WO2018052011A1 - セルフリーdnaの回収方法 - Google Patents

セルフリーdnaの回収方法 Download PDF

Info

Publication number
WO2018052011A1
WO2018052011A1 PCT/JP2017/033011 JP2017033011W WO2018052011A1 WO 2018052011 A1 WO2018052011 A1 WO 2018052011A1 JP 2017033011 W JP2017033011 W JP 2017033011W WO 2018052011 A1 WO2018052011 A1 WO 2018052011A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
free dna
cancer
polymer
aluminum oxide
Prior art date
Application number
PCT/JP2017/033011
Other languages
English (en)
French (fr)
Inventor
舞 中川
翔太 関口
裕子 須藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP17850912.1A priority Critical patent/EP3514233B1/en
Priority to KR1020197006101A priority patent/KR102406951B1/ko
Priority to CA3035881A priority patent/CA3035881A1/en
Priority to US16/331,777 priority patent/US20190203200A1/en
Priority to CN201780054556.0A priority patent/CN109689869B/zh
Priority to JP2017553271A priority patent/JP6996298B2/ja
Publication of WO2018052011A1 publication Critical patent/WO2018052011A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/30Characterised by physical treatment
    • C12Q2523/308Adsorption or desorption
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Definitions

  • the present invention relates to a method for recovering cell-free DNA.
  • cell-free DNA has attracted particular attention among nucleic acids, and research directly linked to clinical practice, such as determining the presence or absence of effects on therapeutic drugs by analyzing cancer-specific gene mutations present in tumor-derived cell-free DNA Has been actively conducted.
  • erlotinib is approved for lung cancer patients with EGFR mutations, vemurafenib for skin cancer patients with BRAF gene mutations, and lucaparib for ovarian cancer patients with BRCA mutations.
  • EGFR mutations vemurafenib for skin cancer patients with BRAF gene mutations
  • lucaparib for ovarian cancer patients with BRCA mutations.
  • the effects of targeted therapeutics for these gene mutations are common across cancer types.
  • the therapeutic drug Darafenib for the V600 mutation of the BRAF gene is used for skin cancer and non-small cell lung cancer. Recommended for both patients.
  • Patent Document 7 describes a method for detecting cancer based on the amount of cell-free DNA recovered by a silica gel membrane.
  • cell-free tumor DNA derived from tumor cells having a frequency of only about 0.1% to several percent, and a technique for recovering cell-free DNA in a high yield is required.
  • nucleic acids typically used include phenol / chloroform extraction, ethanol precipitation, and nucleic acid adsorption on silica.
  • the most versatile method is the boom method described in Patent Document 1 in which nucleic acid is adsorbed and eluted by a metal oxide containing silica. This method is characterized in that the nucleic acid can be concentrated simultaneously with the recovery of the nucleic acid from the silica adsorbed with the nucleic acid by centrifugation.
  • Patent Document 2 describes a technique for adsorbing cell-free DNA to silica based on the boom method. According to this, when phenol / chloroform extraction is performed under acidic conditions, RNA is separated into an aqueous phase and DNA is separated into a chloroform phase, and when neutral conditions are performed, RNA and DNA are distributed into the aqueous phase. That is, the nucleic acid to be obtained can be selectively extracted by changing the conditions of the extraction solution.
  • Patent Document 3 describes that the adsorptivity of a nucleic acid having a base length of 300 base pairs to 1000 base pairs is inferior to that of a nucleic acid having a shorter base length. It is expected that the method using silica is not suitable for collecting short cell-free DNA.
  • Patent Documents 4 and 5 do not describe cell-free DNA, but describe a nucleic acid recovery method that does not use an organic solvent.
  • Patent Document 4 describes a method of efficiently recovering nucleic acid by adsorbing it to alpha aluminum oxide particles, zirconia particles, titania particles and the like.
  • Patent Document 5 describes a method for adsorbing and recovering a nucleic acid using the principle of ion exchange chromatography, and shows that aluminum oxide can be used as an anion exchange material.
  • Patent Document 6 describes that depending on the solution in which the nucleic acid is dissolved, the nucleic acid can be firmly bound to alpha aluminum oxide and gamma aluminum oxide, or conversely, the binding can be prevented. Moreover, it is described that the bound nucleic acid is hardly eluted even after repeated washing.
  • the present inventors examined a method for recovering cell-free DNA using aluminum oxide in order to recover cell-free DNA with high yield. In examining the recovery method, it was investigated whether cell-free DNA could be recovered by the nucleic acid recovery method using aluminum oxide described in Patent Documents 4 and 5 above. However, as in Comparative Example 1 described later, cell-free DNA could not be recovered by these methods.
  • An object of the present invention is to establish a method for recovering cell-free DNA with high yield using aluminum oxide.
  • the present inventors have found that cell-free DNA can be efficiently recovered by adsorbing a water-soluble neutral polymer on the surface of aluminum oxide.
  • the configurations of the present invention are the following (1) to (9).
  • a method for recovering cell-free DNA from a body fluid sample comprising the following steps: Step a) A step of mixing the body fluid sample with a carrier of aluminum oxide having a water-soluble neutral polymer adsorbed on the surface, and adsorbing cell-free DNA to the carrier, Step b) A step of separating the carrier adsorbed with the cell-free DNA from the mixture mixed in step a), and a step c) adding an eluate to the carrier adsorbed with the cell-free DNA separated in step b). Recovering free DNA; A method for recovering cell-free DNA.
  • a method for detecting a genetic mutation comprising: recovering cell-free DNA from a body fluid sample of a subject, and detecting a cancer-specific gene mutation from the recovered cell-free DNA.
  • a method for detecting cancer by comparing the amount of cell-free DNA derived from a subject with the amount of cell-free DNA derived from a specimen not suffering from cancer wherein any one of (1) to (7)
  • a step of recovering cell-free DNA from a body fluid sample of a subject and a specimen not afflicted with cancer using the method for recovering cell-free DNA described in 1. and the amount of cell-free DNA derived from the recovered subject and cancer A method for detecting cancer, comprising a step of detecting cancer by comparing the amount of cell-free DNA derived from an unaffected specimen.
  • the cell-free DNA recovery method of the present invention makes it possible to recover cell-free DNA in a high yield from a small amount of sample by a simple method. Further, according to the recovery method of the present invention, cell-free DNA can be recovered with a high yield, so that the detection sensitivity of a gene mutation specific to cancer and the detection sensitivity of cancer are improved.
  • the cell-free DNA recovered by the cell-free DNA recovery method of the present invention is a general term for cell-free normal DNA derived from normal cells and cell-free tumor DNA (ctDNA) derived from tumor cells leaked into body fluid. In the specification, it is described as cell-free DNA.
  • the base length of cell-free DNA is generally about 166 bp corresponding to one unit of histone, but cell-free DNA with a characteristic base length is detected in patients parasitized with cancer or parasites There is. For example, in a sample of a cancer patient, the base does not proceed to 1 unit of histone, and bases such as 332 bp (166 bp ⁇ 2), 498 bp (166 bp ⁇ 3), and 664 bp (166 bp ⁇ 4) in which several units of 166 bp are connected. Long cell-free DNA is also included.
  • cell-free DNA with a base length such as 205 bp in serum is used, and in the case of a patient parasitized with Leishmania, a cell-free DNA with a base length of 70 bp or the like in urine. (Trends in Parasitology, May 2016, Vo. 32, No. 5).
  • the base length of cell-free DNA recovered in the present invention is not particularly limited, but cell-free DNA of 500 bp or less can be efficiently recovered using the method of the present invention.
  • the body fluid sample used in the present invention is not particularly limited as long as it is an arbitrary body fluid sample containing cell-free DNA.
  • whole blood, plasma, serum, urine, saliva and the like can be used, and preferably blood Ginger or serum.
  • the body fluid sample can be used as it is, but it can also be treated with a protein denaturant in order to recover cell-free DNA with higher yield.
  • the protein denaturing agent used in the present invention is not particularly limited.
  • surfactants such as SDS, sarkosyl and CTAB
  • protein denaturing enzymes such as Proteinase K which is a kind of serine protease and has a wide cleavage specificity
  • guanidinium chloride guanidine thiocyanate Acid salts
  • chaotropic salts such as urea
  • other mercaptoethanols can be preferably used.
  • a commercially available buffer solution containing a protein denaturant can also be preferably used.
  • an RLT buffer (manufactured by Qiagen Co., Ltd.) containing guanidine thiocyanate and the like is preferably used as a protein denaturant for chaotropic salts. It can.
  • these protein denaturing agents chaotropic salts or protein denaturing enzymes are particularly preferable.
  • protein denaturant only one type of protein denaturant may be used, or a plurality of types may be used in combination.
  • combinations of protein denaturants include the following treatments. For example, after adding 1% SDS to a body fluid sample, Proteinase K can be added and heated at 60 ° C. for 20 minutes. In addition, after adding 4 M or more of guanidinium chloride, guanidine thiocyanate, or urea to the body fluid sample, sarkosyl is added to a final concentration of 0.5% or higher, or mercaptoethanol is added to a final concentration of 50 mM or higher. Can be added.
  • an inhibitor of an enzyme that degrades nucleic acid may be added in order to suppress degradation of cell-free DNA contained in the body fluid sample.
  • an enzyme inhibitor for example, EDTA can be added to a body fluid sample at a final concentration of 1 mM or less.
  • RNase inhibitor registered trademark
  • the body fluid sample may be diluted as necessary.
  • the solution to dilute is not specifically limited, It is preferable to use the solution generally used for the solution containing nucleic acids, such as water and a Tris-hydrochloric acid buffer.
  • a solution containing the protein denaturant listed above may be used.
  • a solution containing a protein denaturant for example, it can be diluted with 4 M or more of guanidinium chloride, guanidine thiocyanate or urea.
  • the carrier of aluminum oxide in which a water-soluble neutral polymer is adsorbed on the surface is a carrier in which a water-soluble neutral polymer is adsorbed around granular aluminum oxide.
  • the carrier of the present invention it is described as the carrier of the present invention.
  • adsorbing cell-free DNA on a carrier refers to adsorption that can be reversibly desorbed.
  • Methods for quantifying the amount of nucleic acid when quantifying cell-free DNA include absorbance measurement, fluorescence measurement, luminescence measurement, electrophoresis, PCR, real-time PCR, digital PCR, analysis using a microarray, analysis using a sequencer, etc. Can be mentioned. Specifically, if the quantification method by absorbance measurement is an unmodified nucleic acid, the amount of nucleic acid can be quantified by measuring the absorbance at 260 nm. In the quantification method by fluorescence measurement, the amount of nucleic acid can be quantified by modifying the nucleic acid with a fluorescent dye and comparing the fluorescence intensity derived from the fluorescent dye with the fluorescence intensity in a solution having a known concentration. The quantitative method by electrophoresis can be determined by running a sample that has been collected at the same time as a sample having a known concentration, staining the gel, and comparing the band concentrations by image analysis.
  • PCR is an abbreviation for polymerase chain reaction, and a specific sequence can be selectively amplified from a DNA sample.
  • the initial concentration of nucleic acid can be determined from the amount of the product.
  • Real-time PCR is also called quantitative real-time PCR, and relative quantification of DNA serving as a template can be performed based on the amplification rate by measuring PCR amplification over time.
  • the absolute amount can be quantified by creating a calibration curve for the amplification factor using a standard sample.
  • the amplification rate is calculated as the number of amplification cycles (Cq value), and the smaller the value, the greater the amount of nucleic acid.
  • a DNA sample is distributed in a fine partition to perform a PCR reaction, and the amount of nucleic acid can be quantified from the signal amount after the PCR reaction for each fraction.
  • the base length of the recovered cell-free DNA can also be detected by appropriately designing the primer.
  • the base length of cell-free DNA can be detected by amplifying an arbitrary sequence of actin- ⁇ known as a housekeeping gene.
  • a primer that amplifies around 100 bp of the actin- ⁇ gene can be used (W. SUN et al., Therole of plasma cell-freeDNA detection in predicting operational chemoradiotherapy response in electrical cancer patents. ONCOLOGY REPORTS 31: 1466-1472, 2014).
