以下、本発明の構造体および内装材について添付図面に示す好適実施形態に基づいて詳細に説明する。
<構造体>
まず、本発明の構造体の実施形態について説明する。
図1は、本発明の構造体の実施形態を模式的に示す分解斜視図である。また、図2は、図1に示す構造体の上面の平面図であり、図3は、図1に示す構造体の下面の平面図である。また、図4は、図2のA−A線断面図である。なお、以下の説明では、説明の便宜上、図4における下側を「下」、上側を「上」という。
図1に示す構造体1は、発熱部2と、発熱部2に接するように設けられた放熱部3と、を有する。このうち、発熱部2は、電気エネルギーを熱エネルギーに変換可能な材料、例えば抵抗加熱が可能な材料で構成されている。これにより、発熱部2から熱を発生させ、構造体1の表面を昇温させることができる。一方、放熱部3は、発熱部2と接するように設けられ、第1樹脂41と第1繊維51とを含む成形体を備えるとともに、放熱性を有する。
このような構造体1によれば、放熱部3が第1繊維51を含むため、熱伝導性を高め易くなり、比較的高い熱伝導性を有する放熱部3が得られる。また、このような第1繊維51は、例えば放熱部3が板状に広がっている場合、その面内方向に沿って配向することが多いため、面内方向における熱伝導性を特に高めることに寄与する。したがって、構造体1によれば、発熱部2から発生した熱を、面内方向に素早く拡散させることができ、表面加熱温度の均一化をより図ることができる。その結果、例えば構造体1を空調システムとして用いる場合、温度ムラが少なく快適なシステムを構築することができる。
また、第1樹脂41が第1繊維51で補強されているため、繊維による補強がなされない場合に比べて、比較的軽量であるにもかかわらず高い機械的強度が得られる。このため、例えば放熱部3を薄い板状にした場合でも、亀裂や欠損等が生じ難く信頼性の高い放熱部3が得られる。
さらには、放熱部3が成形体であることにより、発熱部2を内包した一体構造にすることができる。このため、構造体1の機械的強度や信頼性が高くなるとともに、取り扱い性も良好になる。
また、図1に示す放熱部3は、発熱部2の上方に設けられた第1放熱部3aと、発熱部2の下方に設けられた第2放熱部3bと、を備えている。
このうち、第1放熱部3aは、発熱部2側に設けられ、絶縁性を有する絶縁部311と、絶縁部311の上方(発熱部2側とは反対側)に設けられ、前述した第1樹脂41と第1繊維51とを含み、絶縁部311よりも熱伝導性が大きい熱伝導部321と、を備える。
このように第1放熱部3aが絶縁部311と熱伝導部321とを備えることによって、発熱部2の両面において表面加熱温度の均一化をさらに向上させることができる。例えば、絶縁部311が発熱部2側に位置することによって、熱伝導の速度が一旦低下する。そして、絶縁部311において熱伝導が停滞し、その間に絶縁部311全体の温度が比較的均一に上昇する。その後、絶縁部311に溜まった熱が熱伝導部321に伝達し、放熱される。熱伝導部321の温度は上述したように面内方向において素早く拡散されるため、このようにして表面加熱温度のさらなる均一化が図られることとなる。その結果、特に温度ムラが少ない空調システムを実現可能な構造体1が得られる。
また、第2放熱部3bは、第1放熱部3aと同様の構成を有している。すなわち、第2放熱部3bは、発熱部2側に設けられ、絶縁性を有する絶縁部312と、絶縁部312の下方(発熱部2側とは反対側)に設けられ、前述した第1樹脂41と第1繊維51とを含み、絶縁部312よりも熱伝導性が大きい熱伝導部322と、を備える。
このように第2放熱部3bが絶縁部312と熱伝導部322とを備えることによって、表面加熱温度の均一化をさらに向上させることができる。これは、第1放熱部3aと同様である。
なお、放熱部3が上述するような機能を発揮するためには、放熱部3の表面における熱伝導率が少なくとも20W/mK以上であればよい。この放熱部3の熱伝導率は、レーザーフラッシュ法により測定した面内方向における熱伝導率である。また、測定に用いる試験片としては、例えば、縦10mm×横10mm×厚さ1.5mmのものが挙げられる。
以下、構造体1の各部についてさらに詳述する。
(熱伝導部)
熱伝導部321および熱伝導部322は、それぞれ第1樹脂41と第1繊維51とを含む。
・第1樹脂41
第1樹脂41は、熱伝導部321、322に成形性や保形性を付与したり、第1繊維51同士の間を結着するバインダーとして機能したりする。したがって、第1樹脂41としては、このような機能を有するものであれば特に限定されない。例えば、フェノール系樹脂、エポキシ系樹脂、ビスマレイミド系樹脂、不飽和ポリエステル系樹脂、メラミン系樹脂、ポリウレタンのような熱硬化性樹脂、ポリアミド系樹脂(例えばナイロン等)、熱可塑性ウレタン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)、ポリカーボネート、ポリエステル系樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミドのような熱可塑性樹脂等が挙げられる。なお、第1樹脂41には、これらのうちの少なくとも1種が含まれていてもよく、2種以上が含まれていてもよい。
第1樹脂41は、特に熱硬化性樹脂を含むことが好ましい。これにより、熱伝導部321、322の機械的特性および耐熱性をより高めることができる。
また、第1樹脂41は、フェノール系樹脂、エポキシ系樹脂およびビスマレイミド系樹脂のうちの少なくとも1種を含むことが好ましい。これにより、熱伝導部321、322の機械的特性および耐熱性を特に高めることができる。
フェノール系樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アリールアルキレン型ノボラック樹脂のようなノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油のような変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等が挙げられる。
これらの中でも、コストおよび成形性の観点から、レゾール型フェノール樹脂またはノボラック型フェノール樹脂が好ましく用いられる。
フェノール系樹脂の重量平均分子量は、特に限定されないが、1000〜15000程度であるのが好ましい。なお、フェノール系樹脂の重量平均分子量が前記下限値を下回ると、第1樹脂41の粘度が低くなり過ぎて製造時の成形が難しくなるおそれがある。一方、フェノール系樹脂の重量平均分子量が前記上限値を上回ると、第1樹脂41の粘度が高くなり過ぎて製造時の成形性が低下するおそれがある。
フェノール系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定されたポリスチレン換算の重量分子量として求めることができる。
エポキシ系樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型のようなビスフェノール型エポキシ樹脂、フェノールノボラック型、クレゾールノボラック型のようなノボラック型エポキシ樹脂、臭素化ビスフェノールA型、臭素化フェノールノボラック型のような臭素化型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂等が挙げられる。
これらの中でも、高流動性や成形性等の観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましく用いられる。
また、比較的分子量の低いビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がより好ましく用いられる。
さらに、耐熱性の観点から、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がさらに好ましく用いられ、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂が特に好ましく用いられる。
ビスマレイミド系樹脂としては、例えば、分子鎖の両末端にマレイミド基を有する樹脂であれば、特に限定されないが、ベンゼン環を有するものが好ましく、下記一般式(1)で表されるものがより好ましく用いられる。
[式中、R
1〜R
4は、置換基を有していてもよい炭素数1〜4の炭化水素基または水素原子を表す。また、R
5は、2価の有機基を表す。]
ただし、ビスマレイミド系樹脂は、分子鎖の両末端以外にマレイミド基を有していてもよい。
ここで、有機基とは、炭素原子以外の原子を含んでいてもよい炭化水素基であり、炭素原子以外の原子としてはO、S、N等が挙げられる。
R5は、好ましくはメチレン基と芳香環とエーテル結合(−O−)とが任意の順序で結合した主鎖構造を有し、主鎖上に置換基および側鎖の少なくとも一方を有していてもよい。主鎖構造に含まれるメチレン基と芳香環とエーテル結合との合計数は15個以下である。上記の置換基または側鎖としては、例えば、炭素数3個以下の炭化水素基、マレイミド基、フェニレン基等が挙げられる。
