝集剤の含有量は、特に限定されないが、第1樹脂21の0.01~1.5質量%程度であるのが好ましく、0.05~1質量%程度であるのがより好ましく、0.1~0.5質量%程度であるのがさらに好ましい。これにより、第1の領域2を例えば抄造法により製造するとき、脱水処理等を容易かつ安定的に行うことができ、最終的に均質で機械的特性に優れた第1の領域2が得られる。
 -その他の添加剤-
 第1の領域2は、必要に応じてその他の添加剤を含んでいてもよい。
 かかる添加剤としては、例えば、充填材、金属粉、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、可塑剤、硬化触媒、硬化助剤、顔料、耐光剤、帯電防止剤、抗菌剤、導電剤、分散剤等が挙げられ、これらのうちの少なくとも1種が用いられる。
 このうち、硬化助剤としては、例えば、イミダゾール化合物、三級アミン化合物、有機リン化合物、酸化マグネシウム等が挙げられる。
 また、充填材には、例えば、無機充填材、有機充填材等が用いられる。具体的な構成材料としては、例えば、酸化チタン、アルミナ、シリカ、ジルコニア、酸化マグネシウム、酸化カルシウムのような酸化物類、窒化ホウ素、窒化アルミニウム、窒化ケイ素のような窒化物類、硫酸バリウム、硫酸鉄、硫酸銅のような硫化物類、水酸化アルミニウム、水酸化マグネシウムのような水酸化物類、カオリナイト、タルク、天然マイカ、合成マイカのような鉱物類、炭化ケイ素のような炭化物類等が挙げられる。さらに、これらの粉末にカップリング剤処理のような表面処理が施されたものであってもよい。
 また、充填材として、金属粉、ガラスビーズ、ミルドカーボン、グラファイト、ポリビニルブチラール、木粉等が用いられてもよい。
 また、離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。
 また、カップリング剤としては、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤等が挙げられる。
 また、難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウムのような金属水酸化物、アンチモン化合物、ハロゲン化合物、リン化合物、窒素化合物、ホウ素化合物等が挙げられる。
 (第2の領域)
 次に、第2の領域3について説明する。
 第2の領域3は、前述した第1の領域2に形成されている貫通孔25の内部に配置されている(嵌め込まれている)。したがって、第2の領域3は、平面視において(図2(a)参照)、主面の外形が正六角形をなしている板状の部材である。また、貫通孔25は、複数個設けられており、各貫通孔25に第2の領域3が配置されている。このため、第2の領域3は、互いに離間しつつ、規則的に配置されることとなる。加えて、第2の領域3はその外側を第1の領域2で取り囲まれることになるので、仮に第2の領域3の機械的強度が低い場合であっても、その影響が複合成形体1全体に及び難くなる。
 このような第2の領域3は、第1の領域2よりも相対的に密度が低い。このため、第1の領域2および第2の領域3の構成材料等にもよるが、第2の領域3の面積率が増加するほど、複合成形体1の比重を低下させることができる。これにより、軽量化が図られた複合成形体1が得られる。このため、軽量化の観点からは、第2の領域3の面積率が高いほど好ましいが、第2の領域3の面積率が高くなり過ぎると、複合成形体1の機械的強度が低下するおそれがある。
 したがって、第2の領域3の構成材料は、第1の領域2の構成材料よりも密度が低い材料であれば特に限定されず、有機材料や無機材料であってもよいが、好ましくは第2樹脂31と第2繊維32とを含んでいる。このような第2の領域3は、軽量であるにもかかわらず、第2樹脂31のマトリックスに第2繊維32が分散することによって複合化され、比較的高い機械的特性を示す。これにより、複合成形体1の軽量化に寄与する一方、第2の領域3を設けることによって機械的特性が低下してしまうのを抑制することができる。
 また、第2の領域3を設けることにより、その分、相対的に高コストになり易い第1の領域2の体積を減らすことができる。これにより、複合成形体1の低コスト化を図ることができる。すなわち、第1の領域2によって複合成形体1の機械的特性の大部分を担保することができていることにより、第2の領域3については、密度が小さいことを最優先に構成材料を選択することが可能になる。したがって、第2の領域3に用いられる材料の選択の幅が非常に広がり、低コスト化において有利になる。また、第2の領域3を設けることにより、質量を抑えつつ複合成形体1の大型化を容易に図ることができる。
 また、複合成形体1において、第2の領域3には、前述した第1樹脂21も混じり合うように含まれていてもよい。これにより、第1の領域2および第2の領域3は、共通して含有する第1樹脂21によって一体化され易くなる。その結果、第1の領域2と第2の領域3とがより強固に接合され、複合成形体1の信頼性をより高めることができる。
 一方、複合成形体1において、前述した第1の領域2には、第2樹脂31が混じり合うように含まれていてもよい。これにより、第1の領域2および第2の領域3は、共通して含有する第2樹脂31によって一体化され易くなる。その結果、第1の領域2と第2の領域3とがより強固に接合され、複合成形体1の信頼性をより高めることができる。
 また、第1樹脂21および第2樹脂31は、同種の樹脂であるのが好ましい。これにより、第1の領域2と第2の領域3とがとりわけ強固に接合され、複合成形体1の信頼性を特に高めることができる。
 また、第2の領域3は、内部に空孔を含んでいてもよい。これにより、第2の領域3の密度をさらに低下させることができる。
 この空孔は、第2の領域3に内包されている空孔のことをいう。また、この空孔は、その1つ1つまたは複数個が連結したものが系外と隔離されている空間(独立気泡)であってもよく、系外と連通している空間(連続気泡)であってもよい。
 このうち、特に限定されるものではないが、独立気泡が連続気泡よりも多いことが好ましい。これにより、空孔を含んでいても第2の領域3の機械的特性がより低下し難くなる。これは、独立気泡が圧壊し難いので、それに伴って第2の領域3の機械的強度が低下し難いことによる。
 なお、独立気泡が連続気泡より多いとは、第2の領域3の断面を拡大観察したとき、独立気泡が占める面積の合計が、連続気泡が占める面積の合計より大きい状態をいう。
 第2の領域3が空孔として独立気泡を含む場合、空孔の平均径は、特に限定されないが、2~300μm程度であるのが好ましく、5~200μm程度であるのがより好ましい。これにより、空孔による第2の領域3の軽量化と、空孔による第2の領域3の機械的特性の低下の抑制と、を両立させることができる。すなわち、空孔の平均径が前記下限値を下回る場合、空孔率によっては、第2の領域3の軽量化が難しくなるおそれがある。一方、空孔の平均径が前記上限値を上回る場合、空孔率によっては、空孔が屈折や亀裂等の起点になり易くなるため、第2の領域3の機械的特性が低下するおそれがある。
 なお、空孔の平均径は、第2の領域3の断面から各空孔の面積と同じ面積を持つ円をそれぞれ仮想したとき、それらの円の直径(円相当径)の平均値として求められる。
 第2の領域3の空孔率は、特に限定されないが、5~90%程度であるのが好ましく、10~87.5%程度であるのがより好ましく、15~85%程度であるのがさらに好ましい。空孔率を前記範囲内に設定することにより、第2の領域3の軽量化と機械的特性とをバランスよく両立させることができる。すなわち、空孔率が前記下限値を下回ると、第2樹脂31の組成や第2繊維32の長さ、構成材料等によっては、第2の領域3の軽量化が不十分になるおそれがある。一方、空孔率が前記上限値を上回ると、第2樹脂31の組成や第2繊維32の長さ、構成材料等によっては、第2の領域3の機械的特性が低下するおそれがある。
 なお、第2の領域3の空孔率は、例えば第2の領域3の断面の面積において、空孔が占める面積の割合(空孔の面積率)として求められる。
 -第2繊維-
 第2繊維32は、第2の領域3の機械的特性や熱伝導性を高めることに寄与する。