  • the recovered cell-free DNA can be detected using the primers of SEQ ID NOs: 1 and 2, which can amplify a 93 bp base length of the actin- ⁇ gene.
  • an amplification cycle number (Cq value) of 40 or more is set to be below the detection limit.
  • the polymer used in the present invention is a general term for a monomer that is a basic unit and a compound in which a large number of repeating units called monomers are connected.
  • the polymer includes both a homopolymer composed of one kind of monomer and a copolymer composed of two or more kinds of monomers, and a polymer having any degree of polymerization can be used.
  • the polymer includes both natural polymers and synthetic polymers.
  • the water-soluble neutral polymer used in the present invention has a property of being soluble in water, and is a polymer having a solubility in water of at least 0.0001 wt% or more, preferably 0.001 wt% or more. Preferably it is 0.01 wt% or more, More preferably, it is 0.1 wt% or more.
  • the water-soluble neutral polymer used in the present invention is preferably a polymer having a zeta potential of ⁇ 10 mV to +10 mV in a pH 7 solution.
  • the polymer is more preferably ⁇ 8 mV to +8 mV, further preferably ⁇ 6 mV to +6 mV, and particularly preferably ⁇ 4.0 mV to +1.1 mV.
  • Zeta potential is one of the values representing the electrical properties of the colloidal interface in the solution.
  • an electric double layer is formed on the surface of the colloid by counter ions for the surface charge of the colloid.
  • the potential of the colloid surface at this time is called a surface potential. Since the electric double layer is formed by electrostatic interaction of the surface charge of the colloid, ions are more strongly fixed toward the colloid side.
  • a layer in which counter ions are strongly fixed to the colloid surface by electrostatic interaction is called a fixed layer, and a potential of the fixed layer is called a fixed potential.
  • a slip surface or a slip surface there is a boundary surface that moves together with the colloid due to the viscosity of the solution outside the fixed layer as viewed from the colloid.
  • this slip surface potential is defined as the zeta potential.
  • the zeta potential changes depending on the surface charge of the colloid, and the surface charge changes due to the attachment / detachment of protons depending on the pH, the value in a solution of pH 7 is used as a reference in the present invention.
  • the distance to the slip surface is generally smaller than the size of the colloid, the surface of the colloid can be expressed approximately as a slip surface.
  • the surface potential of the colloid dispersed in the solution can be regarded as the zeta potential.
  • the zeta potential is measured by laser Doppler electrophoresis using ELS-Z manufactured by Otsuka Electronics Co., Ltd.
  • Laser Doppler electrophoresis is a measurement method that utilizes the Doppler effect in which light or sound waves strike an object moving by electrophoresis and its frequency changes when scattered or reflected.
  • a polymer solution When measuring the zeta potential of a polymer, a polymer solution can be prepared as a colloidal dispersion solution and the zeta potential can be measured.
  • a polymer solution is prepared by dissolving a polymer in an electrolyte such as phosphate buffer, sodium chloride solution, or citrate buffer, and measurement is performed by detecting scattered light or reflected light of the polymer dispersed in the solution. Do. As the size of the colloid increases, scattered light and reflected light can be detected at a lower concentration.
  • Specific conditions for measuring the zeta potential of the polymer by the laser Doppler method are not particularly limited.
  • the polymer is dissolved in a phosphate buffer (10 mM, pH 7) so that the concentration of the polymer is 1 wt% or more and 10 wt% or less.
  • the solution can be placed in a measurement cell and placed in a zeta potential measurement device based on the principle of laser Doppler electrophoresis and measured at room temperature.
  • water-soluble neutral polymer used in the present invention include the following.
  • polyvinyl polymer such as polyvinyl alcohol or polyvinyl pyrrolidone
  • polyacrylamide polymer such as polyacrylamide, poly (N-isopropylacrylamide) or poly (N- (hydroxymethyl) acrylamide
  • polyethylene glycol polypropylene glycol or polytetramethylene ether
  • Polyalkylene glycol polymers such as glycol, poly (2-ethyl-2-oxazoline), (hydroxypropyl) methylcellulose, methylcellulose, ethylcellulose, 2-hydroxyethylcellulose, hydroxypropylcellulose, and other celluloses can be used.
  • a copolymer containing the above-mentioned polymer can also be used.
  • polysaccharides such as ficoll, agarose, chitin and dextran or polysaccharide analogues and proteins and peptides such as albumin are also included in the water-soluble neutral polymer of the present invention.
  • a part of the functional group of the water-soluble neutral polymer may be ionized, substituted with a positive or negative functional group, or a functional group that exhibits water solubility such as an acetyl group may be introduced into the side chain.
  • the molecular weight of the water-soluble neutral polymer for example, a polymer of 0.4 kD or more can be preferably used, and more preferably 6 kD or more.
  • Aluminum oxide used in the present invention is an amphoteric oxide represented by a composition formula of Al 2 O 3 and is also called alumina.
  • the aluminum oxide a naturally produced one or an industrially produced one may be used.
  • a method for producing aluminum oxide for example, a buyer method using gibbsite as a starting material, a method via a boehmite-type hydroxide such as an alkoxide method, a neutralization method or an oil droplet method (also called a sol-gel method), Examples thereof include an aluminum salt pyrolysis method and an anodic oxidation method.
  • Industrially produced aluminum oxide can be obtained from reagent manufacturers, catalytic chemistry manufacturers, and the Reference Catalyst Subcommittee of the General Catalysis Society.
  • Aluminum oxides are classified according to their crystal structure into alpha aluminum oxide, low aluminum oxide, aluminum oxide, kappa aluminum oxide, eta aluminum oxide, gamma aluminum oxide, delta aluminum oxide, theta aluminum oxide, and the like.
  • gamma aluminum oxide having a high specific surface area is preferred.
  • the acid point (Al + , Al—OH 2 + ) and the base point (Al—O ⁇ ) change depending on the firing temperature at the time of production.
  • aluminum oxide becomes acidic alumina when there are many acid points, basic alumina when there are many base points, and neutral alumina where acid points and base points are comparable.
  • This difference in characteristics can be confirmed by adding a BTB solution that is a pH indicator. By adding a BTB solution, it can be confirmed that the aluminum oxide is acidic alumina if it is yellow, neutral alumina if it is green, and basic alumina if it is blue.
  • any aluminum oxide can be used in the present invention.
  • the aluminum oxide used in the present invention is preferably granular. Even when the particle diameters are uniform, different particle diameters may be mixed and used. For example, aluminum oxide having a particle size of less than 212 ⁇ m can be preferably used, and aluminum oxide having a particle size of less than 100 ⁇ m can be more preferably used.
  • the particle size is defined as the size of the sieve opening based on JIS Z-8801-1: 2006, which is standardized by Japanese Industrial Standards. For example, particles that pass through a 40 ⁇ m sieve with an opening according to the JIS standard and cannot pass through a 32 ⁇ m sieve have a particle size of 32 ⁇ m or more and less than 40 ⁇ m.
  • the eluate used in the present invention is not particularly limited as long as cell-free DNA adsorbed on the carrier of the present invention can be eluted, but a buffer solution is preferable, and the buffer solution may contain a chelating agent.
  • EDTA was added to a citrate buffer containing citric acid and sodium citrate, a phosphate buffer containing phosphoric acid and sodium phosphate, or a Tris-hydrochloric acid buffer containing trishydroxyaminomethane and hydrochloric acid. Examples include Tris-EDTA buffer.
  • the pH of the buffer solution is preferably pH 4 or more and pH 9 or less, more preferably pH 5 or more and pH 8 or less.
  • the buffer used in the present invention can be prepared as follows.
  • the preparation of 0.5 M phosphate buffer (pH 7) is as follows. Prepare a 0.5 M aqueous solution of disodium hydrogen phosphate and 0.5 M sodium dihydrogen phosphate. The sodium dihydrogen phosphate solution is added to a 0.5 M aqueous solution of disodium hydrogen phosphate while measuring the pH, and when the pH reaches 7, the addition is stopped. In the same manner, other pH buffers can be prepared.
  • the chelating agent contained in the buffer solution has a ligand having a plurality of coordination sites, and a substance that binds to a metal ion and forms a complex can be used.
  • the chelating agent examples include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), glycol etherdiaminetetraacetic acid (EGTA), polyphosphoric acid, metaphosphoric acid and / or a salt thereof.
  • EDTA ethylenediaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • EGTA glycol etherdiaminetetraacetic acid
  • polyphosphoric acid metaphosphoric acid and / or a salt thereof.
  • the final concentration of the chelating agent is not particularly limited, it may be 50 mM or more, preferably 100 mM or more, more preferably 500 mM or more.
  • examples of the compound that becomes a chelating agent other than the above include anionic polymers. Since a polymer having a carboxylic acid in the side chain coordinates a metal ion, these may be contained in a buffer solution. Examples of the polymer having such a function include polyvinyl sulfonic acid and / or a salt thereof. The final concentration is not particularly limited, but may be 1 wt% or more, preferably 10 wt% or more.
  • the present invention is a method for recovering cell-free DNA from a body fluid sample, comprising the step a) mixing a body fluid sample with an aluminum oxide carrier on which a water-soluble neutral polymer is adsorbed on the surface, and adsorbing the cell-free DNA onto the carrier Step b) Separating the carrier adsorbed with cell-free DNA from the mixture mixed in step a), step c) adding an eluate to the carrier adsorbed with cell-free DNA in step b) Collecting the free DNA.
  • each process will be described in detail.
  • the carrier used in the present invention is prepared by adsorbing a water-soluble neutral polymer on the surface of aluminum oxide.
  • the surface coverage with the polymer may be 7% or more, and preferably 40% or more. Further, the water-soluble neutral polymer may not be adsorbed with a uniform thickness.
  • the coverage of aluminum oxide with a polymer is calculated by analyzing a potential distribution diagram obtained by a surface potential microscope (also known as a Kelvin probe force microscope; KFM).
  • a surface potential microscope also known as a Kelvin probe force microscope; KFM.
  • KFM Kelvin probe force microscope
  • a NanoScope Iva AFM Dimension 3100 stage AFM system manufactured by Digital Instruments of Bruker AXS can be used.
  • the visual field scale of measurement is in the range of 0.5 ⁇ m ⁇ 1 ⁇ m.
  • the surface coverage is calculated by first obtaining a surface potential image of aluminum oxide and obtaining an average potential in the field of view. Next, a surface potential image of the water-soluble neutral polymer is acquired, and an average potential in the visual field is obtained. Then, the surface potential image of the aluminum oxide adsorbed with the water-soluble neutral polymer is obtained, and the average potential in the visual field is obtained.
  • the coverage of only aluminum oxide is 0%, the coverage of only water-soluble neutral polymer is 100%, and the average potential of aluminum oxide adsorbed by water-soluble neutral polymer and the average potential of water-soluble neutral polymer By taking the ratio, the surface coverage of the aluminum oxide adsorbed with the water-soluble neutral polymer is calculated.
  • the average potential in the visual field to be used is selected by randomly selecting three single particles of the present invention and using the average value of each measured value.
  • the average value of the surface potential of aluminum oxide is the lower end of the scale
  • the average value of the surface potential of the water-soluble neutral polymer is the upper end of the scale
  • the color of the lower end is black (8 bits, RGB value 0)
  • the upper end Is set to red (R value 255), green (G value 255), blue (B value 255), or the like. Display the surface potential image of aluminum oxide adsorbed with water-soluble neutral polymer at the set scale, and divide either R value, G value, or B value by 255, and calculate the ratio as the surface coverage. To do.
  • the aluminum oxide may be washed with a solution such as water or ethanol in advance to remove impurities adsorbed on the surface, and this cleaning operation is omitted. May be.
  • Examples of the method for adsorbing a water-soluble neutral polymer on aluminum oxide include a method in which a water-soluble neutral polymer is dissolved to prepare a polymer solution and then contacted with aluminum oxide. Specifically, aluminum oxide can be immersed in the polymer solution, the polymer solution can be dropped onto the aluminum oxide, the polymer solution can be applied to the aluminum oxide, or the polymer solution can be sprayed onto the aluminum oxide. it can.
  • the method for immersing aluminum oxide in the polymer solution is not particularly limited.