ビスマレイミド系樹脂としては、例えば、N,N’−(4,4’−ジフェニルメタン)ビスマレイミド、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、m−フェニレンビスマレイミド、p−フェニレンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、N,N’−エチレンジマレイミド、N,N’−ヘキサメチレンジマレイミド等が挙げられる。
また、第1樹脂41とともに、必要に応じて硬化剤が併用される。
例えば、第1樹脂41としてノボラック型フェノール樹脂が用いられる場合、硬化剤としては、通常、ヘキサメチレンテトラミンが用いられる。
また、例えば、第1樹脂41としてエポキシ系樹脂が用いられる場合、硬化剤としては、脂肪族ポリアミン、芳香族ポリアミン、ジシアミンジアミドのようなアミン化合物、脂環族酸無水物、芳香族酸無水物のような酸無水物、ノボラック型フェノール樹脂のようなポリフェノール化合物、イミダゾール化合物等が用いられる。
これらの中でも、取り扱い性や環境面の観点から、ノボラック型フェノール樹脂が好ましく用いられる。特に、エポキシ系樹脂としてフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、およびトリス(ヒドロキシフェニル)メタン型エポキシ樹脂を用いる場合、硬化剤としては、硬化物の耐熱性がより向上し易いという観点から、ノボラック型フェノール樹脂が好ましく用いられる。
また、例えば、第1樹脂41としてビスマレイミド系樹脂が用いられる場合、硬化剤としては、イミダゾール化合物が用いられる。
なお、硬化剤としては、上述したもののうちの1種または2種以上が用いられる。
一方、第1樹脂41は、特に熱可塑性樹脂を含んでいてもよい。これにより、熱伝導部321、322の成形性を特に高めることができ、より寸法精度が高い熱伝導部321、322が得られる。
さらに、第1樹脂41は、熱可塑性樹脂の中でもスーパーエンジニアリングプラスチックを含むことが好ましい。これにより、熱可塑性樹脂がもたらす効果に加え、高い機械的特性という効果が付加されることとなる。なお、スーパーエンジニアリングプラスチックとしては、例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、液晶ポリマー、フッ素樹脂等が挙げられる。
第1樹脂41の融点は、特に限定されないが、200〜400℃であるのが好ましく、210〜390℃であるのがより好ましく、260〜380℃であるのがさらに好ましい。このような第1樹脂41を用いることにより、熱伝導部321、322の機械的特性および耐熱性を十分に高めることができる。これにより、熱伝導部321、322が例えば輸送機器用内装材等に適用された場合、難燃性に優れた内装材が得られる。
なお、第1樹脂41の融点が前記下限値を下回ると、熱伝導部321、322の構成によっては、熱伝導部321、322の高温時の寸法精度が低下したり、耐熱性に基づく難燃性が低下したりするおそれがある。一方、第1樹脂41の融点は前記上限値を上回ってもよいが、それに伴って一部の物性(例えば耐衝撃性等)が低下するおそれがある。
ここで、第1樹脂41の融点は、原則として結晶融点のことであり、例えば、示差走査熱量計(DSC−2920、TAインスツルメント社製)により測定できる。
また、第1樹脂41に結晶融点が存在せずガラス転移温度が存在する場合には、本発明における第1樹脂41の融点はガラス転移温度も含むものとする。このガラス転移温度も、上記の示差走査熱量計により測定可能である。
さらに、第1樹脂41が熱硬化性樹脂の場合であって結晶融点もガラス転移温度も存在しない場合には、本発明における第1樹脂41の融点は熱硬化性樹脂の硬化物の耐熱温度も含むものとする。この耐熱温度は、JIS K 6911:1995の熱可塑性プラスチック一般試験方法に規定されている荷重たわみ温度とする。
・第1繊維51
第1繊維51は、熱伝導部321、322の機械的特性を向上させたり、熱伝導性を高めたりすることに寄与する。
このような第1繊維51としては、例えば、繊維糸または長い繊維束を所定の長さに切断することによって得られたものが用いられる。
第1繊維51は、例えば、炭素繊維、アルミニウム繊維、銅繊維、ステンレス鋼繊維、黄銅繊維、チタン繊維、鋼繊維、リン青銅繊維のような金属繊維、アルミナ繊維のようなセラミック繊維、ポリ(パラ−フェニレン−2,6−ベンゾビスオキサゾール)(PBO)のような合成繊維等が挙げられ、これらのうちの少なくとも1種を含むものが用いられる。
その中でも、第1繊維51としては、樹脂よりも熱伝導性が高い材料で構成された繊維が好ましく用いられる。具体的には、炭素繊維、金属繊維、セラミック繊維のような無機繊維が好ましく用いられ、金属繊維または炭素繊維がより好ましく用いられる。これらの無機繊維は、熱伝導性が特に良好である。このため、熱伝導部321、322は軽量であるにもかかわらず熱伝導性の高いものとなり、熱伝導部321、322に伝達した熱を効率よく放熱することができる。その結果、熱伝導部321、322における熱伝導のタイムラグが少なくなり、表面加熱温度のさらなる均一化が図られることとなる。
なお、第1繊維51は、互いに異なる2種類以上の繊維が混在したものであってもよい。その場合、例えば、1種類は樹脂よりも熱伝導性が高い材料で構成された繊維(例えば無機繊維)とされ、別の1種類は樹脂繊維(天然繊維または合成繊維のような有機繊維)であるような組み合わせとされる。このような組み合わせでは、熱伝導性と靭性のような機械的特性とを高度に両立する熱伝導部321、322が得られる。
その場合、例えば、第1繊維51における無機繊維の割合が3体積%以上70体積%以下であるのが好ましく、4体積%以上50体積%以下であるのがより好ましく、5体積%以上40体積%以下であるのがさらに好ましい。このような配合比に設定されることにより、熱伝導性と機械的特性の双方が特に良好な熱伝導部321、322が得られる。
また、第1繊維51は、単繊維の状態で添加されていてもよく、複数の単繊維同士を束ねてなる繊維束の状態で添加されていてもよい。
また、第1繊維51の平均長さは、それぞれ特に限定されないが、1mm以上であるのが好ましく、2mm以上であるのがより好ましく、4mm以上であるのがさらに好ましい。第1繊維51の平均長さを前記範囲内に設定することにより、熱伝導部321、322の機械的特性および熱伝導性をそれぞれ十分に高めることができる。特に第1樹脂41の機械的特性が比較的低い場合であっても、第1繊維51によってそれを十分に補うことができる。その結果、機械的特性が特に良好な熱伝導部321、322が得られる。
なお、第1繊維51の平均長さの上限値は、特に限定されないが、例えば100mm以下であるのが好ましく、50mm以下であるのがより好ましい。これにより、熱伝導部321、322を製造するにあたって第1繊維51を分散媒に分散させるとき、その分散性が良好になる。その結果、最終的に機械的特性に優れた熱伝導部321、322が得られる。
なお、第1繊維51の平均長さとは、熱伝導部321、322の第1樹脂41を溶解する等して100本以上の第1繊維51を取り出した後、その長さを測定し、平均した値のことをいう。
また、第1繊維51は、長さ20mm以上の長繊維を含んでいてもよい。第1繊維51としてこのような非常に長いものを含めることにより、熱伝導部321、322には極めて高い機械的特性が付与される。このため、例えば第1樹脂41として機械的特性が低いものを使用した場合であっても、第1繊維51によってそれを十分に補うことができる。その結果、第1樹脂41として目的とする特性に特化したもの、例えば機械的特性は多少劣るものの難燃性に優れたものを選択することが可能になり、様々な特性を有する熱伝導部321、322が得られる。併せて、熱伝導部321、322には高い熱伝導性が付与される。このため、放熱性がより良好な熱伝導部321、322が得られる。
なお、長繊維の長さは、好ましくは25mm以上とされ、より好ましくは30mm以上とされる。
また、長繊維の長さの上限値は、特に限定されないが、200mm以下であるのが好ましく、150mm以下であるのがより好ましい。これにより、熱伝導部321、322を製造するにあたって第1繊維51を分散媒に分散させるとき、その分散性が良好になる。その結果、最終的に機械的特性に優れた熱伝導部321、322が得られる。
このような長繊維は、第1繊維51に少しでも含まれていればよいが、第1繊維51のうち10%以上の割合で含まれているのが好ましく、20〜90%の割合で含まれているのがより好ましい。これにより、長繊維によってもたらされる上述したような効果が、より確実に発現することとなる。すなわち、長繊維が支配的に存在することになるため、第1繊維51の機械的特性においても長繊維の影響が支配的になる。その結果、とりわけ機械的特性および熱伝導性が高い熱伝導部321、322を実現することができる。
なお、長繊維の含有量は、熱伝導部321、322の第1樹脂41を溶解する等して100本以上の第1繊維51を取り出した後、その長さを測定し、長さが20mm以上である第1繊維51の本数の割合として求められる。