 このような第2繊維32としては、例えば、繊維糸または長い繊維束を所定の長さに切断することによって得られたものが用いられる。
 第2繊維32の平均長さは、特に限定されず、第1繊維22の平均長さより長くても短くてもよい。
 一方、第2繊維32自体の比重が第2樹脂31自体の比重より大きい場合が多いことを踏まえると、第2繊維32の平均長さを第1繊維22の平均長さよりも短くした場合、第2の領域3の密度を低くし易いだけでなく、第2の領域3の弾性率が高くなり易い。このため、第2の領域3を第1の領域2と併設することにより、第1の領域2に由来する高い剛性と、第2の領域3に由来する高い弾性率と、を両立させた複合成形体1が得られる。
 この場合、第2繊維32の平均長さは、第1繊維22の平均長さの1~90%程度であるのが好ましく、3~70%程度であるのがより好ましく、5~50%程度であるのがさらに好ましい。第2繊維32に平均長さを前記範囲内に設定することにより、第2の領域3の弾性率を最適化することができる。これにより、複合成形体1の機械的特性をより高めることができる。
 一例として、第2繊維32の平均長さは、5~500μm程度であるのが好ましく、10~300μm程度であるのがより好ましい。これにより、例えば第2の領域3中に空孔を形成することによって密度を低下させようとするとき、空孔を気密化し易くなり、第2の領域3の低密度化を図りつつ、機械的特性を高め易くなる。
 なお、第2繊維32の平均長さとは、第2の領域3の第2樹脂31を溶解する等して取り出された任意の100本以上の第2繊維32について、その長さを測定し、平均した値のことをいう。
 一方、第2繊維32の平均径は、特に限定されないが、5~20μm程度であるのが好ましく、6~18μm程度であるのがより好ましく、7~16μm程度であるのがさらに好ましい。これにより、第2の領域3に適度な弾性率が付与される。なお、第2繊維32の平均径が前記下限値を下回ると、第2繊維32の材質や長さ等によっては、第2の領域3の弾性率が低下するおそれがあり、第2繊維32の平均径が前記上限値を上回ると、第2繊維32の長さ等によっては、第2の領域3を製造するときの成形性が低下するおそれがある。
 なお、第2繊維32の平均径とは、第2の領域3の第2樹脂31を溶解する等して取り出された任意の100本以上の第2繊維32について、その径を測定し、平均した値のことをいう。
 このような第2繊維32としては、例えば、第1繊維22として前述したもののうちの1種、または、少なくとも1種を含むもの(複数種の繊維が混在したもの)が用いられる。なお、第2繊維32は、第1繊維22と同じ種類の繊維であってもよく、異なる種類の繊維であってもよい。
 例えば、本実施形態のように、第2の領域3の周囲が第1の領域2によって取り囲まれている場合あるいはそれに準じた配置の場合等では、第2の領域3と第1の領域2とで求められる機械的特性が異なる。そこで、第1繊維22と第2繊維32とで種類を異ならせることにより、それぞれの部位に最適な機械的特性が付与されることとなる。その結果、例えば第2繊維32にはより軽量な繊維を用いる一方、第1繊維22にはより靭性に優れた繊維を用いるといった最適化が可能になる。
 なお、第2繊維32には、必要に応じて、カップリング剤処理、界面活性剤処理、紫外線照射処理、電子線照射処理、プラズマ照射処理等の表面処理が施されていてもよい。
 第2の領域3における第2繊維32の含有量は、特に限定されないが、第2樹脂31の5~300体積%程度であるのが好ましく、10~150体積%程度であるのがより好ましく、20~90体積%程度であるのがさらに好ましい。第2繊維32の含有量を前記範囲内に設定することにより、第2樹脂31と第2繊維32との量的なバランスが最適化されるため、第2の領域3の機械的特性を特に高めることができる。すなわち、第2繊維32の含有量が前記下限値を下回ると、第2繊維32の含有量が相対的に不足するため、第2樹脂31の組成や第2繊維32の長さ、構成材料等によっては、第2の領域3の機械的特性が低下するおそれがある。一方、第2繊維32の含有量が前記上限値を上回ると、第2樹脂31の含有量が相対的に不足するため、第2樹脂31の組成や第2繊維32の長さ、構成材料等によっては、第2の領域3の機械的特性が低下するおそれがある。
 なお、図3に示す第2繊維32の形状は、一例であり、図示したような直線状には限定されず、いかなる形状であってもよい。
 また、第2繊維32は、第2の領域3においていかなる方向に配向していてもよいが、好ましくは方向を問わずランダムに配向している。これにより、第2の領域3は、構造上の異方性がなくなるので、機械的特性においても等方的になる。その結果、第2の領域3の一部に応力が集中したとしても、第2の領域3が破損し難くなる。そして、複合成形体1の信頼性をより高めることができる。
 -第2樹脂-
 第2樹脂31としては、特に限定されず、第1樹脂21として前述したもののうちの1種、または、少なくとも1種を含むもの(複数種の樹脂が混在したもの)が用いられる。なお、第2樹脂31は、第1樹脂21と同じ種類の樹脂であってもよく、異なる種類の樹脂であってもよい。
 例えば、本実施形態のように、第2の領域3の周囲が第1の領域2によって取り囲まれている場合あるいはそれに準じた配置の場合等では、第2の領域3と第1の領域2とで求められる機械的特性が異なる。そこで、第1樹脂21と第2樹脂31とで種類を異ならせることにより、それぞれの部位に最適な機械的特性が付与されることとなる。その結果、例えば第2樹脂31にはより軽量な樹脂を用いる一方、第1樹脂21にはより耐衝撃性に優れた樹脂を用いるといった最適化が可能になる。これにより、複合成形体1の信頼性をより高めることができる。
 -その他の添加剤-
 第2の領域3は、必要に応じてその他の添加剤を含んでいてもよい。
 かかる添加剤としては、第1の領域2と同様、例えば、充填材、金属粉、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、可塑剤、硬化触媒、硬化助剤、顔料、耐光剤、帯電防止剤、抗菌剤、導電剤、分散剤等が挙げられ、これらのうちの少なくとも1種が用いられる。
 以上のような成分を含む第2の領域3は、前述したように、第1の領域2と併設されるが、このとき、第2の領域3が規則的に配置されている。これにより、前述したように、複合成形体1の全体から見たとき、第1の領域2と第2の領域3とをいずれか一方が偏在することなく分布させることができる。その結果、第1の領域2による高強度化の恩恵を十分に受けつつ、軽量化を図ることができる。
 なお、規則的とは、第2の領域3のパターンが繰り返し並んでいる状態をいう。このとき、隣り合う第2の領域3のパターン同士は、互いに同じ形状であっても異なる形状であってもよい。互いに異なるパターンが隣り合っている場合には、その2つのパターンを1組にして繰り返し並んでいればよい。
 ただし、第2の領域3のパターンが繰り返し並ぶ場合、多少の位置ずれは許容される。具体的には、例えば第2の領域3が等間隔に並ぶという規則性を有する場合、その規則に基づく位置を基準にして±20%のずれが許容される。なお、この割合は、第2の領域3が並ぶ方向における第2の領域3の長さに対する割合であり、ずれの方向は限定されない。
 また、このような第1の領域2と第2の領域3とを有する複合成形体1においては、第2の領域3の面積率が20~90%になるように設定される。第2の領域3の面積率が前記範囲内であることにより、第1の領域2と第2の領域3のバランスが最適化される。その結果、軽量化と高い機械的強度とが両立した複合成形体1が得られる。
 また、第2の領域3の面積率は、好ましくは30~85%とされ、より好ましくは50~90%とされる。
 なお、第2の領域3の面積率が前記下限値を下回ると、第2の領域3による軽量化の恩恵を十分に受けられなくなり、複合成形体1の軽量化が図られないおそれがある。一方、第2の領域3の面積率が前記上限値を上回ると、相対的に第1の領域2の割合が低下し、複合成形体1の機械的強度が低下するおそれがある。
 また、第1の領域2の外形形状は、特に限定されず、長方形以外の形状、例えば正方形、平行四辺形、菱形のような四角形の他、五角形、六角形のような多角形、真円、楕円、長円のような円形、その他いかなる形状であってもよい。