  • the mixture may be agitated with a disperser such as pipetting, inversion mixing, a stirrer, a mixer, a vortex, a mill, or an ultrasonic treatment device.
  • a disperser such as pipetting, inversion mixing, a stirrer, a mixer, a vortex, a mill, or an ultrasonic treatment device.
  • the concentration of the water-soluble neutral polymer is not particularly limited, but is preferably 0.01 wt% or more, and more preferably 0.1 wt% or more.
  • the mixing time for stirring is not particularly limited as long as the polymer and aluminum oxide are uniformly mixed. In the case of vortexing, it is preferable to stir for 1 minute or more, preferably 5 minutes or more.
  • the mixing time when immersed in the solution may be 5 minutes or more and preferably 30 minutes or more if the polymer concentration is 0.1 wt% or more.
  • a dropper When dropping the polymer solution, a dropper, a dropping funnel, or the like can be used.
  • the aluminum oxide may be vibrated or rotated, or a spin coater or the like may be used.
  • a brush, a roller, or a wire bar When applying the polymer solution, a brush, a roller, or a wire bar can be used.
  • an air spray or an air brush can be used.
  • the excess polymer solution may be removed by centrifugation or the like, or it may be used directly for cell-free DNA recovery without being removed. Also good.
  • the water-soluble neutral polymer may be adsorbed on aluminum oxide and then dried to remove the solvent, or the cell-free DNA can be recovered without drying. It may be used.
  • the obtained carrier of the present invention may be prepared and stored, or may be prepared and used at the time of use.
  • the polymer solution can be prepared by dissolving in water or an organic solvent if the obtained polymer is solid, and can be prepared by diluting if the solution is a solution.
  • heat treatment or ultrasonic treatment may be performed.
  • the organic solvent it is preferable to use an organic solvent that is miscible with water, such as ethanol, acetonitrile, methanol, propanol, tert-butanol, DMF, DMSO, acetone, ethylene glycol, and glycerol.
  • an organic solvent that is miscible with water such as ethanol, acetonitrile, methanol, propanol, tert-butanol, DMF, DMSO, acetone, ethylene glycol, and glycerol.
  • a carrier prepared by covalently bonding aluminum oxide and a water-soluble neutral polymer with a linker molecule or the like does not correspond to the carrier of the present invention.
  • Specific linker molecules include silane coupling agents.
  • step a) a carrier in which a water-soluble neutral polymer is adsorbed on the surface of aluminum oxide produced by the above production method (in the present specification, described as the carrier of the present invention) and a body fluid sample are mixed.
  • the method of mixing the carrier of the present invention and the body fluid sample is not particularly limited, and may be performed by pipetting or inversion mixing, for example, or a device such as a mixer or vortex may be used.
  • the mixing time is not particularly limited, but may be about 5 minutes, or may be mixed for a longer time.
  • the carrier of the present invention may be packed in a column and a body fluid sample may be passed therethrough.
  • a protein denaturant may be added when the carrier of the present invention and the body fluid sample are mixed. The protein denaturant can also be added in advance to the body fluid sample as a preliminary step of step a).
  • Step b) is a step of separating the carrier adsorbed with the cell-free DNA from the mixture mixed in step a).
  • the separation method include a method of centrifuging the mixture obtained in step a), precipitating the carrier adsorbed with cell-free DNA, and removing the supernatant. Since the specific gravity of the carrier on which cell-free DNA is adsorbed is greater than that of water, it can be easily precipitated by centrifugation. Centrifugation may be performed at 6000 G for 1 minute, and more preferably at 10000 G for 1 minute. Examples of other separation methods include a method using an ultrafiltration membrane.
  • the mixture obtained in step a) is passed through an ultrafiltration membrane having a pore size smaller than the particle size of the carrier on which cell-free DNA is adsorbed, and the carrier is separated.
  • an ultrafiltration membrane is made into a kit, and a centrifugal filtration kit represented by Ultra Free (registered trademark) of Merck Co., Ltd. and NanoCep (registered trademark) of Pall Corporation can be obtained and used.
  • step b the following processing may be performed as necessary. This is because a biological sample-derived material other than the target cell-free DNA may be adsorbed on the surface of the carrier of the present invention. For example, in order to isolate cell-free DNA with higher purity, washing and decomposition treatment can be performed.
  • washing with water to remove non-specifically adsorbed compounds washing with surfactants to remove non-specifically adsorbed proteins, to remove ions and low-molecular compounds
  • washing with a solution containing a surfactant washing with an organic solvent to remove nonspecifically adsorbed hydrophobic compounds, adding a proteolytic enzyme to degrade nonspecifically adsorbed proteins
  • Various treatments can be performed such as adding RNase to isolate only DNA and adding RNase to isolate only RNA.
  • Step c) is a step of collecting the cell-free DNA by adding an eluate to the carrier adsorbed with the cell-free DNA separated in step b). In this step, an eluate is added to the carrier on which the cell-free DNA is adsorbed, and the adsorbed cell-free DNA is eluted in the eluate to recover the cell-free DNA.
  • step c) as a method of separating the carrier of the present invention from the solution from which cell-free DNA is eluted, the mixture obtained by adding the eluate to the carrier to which cell-free DNA has been adsorbed in step c) is centrifuged.
  • Examples include a method of separating and precipitating the carrier of the present invention to obtain a supernatant from which cell-free DNA is eluted. Since the specific gravity of the carrier of the present invention is larger than that of water, it can be easily precipitated by centrifugation. The centrifugation may be performed at 6000 G for 1 minute, and preferably at 10000 G for 1 minute.
  • Other separation methods include a method using an ultrafiltration membrane.
  • the mixture obtained in step c) is passed through an ultrafiltration membrane having a pore size smaller than the particle size of the carrier of the present invention to separate the carrier of the present invention.
  • an ultrafiltration membrane is made into a kit, and a centrifugal filtration kit represented by Ultra Free (registered trademark) of Merck Co., Ltd. and NanoCep (registered trademark) of Pall Corporation can be obtained and used.
  • the collected cell-free DNA can be chemically modified as necessary.
  • Chemical modification includes fluorescent dye modification, quencher modification, biotin modification, amination, carboxylation, maleimidation, succinimidation, phosphorylation and dephosphorylation on the end of cell-free DNA. Examples include dyeing with a calator. These modifications may be introduced by chemical reaction or by enzymatic reaction. Instead of quantifying the recovered cell-free DNA itself before introducing these modifying groups, the cell-free DNA is quantified indirectly by quantifying the modified groups introduced through chemical modification. can do.
  • the cell-free DNA recovered by using the cell-free DNA recovery method of the present invention can be used to detect cancer-specific gene mutations or to detect cancer. Hereinafter, these detections will be described.
  • the cell-free DNA can be recovered from the body fluid sample of the subject using the cell-free DNA recovery method of the present invention, and the gene sequence of the cell-free DNA can be analyzed to detect a cancer-specific gene mutation. Cancers to be detected and gene sequences in which mutations are observed are reported in databases such as “Catalogue Of Somatic Mutations In Cancer” (http://cancer.sanger.ac.uk/cosmic). You can select from cancer and sequence. Specifically, the following genes can be mentioned as examples.
  • Genes that are mutated in lung cancer include AKT1, ALK, APC, ATM, BAI3, BAP1, BRAF, CDKN2A, EGFR, EPHA5, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, GRM8, KDR, KEAP1, KIT, KMTD, KIT, KMTD , LRP1B, MDM2, MET, MLH1, MUC16, MYC, NF1, NFE2L2, NOTCH1, PDGFRA, PIK3CA, PIK3CG, PKHD1, PTEN, RARB, RB1, RET, ROS1, RUNX1T1, SMAD4, TP Gene.
  • Genes with mutations found in breast cancer include ACVR1B, AKT1, ATM, BAP1, BRCA1, BRCA2, CBFB, CDH1, CDKN2A, EGFR, EP300, ERBB2, ERBB3, ESR1, EXOC2, EXT2, FBXO32, FGFR1, , ITCH, KMT2C, MAP2K4, MAP3K1, MDM2, MUC16, MYC, NCOR1, NEK2, PBRM1, PCGF2, PIK3CA, PIK3R1, PPM1L, PTEN, PTGFR, RB1, RET, SEPT9, TP53, TRA4, WE Can be mentioned.
  • ACVR1B ACVR1B, AKT1, APC, ATM, ATP6V0D2, BAX, BRAF, CASP8, CDC27, CTNNB1, DCC, DMD, EP300, ERBB2, FBXW7, FZD3, GPC6, KRAS, MAP2K4, MAP2K4, AP2
  • genes that are mutated in myeloproliferative tumors ABL1, ASXL1, ATRX, BCOR, BCOR1, CBL, CBLB, DAXX, DNMT3A, EED, ETV6, EZH2, FLT3, GATA1, GNAS, IDH1, IDH2, IKZF1, JAK1, JAK2, JAK3, KAT6A, KIT, KMT2A, KRAS, MPL, NF1, NPM1, NRAS, PHF6, PRPF40B, PTPN11, RAD21, RB1, RUNX1, SETBP1, SF1, SF3A1, SF3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH3B1, SH2B
  • genes that are mutated in liver cancer ALB, AMPH, APC, ARID1A, ARID2, ATM, AXIN1, BAZ2B, BRAF, CCDC178, CDKN2A, CSDMD3, CTNNB1, DSE, ELMO1, ERBB2, ERFI1, GXYLT1, IGFNF1, I
  • Examples of the gene include IGSF10, KEAP1, KRAS, MET, OTOP1, PIK3CA, SAMD9L, TP53, UBR3, USP25, WWP1, ZIC3, and ZNF226.
  • Genes in which mutations are observed in ovarian cancer include AKT1, ARID1A, BRAF, BRCA1, BRCA2, CBLC, CCNE1, CDK12, CDKN2A, CSMD3, CTNNB1, CUBN, EGFR, ERBB2, FAT3, GABRA6, KIT, KRAS, KME, KRAS, KME, Examples of the gene include MLH1, MSH2, NF1, NRAS, PDGFRA, PIK3CA, PIK3R1, PPP2R1A, PTEN, RB1, TP53, and USP16.
  • Genes that are mutated in prostate cancer include AKAP9, APC, AR, CDK12, CDKN1B, CDKN2A, GLI1, IKZF4, KDM4B, KLF6, KMT2D, MED12, MYC, NCOA2, NIPA2, NKX3-1, NRCAM, OR5N1, Z Examples include genes such as PIK3CA, PTEN, RB1, SCN11A, SPOP, SYNE3, TBX20, TFG, THSD7B, TP53, ZFHX3, ZNF473, and ZNF595.
  • genes in which mutations are observed in gastric cancer are APC, ATP4A, BAI3, BRCA2, CCNE1, CDH1, CTNNB1, DCC, ERBB2, FBXW7, FGFR2, GPR78, LPAR2, LRP1B, LRRK2, MET, MYC, NOTCH1, PRK3, PIK3PRK , S1PR2, SPEG, SSTR1, STK11, TP53, TRIO, TRRAP, WNK2, and the like.
  • nucleic acid detection devices such as PCR, real-time PCR, digital PCR, sequencer, and microarray are selected using a primer or probe that can select a target gene mutation and specifically detect the gene mutation of the target gene. Use to detect.
  • the presence or absence of a gene mutation can be determined as having a gene mutation when a signal significantly higher than the negative control measurement value in each detection method is measured. More preferably, a genetic mutation was measured in the same manner for a sample that was previously known to have no genetic mutation and a sample of the subject, and was obtained from a specimen that had been previously known to have no genetic mutation. Mutation in the target gene when there is a statistically significant difference between the measured value and the measured value obtained from the subject's sample, and the measured value obtained from the subject's sample is higher It is determined that there is a certain detected.
  • the cell-free DNA is collected from the body fluid sample of the subject and the specimen not suffering from cancer using the cell-free DNA collection method of the present invention, and the amount of cell-free DNA derived from the subject and the subject suffering from cancer are collected.
  • Cancer can be detected by comparing the amount of cell-free DNA derived from no specimen. Specifically, by comparing the amount of cell-free DNA derived from a subject with the amount of cell-free DNA derived from a sample not suffering from cancer, the amount of cell-free DNA derived from the subject is not a subject suffering from cancer. When the amount is more than the amount of cell-free DNA derived from, it can be determined that cancer has been detected from the specimen of the subject.