また、第1繊維51の平均径は、特に限定されないが、1〜100μm程度であるのが好ましく、5〜80μm程度であるのがより好ましい。第1繊維51の平均径を前記範囲内に設定することにより、熱伝導部321、322の機械的特性および熱伝導性を高めつつ、熱伝導部321、322を製造するときの成形性を高めることができる。
なお、第1繊維51の平均径とは、熱伝導部321、322の第1樹脂41を溶解する等して100本以上の第1繊維51を取り出した後、その径をそれぞれ測定し、平均した値のことをいう。
また、第1繊維51の径に対する長さの比(長さ/径)は、特に限定されないが、10以上であるのが好ましく、100以上であるのがより好ましい。これにより、第1繊維51が上記のような効果をより確実に発揮する。
なお、第1繊維51には、必要に応じて、カップリング剤処理、界面活性剤処理、紫外線照射処理、電子線照射処理、プラズマ照射処理等の表面処理が施されていてもよい。
このうち、カップリング剤としては、例えば、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジエトキシシランのようなアミノ基含有アルコキシシラン、およびそれらの加水分解物等が挙げられ、これらのうちの少なくとも1種を含むものが用いられる。
熱伝導部321、322における第1繊維51の含有量は、特に限定されないが、第1樹脂41の1〜300体積%程度であるのが好ましく、5〜150体積%程度であるのがより好ましく、10〜120体積%程度であるのがさらに好ましい。第1繊維51の含有量を前記範囲内に設定することにより、第1樹脂41と第1繊維51との量的なバランスが最適化されるため、熱伝導部321、322の機械的特性を特に高めることができる。すなわち、第1繊維51の含有量が前記下限値を下回ると、第1繊維51が相対的に不足するため、第1樹脂41の組成や第1繊維51の長さ、構成材料等によっては、熱伝導部321、322の機械的特性および熱伝導性が低下するおそれがある。一方、第1繊維51が前記上限値を上回ると、第1樹脂41の含有量が相対的に不足するため、第1樹脂41の組成や第1繊維51の長さ、構成材料等によっては、熱伝導部321、322の機械的特性が低下するおそれがある。
なお、図1に示す第1繊維51の形状は、一例であり、図示したような直線状には限定されず、いかなる形状、例えばらせん状、蛇行形状等であってもよい。
また、第1繊維51は、熱伝導部321、322中においていかなる方向に配向していてもよいが、表面と平行になるように配向しているのが好ましい。これにより、熱伝導部321、322の表面の引張方向において靭性を高めることができる。また、熱伝導部321、322の表面の耐摩耗性や硬度も高くなる。これにより、例えば内装材等に適用された場合でも、耐久性に優れた内装材を実現することができる。
また、熱伝導部321、322は、後述するように抄造体を含むことが好ましい。すなわち、放熱部3は、抄造体を含むことが好ましい。これにより、放熱部3は、第1繊維51によって高熱伝導性のような特性が付与されるとともに、長い第1繊維51を添加されることが可能になる。このため、熱伝導性のような特性と機械的特性とを高度に両立する放熱部3が得られる。
・パルプ
熱伝導部321、322は、必要に応じてパルプを含んでいてもよい。パルプとは、フィブリル構造を有する繊維材料であり、第1繊維51とは異なるものである。パルプは、例えば、繊維材料を機械的または化学的にフィブリル化することによって得ることができる。
また、熱伝導部321、322を抄造法によって製造するとき、材料の凝集性を高めることができるので、効率よく安定的に抄造することができる。
パルプとしては、例えば、リンターパルプ、木材パルプのようなセルロース繊維、ケナフ、ジュート、竹のような天然繊維、パラ型全芳香族ポリアミド繊維(アラミド繊維)およびその共重合体、芳香族ポリエステル繊維、ポリベンザゾール繊維、メタ型アラミド繊維およびそれらの共重合体、アクリル繊維、アクリロニトリル繊維、ポリイミド繊維、ポリアミド繊維のような有機繊維等をフィブリル化したものが挙げられ、これらのうちの少なくとも1種が用いられる。
また、熱伝導部321、322におけるパルプの含有量は、特に限定されないが、第1樹脂41の0.5〜10質量%程度であるのが好ましく、1〜8質量%程度であるのがより好ましく、1.5〜5質量%程度であるのがさらに好ましい。これにより、機械的特性や熱伝導性がより良好な熱伝導部321、322を実現することができる。
パルプの平均径は、第1繊維51の平均径より小さいことが好ましく、具体的には0.01〜2μm程度であるのがより好ましい。
また、パルプの平均長さは、特に限定されないが、0.1〜100mm程度であるのが好ましく、0.5〜10mm程度であるのがより好ましい。
なお、パルプのフィブリル化の指標としては、BET比表面積が用いられる。パルプのBET比表面積は、特に限定されないが、3〜25m2/g程度であるのが好ましく、5〜20m2/g程度であるのがより好ましい。これにより、パルプ同士あるいはパルプと第1繊維51との絡み合いを十分に確保しつつ、熱伝導部321、322を抄造法によって製造するときには抄造安定性を図ることができる。
・凝集剤
熱伝導部321、322は、必要に応じて凝集剤を含んでいてもよい。
凝集剤としては、例えば、カチオン性高分子凝集剤、アニオン性高分子凝集剤、ノニオン性高分子凝集剤、両性高分子凝集剤等が挙げられ、これらのうちの少なくとも1種が用いられる。
より具体的には、例えば、カチオン性ポリアクリルアミド、アニオン性ポリアクリルアミド、ホフマンポリアクリルアミド、マンニックポリアクリルアミド、両性共重合ポリアクリルアミド、カチオン化澱粉、両性澱粉、ポリエチレンオキサイド等が挙げられる。
また、熱伝導部321、322における凝集剤の含有量は、特に限定されないが、第1樹脂41の0.01〜1.5質量%程度であるのが好ましく、0.05〜1質量%程度であるのがより好ましく、0.1〜0.5質量%程度であるのがさらに好ましい。これにより、熱伝導部321、322を例えば抄造法により製造するとき、脱水処理等を容易かつ安定的に行うことができ、最終的に機械的特性に優れた熱伝導部321、322が得られる。
・その他の添加剤
熱伝導部321、322は、必要に応じてその他の添加剤を含んでいてもよい。
かかる添加剤としては、例えば、充填材、金属粉、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、可塑剤、硬化触媒、硬化助剤、顔料、耐光剤、帯電防止剤、抗菌剤、導電剤、分散剤等が挙げられ、これらのうちの少なくとも1種が用いられる。
このうち、硬化助剤としては、例えば、イミダゾール化合物、三級アミン化合物、有機リン化合物、酸化マグネシウム等が挙げられる。
また、充填材には、例えば、無機充填材、有機充填材等が用いられる。具体的な構成材料としては、例えば、酸化チタン、アルミナ、シリカ、ジルコニア、酸化マグネシウム、酸化カルシウムのような酸化物類、窒化ホウ素、窒化アルミニウム、窒化ケイ素のような窒化物類、硫酸バリウム、硫酸鉄、硫酸銅のような硫化物類、水酸化アルミニウム、水酸化マグネシウムのような水酸化物類、カオリナイト、タルク、天然マイカ、合成マイカのような鉱物類、炭化ケイ素のような炭化物類等が挙げられる。さらに、これらの粉末にカップリング剤処理のような表面処理が施されたものであってもよい。
また、充填材として、金属粉、ガラスビーズ、ミルドカーボン、グラファイト、ポリビニルブチラール、木粉等が用いられてもよい。
また、離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。
また、カップリング剤としては、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤等が挙げられる。
また、難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウムのような金属水酸化物、アンチモン化合物、ハロゲン化合物、リン化合物、窒素化合物、ホウ素化合物等が挙げられる。
・空孔
また、熱伝導部321、322は、内部に空孔を含んでいてもよい。これにより、熱伝導部321、322の密度(比重)を低下させ、軽量化を図ることができる。
空孔は、熱伝導部321、322に内包されている空間のことをいう。この空孔は、その1つ1つまたは複数個が連結したものが系外と隔離されている(第1樹脂41等によって取り囲まれている)空間(独立気泡)であってもよく、系外と連通している空間(連続気泡)であってもよい。
熱伝導部321、322の空孔率は、特に限定されないが、90%以下であるのが好ましく、5%以上85%以下であるのがより好ましい。空孔率を前記範囲内に設定することにより、熱伝導部321、322の軽量化と機械的特性および熱伝導性とをバランスよく両立させることができる。すなわち、空孔率が前記下限値を下回ると、第1樹脂41の組成や第1繊維51の長さ、構成材料等によっては、熱伝導部321、322の軽量化が不十分になるおそれがある。一方、空孔率が前記上限値を上回ると、第1樹脂41の組成や第1繊維51の長さ、構成材料等によっては、熱伝導部321、322の機械的特性や熱伝導性が低下するおそれがある。