 一方、第2の領域3の外形形状も、特に限定されず、六角形以外の形状、例えば、正方形、長方形、平行四辺形、菱形のような四角形、五角形、八角形のような多角形、真円、楕円、長円のような円形、その他いかなる形状であってもよいが、六角形であるのが好ましい。すなわち、六角形をなす第2の領域3が、第1の領域2を介して互いに離間しつつ配置されているのが好ましい。これにより、第2の領域3の形状の効果によって、第2の領域3を互いに近づけた状態で配置したとしても、複合成形体1の機械的強度が低下し難い。これは、第2の領域3の外形形状を六角形にすることで、いわゆるハニカム構造が形成されるため、複合成形体1に荷重が加わったとしても、それによる応力を分散させ易くなるためであると考えられる。その結果、複合成形体1において軽量化と高い機械的強度とをより高度に両立させることができる。
 なお、六角形の角の形状については、必要に応じて面取り加工またはアール加工が施された形状になっていてもよい。
 また、第2の領域3と貫通孔25との間は、いわゆる嵌め合わせの状態になっていてもよく、接着剤等の介在物を介して接着されている状態になっていてもよい。
 以上、複合成形体1について説明したが、この複合成形体1はあらゆる構造体に適用可能である。一例として、輸送機器用内装材を例示することができる。具体的には、キャビン天井パネル、キャビン内装パネル、キャビン床面、コックピット天井パネル、コックピット内装パネル、コックピット床面、手荷物ロッカー壁、収納ロッカー壁、ドア内張、窓カバー、機長席、副操縦士席、客室乗務員用座席、乗客座席のような各種座席、化粧室用内装材等の各種航空機用内装材の他、自動車用内装材、船舶用内装材、鉄道用内装材、宇宙船用内装材等が挙げられる。このような輸送機器用内装材は、いずれも、安全性と輸送効率の観点から、軽量であるとともに高い機械的強度が要求される。このため、本発明の複合成形体が好適に用いられる。
 ここで、複合成形体1は、以下のような特性を有することが好ましい。
 まず、複合成形体1の密度は、特に限定されないが、0.05~1.6g/cm程度であるのが好ましく、0.1~1.55g/cm程度であるのがより好ましく、0.2~1.5g/cm程度であるのがさらに好ましい。これにより、軽量化と機械的特性の向上とを両立させた複合成形体1が得られる。
 なお、密度は、JIS K 7112:1999にA法として規定されている試験方法に準じて測定される。
 また、複合成形体1の曲げ強度は、特に限定されないが、50~400MPa程度であるのが好ましく、70~350MPa程度であるのがより好ましく、100~300MPa程度であるのがさらに好ましい。これにより、十分に機械的特性が高い複合成形体1が得られる。
 なお、複合成形体1の曲げ強度は、室温(25℃)において、ISO178:2001に規定されている試験方法に準じて測定される。
 また、複合成形体1の比強度は、特に限定されないが、30~400MPa・(g/cm-1程度であるのが好ましく、40~350MPa・(g/cm-1程度であるのがより好ましく、50~300MPa・(g/cm-1程度であるのがさらに好ましく、50~250MPa・(g/cm-1程度であるのが特に好ましい。これにより、軽量化と機械的特性の向上との両立が図られた複合成形体1が得られる。なお、比強度が前記下限値を下回ると、重い割には曲げ強度が小さいといえるので、例えば軽量化と高い機械的特性の双方を求められる産業分野の複合成形体1としては不適当になるおそれがある。一方、比強度が前記上限値を上回ると、軽い割には曲げ強度が大きいといえるが、その他の物性とのバランスによっては耐衝撃性が低下したり、製造条件によるバラツキが出やすくなるため、製造歩留まりを高め難くなったりするおそれがある。
 なお、複合成形体1の比強度は、曲げ強度(単位:MPa)を密度(単位:g/cm)で除することによって求められる。
 また、複合成形体1の比弾性率は、特に限定されないが、2~30GPa・(g/cm-1程度であるのが好ましく、3~25GPa・(g/cm-1程度であるのがより好ましく、4~20GPa・(g/cm-1程度であるのがさらに好ましい。これにより、軽量化と機械的特性の向上との両立が図られた複合成形体1が得られる。
 なお、複合成形体1の比弾性率は、曲げ弾性率(単位:GPa)を密度(単位:g/cm)で除することによって求められる。そして、曲げ弾性率は、室温(25℃)において、ISO178:2001に規定されている試験方法に準じて測定される。
 また、上記の説明では、第1の領域2と第2の領域3の双方が樹脂と繊維とを含んでいる例について説明したが、本発明はかかる構成に限定されない。例えば、第2の領域3が樹脂のみで構成されているものであってもよく、反対に、第1の領域2が樹脂のみで構成されているものであってもよい。
<複合成形体の製造方法>
≪第1実施形態≫
 次に、本発明の複合成形体の製造方法の第1実施形態について説明する。
 図4~図7は、それぞれ図1に示す複合成形体1を製造する方法(本発明の複合成形体の製造方法の第1実施形態)を説明するための図である。また、図8は、図7(b)の一点鎖線Cで囲まれた部分の部分拡大図である。
 本実施形態に係る複合成形体1を製造する方法は、第1樹脂21と第1繊維22とを含む第1分散液61を抄造することにより、中実領域41と中空領域42とを含む第1中間体4aを得る工程と、第2樹脂31と第2繊維32とを含む第2分散液62を中空領域42に供給しつつ第2分散液62を抄造することにより、第2中間体4bを得る工程と、第1中間体4aおよび第2中間体4bを加圧成形することにより、複合成形体1を得る工程と、を有する。以下、各工程について順次説明する。
 [1]まず、第1樹脂21と第1繊維22とこれらを分散させる分散媒51とを含む第1分散液61を調製する(図4参照)。調製した第1分散液61は、十分に撹拌、混合される。なお、第1分散液61には、必要に応じて、前述した凝集剤やパルプ、その他の添加剤等が添加されていてもよい。
 本工程における第1樹脂21の形状は、特に限定されず、例えば、略球形粒子状、薄膜粒子状等の粒子状(粉状)または繊維状とされる。これにより、後述する抄造において、第1繊維22とともに第1樹脂21を抄きとることができる。その結果、第1樹脂21と第1繊維22とを均一に絡み合わせることができ、第1中間体4aを得ることができる。この第1中間体4aは、その後の加圧成形を経ることにより、第1の領域2となる。
 なお、第1樹脂21が熱硬化性樹脂を含む場合、その熱硬化性樹脂は半硬化状態であることが好ましい。半硬化の熱硬化性樹脂は、第1中間体4aを製造後、加熱、加圧によって所望の形状に成形されて硬化に至る。これにより、熱硬化性樹脂の特性を生かした複合成形体1が得られることとなる。
 一方、第1繊維22としては、例えば第1樹脂21よりも融点が高い繊維が用いられる。このような第1繊維22を用いることにより、後述する工程において第1中間体4aおよび第2中間体4bを加熱しつつ加圧成形するとき、第1樹脂21のみを選択的に溶融させることができる。これにより、第1樹脂21を第1繊維22の周辺で溶融、分散させることができ、均質な複合成形体1が得られる。
 第1繊維22の融点は、第1樹脂21の融点よりも高ければよいが、その差は10℃以上であるのが好ましく、50℃以上であるのがより好ましい。
 また、分散媒51としては、第1樹脂21や第1繊維22を溶解させ難く、かつ、第1樹脂21や第1繊維22を分散させる過程において揮発し難いものが好ましく用いられる。また、脱溶媒させ易いものが好ましく用いられる。かかる観点から、分散媒51の沸点は50~200℃程度であるのが好ましい。
 分散媒51としては、例えば、水、エタノール、1-プロパノール、1-ブタノール、エチレングリコールのようなアルコール類、アセトン、メチルエチルケトン、2-ヘプタノン、シクロヘキサノンのようなケトン類、酢酸エチル、酢酸ブチル、アセト酢酸メチルのようなエステル類、テトラヒドロフラン、イソプロピルエーテル、ジオキサン、フルフラールのようなエーテル類等が挙げられ、これらのうちの少なくとも1種が用いられる。