  • the amount of cell-free DNA derived from a subject there is a statistically significant difference between the amount of cell-free DNA derived from a subject and the amount of cell-free DNA derived from a specimen not suffering from cancer, and the cell-free DNA derived from the subject When the amount is larger, it can be determined that cancer has been detected.
  • Specimens not affected by cancer used in the present invention are human-derived specimens that have no clinical history or confirmed by pathological examination that there is a malignant tumor.
  • the physical condition of the specimen not suffering from cancer is preferably the same as or close to that of the subject.
  • the physical condition corresponds to, for example, race.
  • the same kind of body fluid sample as the kind of body fluid sample of the subject and the specimen not affected by cancer.
  • the subject's sample is plasma, it is preferable to use plasma for samples that are not affected by cancer.
  • the test subject's sample is serum, it is preferable to use serum also for the sample which does not suffer from cancer.
  • the specimen that does not suffer from cancer may be singular or plural.
  • the cell free DNA amount can be an average value, an average value excluding outliers, or a median value.
  • the method described above as a method for quantifying the amount of nucleic acid can be used as a method for quantifying the amount of recovered cell-free DNA.
  • the base length of cell-free DNA to be quantified is not particularly limited, but cell-free DNA having a base length longer than 100 bp is preferable, and cell-free DNA having a base length of 300 bp or more is more preferable.
  • the gene sequence to be quantified is not particularly limited as long as it is a sequence contained in cell-free DNA.
  • it may be a housekeeping gene such as ACTB or GAPDH, or a gene characteristic of cancer. It is preferable to use the value measured by the same method for the amount of cell-free DNA in the specimen not suffering from cancer and the subject.
  • the “statistically significant difference” means, for example, that the 95% confidence lower limit interval of the control group is set as the baseline, and it can be determined whether the measurement value of the subject reaches the baseline. .
  • the risk factor (significance level) of the obtained value is small, specifically, the case of p ⁇ 0.05, p ⁇ 0.01 or p ⁇ 0.001 is mentioned.
  • “p” or “p value” that is a risk factor indicates a probability that an assumption is accidentally correct in a distribution assumed by a statistic in a statistical test. Therefore, the smaller “p” or “p value” means that the assumption is closer to true.
  • the test method for statistical processing is not particularly limited as long as a known test method capable of determining the presence or absence of significance is appropriately used. For example, Student's t test or multiple comparison test can be used.
  • Polyethylene glycol was purchased from Merck and basic gamma aluminum oxide (N613N) was purchased from JGC Catalysts & Chemicals.
  • the aqueous polymer solutions used in the examples were dissolved in water so as to have respective concentrations.
  • basic gamma aluminum oxide was used. Aluminum oxide was used in the experiment as it was purchased without sieving.
  • QIAGEN Ptoreinase K and RLT were purchased from Qiagen, and urea was purchased from Wako Pure Chemical Industries.
  • the 20 bp DNA ladder used for electrophoresis was purchased from TAKARA BIO INC. From Thermo Fisher Scientific Co., Ltd., acrylamide gel NOVEX-TBE-Gels 8% 15 well and DNA stain SYBR-Gold Nucleic Acid Gel Stain. .
  • SYBR registered trademark
  • SEQ ID NOs: 1 and 2 were used as primers for amplifying a 93 bp base length (ACTIN 93) of the actin- ⁇ gene sequence.
  • SEQ ID NOs: 1 and 3 were used as primers for amplifying a base length of 306 bp in the actin- ⁇ gene sequence.
  • Primers were designed based on the description of PrimePCR Assays, Panels, and Controls Instruction Manual (Bio-Rad Laboratories, Inc.), purchased from Eurofin Genomics, Inc., and used without purification.
  • Other reagents were purchased from Wako Pure Chemicals, Tokyo Kasei Co., Ltd., and Sigma Aldrich Japan GK, and used as they were without purification.
  • ImageQuant TL registered trademark
  • non-cancerous specimens include plasma derived from multiple people purchased from Tennessee Blood Services, plasma from women and men who did not suffer from cancer, obtained from CureLine, Inc. Was used.
  • plasma of a cancer patient obtained from CureLine was used.
  • ⁇ Comparative Example 1 Cell-free DNA recovery using an aluminum oxide carrier that is not polymer-coated Basic gamma aluminum oxide (N613N: JGC) similar in composition to aluminum oxide A described in Patent Document 4 (Example 4, Table 2) Using Catalytic Chemical Co., Ltd.), it was examined whether cell-free DNA can be efficiently recovered.
  • As the body fluid sample a mixed plasma derived from a plurality of people purchased from Tennessee Blood Services was used.
  • Patent Documents 4 and 5 describe that a phosphate buffer or Tris-EDTA buffer can be used as an eluent. Since it was described that the phosphoric acid solution inhibits the binding between nucleic acid and aluminum oxide, the following experiment was conducted using a phosphate buffer (0.5 M, pH 7) as an eluent.
  • the gamma aluminum oxide was weighed 0.5 mg into a 1.5 mL tube. Ethanol (400 ⁇ L) was added thereto, vortexed, and centrifuged (10000 G, 1 min) with a centrifuge to remove the supernatant. This operation was repeated again to remove dust on the bead surface with ethanol.
  • the base length (ACTIN 93) of 93 bp of the gene sequence of actin- ⁇ was amplified by real-time PCR.
  • SEQ ID NOs: 1 and 2 were used as amplification primers.
  • Real-time PCR was performed according to the following procedure.
  • ⁇ Comparative Example 3 Cell-free DNA recovery using silica support
  • Cell-free DNA recovery using cell-free DNA recovery kit (Thermo Fisher Co., Ltd., MagMax cell-FreeDNA Isolation kit) using silica support efficiently Considered what can be done.
  • Proteinase K or RLT (Qiagen Co., Ltd., Buffer RLT) containing guanidine hydrochloride as used in the kit protocol was used.
  • body fluid sample the same plasma as in Comparative Example 1 was used.
  • RLT was used as the protein denaturant, 300 ⁇ L of plasma and 450 ⁇ L of RLT used in Comparative Example 1 were mixed in advance and then added to the silica carrier. Other recovery operations were performed according to the kit protocol. Further, the detection of the recovered cell-free DNA was confirmed by the same method as in Comparative Example 1.
  • FIG. 1 shows the result of gel electrophoresis of the recovered cell-free DNA. As a result of gel electrophoresis, no band was confirmed in the recovered cell-free DNA.
  • Example 1 Cell-free DNA recovery using a gamma aluminum oxide carrier on which PEG, which is a water-soluble neutral polymer, is adsorbed on the surface (protein denaturant: Proteinase K) 0.5 mg of gamma aluminum oxide was weighed into a 1.5 mL tube. Ethanol (400 ⁇ L) was added thereto, vortexed, and centrifuged (10000 G, 1 min) with a centrifuge to remove the supernatant. This operation was repeated again to remove dust on the bead surface with ethanol.
  • protein denaturant Proteinase K
  • polyethylene glycol PEG, 10 kD, 10 wt%, which is a water-soluble neutral polymer
  • PEG polyethylene glycol
  • 10 kD 10 kD
  • 10 wt% a water-soluble neutral polymer
  • Example 2 Cell-free DNA recovery using a gamma aluminum oxide carrier on which PEG, which is a water-soluble neutral polymer, is adsorbed on the surface (protein denaturant: Buffer RLT)
  • the denaturing agent for plasma protein denaturing treatment performed in Example 1 was changed to RLT (Qiagen, Buffer RLT) containing guanidine hydrochloride.
  • RLT Qiagen, Buffer RLT
  • 300 ⁇ L of plasma and 450 ⁇ L of RLT used in Comparative Example 1 were mixed in advance, and then added to the gamma aluminum oxide carrier on which the polymer was adsorbed on the surface. Other operations are the same as those in Comparative Example 1. The results are shown in Table 3.
  • FIG. 1 shows the result of gel electrophoresis of the recovered cell-free DNA. From these results, the cell-free DNA recovered in Comparative Example 3 cannot confirm the band, whereas the cell-free DNA recovered in Example 2 can confirm the band at around 160 bp. It was found that cell-free DNA was recovered with high purity.
  • Example 3 Cell-free DNA recovery using a gamma aluminum oxide carrier on which PEG, which is a water-soluble neutral polymer, was adsorbed on the surface (protein denaturant: urea)
  • the type of denaturing agent for plasma protein denaturing treatment performed in Example 1 was changed to urea.
  • 300 ⁇ L of plasma used in Comparative Example 1 and 450 ⁇ L of urea (final concentration 6 M) were mixed in advance, and then added to the gamma aluminum oxide carrier on which the polymer was adsorbed on the surface.
  • Other operations are the same as those in Comparative Example 1. The results are shown in Table 3.
  • Example 4 Cell-free DNA recovery using a gamma aluminum oxide carrier having PEG, which is a water-soluble neutral polymer, adsorbed on the surface (protein denaturant: none)
  • the plasma was added to the gamma aluminum oxide carrier on which the polymer was adsorbed without performing the protein denaturation treatment of plasma as in Example 1.
  • the operation is the same as that of Example 1 except that 45 ⁇ L of distilled water was added to 300 ⁇ L of plasma used in Comparative Example 1. The results are shown in Table 3.
  • Example 5 Cell-free DNA recovery using a gamma aluminum oxide carrier on which a water-soluble neutral polymer is adsorbed on the surface
  • a water-soluble neutral polymer the following various polymers having different zeta potentials are added to each 10 wt% aqueous solution.
  • PEG polyethylene glycol
  • PVA polyvinyl alcohol
  • PEOz poly (2-ethyl-2oxazoline
  • HPMC hydroxypropylmethylcellulose
  • PVP polyvinylpyrrolidone
  • ⁇ Comparative Example 4 Cell-free DNA recovery using silica support
  • the same plasma as that of Comparative Example 3 was used except that plasma derived from women and men not affected by cancer obtained from CureLine and plasma of a breast cancer patient (female) obtained from CureLine were used.
  • Cell-free DNA was collected by the method, and the DNA concentration was measured using a Quantus Fluorometer (registered trademark). The results are shown in Table 5.
  • Example 6 Cell-free DNA recovery using a gamma aluminum oxide carrier on which PEG, which is a water-soluble neutral polymer, is adsorbed on the surface (protein denaturant: urea) Cell-free DNA was recovered from the same sample as in Comparative Example 4 by the same operation as in Comparative Example 4 except that the carrier used in Example 1 was used. The concentration of the recovered cell-free DNA was confirmed by the same method as in Comparative Example 4. The results are shown in Table 5.
  • EGFR exon19 deletion mutation specific for lung cancer patients was detected by digital PCR using 1/25 volume of the obtained eluate at 20 ⁇ L. The results are shown in Table 6. As a result, no genetic mutation was detected in male and female specimens not afflicted with cancer, but EGFR exon19 deletion mutation was detected from cell-free DNA of lung cancer patients at a frequency of 49.45%.
  • Example 7 Detection of gene mutation from cell-free DNA recovered using a gamma aluminum oxide carrier on which PEG is adsorbed on the surface.
  • a method similar to the method using RLT as a denaturant was compared.
  • Cell-free DNA was collected from 300 ⁇ L of plasma of males, females, and lung cancer patients who were not affected by cancer, which was the same specimen as in Example 5, and cancer-specific gene mutations were detected.
  • EGFR exon19 deletion mutation specific for lung cancer patients was detected by digital PCR using 1/25 volume of the obtained eluate at 20 ⁇ L.
  • a body fluid sample using a cell-free DNA recovery kit (Thermo Fisher Co., Ltd., MagMax cell-FreeDNA Isolation kit) using a silica carrier Cell-free DNA was collected from 300 ⁇ L, and the presence or absence of cancer was detected using the amount of cell-free DNA measured by real-time PCR.
  • body fluid samples plasma from women and men not affected by cancer obtained from CureLine, and blood from lung cancer (male), breast cancer (female), and colon cancer (male) obtained from CureLine I used ginger.