なお、熱伝導部321、322の空孔率は、例えば熱伝導部321、322の断面の面積において、空孔が占める面積の割合(空孔の面積率)として求められる。
以上、熱伝導部321、322について説明したが、このような熱伝導部321、322は絶縁部311、312よりも熱伝導性が大きいことが好ましい。この場合、熱伝導部321、322の熱伝導率は、絶縁部311、312の熱伝導率より高いことが好ましく、その差が絶縁部311、312の熱伝導率の10%以上であるのがより好ましく、30%以上であるのがさらに好ましい。これにより、熱伝導部321、322は、十分な熱伝導性を有するものとなる。
また、本実施形態に係る熱伝導部321、322は、それぞれ絶縁部311、312よりも一回り大きく設定されている。また、熱伝導部321は、その下面に開口する凹部を備えており、その凹部には絶縁部311が嵌め込まれている。これにより、熱伝導部321、322によって構造体1の外殻が覆われることとなり、表面全体で温度の均一化を図ることができる。
なお、このような構成は特に限定されず、絶縁部311、312や発熱部2が露出していてもよい。
また、熱伝導部321、322の厚さは、特に限定されないが、それぞれ0.2〜10mm程度であるのが好ましく、0.5〜7mm程度であるのがより好ましい。熱伝導部321、322の厚さが前記範囲内であれば、熱伝導に要する時間が十分に短くなるため、結果的に表面加熱温度の均一化が図られる。
また、熱伝導部321、322の熱伝導率は、20W/mK以上であるのが好ましく、30〜500W/mKであるのがより好ましく、40〜300W/mKであるのがさらに好ましい。これにより、熱伝導に要する時間を十分に短くすることができるので、構造体1の表面加熱温度の均一化を図ることができる。
なお、熱伝導率が前記下限値を下回ると、熱伝導部321、322の厚さによっては、熱伝導に要する時間が長くなるおそれがある。一方、熱伝導率が前記上限値を上回ると、熱伝導が速すぎるため、かえって表面加熱温度の均一性が低下するおそれがある。
なお、熱伝導部321、322の熱伝導率は、レーザーフラッシュ法により測定した面内方向における熱伝導率である。また、測定に用いる試験片としては、例えば、縦10mm×横10mm×厚さ1.5mmのものが挙げられる。
また、熱伝導部321、322(放熱部3)の面内方向の熱拡散率は、厚さ方向の熱拡散率よりも大きいことが好ましい。これにより、熱伝導部321、322の厚さ方向における熱拡散の速さよりも面内方向における熱拡散が速くなる。このため、面内方向における熱の均一化が図られ易くなり、表面加熱温度のさらなる均一化が図られる。
なお、面内方向の熱拡散率は、厚さ方向の熱拡散率の101%以上であるのが好ましく、105〜2000%であるのがより好ましく、110〜1000%であるのがさらに好ましい。熱拡散率の差がこのような範囲内であれば、面内方向の熱拡散率と厚さ方向の熱拡散率とのバランスが最適化されるため、表面加熱温度が特に均一化される。
なお、面内方向の熱拡散率および厚さ方向の熱拡散率は、例えば、株式会社ベテル製、サーモウェーブアナライザー等を用いて測定される。
(絶縁部)
絶縁部311、312は、それぞれ絶縁性を有する部位であれば、その構成は特に限定されないが、本実施形態では、第3樹脂43と第3繊維53とを含む成形体を備える。このような絶縁部311、312は、それぞれ第3繊維53を含むため、この第3繊維53に絶縁性を付与することによって良好な絶縁体として機能する。また、第3樹脂43が第3繊維53で補強されているため、軽量であるにもかかわらず高い機械的強度が得られる。このため、例えば絶縁部311、312を薄い板状にした場合でも、亀裂や欠損等が生じ難く信頼性の高い絶縁部311、312が得られる。
さらに、絶縁部311、312と発熱部2との界面、および、絶縁部311、312と熱伝導部321、322との界面には、繊維同士が互いに絡み合うことに伴う密着力が付与され易くなる。これにより、界面における剥離等が抑制され、さらなる機械的強度の向上が図られる。
また、絶縁部311、312は、絶縁性を有するため、発熱部2と前述した熱伝導部321、322との間を絶縁する。これにより、熱伝導部321、322が導電性を有している場合でも、発熱部2と熱伝導部321、322との間を絶縁し、発熱部2が通電発熱する場合であってもその機能が損なわれるのを防止することができる。
なお、前述したように、熱伝導部321、322では、熱伝導性を高めるべく第1繊維51の構成材料等が適宜選択されているが、その場合、導電性も高くなる傾向がある。したがって、絶縁部311、312を設けることにより、発熱部2の機能を損なうことなく、熱伝導部321、322の熱伝導性を高めることができる。これにより、発熱部2の良好な発熱性と熱伝導部321、322の良好な熱伝導性とを両立し得る構造体1が得られる。
したがって、絶縁部311、312は必要に応じて設けられればよく、例えば熱伝導部321、322が良好な熱伝導性を有する一方、絶縁性も有している場合には省略されてもよい。
このような絶縁部311、312の厚さは、特に限定されないが、0.01〜5mm程度であるのが好ましく、0.05〜3mm程度であるのがより好ましい。これにより、絶縁部311、312の絶縁性を確保しつつ、絶縁部311、312が厚くなり過ぎて構造体1の薄型化が難しくなるのを防止することができる。
なお、絶縁部311、312の厚さとは、発熱部2と熱伝導部321、322とを結ぶ方向における絶縁部311、312の長さのことをいう。
以下、絶縁部311、312について説明するが、以下の説明では熱伝導部321、322との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、絶縁部311、312の構造は、絶縁性を示す構造であれば特に限定されず、例えば樹脂のみの構造であってもよいが、以下の説明では、第3樹脂43と第3繊維53とを含む構造について特に説明する。
・第3樹脂43
第3樹脂43は、絶縁部311、312に成形性や保形性を付与したり、第3繊維53同士の間を結着するバインダーとして機能したりする。したがって、第3樹脂43は、このような機能を有するものであれば特に限定されないが、第1樹脂41として前述した各種樹脂から適宜選択される。
また、第3樹脂43についての特性等は、第1樹脂41についての前述した特性等と同様である。
なお、第3樹脂43は、第1樹脂41と同じであっても、異なっていてもよい。同じである場合、熱伝導部321、322と絶縁部311、312との間で親和性が高くなるため、界面の密着力が高く、機械的強度の高い構造体1が得られる。一方、異なっている場合、例えば絶縁性を最優先にして第3樹脂43を選択することができるので、絶縁性が特に良好な絶縁部311、312が得られる。
・第3繊維53
第3繊維53は、絶縁部311、312の機械的特性を向上させることに寄与する。
このような第3繊維53としては、第1繊維51として前述した各種繊維から第1繊維51よりも絶縁性が大きいという観点に基づいて適宜選択される。これにより、機械的特性を損なうことなく、熱伝導部321、322よりも絶縁性が高い絶縁部311、312が得られる。
特に天然繊維や合成繊維のような樹脂繊維、セラミック繊維およびガラス繊維またはこれらの少なくとも1種を含む繊維が好ましく用いられる。このような繊維は、絶縁性が特に高いため、第3繊維53として有用である。
また、第3繊維53についての特性等は、第1繊維51についての前述した特性等と同様である。
この他、絶縁部311、312は、パルプ、凝集剤、その他の添加剤、空孔等を含んでいてもよい。
なお、絶縁部311、312の熱伝導率は、熱伝導部321、322の熱伝導率の60%以下であるのが好ましく、0.1〜50%であるのがより好ましく、1〜30%であるのがさらに好ましい。絶縁部311、312の熱伝導率が前記範囲内であれば、発熱部2から発生した熱を、絶縁部311、312において一時的に停滞させることができる。これにより、発熱部2から熱伝導部321、322への熱拡散の速度を適度に低下させ、絶縁部311、312全体の温度の均一化を図ることができる。その結果、熱伝導部321、322への熱の供給も均一になり、最終的には構造体1の表面加熱温度のさらなる均一化を図ることができる。
なお、熱伝導率が前記下限値を下回ると、絶縁部311、312の厚さによっても異なるが、熱伝導部321、322への熱伝達に時間がかかり過ぎるおそれがある。一方、熱伝導率が前記上限値を上回ると、絶縁部311、312の厚さによっては、絶縁部311、312において熱の停滞が抑えられるため、構造体1の表面加熱温度の均一化が不十分になるおそれがある。
なお、絶縁部311、312の熱伝導率は、レーザーフラッシュ法により測定した面内方向における熱伝導率である。また、測定に用いる試験片としては、例えば、縦10mm×横10mm×厚さ1.5mmのものが挙げられる。