 これらの中でも、水が好ましく用いられる。水は、入手が容易であり、環境負荷が低く安全性も高いことから、分散媒51として有用である。
 また、第1分散液61における分散媒51の含有量は、特に限定されないが、固形分総量に対して0.05~3質量%程度であるのが好ましく、0.1~2質量%程度であるのがより好ましい。
 続いて、調製した第1分散液61を抄造する。これにより、中実領域41と中空領域42とを含む第1中間体4aを得る。
 具体的には、まず、図5に示すように、底面にフィルター71が設けられた容器70を用意する。
 次に、容器70内に第1分散液61を供給する。そして、第1分散液61中の分散媒51を、フィルター71を介して容器70の底面から外部へ排出する。これにより、第1分散液61中の分散質である第1樹脂21と第1繊維22とが図5に示すようにフィルター71上に残存する(抄造)。以上のようにしてフィルター71上に第1中間体4aを得る。
 ここで、フィルター71上には、あらかじめ、図6(a)に示すように、中空領域42に対応する遮蔽部を備えるマスク72を配置する。このマスク72を介して第1分散液61を抄造することにより、マスク72の遮蔽部がない部分では、第1分散液61中の分散質が濾し取られ、フィルター71上に残存する。一方、マスク72の遮蔽部がある部分では、分散質が留まることがない。その結果、図6(b)に示すように、マスク72の遮蔽部がない部分に対応する中実領域41が形成されるとともに、マスク72の遮蔽部がある部分に対応する中空領域42が形成される。そして、これらをフィルター71から取り外すことにより、図6(c)に示す第1中間体4aが得られる。
 また、第1中間体4aには、さらに、第1樹脂21より融点が低い熱可塑性樹脂(以下、「低融点樹脂」という。)が含まれていてもよい。この低融点樹脂が含まれることにより、第1中間体4aの保形性をより高めることができる。すなわち、第1中間体4aが加圧成形における加熱温度よりも低温で加熱されたとき(例えば乾燥等)、低融点樹脂が溶融して第1繊維22同士、第1樹脂21同士または第1樹脂21と第1繊維22との間を結着する。これにより、第1中間体4aはその形状を維持し易くなる。その結果、最終的に得られる複合成形体1についても、寸法精度や機械的特性が低下し難くなる。また、複合成形体1が型崩れし難くなるため、複合成形体1を把持し易くなり、可搬性が高くなる。これにより、複合成形体1を例えば成形型内に配置する作業を容易に行うことができる。
 溶融する前の低融点樹脂の形状は、特に限定されず、略球形粒子状、薄膜粒子状等の粒子状(粉状)をなしていてもよく、繊維状をなしていてもよい。
 また、複合成形体1における低融点樹脂の含有量は、特に限定されないが、0.5~30体積%程度であるのが好ましく、1~20体積%程度であるのがより好ましく、2~10体積%程度であるのがさらに好ましい。これにより、前述した効果を損なうことなく、低融点樹脂を添加することによる複合成形体1の保形性を高めるという効果が必要かつ十分に確保される。
 低融点樹脂の融点は、第1樹脂21の融点から10~250℃程度低いのが好ましく、50~200℃程度低いのが好ましい。このような融点の差があることにより、低融点樹脂が乾燥等の工程において溶融するとともに、加圧成形の際には熱分解して除去され易くなる。このため、低融点樹脂が持つ機能を最大限に発揮させることができる。すなわち、第1中間体4aの加圧成形前においては低融点樹脂がその形状を維持させるように働き、その第1中間体4aの加圧成形後においては低融点樹脂が多く存在することによる機械的特性の低下を抑制することができる。
 このようにして得られた第1中間体4aは、分散媒51を含んでいても、含んでいなくてもよい。
 また、必要に応じて、第1中間体4aに乾燥処理を施すようにしてもよい。これにより、残存している分散媒51の少なくとも一部が除去される。
 また、必要に応じて、第1中間体4aに仮の加圧成形処理(プレス処理)を施すようにしてもよい。これにより、第1中間体4aの保形性をより高めることができ、取り扱い性がさらに良好になる。
 [2]次に、第2樹脂31と第2繊維32とこれらを分散させる分散媒52とを含む第2分散液62を調製する。調製した第2分散液62は、十分に撹拌、混合される。なお、第2分散液62には、必要に応じて、前述した凝集剤やパルプ、その他の添加剤等が添加されていてもよい。
 本工程における第2樹脂31の形状は、特に限定されず、例えば、略球形粒子状、薄膜粒子状等の粒子状(粉状)または繊維状とされる。これにより、後述する抄造において、第2繊維32とともに第2樹脂31を抄きとることができる。その結果、第2樹脂31と第2繊維32とを均一に絡み合わせることができ、最終的に良好な第2中間体4bが得られる。この第2中間体4bは、その後の加圧成形を経ることにより、第2の領域3となる。
 なお、第2樹脂31が熱硬化性樹脂を含む場合、その熱硬化性樹脂は半硬化状態であることが好ましい。半硬化の熱硬化性樹脂は、第2中間体4bを製造後、加熱、加圧によって所望の形状に成形されて硬化に至る。これにより、熱硬化性樹脂の特性を生かした複合成形体1が得られることとなる。
 一方、第2繊維32としては、例えば第2樹脂31よりも融点が高い繊維が用いられる。このような第2繊維32を用いることにより、後述する工程において第1中間体4aおよび第2中間体4bを加熱しつつ加圧成形するとき、第2樹脂31のみを選択的に溶融させることができる。これにより、第2樹脂31を第2繊維32の周辺で溶融、分散させることができ、均質な複合成形体1が得られる。
 第2繊維32の融点は、第2樹脂31の融点よりも高ければよいが、その差は10℃以上であるのが好ましく、50℃以上であるのがより好ましい。
 また、分散媒52としては、分散媒51として挙げたものから適宜選択される。
 また、第2分散液62における分散媒52の含有量は、特に限定されないが、固形分総量に対して0.05~3質量%程度であるのが好ましく、0.1~2質量%程度であるのがより好ましい。
 続いて、図7(a)に示すように、調製した第2分散液62を抄造する。これにより、中空領域42において第2分散液62中の分散質が濾し取られ、図7(b)に示すようにフィルター71上に残存する。その結果、中空領域42を埋めるように中実領域43が形成される。そして、第1中間体4aと第2中間体4bとが組み合わさった第3中間体4cが得られる(図7(b)参照)。
 このような第1中間体4aは、図8に示すように、第1樹脂21と第1繊維22とを含む中実領域41を含むものであり、第2中間体4bは、図8に示すように、第2樹脂31と第2繊維32とを含む中実領域43を含むものである。
 なお、第2中間体4bには、必要に応じて、前述した低融点樹脂が含まれていてもよい。この低融点樹脂については、前述した第1中間体4aにおける説明と同様である。
 このようにして得られた第2中間体4bは、分散媒52を含んでいても、含んでいなくてもよい。
 また、必要に応じて、第2中間体4bに乾燥処理を施すようにしてもよい。これにより、残存している分散媒52の少なくとも一部が除去される。
 また、必要に応じて、第2中間体4bに仮の加圧成形処理(プレス処理)を施すようにしてもよい。これにより、第2中間体4bの保形性をより高めることができ、取り扱い性がさらに良好になる。
 なお、第2樹脂31の形状としては、特に繊維状が好ましく採用される。これにより、見かけ密度が特に小さい第2中間体4bを得ることができる。このような第2中間体4bによれば、後述する加圧成形を経て、密度が小さい第2の領域3を得ることができる。
 繊維状をなす第2樹脂31の平均長さは、特に限定されないが、1mm以上であるのが好ましく、2mm以上であるのがより好ましく、4mm以上であるのがさらに好ましい。繊維状をなす第2樹脂31の平均長さを前記範囲内に設定することにより、繊維状をなす第2樹脂31と第2繊維32との絡み合いの程度がさらに大きくなる。これにより、製造される第2の領域3において実現可能な空孔率の幅をより広くとることができる。