  • the method for recovering cell-free DNA was carried out in the same manner as the method using RLT as the denaturant in Comparative Example 3.
  • DNA is eluted in 50 ⁇ L, 4 ⁇ L of 10-fold dilution is collected, and the actin sequence gene amplified from the primers of Sequence 1 and Sequence 3 designed to make cancer-free cell-free DNA easier to detect.
  • a fragment of about 306 bp was detected by real-time PCR.
  • Baseline is the 95% lower confidence interval of sample measurements from men who do not have cancer and women who do not have cancer, and the amount of cell-free DNA is more than 1.5 times higher than this (PCR cycle)
  • the sample was determined to be cancer positive if cancer was detected, and the other sample was determined to be cancer negative if cancer was not detected.
  • specimens from lung cancer patients and colon cancer patients detected more cell-free DNA than the baseline of specimens without cancer.
  • the cancer was positive.
  • a specimen derived from a breast cancer patient overlapped with a baseline of measurement values derived from a specimen not suffering from cancer, and was determined to be negative. Accordingly, in this method, since one of the three cancer specimens could not be determined as cancer, the sensitivity was 66%.
  • Example 8> Detection of cancer by the amount of cell-free DNA recovered using a gamma aluminum oxide carrier on which PEG is adsorbed on the surface Comparison was made using a method similar to the method using RLT as the denaturant in Example 2.
  • Cell-free DNA was collected from 300 ⁇ L of the same body fluid sample as in Example 6, and the presence or absence of cancer was detected using the amount of cell-free DNA measured by real-time PCR.
  • the method for recovering cell-free DNA was carried out in the same manner as the method using RLT as the denaturant in Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

水溶性の中性ポリマーを表面に吸着させた酸化アルミニウムを担体として使用することで、少量の体液試料からセルフリーDNAを効率よく回収することを可能とする。

Description

セルフリーDNAの回収方法
 本発明は、セルフリーDNAを回収する方法に関する。
 核酸を用いた実験技術の発展により新規遺伝子探索やその解析が可能となった。がんなどの疾患を特定するためにヒトのゲノムが解析され、病原体の感染を特定するためにそれらのゲノムが解析されるなど、医療現場においても遺伝子解析を利用したスクリーニング検査や臨床検査などが行われている。
 近年では核酸の中でも特にセルフリーDNAが注目され、腫瘍由来のセルフリーDNAに存在するがん特有の遺伝子変異を解析することで治療薬に対する効果の有無を判定するなどの、臨床に直結する研究が盛んに行われている。
 例えば、EGFR遺伝子変異が検出された肺がん患者にはエルロチニブ、BRAF遺伝子変異が検出された皮膚がん患者にはベムラフェニブ、BRCA遺伝子変異が検出された卵巣がん患者にはルカパリブ、といった治療薬が承認されている。また、これらの遺伝子変異に対する標的治療薬効果はがんの種類を超えて共通であることが知られており、例えば、BRAF遺伝子のV600変異に対する治療薬ダラフェニブは皮膚がん及び非小細胞肺がんの患者の両方に推奨される。
 しかしながら、これまでがん特有の遺伝子を得るためには、手術切除したがん組織から遺伝子を回収することが一般的であった。切除組織の入手は患者への侵襲性が高く、多様ながん組織のどの部位を採取するかにより結果が異なってしまう問題があること、また手術前の治療には適さないこと、などの問題があった。近年、体液中に存在するセルフリーDNAにもがん特異的な遺伝子変異が存在しうることが報告され、がん組織を切除せずに遺伝子変異を検出することが切望されている。
 また、がんに罹患すると、がん細胞からセルフリーDNAが血中へ放出されるため、がん患者はがんに罹患していない者と比較し血中により多量なセルフリーDNAを含有するとされる(特許文献7)。従って、セルフリーDNAの量を正確に測定することができれば、体液試料を用いて低侵襲的に簡便にがんの検出が可能になる。特許文献7には、シリカゲルメンブランで回収したセルフリーDNAの量を基にがんを検出する方法が記載されている。
 しかしながら、体液中に存在するセルフリーDNAは少量であるうえ、セルフリーDNA配列上に存在するがん特有の変異点を解析するためには、セルフリーDNAの中でも、血中の総DNAにおけるアレル頻度が0.1%~数%程度しかない腫瘍細胞由来のcell-free tumor DNA(ctDNA)と呼ばれるセルフリーDNAを検出する必要があり、高い収率でセルフリーDNAを回収する技術が必要となる。
 現在、一般的に行われている核酸の回収方法としては、フェノール・クロロホルム抽出法、エタノール沈殿法及びシリカへの核酸吸着法などが代表的な方法として挙げられる。中でも最も汎用的な方法は、特許文献1に記載されている、シリカを含む金属酸化物へ核酸を吸着、溶出させて回収するBoom法である。この方法は、遠心操作により核酸の吸着したシリカから核酸を回収すると同時に核酸の濃縮ができる特徴がある。
 特許文献2にはBoom法をもとに、シリカに対してセルフリーDNAを吸着させる技術が記載されている。これによると、フェノール・クロロホルム抽出を酸性条件化で行えば、RNAは水相に、DNAはクロロホルム相に分離され、中性条件で行えば、水相にRNAとDNAが分配される。つまり、抽出溶液の条件を変えることで取得したい核酸を選択的に抽出できるとしている。
 しかしながら、これら特許文献1、特許文献2に記載の方法では、核酸の吸着過程においてアルコールなどの有機溶媒の使用が不可欠であるため、溶媒廃棄の問題があり、回収操作も煩雑である。加えて、単離した核酸にこれら有機溶媒が混入し、その後の検出反応へ影響する問題もある。
 また、特許文献3には、300塩基対以上1000塩基対以下の塩基長を持つ核酸のシリカに対する吸着性は、それより短い塩基長を有する核酸の吸着性に劣ることが記載されており、さらに短いセルフリーDNAを回収するにあたって、シリカを用いた方法は不向きであることも予想される。
 特許文献4及び5には、セルフリーDNAに関する記載はないが、有機溶媒を利用しない核酸の回収方法が記載されている。特許文献4には、アルファ酸化アルミニウム粒子、ジルコニア粒子、チタニア粒子などに、核酸を吸着させ、効率的に回収する方法が記載されている。また、特許文献5には、イオン交換クロマトグラフィーの原理を用いて、核酸を吸着させ、回収する方法が記載されており、陰イオン交換材料として酸化アルミニウムが利用できると示されている。
 特許文献6には、核酸を溶解させる溶液に依存して、アルファ酸化アルミニウム、及びガンマ酸化アルミニウムに核酸を強固に結合させたり、逆に結合を阻止させたりすることができると記載されている。また、結合した核酸は、繰り返し洗浄しても、ほとんど溶出されないと記載されている。
米国特許第5234809号明細書 国際公開第2016/007755号 特表2011-522529号公報 国際公開第92/18514号 特表2013-505719号公報 特表2005-505269号公報 国際公開第2015/114641号
 本発明者らは、セルフリーDNAを高い収率で回収するために、酸化アルミニウムを用いたセルフリーDNAの回収方法を検討した。回収方法の検討にあたって、上記の特許文献4、5に記載の酸化アルミニウムを用いた核酸の回収方法によって、セルフリーDNAの回収が可能であるかを検討した。しかし、後述する比較例1のとおり、これらの方法では、セルフリーDNAを回収することができなかった。
 本発明は、酸化アルミニウムを用いてセルフリーDNAを高い収率で回収する方法を確立することを目的とする。
 本発明者らは、酸化アルミニウムの表面に水溶性の中性ポリマーを吸着させることで、セルフリーDNAを効率的に回収できることを見出した。
 本発明の構成は、以下(1)~(9)である。
(1)体液試料からセルフリーDNAを回収する方法であって、以下の工程:
工程a)水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体と前記体液試料を混合し、前記担体にセルフリーDNAを吸着させる工程、
工程b)工程a)において混合した混合物から、前記セルフリーDNAが吸着した担体を分離する工程、および
工程c)工程b)において分離した前記セルフリーDNAが吸着した担体に溶出液を加えてセルフリーDNAを回収する工程、
を含むセルフリーDNAの回収方法。
(2)前記体液試料が、全血、血清、血しょう、尿、または唾液である(1)に記載のセルフリーDNAの回収方法。
(3)前記水溶性の中性ポリマーが、pH7の溶液中で-10mV以上+10mV以下のゼータ電位を有するポリマーである(1)または(2)に記載のセルフリーDNAの回収方法。
(4)前記ポリマーが、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリ(2-エチル-2-オキサゾリン)又はヒドロキシプロピルメチルセルロースである(1)から(3)のいずれかに記載のセルフリーDNAの回収方法。
(5)前記溶出液が、緩衝液である(1)から(4)のいずれかに記載のセルフリーDNAの回収方法。
(6)前記体液試料を、タンパク質変性剤で処理する(1)から(5)のいずれかに記載のセルフリーDNAの回収方法。
(7)前記タンパク質変性剤が、カオトロピック塩またはタンパク質変性酵素である(6)に記載のセルフリーDNAの回収方法。
(8)セルフリーDNAの遺伝子配列を解析し、がんに特異的な遺伝子変異を検出する方法であって、(1)~(7)のいずれかに記載のセルフリーDNAの回収方法を用いて被験者の体液試料からセルフリーDNAを回収する工程、および当該回収したセルフリーDNAからがんに特異的な遺伝子変異を検出する工程、を含む遺伝子変異の検出方法。
(9)被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量を比較することによってがんを検出方法であって、(1)~(7)のいずれかに記載のセルフリーDNAの回収方法を用いて被験者およびがんに罹患していない検体の体液試料からセルフリーDNAを回収する工程、および当該回収した被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量を比較してがんを検出する工程、を含むがんの検出方法。
 本発明のセルフリーDNAの回収方法により、少量の試料から、簡便な方法でセルフリーDNAを高収率に回収することが可能になる。また、本発明の回収方法によれば、セルフリーDNAを高い収率で回収できるので、がんに特異的な遺伝子変異の検出感度や、がんの検出感度が向上する。