また、本実施形態に係る絶縁部312は、その上面に設けられた溝3121を備えている。そして、溝3121には後述する発熱部2が埋め込まれている。これにより、発熱部2が固定されるとともに、発熱部2と絶縁部311、312との間が熱的に結合され易くなる。このため、熱伝達性が向上する。加えて、絶縁部311、312は、発熱部2を覆うように設けられている。これにより、発熱部2から発生した熱は、絶縁部311、312を経由することになり、前述したような表面加熱温度の均一化という効果がより確実に得られることとなる。
なお、このような溝3121は、絶縁部311側に設けられていてもよく、絶縁部311と絶縁部312の双方に設けられていてもよい。
(発熱部)
発熱部2は、発熱し得る部位であれば、その構成は特に限定されず、例えばニクロム線のような金属線等であってもよいが、本実施形態では、第2樹脂42と第2繊維52とを含む成形体を備える。このような発熱部2は第2繊維52を含むため、この第2繊維52に発熱性を付与することによって成形体全体が発熱体として機能する。また、第2樹脂42が第2繊維52で補強されているため、軽量であるにもかかわらず高い機械的強度が得られる。このため、例えば発熱部2を細長い線状にした場合でも、断線等が生じ難く信頼性の高い発熱部2が得られる。
図1に示す発熱部2は、線状をなしているとともに、延在方向を反転させながら2次元状に広がっている。すなわち、図1に示す発熱部2の形状は、いわゆる「つづら折れ」になっている。
また、発熱部2の両端部は、それぞれ六角形の環状をなしている。この環の内側には、後述するナット101、102が挿入される。
このような発熱部2は、通電加熱が可能になっており、両端部の間に電圧が印加されることにより、ジュール熱を発生する。
また、発熱部2が第2繊維52を含む成形体を備えていることにより、発熱部2の電気抵抗率を容易に調整することができる。すなわち、発熱部2における第2繊維52の含有量を変えることによって電気抵抗率を調整し、それに伴って発熱量を容易に調整することができる。
さらには、上述したような成形体を備える発熱部2は、第2繊維52の構成材料の選択にあたり、発熱量を優先にして選択することが可能になる。これにより、例えば機械的強度が小さい材料であっても第2繊維52の構成材料として選択することが可能になり、体積が小さくても発熱量の大きい発熱部2を実現することができる。
以下、発熱部2について説明するが、以下の説明では熱伝導部321、322との相違点を中心に説明し、同様の事項についてはその説明を省略する。
・第2樹脂42
第2樹脂42は、発熱部2に成形性や保形性を付与したり、第2繊維52同士の間を結着するバインダーとして機能したりする。したがって、第2樹脂42としては、このような機能を有するものであれば特に限定されないが、第1樹脂41として前述した各種樹脂から適宜選択される。
また、第2樹脂42についての特性等は、第1樹脂41についての前述した特性等と同様である。
なお、第2樹脂42は、第3樹脂43と同じであっても、異なっていてもよい。同じである場合、絶縁部311、312と発熱部2との間で親和性が高くなるため、界面の密着力が高く、機械的強度の高い構造体1が得られる。一方、異なっている場合、例えば絶縁性を最優先にして第2樹脂42を選択することができるので、発熱量が特に良好な発熱部2が得られる。
・第2繊維52
第2繊維52は、発熱部2の機械的特性を向上させるとともに、発熱性を付与する。
このような第2繊維52としては、第1繊維51として前述した各種繊維から適宜選択されるが、特に無機繊維が好ましく用いられ、金属繊維がより好ましく用いられる。無機繊維(金属繊維)は、発熱性を有するとともに、耐熱性が高い。このため、長期にわたって良好な発熱機能を有する発熱部2が得られる。その結果、信頼性の高い構造体1が得られる。
なお、第2繊維52は、互いに異なる2種類以上の繊維が混在したものであってもよい。その場合、例えば、1種類は無機繊維とされ、別の1種類は樹脂繊維(天然繊維または合成繊維のような有機繊維)であるような組み合わせとされる。このような組み合わせでは、発熱性と靭性のような機械的特性とを高度に両立する発熱部2が得られる。
その場合、例えば、第2繊維52における無機繊維の割合が3体積%以上70体積%以下であるのが好ましく、4体積%以上50体積%以下であるのがより好ましく、5体積%以上40体積%以下であるのがさらに好ましい。このような配合比に設定されることにより、発熱性と機械的特性の双方が特に良好な発熱部2が得られる。
また、第2繊維52は、単繊維の状態で添加されていてもよく、複数の単繊維同士を束ねてなる繊維束の状態で添加されていてもよい。
また、第2繊維52の平均長さは、それぞれ特に限定されないが、1mm以上であるのが好ましく、2mm以上であるのがより好ましく、4mm以上であるのがさらに好ましい。第2繊維52の平均長さを前記範囲内に設定することにより、発熱部2の機械的特性および発熱性をそれぞれ十分に高めることができる。特に第2樹脂42の機械的特性が比較的低い場合であっても、第2繊維52によってそれを十分に補うことができる。その結果、機械的特性が特に良好な発熱部2が得られる。また、第2繊維52同士が接触する確率が十分に高くなるため、第2繊維52の延在方向における導電性が特に高くなり、断線に伴う発熱機能の喪失を抑制することができる。
なお、第2繊維52の平均長さの上限値は、特に限定されないが、例えば100mm以下であるのが好ましく、50mm以下であるのがより好ましい。これにより、発熱部2を製造するにあたって第2繊維52を分散媒に分散させるとき、その分散性が良好になる。その結果、最終的に機械的特性に優れた発熱部2が得られる。
なお、第2繊維52の平均長さとは、発熱部2の第2樹脂42を溶解する等して100本以上の第2繊維52を取り出した後、その長さを測定し、平均した値のことをいう。
また、第2繊維52は、長さ20mm以上の長繊維を含んでいてもよい。第2繊維52としてこのような非常に長いものを含めることにより、発熱部2には極めて高い機械的特性が付与される。このため、例えば第1樹脂41として機械的特性が低いものを使用した場合であっても、第1繊維51によってそれを十分に補うことができる。その結果、第1樹脂41として目的とする特性に特化したもの、例えば機械的特性は多少劣るものの難燃性に優れたものを選択することが可能になり、様々な特性を有する熱伝導部321、322が得られる。併せて、発熱部2がより断線し難くなる。このため、発熱性がより良好な発熱部2が得られる。
なお、長繊維の長さは、好ましくは25mm以上とされ、より好ましくは30mm以上とされる。
また、長繊維の長さの上限値は、特に限定されないが、200mm以下であるのが好ましく、150mm以下であるのがより好ましい。これにより、発熱部2を製造するにあたって第2繊維52を分散媒に分散させるとき、その分散性が良好になる。その結果、最終的に機械的特性に優れた発熱部2が得られる。
このような長繊維は、第2繊維52に少しでも含まれていればよいが、第2繊維52のうち10%以上の割合で含まれているのが好ましく、20〜90%の割合で含まれているのがより好ましい。これにより、長繊維によってもたらされる上述したような効果が、より確実に発現することとなる。すなわち、長繊維が支配的に存在することになるため、第2繊維52の機械的特性においても長繊維の影響が支配的になる。その結果、とりわけ機械的特性が高く断線し難い発熱部2を実現することができる。
なお、長繊維の含有量は、発熱部2の第2樹脂42を溶解する等して100本以上の第2繊維52を取り出した後、その長さを測定し、長さが20mm以上である第2繊維52の本数の割合として求められる。
また、第2繊維52の平均径は、特に限定されないが、1〜100μm程度であるのが好ましく、5〜80μm程度であるのがより好ましい。第2繊維52の平均径を前記範囲内に設定することにより、発熱部2の機械的特性および導電性を高めつつ、発熱部2を製造するときの成形性を高めることができる。
なお、第2繊維52の平均径とは、発熱部2の第2樹脂42を溶解する等して100本以上の第2繊維52を取り出した後、その径をそれぞれ測定し、平均した値のことをいう。
また、第2繊維52の径に対する長さの比(長さ/径)は、特に限定されないが、10以上であるのが好ましく、100以上であるのがより好ましい。これにより、第2繊維52が上記のような効果をより確実に発揮する。
なお、第2繊維52には、必要に応じて、カップリング剤処理、界面活性剤処理、紫外線照射処理、電子線照射処理、プラズマ照射処理等の表面処理が施されていてもよい。
このうち、カップリング剤としては、例えば、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジエトキシシランのようなアミノ基含有アルコキシシラン、およびそれらの加水分解物等が挙げられ、これらのうちの少なくとも1種を含むものが用いられる。