 なお、繊維状をなす第2樹脂31の平均長さの上限値は、特に限定されないが、例えば100mm以下であるのが好ましく、50mm以下であるのがより好ましい。これにより、第2の領域3を製造するにあたって繊維状をなす第2樹脂31を分散媒52に分散させるとき、その分散性が良好になる。その結果、均質な構造の成形体が得られるため、最終的に機械的特性に優れた第2の領域3が得られる。
 なお、繊維状をなす第2樹脂31の平均長さとは、任意の100本以上の繊維状をなす第2樹脂31について、その長さを測定し、平均した値のことをいう。
 また、繊維状をなす第2樹脂31の平均長さは、第2繊維32の平均長さの10~1000%程度であるのが好ましく、20~500%程度であるのがより好ましい。これにより、繊維状をなす第2樹脂31と第2繊維32との絡まり合いの程度がより顕著になるため、第2中間体4bの保形性がより良好になるとともに、より幅広い範囲の空孔率の第2の領域3を容易に製造可能な第2中間体4bが得られる。
 また、繊維状をなす第2樹脂31の平均径は、特に限定されないが、1~100μm程度であるのが好ましく、5~80μm程度であるのがより好ましい。繊維状をなす第2樹脂31の平均径を前記範囲内に設定することにより、繊維状をなす第2樹脂31自体がある程度の機械的強度を有するものとなるため、第2中間体4bにおいて繊維状をなす第2樹脂31が均一に分散した状態を維持し易くなる。その結果、製造される第2の領域3において実現可能な空孔率の幅をより広くとることができる。
 なお、繊維状をなす第2樹脂31の平均径とは、任意の100本以上の繊維状をなす第2樹脂31について、その径を測定し、平均した値のことをいう。
 また、繊維状をなす第2樹脂31の径に対する長さの比(長さ/径)は、10以上であるのが好ましく、100以上であるのがより好ましい。これにより、繊維状をなす第2樹脂31が上記のような効果をより確実に発揮する。
 一方、第2分散液62は、熱膨張性マイクロカプセルを含んでいてもよい。
 この熱膨張性マイクロカプセルとは、揮発性の液体発泡剤を、ガスバリア性を有する熱可塑性シェルポリマーによりマイクロカプセル化した粒子である。このような熱膨張性マイクロカプセルは、次のようなメカニズムにより、発泡剤として機能するものである。すなわち、加熱によりカプセルの外殻が軟化しつつ、カプセルに内包した液体発泡剤が気化し圧力が増加する。その結果、カプセルが膨張し、中空球状粒子が形成される。この中空球状粒子は、加圧成形後においても残存するため、結果的に第2の領域3の密度を低下させることに寄与する。したがって、密度の小さい第2の領域3を得ることができる。
 液体発泡剤としては、例えば、イソペンタン、イソブタン、イソプロパン等といった低沸点の炭化水素が挙げられる。
 熱可塑性シェルポリマーとしては、例えば、ポリアクリロニトリル、塩化ビニリデン-アクリロニトリル共重合体、塩化ビニリデン-メチルメタクリレート共重合体、塩化ビニリデン-エチルメタクリレート、アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-エチルメタクリレート等が挙げられ、これらを単独で用いても2種類以上を組み合わせて用いるようにしてもよい。
 熱膨張性マイクロカプセルとしては、例えば、エクスパンセル(日本フェライト社製)、マイクロスフェアーF50、マイクロスフェアーF60(以上、松本油脂製薬社製)、アドバンセルEM(積水化学工業社製)といった市販品を用いることができる。
 熱膨張性マイクロカプセルの含有量は、第2樹脂31の0.05~10質量%程度とするのが好ましく、0.1~5質量%程度とするのがより好ましい。これにより、第2の領域3の密度を低下させつつ、ある程度の機械的強度を確保することができる。
 [3]次に、図7(c)に示すように、成形型74と成形型75との間に、第1中間体4aおよび第2中間体4bからなる第3中間体4cを配置し、加圧成形する。これにより、図2(b)に示す複合成形体1が得られる。
 成形型74と成形型75との間に配置された第3中間体4cは、図7(c)に示す矢印Pのように成形型74を降下させることにより、成形型74と成形型75との間で圧縮される。このとき同時に加熱されるため、第1中間体4aに含まれる第1樹脂21の少なくとも一部が溶融し、第1繊維22同士の間に流れ込む。その後、第1樹脂21が硬化することにより、第1樹脂21によって第1繊維22同士が結着される。これにより、第1中間体4aから第1の領域2が得られる。
 また、第2中間体4bに含まれる第2樹脂31の少なくとも一部が溶融し、第2繊維32同士の間に流れ込む。その後、第2樹脂31が硬化することにより、第2樹脂31によって第2繊維32同士が結着される。これにより、第2中間体4bから第2の領域3が得られる。
 その結果、第1の領域2と第2の領域3とが組み合わさった複合成形体1が得られる。
 なお、第1の領域2と第2の領域3との間では、第1樹脂21が第2の領域3側に混ざり合ったり、反対に、第2樹脂31が第1の領域2側に混ざり合ったりする。これにより、第1の領域2と第2の領域3との間がより強固に接合される。なお、このような成分の混ざり合いは、必須の現象ではなく、いずれか一方のみが起こる場合や、いずれも起こらない場合があってもよい。
 以上のようにして第1の領域2と第2の領域3とが一体化され、図2(b)に示す複合成形体1が得られる。
 このときの加熱温度は、第1樹脂21や第2樹脂31の組成等に応じて適宜設定されるが、一例として150~350℃程度であるのが好ましく、160~300℃程度であるのがより好ましい。
 また、このときの加熱時間は、加熱温度に応じて適宜設定されるが、1~180分程度であるのが好ましく、5~60分程度であるのがより好ましい。
 また、このときの加圧力は、加熱温度や加熱時間に応じて適宜設定されるが、0.05~80MPa程度であるのが好ましく、0.1~60MPa程度であるのがより好ましい。
 なお、複合成形体1を製造する方法は、上記の方法に限定されず、例えば、第2の領域3は抄造法以外の方法、例えば射出成形法、押出成形法等で製造されてもよい。
≪第2実施形態≫
 次に、本発明の複合成形体の製造方法の第2実施形態について説明する。
 図9~図11は、それぞれ図1に示す複合成形体1を製造する方法(本発明の複合成形体の製造方法の第2実施形態)を説明するための図である。
 以下、第2実施形態について説明するが、以下の説明では第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。
 本実施形態に係る複合成形体1を製造する方法は、第1樹脂21と第1繊維22とを含む第1分散液61を抄造することにより、中実領域41と中空領域42とを含む第1中間体4aを得る工程と、第2樹脂31と第2繊維32とを含む第2分散液62を抄造することにより、第2中間体4bを得る工程と、中空領域42に第2中間体4bを配置する工程と、第1中間体4aおよび第2中間体4bを加圧成形することにより、複合成形体1を得る工程と、を有する。
 すなわち、本実施形態は、第1中間体4aと第2中間体4bをそれぞれ個別に形成した後、これらを組み合わせた状態で加圧成形するという点で第1実施形態と相違する。以下、各工程について順次説明する。
 [1]まず、図9(a)に示すようにして第1分散液61を抄造することにより、図9(b)に示す仮中間体4a’を得る。この仮中間体4a’は中空部を含まず、全体が中実になっている。また、仮中間体4a’は、図9(b)に示すようにシート状をなしている。
 次に、図9(c)に示すように、切断ツール8を用いて仮中間体4a’を切断する。そして、仮中間体4a’の一部を切り抜くことにより、中空になっている中空領域42と、中実になっている中実領域41と、を含む第1中間体4aを得る(図9(d)参照)。このような方法によれば、例えば仮中間体4a’をあらかじめ多量に作製しておき、必要に応じて仮中間体4a’を目的とする形状に切断するというプロセスをとることができる。これにより、抄造の作業を簡素化することができ、かつ、低コスト化を図ることができる。
 なお、切断ツール8は、仮中間体4a’を切断可能な手段であれば、いかなるものであってもよく、例えば機械的加工、ウォータージェット加工、レーザー加工等を行い得る手段が用いられる。