本発明のセルフリーDNA回収方法によって回収したセルフリーDNAと市販セルフリーDNA回収キットで回収したセルフリーDNAの電気泳動図
 本発明のセルフリーDNAの回収方法で回収するセルフリーDNAは、体液中に漏出した正常細胞由来のcell-free normal DNAおよび腫瘍細胞由来のcell-free tumor DNA(ctDNA)の総称であり、本明細書ではセルフリーDNAと記載する。
 セルフリーDNAの塩基長は、一般的にヒストン1単位に相当する166bp程度であるが、がんや、寄生虫に寄生された患者では、特徴的な塩基長のセルフリーDNAが検出される場合がある。例えば、がん患者の検体には、ヒストン1単位まで分解が進まず、166bpの単位が数個つながった332bp(166bp×2)、498bp(166bp×3)、664bp(166bp×4)などの塩基長のセルフリーDNAも含まれている。また、熱帯熱マラリア原虫に寄生された患者の場合、血清中の205bpなどの塩基長のセルフリーDNAが、リューシュマニアに寄生された患者の場合は尿中に70bpなどの塩基長のセルフリーDNAを漏出することが知られている(Trends in Parasitology、May 2016,Vo.32,No.5)。
 本発明で回収するセルフリーDNAの塩基長は特に限定されないが、本発明の方法を用いると500bp以下のセルフリーDNAを効率よく回収することができる。
 本発明で用いる体液試料は、セルフリーDNAを含む任意の体液試料であれば特に限定されないが、例えば、全血、血しょう、血清、尿、唾液などを利用することができ、好ましくは、血しょうまたは血清である。
 体液試料は、未処理のまま用いることもできるが、より収率よくセルフリーDNAを回収するために、タンパク質変性剤を用いて処理したものを用いることもできる。
 本発明で用いるタンパク質変性剤は特に限定されないが、例えば、SDS、サルコシル、CTABなどの界面活性剤、セリンプロテアーゼの一種であり広い切断特異性をもつProteinaseKなどのタンパク質変性酵素、塩化グアニジニウム、グアニジンチオシアン酸塩、及び尿素などのカオトロピック塩、その他メルカプトエタノールなどを好ましく用いることができる。また、タンパク質変性剤が含まれる市販の緩衝液も好ましく用いることができ、例えば、グアジニンチオシアン酸塩などを含むRLTバッファー(キアゲン株式会社製)は、カオトロピック塩のタンパク質変性剤として好ましく用いることができる。これらのタンパク質変性剤の中でも、特にカオトロピック塩もしくはタンパク質変性酵素が好ましい。
 また、タンパク質変性剤は、1種類だけ用いてもよいし、複数種類組み合わせて用いてもよい。タンパク質変性剤の組み合わせとしては、以下のような処理が挙げられる。例えば、体液試料に対して、1%のSDSを添加した後、ProteinaseKを加え60℃20min加温することができる。また、体液試料に対して、4M以上の塩化グアニジニウム、グアニジンチオシアン酸塩、または尿素を添加した後、サルコシルを終濃度0.5%以上になるように、またはメルカプトエタノールを終濃度50mM以上の濃度になるよう加えることができる。
 また、上記の操作において、体液試料に含まれるセルフリーDNAの分解を抑制するために、核酸を分解する酵素の阻害剤を添加してもよい。酵素の阻害剤は、例えばEDTAを体液試料に対し、終濃度1mM以下の濃度で添加することができる。また、RNA分解酵素の阻害剤として市販されている“RNasin”(登録商標) Plus Ribonuclease Inhibitor(プロメガ株式会社)、Ribonuclease Inhibitor(タカラバイオ株式会社)、RNase inhibitor(東洋紡株式会社)などを使用することができる。
 本発明において体液試料は必要に応じて希釈してもよい。希釈する溶液は特に限定されないが、水やTris-塩酸緩衝液などの核酸を含む溶液に汎用される溶液を使用することが好ましい。また、上記に挙げたタンパク質変性剤を含む溶液を用いてもよい。タンパク質変性剤を含む溶液で希釈する場合には、例えば、4M以上の塩化グアニジニウム、グアニジンチオシアン酸塩または尿素で希釈することができる。
 本発明は、水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体を用いることで、高収率なセルフリーDNAの回収が達成される。本発明において、水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体とは、水溶性の中性ポリマーが、粒状の酸化アルミニウムの周りに吸着した担体である。以後、本発明の担体と記載する。
 本発明において、担体にセルフリーDNAを吸着させるとは、可逆的に脱離可能となる吸着を指す。
 セルフリーDNAを定量する際の核酸量の定量の方法としては、吸光度測定、蛍光測定、発光測定、電気泳動、PCR、リアルタイムPCR、デジタルPCR、マイクロアレイを使用した解析、シーケンサーを使った解析などが挙げられる。具体的には、吸光度測定による定量方法は、非修飾の核酸であれば、260nmにおける吸光度を測定することで核酸量を定量することができる。蛍光測定による定量方法は、核酸に蛍光色素で修飾し、その蛍光色素に由来する蛍光強度を、濃度既知の溶液における蛍光強度と比較することで核酸量を定量できる。電気泳動による定量方法は、濃度既知のサンプルと同時に回収操作を行ったサンプルを泳動し、ゲルを染色してバンドの濃度を画像解析により比較することで決定することができる。
 PCRは、polymerase chain reactionの略でDNAサンプルの中から、特定の配列を選択的に増幅させることができる。PCRでは核酸の増幅反応終了後、その産物量から核酸の初期濃度を求めることができる。
 リアルタイムPCRは、定量的リアルタイムPCRとも呼ばれ、PCRによる増幅を継時的に測定することで増幅率に基づいて鋳型となるDNAの相対定量を行うことができる。また、標準サンプルを用いて、増幅率の検量線を作成すれば、絶対量を定量することもできる。増幅率は、増幅サイクル数(Cq値)として算出され、値が小さいほど、核酸量が多いことを示している。
 デジタルPCRでは、DNAサンプルを微細な仕切りの中に分配しPCR反応を行い、各分画ごとのPCR反応後のシグナル量から、核酸量を定量することができる。
 また、リアルタイムPCRでは、適切にプライマーを設計することで、回収したセルフリーDNAの塩基長も検出することができる。例えば、ハウスキーピング遺伝子として知られるアクチン-βの任意の配列を増幅することでセルフリーDNAの塩基長を検出することができる。たとえば、166bpのセルフリーDNAを回収したことを確認するためには、アクチン-β遺伝子のうち100bp前後を増幅させるプライマーを使用することができる(W.SUNら、Therole of plasma cell-freeDNA detection in predicting operative chemoradiotherapy response in rectal cancer patients.ONCOLOGY REPORTS 31:1466-1472,2014)。具体的には、アクチン-β遺伝子のうち93bpの塩基長を増幅させることができる配列番号1および2のプライマーを用いて、回収したセルフリーDNAを検出することができる。
 リアルタイムPCRでは、一般的に、増幅サイクル数(Cq値)が40以上は、検出限界以下とされている。
 本発明で用いるポリマーは、基本単位である単量体やモノマーと呼ばれる繰り返し単位が多数繋がった化合物の総称である。上記ポリマーには、1種類の単量体からなるホモポリマーと2種類以上の単量体からなるコポリマーのいずれもが含まれ、任意の重合度のポリマーを用いることができる。また、上記ポリマーには、天然ポリマーと合成ポリマーのいずれもが含まれる。
 本発明で用いる水溶性の中性ポリマーは、水に対して溶解可能な性質を有し、水に対する溶解度が、少なくとも0.0001wt%以上のポリマーであり、好ましくは、0.001wt%以上、より好ましくは0.01wt%以上、さらに好ましくは0.1wt%以上である。
 本発明で用いる水溶性の中性ポリマーは、好ましくは、pH7の溶液中でゼータ電位が-10mV以上+10mV以下のポリマーである。より好ましくは-8mV以上+8mV以下であり、さらに好ましくは-6mV以上+6mV以下、特に好ましくは-4.0mV以上+1.1mV以下のポリマーである。
 ゼータ電位とは、溶液中におけるコロイドの界面の電気的性質を表す値の1つである。荷電したコロイドが溶液に分散していると、コロイドの表面ではコロイドの表面荷電に対する対イオンにより電気二重層が形成されている。このときのコロイド表面の電位を表面電位と呼ぶ。電気二重層は、コロイドの表面電荷の静電相互作用により形成されているため、コロイド側ほどイオンが強く固定されている。電気二重層の中でも静電相互作用により対イオンがコロイド表面に強く固定されている層を固定層、固定層の電位を固定電位と呼ぶ。溶液に対してコロイドを移動させると固定層はコロイドと共に移動する。このとき、コロイドから見て固定層よりも外側に、溶液が持つ粘性のためにコロイドと共に移動する境界面がある。これを、すべり面、または、ずり面と呼ぶ。コロイドから充分に離れた地点の電位をゼロ点としたときの、このすべり面の電位はゼータ電位と定義されている。このように、ゼータ電位はコロイドの表面電荷に依存して変化し、表面電荷はpHに依存するプロトンの着脱によって変化するため、本発明ではpH7の溶液中での値を基準とする。また、一般にコロイドのサイズと比べてすべり面までの距離は小さいので、コロイドの表面をすべり面と近似的に表現することもできる。本発明で用いる水溶性の中性ポリマーの場合も同様に、溶液中に分散したコロイドの表面電位をゼータ電位とみなすことができる。
 本発明において、ゼータ電位の測定は大塚電子株式会社のELS-Zを用いたレーザー・ドップラー電気泳動法を用いて測定する。レーザー・ドップラー電気泳動法は、光や音波が電気泳動により運動している物体に当たり、散乱あるいは反射するとその周波数が変化するドップラー効果を利用した測定方法である。
 ポリマーのゼータ電位を測定する場合には、コロイド分散溶液としてポリマー溶液を調製し、ゼータ電位を測定することができる。ポリマーを例えば、リン酸緩衝液や、塩化ナトリウム溶液、クエン酸緩衝液などの電解質に溶解させてポリマー溶液を調製し、溶液中に分散したポリマーの散乱光や、反射光を検出して測定を行う。コロイドのサイズが大きいほど、低い濃度で散乱光や反射光を検出することが可能となる。
 ポリマーのゼータ電位をレーザー・ドップラー法で測定する具体的な条件は特に限定されないが、例えば、ポリマーの濃度を1wt%以上10wt%以下となるようにリン酸緩衝液(10mM, pH7)に溶解し、この溶液を測定用セルに入れて、レーザー・ドップラー電気泳動法を原理とするゼータ電位測定装置に設置して室温で測定することができる。
 本発明で用いる水溶性の中性ポリマーとしては、具体的には、以下のものが挙げられる。例えば、ポリビニルアルコール又はポリビニルピロリドンなどのポリビニル系ポリマー、ポリアクリルアミド、ポリ(N-イソプロピルアクリルアミド)又はポリ(N-(ヒドロキシメチル)アクリルアミドなどのポリアクリルアミド系ポリマー、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラメチレンエーテルグリコールなどのポリアルキレングリコール系のポリマー、ポリ(2-エチル-2-オキサゾリン)、(ヒドロキシプロピル)メチルセルロース、メチルセルロース、エチルセルロース、2-ヒドロキシエチルセルロース又はヒドロキシプロピルセルロースなどのセルロースなどを用いることができる。また、上記のポリマーが含まれる共重合体も用いることができる。
 また、フィコール、アガロース、キチン及びデキストランなどのポリサッカライド又はポリサッカライド類縁体並びにアルブミンなどのタンパク質やペプチドも本発明の水溶性の中性ポリマーに含まれる。
 水溶性の中性ポリマーの官能基の一部をイオン化させたり、陽性や陰性を示す官能基に置換したり、側鎖にアセチル基など水溶性を発現する官能基を導入してもよい。
 本発明において、水溶性の中性ポリマーの分子量としては、例えば、0.4kD以上のポリマーを好ましく用いることができ、より好ましくは6kD以上である。
 本発明で用いる酸化アルミニウムは、Alの組成式で表される両性酸化物であり、アルミナとも呼ばれる。
 酸化アルミニウムは、天然に産出するものを用いてもよいし、工業的に作製したものを用いてもよい。酸化アルミニウムを作製する方法としては、例えば、ギブサイトを出発原料とするバイヤー法、アルコキシド法、中和法若しくはオイルドロップレット法等のベーマイト形態の水酸化物を経由する方法(ゾルーゲル法とも呼ばれる)、アルミニウム塩熱分解法または陽極酸化法などが挙げられる。