発熱部2における第2繊維52の含有量は、特に限定されないが、第2樹脂42の1〜300体積%程度であるのが好ましく、5〜150体積%程度であるのがより好ましく、10〜120体積%程度であるのがさらに好ましい。第2繊維52の含有量を前記範囲内に設定することにより、第2樹脂42と第2繊維52との量的なバランスが最適化されるため、発熱部2の機械的特性を特に高めることができる。すなわち、第2繊維52の含有量が前記下限値を下回ると、第2繊維52が相対的に不足するため、第2樹脂42の組成や第2繊維52の長さ、構成材料等によっては、発熱部2の機械的特性および発熱性が低下するおそれがある。一方、第2繊維52が前記上限値を上回ると、第2樹脂42の含有量が相対的に不足するため、第2樹脂42の組成や第2繊維52の長さ、構成材料等によっては、発熱部2の機械的特性が低下するおそれがある。
なお、図1に示す第2繊維52の形状は、一例であり、図示したような直線状には限定されず、いかなる形状、例えばらせん状、蛇行形状等であってもよい。
また、第2繊維52は、発熱部2中においていかなる方向に配向していてもよい。例えば、発熱部2の延在方向と平行に配向した第2繊維52が含まれ、かつ第2繊維52同士が接触している場合には、発熱部2の延在方向において第2繊維52が持つ発熱性が顕在化し易い。また、発熱部2の断線等の発生確率を下げることもできる。
この他、発熱部2は、パルプ、凝集剤、その他の添加剤、空孔等を含んでいてもよい。
また、構造体1は、2つのナット101、102を備えている。これらのナット101、102は、絶縁部312および熱伝導部322をそれぞれ貫通している。また、ナット101は、発熱部2の一端と電気的に接触しており、ナット102は、発熱部2の他端と電気的に接触している。これにより、ナット101、102は、発熱部2と電気的に接続され、外部から電圧を印加するための外部端子となる。このため、ナット101、102を介し、発熱部2に対して容易に通電することができる。
以上、熱伝導部321、322、絶縁部311、312、および発熱部2を備える構造体1について説明したが、この構造体1は、様々な用途に用いられる。この用途としては、例えば、ホットカーペット、ヒーターのような暖房器具、床材、壁材、天井材のような建物用内装材、航空機用内装材(例えばキャビン天井パネル、キャビン内装パネル、キャビン床面、コックピット天井パネル、コックピット内装パネル、コックピット床面、手荷物ロッカー壁、収納ロッカー壁、ドア内張、化粧室用内装材等)、自動車用内装材、船舶用内装材、鉄道用内装材、宇宙船用内装材のような輸送機器用内装材等が挙げられる。
(構造体の物性)
ここで、構造体1の曲げ強度は、特に限定されないが、50〜700MPa程度であるのが好ましく、70〜650MPa程度であるのがより好ましく、100〜600MPa程度であるのがさらに好ましい。これにより、十分に機械的特性が高い構造体1が得られる。
なお、構造体1の曲げ強度は、室温(25℃)において、ISO178:2001に規定されている試験方法に準じて測定される。
また、構造体1の比強度は、50〜700MPa・(g/cm3)−1とされる。これにより、軽量化と機械的特性の向上との両立が図られた構造体が得られる。なお、比強度が前記下限値を下回ると、重い割には曲げ強度が小さいといえるので、例えば輸送機器用内装材のように、軽量化と高い機械的特性の双方を求められる分野の構造材料としては不適当になるおそれがある。一方、比強度が前記上限値を上回ると、軽い割には曲げ強度が大きいといえるが、その他の物性とのバランスによっては耐衝撃性が低下したり、製造条件によるバラツキが出やすくなるため、製造歩留まりを高め難くなったりするおそれがある。
また、構造体1の比強度は、100〜700MPa・(g/cm3)−1程度であるのがより好ましく、150〜650MPa・(g/cm3)−1程度であるのがさらに好ましい。
なお、構造体1の比強度は、曲げ強度(単位:MPa)を密度(単位:g/cm3)で除することによって求められる。
また、構造体1の比弾性率は、特に限定されないが、2〜40GPa・(g/cm3)−1程度であるのが好ましく、3〜37GPa・(g/cm3)−1程度であるのがより好ましく、4〜35GPa・(g/cm3)−1程度であるのがさらに好ましい。これにより、軽量化と機械的特性の向上との両立が図られた構造体1が得られる。
なお、構造体1の比弾性率は、曲げ弾性率(単位:GPa)を密度(単位:g/cm3)で除することによって求められる。そして、曲げ弾性率は、室温(25℃)において、ISO178:2001に規定されている試験方法に準じて測定される。
また、構造体1の密度は、特に限定されないが、0.05〜1.6g/cm3程度であるのが好ましく、0.1〜1.55g/cm3程度であるのがより好ましく、0.2〜1.5g/cm3程度であるのがさらに好ましい。これにより、軽量化と機械的特性の向上とを両立させた構造体1が得られる。
なお、密度は、JIS K 7112:1999にA法として規定されている試験方法に準じて測定される。
<内装材>
次に、本発明の内装材の実施形態について説明する。
図5は、本発明の内装材の実施形態を模式的に示す斜視図である。
図5に示す内装材100は、航空機用の内装材であって、窓となる開口部110が形成された構造体1を備える。これにより、軽量化と高い機械的特性とを両立させた内装材100が実現される。また、図示しない発熱部を備えているため、内装材100は空調システムの一部として用いられる。このような内装材100は、表面加熱温度の均一化が図られていることによって、搭乗者に快適な温度環境を提供することが可能になる。また、空気中の水蒸気を減少させたり、空気を汚染させたりしないため、かかる観点からも快適な環境を維持し得る空調システムを構築することができる。
<構造体の製造方法>
構造体1は、いかなる方法で製造されたものであってもよいが、後述するような抄造体を加圧、成形してなる成形体であるのが好ましい。抄造体は、繊維を含む分散液を抄きとることによって得られる、繊維が分散した複合体である。このような抄造体によれば、比較的長い繊維同士が絡み合っているため、機械的強度をより高め易い。また、繊維の構成材料を適宜選択することによって、繊維由来の物性が付与された成形体を容易に製造することができる。
なお、繊維を含む複合体としては、抄造体以外(例えば、繊維フィラーを含む組成物の射出成形体、押出成形体等)のものが用いられてもよいが、特に長い繊維を均一に分散させた複合体が実現可能であるという観点からも、抄造体が好ましく用いられる。
図6〜図10は、それぞれ図4に示す構造体1を製造する方法の一例(抄造法)を説明するための図である。なお、図7〜図10では、説明の便宜上、図4に示す構造体の一部を製造する方法を例に説明している。
構造体1の製造方法は、第2樹脂42と第2繊維52とを含む第2分散液72を調製する工程と、第2分散液72から第2素形体82を抄造する工程と、第3樹脂43と第3繊維53とを含む第3分散液73を調製する工程と、第3分散液73から第3素形体83を抄造する工程と、第1樹脂41と第1繊維51とを含む第1分散液71を調製する工程と、第1分散液71から第1素形体81を抄造する工程と、第1素形体81、第2素形体82および第3素形体83を重ね合わせた状態で加熱しつつ加圧成形することにより、構造体1を得る工程と、を有する。以下、各工程について順次説明する。
[1]まず、図6に示すように、第2樹脂42と第2繊維52とこれらを分散させる分散媒92とを含む第2分散液72を調製する。調製した第2分散液72は、十分に撹拌、混合される。なお、第2分散液72には、必要に応じて、前述した凝集剤やパルプ、その他の添加剤等が添加されていてもよい。
本工程における第2樹脂42の形状は、特に限定されず、例えば、略球形粒子状、薄膜粒子状等の粒子状(粉状)または繊維状とされる。これにより、後述する抄造において、第2繊維52とともに第2樹脂42を抄きとることができる。その結果、第2樹脂42と第2繊維52とを絡み合わせることができ、強固な発熱部2を製造可能な第2素形体82が得られる。
なお、第2樹脂42が熱硬化性樹脂を含む場合、その熱硬化性樹脂は半硬化状態であることが好ましい。半硬化の熱硬化性樹脂は、第2素形体82を製造後、加熱、加圧によって所望の形状に成形されて硬化に至る。これにより、熱硬化性樹脂の特性を生かした発熱部2が得られることとなる。
また、分散媒92としては、第2樹脂42や第2繊維52を溶解させ難く、かつ、第2樹脂42や第2繊維52を分散させる過程において揮発し難いものが好ましく用いられる。また、脱溶媒させ易いものが好ましく用いられる。かかる観点から、分散媒92の沸点は50〜200℃程度であるのが好ましい。
分散媒92としては、例えば、水、エタノール、1−プロパノール、1−ブタノール、エチレングリコールのようなアルコール類、アセトン、メチルエチルケトン、2−ヘプタノン、シクロヘキサノンのようなケトン類、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸メチルのようなエステル類、テトラヒドロフラン、イソプロピルエーテル、ジオキサン、フルフラールのようなエーテル類等が挙げられ、これらのうちの少なくとも1種が用いられる。
これらの中でも、水が好ましく用いられる。水は、入手が容易であり、環境負荷が低く安全性も高いことから、分散媒92として有用である。