 [2]次に、図10(a)に示すようにして第2分散液62を抄造することにより、図10(b)に示す仮中間体4b’を得る。この仮中間体4b’は中空部を含まず、全体が中実になっている。また、仮中間体4b’は、図10(b)に示すようにシート状をなしている。
 次に、図10(c)に示すように、切断ツール8を用いて仮中間体4b’を切断する。そして、仮中間体4b’の一部を切り抜くことにより、複数の中実領域43を含む第2中間体4bを得る(図10(d)参照)。このような方法によれば、例えば仮中間体4b’をあらかじめ多量に作製しておき、必要に応じて仮中間体4b’を目的とする形状に切断するというプロセスをとることができる。これにより、抄造の作業を簡素化することができ、かつ、低コスト化を図ることができる。
 [3]次に、図11(a)に示すように、第1中間体4aの中空領域42に、第2中間体4bを配置する。具体的には、中空領域42に対して第2中間体4bの中実領域43を嵌め込む。これにより、中空領域42が中実領域43によって充填され、1つのシート状をなす第3中間体4cを得る(図11(b)参照)。
 次に、図11(b)に示すように、成形型74と成形型75との間に、第1中間体4aおよび第2中間体4bからなる第3中間体4cを配置する。そして、図11(b)に示す矢印Pのように成形型74を降下させることにより、第3中間体4cを加圧成形する。これにより、図2(b)に示す複合成形体1が得られる。
 以上のような第2実施形態によっても、第1実施形態と同様の効果が得られる。
 なお、上記の説明では、一旦、シート状の仮中間体4a’や仮中間体4b’を形成した後、これらを切断して第1中間体4aや第2中間体4bを形成しているが、第1中間体4aや第2中間体4bの形成はこれらの手順に限定されない。例えば、第1実施形態と同様、フィルター71上にマスク72を配置することによって、第1中間体4aと第2中間体4bとを個別に形成した後、本実施形態の工程[3]と同様にして、第1中間体4aの中空領域42に第2中間体4bを配置するようにしてもよい。
 以上、本発明の複合成形体および複合成形体の製造方法を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
 例えば、本発明の複合成形体は、前記実施形態に任意の要素が付加されたものであってもよい。
 また、本発明の複合成形体の製造方法は、前記実施形態に任意の工程を付加したものであってもよく、前記実施形態の各工程の順序を入れ替えたものであってもよい。
 次に、本発明の具体的実施例について説明する。
 1.歯車の製造
 (実施例1A)
 [1]まず、レゾール型フェノール樹脂(住友ベークライト株式会社製、品番PR-51723)と、アラミド繊維(帝人株式会社製、品番T32PNW、平均長さ3mm、平均径12μm)と、アラミドパルプ(デュポン社製、品番パラアラミドパルプ)と、を水に加え、ディスパーザーで20分間撹拌した。これにより、固形分濃度0.6質量%の第1分散液を得た。なお、配合比は表1に示す通りである。
 次に、得られた第1分散液に、あらかじめ水に溶解させた凝集剤(ポリエチレンオキシド、分子量1000000)を、上述した固形分(第1分散液の水以外の成分)に対して0.2質量%の割合で添加した。
 [2]次に、凝集剤が添加された第1分散液を、40メッシュの金属網(スクリーン)でろ過し凝集物を得た。この凝集物を圧力3MPaで脱水プレスして水を除去した。このとき、マスクを併用して抄造する領域を設定するようにした。
 次に、脱水した凝集物を、50℃で5時間乾燥させて、図1に示す第1の領域2と同形状の第1中間体を得た。
 [3]次に、アトマイザー粉砕機で平均粒径100μm(質量基準の50%粒子径)に粉砕したレゾール型フェノール樹脂(住友ベークライト株式会社製、品番PR-51723)と、アラミド繊維(帝人株式会社製、品番T32PNW、平均長さ3mm、平均径12μm)と、発泡剤として熱膨張性マイクロカプセル(積水化学工業社製、アドバンセルEM-304)と、アラミドパルプ(デュポン社製、品番パラアラミドパルプ)と、を水に加え、ディスパーザーで30分間撹拌した。これにより、固形分濃度0.01質量%の第2分散液を得た。なお、配合比は表1に示す通りである。
 次に、得られた第2分散液に、あらかじめ水に溶解させた凝集剤(合成スメクタイト:スメクトン(クニミネ工業社製))を、上述した固形分(第2分散液の水以外の成分)に対して0.2質量%の割合で添加した。
 [4]次に、30メッシュの金属網(スクリーン)を用意し、その上に第1中間体を配置した。そして、この状態で、凝集剤が添加された第2分散液を、30メッシュの金属網(スクリーン)でろ過し凝集物を得た。この凝集物を圧力3MPaで脱水プレスして水を除去した。
 次に、脱水した凝集物を、70℃で3時間乾燥させて、図1に示す第2の領域3と同形状の第2中間体を得るとともに、第1中間体と第2中間体とを組み合わせてなる第3中間体を得た。
 [5]次に、成形型のキャビティー内に、第3中間体を配置した。
 次に、成形型を加熱しつつ、第3中間体を加圧成形した。このときの加熱温度を180℃、加圧力を2MPa、加圧時間を10分間とした。このとき、熱膨張性マイクロカプセルを膨張させ、空孔を形成した。
 以上により、図1に示す複合成形体を得た。この複合成形体の厚さは、4mmであった。
 (実施例2A~16Aおよび実施例1B~17Bならびに比較例5Aおよび比較例5B、7B~8B)
 複合成形体の製造条件を表1、表2、表3または表4に示すように変更した以外は、実施例1Aと同様にして複合成形体を得た。
 (比較例1A、2A、6Aおよび比較例1B、2B、6B)
 複合成形体の製造条件を表2または表4に示すように変更し、第2の領域を省略し、複合成形体の全体を第1の領域で占めるようにした以外は、実施例1Aと同様にして複合成形体を得た。
 (比較例3A、4Aおよび比較例3B、4B)
 複合成形体の製造条件を表2または表4に示すように変更し、第1の領域を省略し、複合成形体の全体を第2の領域で占めるようにした以外は、実施例1Aと同様にして複合成形体を得た。
 2.複合成形体の評価
 2.1 密度および軽量化の評価
 まず、各実施例および各比較例の複合成形体について、JIS K 7112:1999のA法に準拠した方法により密度を測定した。測定結果を表1ないし表4に示す。
 また、併せて、軽量化されているか否かを評価した。なお、軽量化されているか否かの評価にあたっては、各実施例および比較例の複合成形体について、その第1の領域のみで構成した成形体を比較基準とした。なお、第1の領域が存在しない比較例3A、4Aおよび比較例3B、4Bについては、比較基準がないため、上記評価を省略した。
 そして、比較基準の複合成形体の密度に対する評価対象の複合成形体の密度の減少率を算出し、以下の評価基準に照らして評価した。なお、実施例1Aの密度の減少率は、100×(1.19-1.15)/1.19=約3.4%であり、実施例11Aの密度の減少率は、100×(1.39-1.27)/1.39=約8.6%であり、実施例15Aの密度の減少率は、100×(1.52-1.25)/1.52=約17.8%である。
 <軽量化の評価基準>
 A:密度の減少率が10.0%以上である
 B:密度の減少率が7.0%以上、10.0%未満である
 C:密度の減少率が3.4%以上、7.0%未満である
 D:密度の減少率が1.0%以上、3.4%未満である
 E:密度の減少率が1.0%未満である
 2.2 引張強度の評価
 次に、各実施例および各比較例の複合成形体について、JIS K 7162:1994に準拠した方法により引張強度を測定した。
 そして、各実施例および比較例の複合成形体について、その第1の領域のみで構成した成形体の引張強度を1としたときの相対値を算出した。なお、第1の領域が存在しない比較例3A、4Aおよび比較例3B、4Bについては、比較基準がないため、上記評価を省略した。
 次に、算出した相対値を以下の評価基準に照らして評価した。
 <引張強度の評価基準>
 A:相対値が0.9以上である
 B:相対値が0.7以上0.9未満である
 C:相対値が0.5以上0.7未満である
 D:相対値が0.3以上0.5未満である
 E:相対値が0.3未満である