 工業的に作製した酸化アルミニウムは、試薬メーカーや、触媒化学メーカー、一般社団法人触媒学会の参照触媒部会などから入手することができる。
 酸化アルミニウムは、それらが持つ結晶構造によって、アルファ酸化アルミニウム、ロー酸化アルミニウム、カイ酸化アルミニウム、カッパ酸化アルミニウム、イータ酸化アルミニウム、ガンマ酸化アルミニウム、デルタ酸化アルミニウム、シータ酸化アルミニウムなどに分類される。本発明では、高比表面積を持つガンマ酸化アルミニウムが好ましい。
 さらに酸化アルミニウムは、作製時の焼成温度に応じて、酸点(Al、Al-OH )と塩基点(Al-O)が変化する。酸化アルミニウムはこの酸点と塩基点の数に応じて、酸点が多ければ酸性アルミナ、塩基点が多ければ塩基性アルミナ、酸点と塩基点が同程度の中性アルミナとなる。この特性の違いは、pH指示薬であるBTB溶液を添加することで確認できる。BTB溶液を加えて、酸化アルミニウムが黄色に呈色すれば酸性アルミナ、緑色に呈色すれば中性アルミナ、青色に呈色すれば塩基性アルミナであることが確認できる。このような特性上の違いがあるが、本発明においては、いずれの酸化アルミニウムも使用することができる。
 本発明で用いる酸化アルミニウムは、粒状のものがよい。粒径はそろっていても、異なる粒径を混合して利用してもよい。粒径は、例えば、212μm未満の酸化アルミニウムを好ましく用いることができ、より好ましくは100μm未満の酸化アルミニウムを用いることができる。
 粒径は、本発明では日本工業規格に規格するJIS Z-8801-1:2006に基づいたふるい目開きの寸法で定義する。例えば、上記JIS標準による目開きにして40μmのふるいを通過し、32μmのふるいを通過できない粒子は、32μm以上40μm未満の粒径となる。
 本発明で用いる溶出液は、本発明の担体に吸着したセルフリーDNAを溶出させることができれば、特に限定されないが、緩衝液が好ましく、緩衝液にはキレート剤が含まれていてもよい。具体的には、クエン酸とクエン酸ナトリウムを含むクエン酸緩衝液、リン酸とリン酸ナトリウムを含むリン酸緩衝液や、トリスヒドロキシアミノメタンと塩酸を含むTris-塩酸緩衝液にEDTAを添加したTris-EDTA緩衝液などが挙げられる。
 緩衝液のpHは、pH4以上pH9以下が好ましく、より好ましくは、pH5以上pH8以下である。
 本発明で用いる緩衝液は、以下のように調製できる。例えば、0.5Mのリン酸緩衝液(pH7)の調製は、以下のとおりである。0.5Mのリン酸水素二ナトリウム水溶液と0.5Mのリン酸二水素ナトリウムを調製する。0.5Mのリン酸水素二ナトリウム水溶液に対し、pHを測定しながらリン酸二水素ナトリウム溶液を添加し、pH7となったところで添加を止める。同様の方法で、他のpHの緩衝液も調製することができる。
 緩衝液に含まれるキレート剤は、複数の配位座を持つ配位子を持っており、金属イオンへ結合し、錯体を形成する物質を用いることができる。
 具体的なキレート剤としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、グリコールエーテルジアミン四酢酸(EGTA)、ポリリン酸、メタリン酸及び/又は及びそれらの塩などが挙げられる。キレート剤の終濃度は特に限定されないが、50mM以上であればよく、好ましくは100mM以上、さらに好ましくは500mM以上である。
 また、上記以外のキレート剤となる化合物として、陰イオン性のポリマーを挙げることができる。カルボン酸を側鎖に持つポリマーは金属イオンを配位するため、これらが緩衝液に含まれていてもよい。このような機能を有するポリマーとして、ポリビニルスルホン酸及び/又はそれらの塩が挙げられる。その終濃度は特に限定されないが、1wt%以上であればよく、好ましくは10wt%以上である。
 本発明は、体液試料からセルフリーDNAを回収する方法であって、工程a)水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体と体液試料を混合し、担体にセルフリーDNAを吸着させる工程、工程b)工程a)において混合した混合物から、前記セルフリーDNAが吸着した担体を分離する工程、工程c)工程b)において前記セルフリーDNAが吸着した担体に溶出液を加えてセルフリーDNAを回収する工程を含む。以下、それぞれの工程について詳細に説明する。
 本発明で用いる担体は、酸化アルミニウムの表面に水溶性の中性ポリマーを吸着させることにより作製する。ポリマーによる表面の被覆率は、7%以上であればよく、40%以上であることが好ましい。また、水溶性の中性ポリマーは均一の厚さで吸着していなくてもよい。
 本発明において、ポリマーによる酸化アルミニウムの被覆率は、表面電位顕微鏡(別名ケルビンプローブフォース顕微鏡;KFM)によって取得した電位分布図を解析することで算出する。表面電位顕微鏡は例えば、Bruker AXS社のDigital Instruments製のNanoScope Iva AFM Dimension 3100 ステージAFMシステムなどが利用できる。
 表面電位顕微鏡から表面被覆率を算出するにあたり、測定の視野スケールは、0.5μm×1μmの範囲で行う。表面被覆率の算出方法は、まず酸化アルミニウムの表面電位画像を取得し視野内の平均電位を求める。次に水溶性の中性ポリマーの表面電位画像を取得し視野内の平均電位を求める。そして、水溶性の中性ポリマーが吸着した酸化アルミニウムの表面電位画像を取得し視野内の平均電位を求める。酸化アルミニウムのみの被覆率を0%、水溶性の中性ポリマーのみの被覆率を100%とし、水溶性の中性ポリマーが吸着した酸化アルミニウムの平均電位と水溶性の中性ポリマーの平均電位の比をとることで、水溶性の中性ポリマーが吸着した酸化アルミニウムの表面被覆率を算出する。表面被覆率を求めるにあたり、使用する視野内の平均電位は、本発明の単体の粒子をランダムに3つ選んで、それぞれの測定値の平均値を使用する。
 また、表面被覆率を算出する際の画像解析ソフトとして、Adobe社のPhotoshopなどを使用することができる。この場合、画像解析にあたって、酸化アルミニウムの表面電位の平均値をスケール下端、水溶性の中性ポリマーの表面電位の平均値をスケール上端とし、下端の色を黒(8bit、RGB値0)、上端の色を赤(R値255)、または緑(G値255)、または青(B値255)などに設定する。設定したスケールで水溶性の中性ポリマーが吸着した酸化アルミニウムの表面電位画像を表示し、R値、またはG値、またはB値のいずれかの値を255で割り、その比を表面被覆率とする。
 水溶性の中性ポリマーを表面に吸着させる前段階として、予め酸化アルミニウムを水やエタノールなどの溶液で洗浄し、表面に吸着している不純物を除いておいてもよく、本洗浄操作を省略してもよい。
 水溶性の中性ポリマーを酸化アルミニウムに吸着させる方法は、例えば、水溶性の中性ポリマーを溶解させてポリマー溶液を調製し、酸化アルミニウムに接触させる方法が挙げられる。具体的には、ポリマー溶液に酸化アルミニウムを浸漬させたり、ポリマー溶液を酸化アルミニウムに滴下したり、ポリマー溶液を酸化アルミニウムに塗布したり、ポリマー溶液を霧状にして酸化アルミニウムに吹き付けたりすることができる。
 ポリマー溶液に、酸化アルミニウムを浸漬させる方法は特に限定されない。例えば、ピペッティング、転倒混合、スターラー、ミキサー、ボルテックス、ミルなどの分散機や超音波処理装置などで撹拌してもよい。
 水溶性の中性ポリマー濃度は特に限定されないが、0.01wt%以上が好ましく、より好ましくは、0.1wt%以上である。
 攪拌する際の混合時間は、ポリマーと酸化アルミニウムが均一に混合されれば、特に混合時間は限定されないが、ボルテックスの場合1分以上、好ましくは5分以上撹拌することが好ましい。
 また、ふるいや、ざるなどを用いてディップコートすることもできる。溶液に浸す際の混合時間は、0.1wt%以上のポリマー濃度であれば5分以上であればよく、30分以上であることが好ましい。
 ポリマー溶液を滴下する場合には、スポイト、滴下漏斗、などを用いることができる。ポリマー溶液を滴下する際には、酸化アルミニウムを振動させたり、回転させたりしてもよく、スピンコーターなどを用いてもよい。
 ポリマー溶液を塗布する場合には、刷毛、ローラー、ワイヤーバーを用いることができる。
 ポリマー溶液を霧状にして吹き付ける場合には、エアースプレーやエアブラシなどを用いることができる。
 上記に例示した方法で、酸化アルミニウムに水溶性の中性ポリマーを吸着させた後は、余分なポリマー溶液を遠心分離などによって取り除いてもよいし、取り除かずにそのままセルフリーDNAの回収に用いてもよい。また、ポリマー溶液を溶媒に溶解させている場合、酸化アルミニウムに水溶性の中性ポリマーを吸着させた後、乾燥させて溶媒を取り除いてもよいし、乾燥させずに、セルフリーDNAの回収に用いてもよい。
 得られた本発明の担体は、作製して保存しておいたものを使用してもよく、用時調製して使用してもよい。
 ポリマー溶液は、入手したポリマーが固体であれば水や有機溶媒に溶解することで調製でき、溶液であれば希釈することで調製できる。ポリマーが溶解しにくい場合や、溶液の粘度が高く混合しにくい場合、加熱処理や超音波処理を行ってもよい。有機溶媒は、例えば、エタノール、アセトニトリル、メタノール、プロパノール、tert-ブタノール、DMF、DMSO、アセトン、エチレングリコール、グリセロールなど、水と双溶性のあるものを使用することが好ましい。また、水に溶解しにくい場合には、上記の有機溶媒を添加してもよい。
 酸化アルミニウムと水溶性の中性ポリマーを、リンカー分子などによって共有結合させて作製した担体は、本発明の担体に該当しない。具体的なリンカー分子には、シランカップリング剤などが挙げられる。
 以降、本発明を工程毎に説明する。
 工程a)は、上記の作製方法によって作製した酸化アルミニウムの表面に水溶性の中性ポリマーが吸着した担体(本明細書中では、本発明の担体と記載する。)と、体液試料を混合し、本発明の担体にセルフリーDNAを吸着させる工程である。本発明の担体と体液試料との混合方法は特に限定されないが、例えば、ピペッティングや転倒混合により行ってもよく、ミキサー、ボルテックスなどの装置を使用してもよい。混合時間は、特に限定されないが、5分程度であればよく、それ以上の時間混合してもよい。また、本発明の担体をカラムに充填し、体液試料を通過させてもよい。さらに、本発明の担体と体液試料を混合する際に、タンパク質変性剤を添加してもよい。タンパク質変性剤は、工程a)の前段階として、あらかじめ体液試料に添加しておくこともできる。
 工程b)は、工程a)において混合した混合物から、前記セルフリーDNAが吸着した担体を分離する工程である。分離の方法としては、工程a)で得られる混合物を遠心分離し、セルフリーDNAが吸着した担体を沈殿させ、上清を除く方法が挙げられる。セルフリーDNAが吸着した担体の比重は水より大きいため、遠心操作により容易に沈殿させることができる。遠心分離の条件は、6000Gで1分間処理すればよく、10000Gで1分間処理することがより好ましい。他の分離方法としては、限外ろ過膜を用いる方法が挙げられる。セルフリーDNAが吸着した担体の粒径より小さな孔径を持つ限外ろ過膜に対し、工程a)で得られた混合物を通過させ、担体を分離する。このような限外ろ過膜はキット化されており、メルク株式会社のウルトラフリー(登録商標)やPall Corporationのナノセップ(登録商標)に代表される遠心ろ過キットを入手して利用することができる。
 また、工程b)の操作の後に、必要に応じて以下のような処理をしてもよい。これは、本発明の担体の表面に目的となるセルフリーDNA以外の生物学的試料由来物が吸着している可能性があるためである。例えば、より高純度にセルフリーDNAを単離するため、洗浄や分解の処理を行うことができる。具体的には、非特異的に吸着した化合物を除去するために水で洗浄する、非特異的に吸着したタンパク質を除去するために界面活性剤で洗浄する、イオンや低分子化合物を除去するために界面活性剤を含む溶液で洗浄する、非特異的に吸着した疎水性化合物を除去するために有機溶媒で洗浄する、非特異的に吸着したタンパク質を分解するためにタンパク質分解酵素を添加する、DNAのみを単離するためにRNA分解酵素を添加する及びRNAのみを単離するためにDNA分解酵素を添加する、などの様々な処理をすることができる。
 工程c)は、工程b)において分離した前記セルフリーDNAが吸着した担体に溶出液を加えてセルフリーDNAを回収する工程である。セルフリーDNAが吸着した担体に溶出液を加えて、吸着しているセルフリーDNAを溶出液中に溶出させ、セルフリーDNAを回収する工程である。
 工程c)において、本発明の担体と、セルフリーDNAを溶出させた溶液を分離する方法としては、工程c)において、セルフリーDNAが吸着した担体に溶出液を加えて得られた混合物を遠心分離し、本発明の担体を沈殿させ、セルフリーDNAが溶出している上清を取得する方法が挙げられる。本発明の担体の比重は水より大きいため、遠心操作により容易に沈殿させることができる。遠心分離の条件は、6000Gで1分間処理すればよく、10000Gで1分間処理することが好ましい。