また、第2分散液72における分散媒92の含有量は、特に限定されないが、固形分総量に対して10質量倍以上1000質量倍以下程度であるのが好ましい。
また、発熱部2に空孔を形成する場合には、第2分散液72に熱膨張性を有するマイクロカプセルを添加するようにしてもよい。このマイクロカプセルは、加熱されたときに膨張し、空孔となる。
この熱膨張性を有するマイクロカプセルとは、揮発性の液体発泡剤を、ガスバリア性を有する熱可塑性シェルポリマーによりマイクロカプセル化した粒子である。このようなマイクロカプセルは、次のようなメカニズムにより、発泡剤として機能するものである。マイクロカプセルが加熱されると、カプセルの外殻が軟化しつつ、カプセルに内包した液体発泡剤が気化し圧力が増加する。その結果、カプセルが膨張し、中空球状粒子が形成される。この中空球状粒子は、加圧成形後においても残存するため、結果的に空孔の形成に寄与する。
液体発泡剤としては、例えば、イソペンタン、イソブタン、イソプロパン等といった低沸点の炭化水素が挙げられる。
熱可塑性シェルポリマーとしては、例えば、ポリアクリロニトリル、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニリデン−メチルメタクリレート共重合体、塩化ビニリデン−エチルメタクリレート、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−エチルメタクリレート等が挙げられ、これらを単独で用いても2種類以上を組み合わせて用いるようにしてもよい。
マイクロカプセルとしては、例えば、エクスパンセル(日本フェライト社製)、マイクロスフェアーF50、マイクロスフェアーF60(以上、松本油脂製薬社製)、アドバンセルEM(積水化学工業社製)といった市販品を用いることができる。
マイクロカプセルの添加量は、第2樹脂42の0.05〜10質量%程度とするのが好ましく、0.1〜5質量%程度とするのがより好ましい。
[2]続いて、図7(a)に示すように、調製した第2分散液72から第2素形体82を抄造する。これにより、発熱部2を製造するための第2素形体82を得る(図7(b)参照)。
具体的には、まず、図7(a)に示すように、底面にフィルター712が設けられた容器70を用意する。
次に、容器70内に第2分散液72を供給する。そして、第2分散液72中の分散媒92を、フィルター712を介して容器70の底面から外部へ排出する。これにより、第2分散液72中の分散質である第2樹脂42と第2繊維52とがフィルター712上に残存する(抄造)。この残存物を乾燥させることにより、第2素形体82を得る。
このとき、フィルター712の形状を適宜選択することにより、所望の形状を有する第2素形体82を製造することができる。ここでは、発熱部2の形状に対応した細長い凹部712aを備えた形状に成形されたフィルター712を用いる(図7(a)参照)。また、必要に応じて、フィルター712のうち、凹部712a以外の部位にマスク(図示せず)を配置するようにしてもよい。これにより、この部位のフィルター712が塞がれるため、必要としない部位での抄造を防止することができる。これにより、第2素形体82の形状をより正確に規定することができる。
このようにして得られた第2素形体82は、分散媒92を含んでいても、含んでいなくてもよい。
また、第2素形体82をさらに目的とする形状に切断してもよい。なお、この切断を前提とする場合には、フィルターとして汎用的な形状(例えば平板状)のものを使用するようにしてもよい。
また、第2素形体82の形成後、必要に応じて、プレス型同士の間に第2素形体82を配置し、プレス型間に設けられたキャビティーによって第2素形体82を圧縮する。これにより、第2素形体82に残存していた分散媒92を十分に排出し、第2素形体82を乾燥させることができる。
なお、必要に応じて、さらに乾燥機等で乾燥させるようにしてもよい。
第2素形体82における第2繊維52の含有量は、特に限定されないが、第2樹脂42の20〜300体積%程度であるのが好ましく、30〜150体積%程度であるのがより好ましく、40〜90体積%程度であるのがさらに好ましい。第2繊維52の含有量を前記範囲内に設定することにより、第2樹脂42と第2繊維52との量的なバランスが最適化されるため、第2素形体82の保形性を高めつつ、機械的特性および導電性が高い発熱部2が得られる。
[3]次に、図8(a)に示すように、第3樹脂43と第3繊維53とこれらを分散させる分散媒93とを含む第3分散液73を調製する。調製した第3分散液73は、十分に撹拌、混合される。なお、第3分散液73には、必要に応じて、前述した凝集剤やパルプ、その他の添加剤等が添加されていてもよい。
また、第3分散液73の各種特性等は、第2分散液72と同様に設定可能である。
[4]続いて、図8(a)に示すように、調製した第3分散液73から第3素形体83を抄造する。これにより、絶縁部311、312を製造するための第3素形体83を得る(図8(b)参照)。
具体的には、まず、図8(a)に示すように、底面にフィルター713が設けられた容器70を用意する。
次に、容器70内に第3分散液73を供給する。そして、第3分散液73中の分散媒93を、フィルター713を介して容器70の底面から外部へ排出する。これにより、第3分散液73中の分散質である第3樹脂43と第3繊維53とがフィルター713上に残存する(抄造)。この残存物を乾燥させることにより、第3素形体83を得る。
このとき、フィルター713の形状を適宜選択することにより、所望の形状を有する第3素形体83を製造することができる。ここでは、一例として、絶縁部311の形状に対応した平坦なフィルター713を用いる(図8(a)参照)。また、必要に応じて、フィルター713のうち、抄造させない部位にマスク(図示せず)を配置するようにしてもよい。これにより、この部位のフィルター713が塞がれるため、必要としない部位での抄造を防止することができる。これにより、第3素形体83の形状をより正確に規定することができる。
このようにして得られた第3素形体83は、分散媒93を含んでいても、含んでいなくてもよい。
また、第3素形体83をさらに目的とする形状に切断してもよい。なお、この切断を前提とする場合には、フィルターとして汎用的な形状(例えば平板状)のものを使用するようにしてもよい。
以後、第2素形体82の場合と同様にして乾燥させる。
[5]次に、図9(a)に示すように、第1樹脂41と第1繊維51とこれらを分散させる分散媒91とを含む第1分散液71を調製する。調製した第1分散液71は、十分に撹拌、混合される。なお、第1分散液71には、必要に応じて、前述した凝集剤やパルプ、その他の添加剤等が添加されていてもよい。
また、第1分散液71の各種特性等は、第2分散液72と同様に設定可能である。
[6]続いて、図9(a)に示すように、調製した第1分散液71から第1素形体81を抄造する。これにより、熱伝導部321、322を製造するための第1素形体81を得る(図9(b)参照)。
具体的には、まず、図9(a)に示すように、底面にフィルター711が設けられた容器70を用意する。
次に、容器70内に第1分散液71を供給する。そして、第1分散液71中の分散媒91を、フィルター711を介して容器70の底面から外部へ排出する。これにより、第1分散液71中の分散質である第1樹脂41と第1繊維51とがフィルター711上に残存する(抄造)。この残存物を乾燥させることにより、第1素形体81を得る。
このとき、フィルター711の形状を適宜選択することにより、所望の形状を有する第1素形体81を製造することができる。ここでは、一例として、熱伝導部321の形状に対応した平坦なフィルター711を用いる(図9(a)参照)。
このようにして得られた第1素形体81は、分散媒91を含んでいても、含んでいなくてもよい。
また、第1素形体81をさらに目的とする形状に切断してもよい。なお、この切断を前提とする場合には、フィルターとして汎用的な形状(例えば平板状)のものを使用するようにしてもよい。
以後、第2素形体82の場合と同様にして乾燥させる。
[7]次に、図10に示すように、第2素形体82を挟んで2枚の第3素形体83を積層する。続いて、この積層体を挟んで2枚の第1素形体81を積層し、積層体84を得る。なお、この積層体84には、図示しないナット101、102(図1参照)も配置される。
次に、これらの積層体を、成形型901と成形型902との間に配置する。そして、成形型901と成形型902との間に設けられたキャビティーによって積層体84を加圧成形する。これにより、積層体84中の第1樹脂41、第2樹脂42および第3樹脂43のうちの少なくとも一部を溶融させ、その後固化(硬化)させることによって構造体1が得られる。
具体的には、成形型901、902同士の間に設けられたキャビティーによって積層体84を加圧成形するが、このとき、積層体84は同時に加熱されるため、第1樹脂41、第2樹脂42および第3樹脂43の少なくとも一部が溶融し、第1繊維51、第2繊維52および第3繊維53の間に流れ込み、これらを結着する。その後、第1樹脂41、第2樹脂42および第3樹脂43が硬化することによって、構造体1が得られる。