 評価結果を表1ないし表4に示す。
[規則26に基づく補充 17.10.2017] 
Figure WO-DOC-TABLE-1
[規則26に基づく補充 17.10.2017] 
Figure WO-DOC-TABLE-2
[規則26に基づく補充 17.10.2017] 
Figure WO-DOC-TABLE-3
[規則26に基づく補充 17.10.2017] 
Figure WO-DOC-TABLE-4
 表1ないし表4から明らかなように、各実施例の複合成形体については、十分な軽量化が図られている一方、軽量化が施されていない比較対象、すなわち第1の領域のみで構成した成形体と同等程度の引張強度を有していることが認められた。また、第2の領域の面積率が95%である複合成形体(比較例5Aおよび5B)は、十分な軽量化が図られていたが、十分な引張強度を有していなかった。一方、第2の領域の面積率が15%である複合成形体(比較例7B~8B)は、十分な引張強度を有していたが、十分な軽量化が図られていなかった。このことから、本発明は、軽量化と高い機械的強度とを両立させた複合成形体を実現し得ることが認められた。
 なお、上述した各実施例の複合成形体は、いずれも第2の領域が正六角形である複合成形体であるが、表1、2には記載していないものの、第2の領域がそれ以外の形状、具体的には正方形および真円形である場合の複合成形体も作製し、上記と同様の評価を行った。その結果、いずれの評価項目においても、第2の領域が正六角形である複合成形体の方が良好な結果となった。
 また、第2の領域をランダムに(不規則的に)配置した複合成形体についても、上記と同様の評価を行った。その結果、いずれの評価項目においても、第2の領域が規則的に配置されている複合成形体の方が良好な結果を示した。
 樹脂と繊維とを含む本発明の複合成形体は、第1の領域と、前記第1の領域よりも密度が低い第2の領域と、を含み、平面視において、前記第2の領域が規則的に配置されており、前記第2の領域の面積率が20~90%である。これにより、軽量化と高い機械的強度とを両立させた複合成形体が得られる。したがって、本発明は、産業上の利用可能性を有する。
1      複合成形体
2      第1の領域
3      第2の領域
4a     第1中間体
4a’    仮中間体
4b     第2中間体
4b’    仮中間体
4c     第3中間体
5      第2中間体
8      切断ツール
21     第1樹脂
22     第1繊維
25     貫通孔
31     第2樹脂
32     第2繊維
41     中実領域
42     中空領域
43     中実領域
51     分散媒
52     分散媒
61     第1分散液
62     第2分散液
70     容器
71     フィルター
72     マスク
74     成形型
75     成形型

Claims (11)

  1.  樹脂と繊維とを含む複合成形体であって、
     第1の領域と、前記第1の領域よりも密度が低い第2の領域と、を含み、
     平面視において、前記第2の領域が規則的に配置されており、
     前記第2の領域の面積率が20~90%であることを特徴とする複合成形体。
  2.  前記第1の領域は、第1樹脂を含み、
     前記第2の領域は、前記第1樹脂とは異なる第2樹脂を含む請求項1に記載の複合成形体。
  3.  前記第1樹脂は、熱可塑性樹脂を含む請求項2に記載の複合成形体。
  4.  前記第1の領域は、第1繊維を含み、
     前記第2の領域は、前記第1繊維とは異なる第2繊維を含む請求項1ないし3のいずれか1項に記載の複合成形体。
  5.  前記第1繊維の平均長さは、1mm以上である請求項4に記載の複合成形体。
  6.  前記第1繊維は、無機繊維である請求項4または5に記載の複合成形体。
  7.  前記第1の領域を介して互いに離間している複数の前記第2の領域を含み、
     前記第2の領域の形状は、それぞれ六角形である請求項1ないし6のいずれか1項に記載の複合成形体。
  8.  第1樹脂と第1繊維とを含む第1分散液を抄造することにより、中空になっている中空領域と、中実になっている中実領域と、を含み、平面視において前記中空領域が規則的に配置されてなる第1中間体を得る工程と、
     第2樹脂と第2繊維とを含む第2分散液を前記中空領域に供給しつつ前記第2分散液を抄造することにより、第2中間体を得る工程と、
     前記第1中間体および前記第2中間体を加圧成形することにより、複合成形体を得る工程と、
    を有することを特徴とする複合成形体の製造方法。
  9.  第1樹脂と第1繊維とを含む第1分散液を抄造することにより、中空になっている中空領域と、中実になっている中実領域と、を含み、平面視において前記中空領域が規則的に配置されてなる第1中間体を得る工程と、
     第2樹脂と第2繊維とを含む第2分散液を抄造することにより、第2中間体を得る工程と、
     前記第1中間体の前記中空領域に前記第2中間体を配置する工程と、
     前記第1中間体および前記第2中間体を加圧成形することにより、複合成形体を得る工程と、
    を有することを特徴とする複合成形体の製造方法。
  10.  前記第1中間体および前記第2中間体の少なくとも一方は、仮中間体を切断することによって形成されたものである請求項9に記載の複合成形体の製造方法。
  11.  前記中空領域に対応する遮蔽部を備えるマスクを介して前記第1分散液を抄造する請求項8ないし10のいずれか1項に記載の複合成形体の製造方法。
PCT/JP2017/033647 2016-09-21 2017-09-19 複合成形体および複合成形体の製造方法 WO2018056243A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018500596A JP6365798B1 (ja) 2016-09-21 2017-09-19 複合成形体および複合成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-184851 2016-09-21
JP2016184851 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018056243A1 true WO2018056243A1 (ja) 2018-03-29

Family

ID=61690328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033647 WO2018056243A1 (ja) 2016-09-21 2017-09-19 複合成形体および複合成形体の製造方法

Country Status (3)

Country Link
JP (1) JP6365798B1 (ja)
TW (1) TW201821247A (ja)
WO (1) WO2018056243A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155850A (ja) * 2018-03-16 2019-09-19 住友ベークライト株式会社 複合材料
CN114206482A (zh) * 2019-07-31 2022-03-18 东丽株式会社 分离膜
WO2022239869A1 (ja) * 2021-05-14 2022-11-17 日本精工株式会社 複合材料成形品の製造方法、保持器及び転がり軸受の製造方法、並びにギヤボックス構成部品の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503866A (ja) * 1987-07-10 1991-08-29 3‐ディ コンポジッツ リミテッド モールディング方法
JPH08112873A (ja) * 1994-01-31 1996-05-07 Sekisui Chem Co Ltd 発泡体及びその製造方法
JPH1044281A (ja) * 1996-07-31 1998-02-17 Mitsui Petrochem Ind Ltd 複合板及びその製造方法