このような加圧成形を行うことにより、発熱部2を内包する一体構造であって寸法精度の高い構造体1が得られる。このため、内装材等に好適な構造体1が得られる。
加圧成形における加熱温度は、第1樹脂41、第2樹脂42および第3樹脂43の組成等に応じて適宜設定されるが、一例として150〜350℃程度であるのが好ましく、160〜300℃程度であるのがより好ましい。
また、このときの加熱時間は、加熱温度に応じて適宜設定されるが、1〜180分程度であるのが好ましく、5〜60分程度であるのがより好ましい。
また、このときの加圧力は、加熱温度や加熱時間に応じて適宜設定されるが、0.05〜100MPa程度であるのが好ましく、0.1〜90MPa程度であるのがより好ましく、0.2〜80MPa程度であるのがさらに好ましい。
なお、本工程における条件を適宜変更することにより、構造体1の空孔率を調整することが可能である。例えば、加熱温度を低くしたり、加熱時間を短くしたり、加圧力を小さくしたりしたときには、比較的空孔率の大きい構造体1を得ることができる。一方、加熱温度を高くしたり、加熱時間を長くしたり、加圧力を大きくしたりしたときには、比較的空孔率の小さい構造体1を得ることができる。
また、上記製造方法の工程順序は適宜入れ替わっていてもよい。例えば、上記のように第1素形体81、第2素形体82および第3素形体83を個別に製造する場合、その製造順序は特に限定されない。
以上、本発明の構造体および内装材を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
例えば、本発明の構造体および内装材は、前記実施形態に任意の要素が付加されたものであってもよい。
次に、本発明の具体的実施例について説明する。
1.構造体の製造
(実施例1)
[1]まず、以下の原料を水に加え、ディスパーザーで20分間撹拌した。これにより、固形分濃度0.6質量%の第1分散液を得た。なお、各原料の詳細、配合比は表1に示す通りである。
・レゾール型フェノール樹脂(住友ベークライト株式会社製、PR−51723)
・炭素繊維(三菱ケミカル株式会社製、ピッチ系炭素繊維、平均長さ6mm、平均径11μm)
・黒鉛粉末(昭和電工株式会社製、UF−G30、平均径10μm)
・アラミドパルプ(デュポン社製、パラアラミドパルプ)
[2]次に、得られた第1分散液に、あらかじめ水に溶解させた凝集剤(ポリエチレンオキシド、分子量1000000)を、上述した固形分に対して0.2質量%の割合で添加し、固形分を凝集させた。
[3]次に、第1分散液を、30メッシュの金属網(スクリーン)でろ過し、凝集物を圧力3MPaで脱水プレスして水を除去した。
次に、脱水した凝集物を、70℃で3時間乾燥させて、熱伝導部を形成するための第1素形体を得た。
[4]次に、以下の原料を水に加え、ディスパーザーで20分間撹拌した。これにより、固形分濃度0.6質量%の第2分散液を得た。なお、各原料の詳細、配合比は表1に示す通りである。
・レゾール型フェノール樹脂(住友ベークライト株式会社製、PR−51723)
・アラミド繊維(帝人株式会社製、T32PNW、平均長さ3mm、平均径12μm)
・ステンレス鋼繊維(日本精線株式会社製、SUS316L、平均長さ5mm、平均径10μm)
・アラミドパルプ(デュポン社製、パラアラミドパルプ)
[5]次に、得られた第2分散液に、あらかじめ水に溶解させた凝集剤(ポリエチレンオキシド、分子量1000000)を、上述した固形分に対して0.2質量%の割合で添加し、固形分を凝集させた。
[6]次に、第2分散液を、30メッシュの金属網(スクリーン)でろ過し、凝集物を圧力3MPaで脱水プレスして水を除去した。
次に、脱水した凝集物を、70℃で3時間乾燥させて、発熱部を形成するための第2素形体を得た。
[7]次に、以下の原料を水に加え、ディスパーザーで20分間撹拌した。これにより、固形分濃度0.6質量%の第3分散液を得た。なお、各原料の詳細、配合比は表1に示す通りである。
・レゾール型フェノール樹脂(住友ベークライト株式会社製、PR−51723)
・アラミド繊維(帝人株式会社製、品番T32PNW、平均長さ3mm、平均径12μm)
・アラミドパルプ(デュポン社製、パラアラミドパルプ)
[8]次に、得られた第3分散液に、あらかじめ水に溶解させた凝集剤(ポリエチレンオキシド、分子量1000000)を、上述した固形分に対して0.2質量%の割合で添加し、固形分を凝集させた。
[9]次に、第3分散液を、30メッシュの金属網(スクリーン)でろ過し、凝集物を圧力3MPaで脱水プレスして水を除去した。
次に、脱水した凝集物を、70℃で3時間乾燥させて、絶縁部を形成するための第3素形体を得た。
[10]次に、成形型のキャビティー内に、第1素形体、第3素形体、第2素形体、第3素形体および第1素形体をこの順で積層してなる積層体を配置した。また、このとき、第2素形体と接触するように金属ナットを埋め込んだ。
次に、成形型を加熱しつつ、積層体を加圧成形した。このときの加熱温度を180℃、加圧力を40MPa、加圧時間を10分間とした。
以上により、発熱部、2つの絶縁部および2つの熱伝導部を含む構造体(図4参照)を得た。なお、この構造体における発熱部の厚さは0.5mm、絶縁部の厚さは1mm、熱伝導部の厚さは1mmであった。また、構造体の平面視形状は、縦10cm×横10cmの正方形であった。
(実施例2)
実施例1の[1]〜[3]の工程に代えて、以下の[a]〜[c]の工程を経て製造した第1素形体を用いるようにした以外は、実施例1と同様にして構造体を得た。
[a]まず、以下の原料を水に加え、ディスパーザーで20分間撹拌した。これにより、固形分濃度0.6質量%の分散液を得た。なお、各原料の詳細、配合比は表1に示す通りである。
・レゾール型フェノール樹脂(住友ベークライト株式会社製、PR−51723)
・エポキシ樹脂(三菱ケミカル株式会社製、YX1002)
・アラミドパルプ(デュポン社製、パラアラミドパルプ)
・窒化ホウ素粉末(JFEスチール株式会社製、HP−40、平均径7μm)
・PBO繊維(東洋紡株式会社製、ZYLON−HM、平均径10μm)
・増粘剤(クニミネ工業株式会社製、スメクトン)
[b]次に、得られた分散液に、あらかじめ水に溶解させた凝集剤(ポリエチレンオキシド、分子量1000000)を、上述した固形分に対して0.2質量%の割合で添加し、固形分を凝集させた。
[c]次に、この分散液を、30メッシュの金属網(スクリーン)でろ過し、凝集物を圧力3MPaで脱水プレスして水を除去した。
次に、脱水した凝集物を、70℃で3時間乾燥させて、第1素形体を得た。
(実施例3)
第3素形体の製造を省略した以外は、実施例2と同様にして構造体を得た。なお、本実施例で得られた構造体は、発熱部と熱伝導部(放熱部)とを含むものである。すなわち、本実施例で得られた構造体は、熱伝導部が絶縁性を有していることから、実施例2の構造体から絶縁部を省略してなるものに、ほぼ相当する。
(実施例4〜7)
第1〜第3素形体の構成を表1に示すようにした以外は、実施例1と同様にして構造体を得た。
(比較例1)
第1素形体の製造を省略した以外は、実施例1と同様にして構造体を得た。なお、本比較例で得られた構造体は、発熱部と絶縁部とを含むものである。すなわち、本比較例で得られた構造体は、実施例1の構造体から熱伝導部を省略してなるものに、ほぼ相当する。
(比較例2)
第1素形体の構成を表1に示すように変更した以外は、実施例1と同様にして構造体を得た。なお、本比較例で得られた構造体では、熱伝導部に相当する部位が第1繊維を含んでいない。
2.構造体の評価
2.1 表面加熱温度の均一性の評価
各実施例および各比較例の構造体の発熱部に20〜22Wとなるように電力を調整しながら通電し、発熱させた。
次いで、赤外線サーモグラフィーを用いて、構造体の表面の温度分布を観測した。
次いで、構造体の表面の中央部(中心から80mm角の範囲)における温度分布を測定した。そして、温度分布の標準偏差を算出し比較を行った。
<温度差の評価基準>
◎:標準偏差が5未満である
○:標準偏差が5以上8未満である
△:標準偏差が8以上10未満である
×:標準偏差が10以上である
評価結果を表1に示す。
2.2 曲げ強度の評価
各実施例および各比較例の構造体について、ISO178:2001に準拠した方法により、曲げ強度を25℃において測定した。
次いで、測定した曲げ強度を、以下の評価基準に照らして評価した。
<曲げ強度の評価基準>
◎:曲げ強度が200MPa以上である
○:曲げ強度が100MPa以上200MPa未満である
△:曲げ強度が50MPa以上100MPa未満である
×:曲げ強度が50MPa未満である
評価結果を表1に示す。
表1から明らかなように、各実施例の構造体では、機械的特性が良好で、かつ、表面加熱温度の温度差が少なく抑えられていた。このことは、図11に示す温度分布の状況からも認められる。図11(b)では、発熱部の形状に応じた淡色部が認められるのに対し、図11(a)では、淡色部が全体に広がっている様子が認められることから、温度分布が均一になっていることがわかる。
よって、本発明によれば、表面加熱温度の均一化がより図られた構造体が得られることが明らかとなった。