JPH10329248A (ja) * 1997-05-28 1998-12-15 Toagosei Co Ltd ハニカムサンドイッチ構造パネルの製造方法
JP2001322192A (ja) * 2000-05-16 2001-11-20 Sekisui Chem Co Ltd ハニカムサンドイッチ構造パネルの製造方法
JP2008521657A (ja) * 2004-12-03 2008-06-26 マーティン マリエッタ マテリアルズ,インコーポレイテッド 不均一な密度の複合構造体とそれに関連する方法
EP1950034A1 (en) * 2007-01-23 2008-07-30 Michelis Pavlos Multilayered honeycomb panel from compopsite material with continuous three-dimensinal reinforcement
JP2012207525A (ja) * 2006-10-26 2012-10-25 Kanaflex Corporation 建築・土木用パネルの製造方法
US20160193793A1 (en) * 2015-01-06 2016-07-07 Gear Box Panel Structure with Foam Core and Methods of Manufacturing Articles Using the Panel Structure
JP2016150981A (ja) * 2015-02-18 2016-08-22 王子ホールディングス株式会社 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503866A (ja) * 1987-07-10 1991-08-29 3‐ディ コンポジッツ リミテッド モールディング方法
JPH08112873A (ja) * 1994-01-31 1996-05-07 Sekisui Chem Co Ltd 発泡体及びその製造方法
JPH1044281A (ja) * 1996-07-31 1998-02-17 Mitsui Petrochem Ind Ltd 複合板及びその製造方法
JPH10329248A (ja) * 1997-05-28 1998-12-15 Toagosei Co Ltd ハニカムサンドイッチ構造パネルの製造方法
JP2001322192A (ja) * 2000-05-16 2001-11-20 Sekisui Chem Co Ltd ハニカムサンドイッチ構造パネルの製造方法
JP2008521657A (ja) * 2004-12-03 2008-06-26 マーティン マリエッタ マテリアルズ,インコーポレイテッド 不均一な密度の複合構造体とそれに関連する方法
JP2012207525A (ja) * 2006-10-26 2012-10-25 Kanaflex Corporation 建築・土木用パネルの製造方法
EP1950034A1 (en) * 2007-01-23 2008-07-30 Michelis Pavlos Multilayered honeycomb panel from compopsite material with continuous three-dimensinal reinforcement
US20160193793A1 (en) * 2015-01-06 2016-07-07 Gear Box Panel Structure with Foam Core and Methods of Manufacturing Articles Using the Panel Structure
JP2016150981A (ja) * 2015-02-18 2016-08-22 王子ホールディングス株式会社 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155850A (ja) * 2018-03-16 2019-09-19 住友ベークライト株式会社 複合材料
CN114206482A (zh) * 2019-07-31 2022-03-18 东丽株式会社 分离膜
CN114206482B (zh) * 2019-07-31 2023-01-03 东丽株式会社 分离膜
US11617991B2 (en) 2019-07-31 2023-04-04 Toray Industries, Inc. Separation film
WO2022239869A1 (ja) * 2021-05-14 2022-11-17 日本精工株式会社 複合材料成形品の製造方法、保持器及び転がり軸受の製造方法、並びにギヤボックス構成部品の製造方法
JPWO2022239869A1 (ja) * 2021-05-14 2022-11-17
JP7302753B2 (ja) 2021-05-14 2023-07-04 日本精工株式会社 保持器の製造方法及び転がり軸受の製造方法

Also Published As

Publication number Publication date
JP6365798B1 (ja) 2018-08-01
JPWO2018056243A1 (ja) 2018-09-20
TW201821247A (zh) 2018-06-16

Similar Documents

Publication Publication Date Title
JP6365798B1 (ja) 複合成形体および複合成形体の製造方法
US20090004460A1 (en) Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same
WO2020040287A1 (ja) 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
JP2017179244A (ja) 発泡体および発泡体の製造方法
JP2018165335A (ja) 強化繊維複合材および強化繊維複合材の製造方法
JP2018145222A (ja) 強化繊維複合材および強化繊維複合材の製造方法
JP6972876B2 (ja) 成形用材料および成形体
JP2020133048A (ja) 炭素繊維シート材、成形体、炭素繊維シート材の製造方法および成形体の製造方法
JP7196988B2 (ja) 複合成形体の製造方法
WO2021106649A1 (ja) 繊維強化複合材料およびサンドイッチ構造体
JP6972611B2 (ja) 強化繊維複合材および強化繊維複合材の製造方法
JP7039852B2 (ja) 複合成形体
JP6984388B2 (ja) 構造体および内装材
JP2019026703A (ja) 成形用材料および成形体
WO2020040289A1 (ja) 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法
JP2017186401A (ja) 発泡体および発泡体の製造方法
JP2019081828A (ja) 成形用材料および成形体
JP2019155850A (ja) 複合材料
KR102493420B1 (ko) 실리카 나노분말이 분산된 나노복합절연재료 및 그 제조방법
JP6984391B2 (ja) 構造体および内装材
WO2018021336A1 (ja) 複合成形体、複合成形体用中間体、複合成形体の製造方法および輸送機器用内装材
JP7151163B2 (ja) 複合材料
WO2021106651A1 (ja) プリプレグ、プリフォーム、繊維強化複合材料、およびそれらの製造方法
JP2017186396A (ja) 発泡体および発泡体の製造方法
JP2019071317A (ja) 構造体、放熱部材および発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018500596

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853015

Country of ref document: EP

Kind code of ref document: A1