 他の分離方法としては、限外ろ過膜を用いる方法が挙げられる。本発明の担体の粒径より小さな孔径を持つ限外ろ過膜に対し、工程c)において得られた混合物を通過させ、本発明の担体を分離する。このような限外ろ過膜はキット化されており、メルク株式会社のウルトラフリー(登録商標)やPall Corporationのナノセップ(登録商標)に代表される遠心ろ過キットを入手して利用することができる。
 回収されたセルフリーDNAは、必要に応じて、化学修飾を行うことができる。化学修飾には、セルフリーDNAの末端に対する蛍光色素修飾、消光剤修飾、ビオチン修飾、アミノ化、カルボキシル化、マレインイミド化、スクシンイミド化、リン酸化及び脱リン酸化などが挙げられ、他にはインターカレーターによる染色が挙げられる。これらの修飾は化学反応により導入されてもよく、酵素反応により導入されてもよい。上記定量の前にこれらの修飾基を導入し、回収されたセルフリーDNA自身を定量するのではなく、化学修飾を経て導入された修飾基を定量することで、間接的にセルフリーDNAを定量することができる。
 本発明のセルフリーDNAの回収方法を用いて回収したセルフリーDNAを用いて、がんに特異的な遺伝子変異を検出したり、がんを検出したりすることができる。以降、これらの検出について説明する。
 本発明のセルフリーDNAの回収方法を用いて被験者の体液試料からセルフリーDNAを回収し、セルフリーDNAの遺伝子配列を解析して、がんに特異的な遺伝子変異を検出することができる。検出対象となるがんと、そのがんで変異が認められる遺伝子配列は、例えば“Catalogue Of Somatic Mutations In Cancer”などのデータベース(http://cancer.sanger.ac.uk/cosmic)に報告されているがんと、配列から選択することができる。具体的には、以下の遺伝子を例に挙げることができる。
 肺がんで変異が認められる遺伝子として、AKT1、ALK、APC、ATM、BAI3、BAP1、BRAF、CDKN2A、EGFR、EPHA5、ERBB2、ERBB4、FBXW7、FGFR1、FGFR2、GRM8、KDR、KEAP1、KIT、KMT2D、KRAS、LRP1B、MDM2、MET、MLH1、MUC16、MYC、NF1、NFE2L2、NOTCH1、PDGFRA、PIK3CA、PIK3CG、PKHD1、PTEN、RARB、RB1、RET、ROS1、RUNX1T1、SMAD4、SMARCA4、SOX2、STK11、TP53などの遺伝子が挙げられる。
 乳がんで変異が認められる遺伝子として、ACVR1B、AKT1、ATM、BAP1、BRCA1、BRCA2、CBFB、CDH1、CDKN2A、EGFR、EP300、ERBB2、ERBB3、ESR1、EXOC2、EXT2、FBXO32、FGFR1、FGFR2、GATA3、IRAK4、ITCH、KMT2C、MAP2K4、MAP3K1、MDM2、MUC16、MYC、NCOR1、NEK2、PBRM1、PCGF2、PIK3CA、PIK3R1、PPM1L、PTEN、PTGFR、RB1、RET、SEPT9、TP53、TRAF5、WEE1、ZBED4などの遺伝子が挙げられる。
 大腸がんで変異が認められる遺伝子として、ACVR1B、AKT1、APC、ATM、ATP6V0D2、BAX、BRAF、CASP8、CDC27、CTNNB1、DCC、DMD、EP300、ERBB2、FBXW7、FZD3、GPC6、KRAS、MAP2K4、MAP7、MIER3、MLH1、MSH2、MSH3、MSH6、MYO1B、NRAS、PIK3CA、PIK3R1、PTPN12、SLC9A9、SMAD2、SMAD4、TCERG1、TCF7L2、TGFBR2、TP53、WBSCR17などの遺伝子が挙げられる。
 骨髄増殖性腫瘍で変異が認められる遺伝子として、ABL1、ASXL1、ATRX、BCOR、BCORL1、CBL、CBLB、DAXX、DNMT3A、EED、ETV6、EZH2、FLT3、GATA1、GNAS、IDH1、IDH2、IKZF1、JAK1、JAK2、JAK3、KAT6A、KIT、KMT2A、KRAS、MPL、NF1、NPM1、NRAS、PHF6、PRPF40B、PTPN11、RAD21、RB1、RUNX1、SETBP1、SF1、SF3A1、SF3B1、SH2B3、SMC1A、SMC3、STAG2、SUZ12、TET2、TP53、U2AF1、U2AF2、WT1、ZRSR2などの遺伝子が挙げられる。
 肝臓がんで変異が認められる遺伝子として、ALB、AMPH、APC、ARID1A、ARID2、ATM、AXIN1、BAZ2B、BRAF、CCDC178、CDKN2A、CSMD3、CTNNB1、DSE、ELMO1、ERBB2、ERRFI1、GXYLT1、HNF1A、IGF2R、IGSF10、KEAP1、KRAS、MET、OTOP1、PIK3CA、SAMD9L、TP53、UBR3、USP25、WWP1、ZIC3、ZNF226などの遺伝子が挙げられる。
 卵巣がんで変異が認められる遺伝子として、AKT1、ARID1A、BRAF、BRCA1、BRCA2、CBLC、CCNE1、CDK12、CDKN2A、CSMD3、CTNNB1、CUBN、EGFR、ERBB2、FAT3、GABRA6、KIT、KRAS、KREMEN1、MAS1L、MLH1、MSH2、NF1、NRAS、PDGFRA、PIK3CA、PIK3R1、PPP2R1A、PTEN、RB1、TP53、USP16などの遺伝子が挙げられる。
 前立腺がんで変異が認められる遺伝子として、AKAP9、APC、AR、CDK12、CDKN1B、CDKN2A、GLI1、IKZF4、KDM4B、KLF6、KMT2D、MED12、MYC、NCOA2、NIPA2、NKX3-1、NRCAM、OR5L1、PDZRN3、PIK3CA、PTEN、RB1、SCN11A、SPOP、SYNE3、TBX20、TFG、THSD7B、TP53、ZFHX3、ZNF473、ZNF595などの遺伝子が挙げられる。
 胃がんで変異が認められる遺伝子として、APC、ATP4A、BAI3、BRCA2、CCNE1、CDH1、CTNNB1、DCC、ERBB2、FBXW7、FGFR2、GPR78、LPAR2、LRP1B、LRRK2、MET、MYC、NOTCH1、PIK3CA、PRKDC、RET、S1PR2、SPEG、SSTR1、STK11、TP53、TRIO、TRRAP、WNK2などの遺伝子が挙げられる。
 これら遺伝子変異の検出方法として、既存の核酸検出方法を用いることができる。具体的には、対象となる遺伝子変異を選択し、対象となる遺伝子の遺伝子変異を特異的に検出できるプライマーまたはプローブを用いてPCR、リアルタイムPCR、デジタルPCR、シーケンサー、マイクロアレイなどの核酸検出装置を用いて検出する。遺伝子変異の有無は、各検出法におけるネガティブコントロール測定値よりも有意に高いシグナルが測定された場合に、遺伝子変異が有ると判定することができる。より好ましくは、遺伝子変異が存在しないことが予め判明している検体と被験者の検体とについて同様の方法で遺伝子変異を測定し、遺伝子変異が存在しないことが予め判明している検体から得られた測定値と、被験者の検体から得られた測定値との間に統計学的に有意な差がある場合であって、被験者の検体から得られた測定値の方が高い場合に対象遺伝子の変異がある検出されたと判定する。
 また、本発明のセルフリーDNAの回収方法を用いて被験者およびがんに罹患していない検体の体液試料からセルフリーDNAを回収し、被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量を比較することによってがんを検出することができる。具体的には、被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量を比較して、被験者由来のセルフリーDNA量が、がんに罹患していない検体由来のセルフリーDNA量よりも多い場合に、被験者の検体からがんが検出されたと判定することができる。望ましくは、被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量との間に統計学的に有意な差がある場合であって、被験者由来のセルフリーDNA量の方が多い場合にがんが検出されたと判定することができる。
 本発明で用いるがんに罹患していない検体とは、悪性腫瘍があることを臨床的に診断されたり、病理検査で確認されたりした既往がないヒト由来の検体である。がんに罹患していない検体の身体的条件は、被験者と同一又は近似することが好ましい。身体的条件とは、例えば、人種等が該当する。
 また、被験者とがんに罹患していない検体の体液試料の種類は、同種の体液試料を用いることが好ましい。具体的には、被験者の検体が血しょうの場合、がんに罹患していない検体も血しょうを用いることが好ましい。また、被験者の検体が血清の場合は、がんに罹患していない検体も血清を用いることが好ましい。
 また、がんに罹患していない検体は、単数でも複数でもよい。がんに罹患していない検体を複数利用する場合には、セルフリーDNA量は、平均値、外れ値を除いた平均値、または中央値、などを用いることができる。
 回収されたセルフリーDNA量を定量する方法は、核酸量の定量方法として上記に記載した方法を用いることができる。
 この場合、定量対象となるセルフリーDNAの塩基長は、特に限定されないが、100bpより長い塩基長のセルフリーDNAが好ましく、300bp以上の塩基長のセルフリーDNAがより好ましい。また、定量対象の遺伝子配列は、セルフリーDNAに含まれる配列であれば特に限定されず、たとえばACTBやGAPDHなどのハウスキーピング遺伝子でもよく、がん特徴的な遺伝子であってもよい。がんに罹患していない検体と被験者のセルフリーDNA量は、同じ方法で測定した値を利用することが好ましい。
 本明細書において、「統計学的に有意な差」とは、例えばコントロール群の95%信頼下限区間をベースラインと設定し、被験者の測定値が当該ベースラインに達するかを判定することができる。また、得られた値の危険率(有意水準)が小さい場合、具体的には、p<0.05、p<0.01又はp<0.001の場合が挙げられる。ここで、危険率である「p」又は「p値」とは、統計学的検定において、統計量が仮定した分布の中で、仮定が偶然正しくなる確率を示す。したがって「p」又は「p値」が小さいほど、仮定が真に近いことを意味する。統計学的処理の検定方法は、有意性の有無を判断可能な公知の検定方法を適宜使用すればよく、特に限定しない。例えば、スチューデントt検定法、多重比較検定法を用いることができる。
 本発明を以下の実施例によってさらに具体的に説明する。
 <材料と方法>
 ポリエチレングリコールはメルク株式会社より、塩基性のガンマ酸化アルミニウム(N613N)は日揮触媒化成株式会社より購入した。実施例中で用いたポリマー水溶液は、それぞれの濃度になるよう水で溶解させた。また、実施例中で特に断らない限り、ガンマ酸化アルミニウムは塩基性のものを用いた。酸化アルミニウムは、ふるい分けなどせずに購入したまま実験に用いた。
 変性剤としては、キアゲン株式会社よりQIAGEN PtoreinaseKおよびRLTを、尿素は和光純薬工業株式会社より購入した。
 また、電気泳動で用いた20bp DNA ladderはタカラバイオ株式会社より、アクリルアミドゲルNOVEX-TBE-Gells 8% 15wellとDNA染色剤SYBR-Gold Nucleic Acid Ge l Stainをサーモフィッシャーサイエンティフィック株式会社より購入した。リアルタイムPCR測定には、タカラバイオ株式会社のSYBR(登録商標) Premix Ex TaqIIを用いた。セルフリーDNAを検出するために、アクチン-βの遺伝子配列のうち93bp分の塩基長(ACTIN93)を増幅させるためのプライマーとして、配列番号1および2を用いた。また、セルフリーDNA量によるがんの検出には、アクチン-βの遺伝子配列のうち306bp分の塩基長を増幅させるためのプライマーとして、配列番号1および3を用いた。プライマーはPrimePCR Assays,Panels,and Controls Instruction Manual (バイオ・ラッド・ラボラトリーズ株式会社)の記載を元に設計し、ユーロフィンジェノミクス株式会社より購入し、特に精製することなくそのまま用いた。その他の試薬については、和光純薬株式会社、東京化成株式会社、シグマーアルドリッチジャパン合同会社から購入し、特に精製することなくそのまま用いた。
 ボルテックスは東京理化器械株式会社のCUTE MIXER CM-1000を、ゼータ電位の測定には大塚電子株式会社のELS-Zを用いた。電気泳動はミニゲルスラブ電気泳動装置(アズワン株式会社)を用いた。サーマルサイクラーはタカラバイオ株式会社のPCR ThermalCycler SP TP-400を、リアルタイムPCRはバイオラッド社のCFX96-Real Time Systemを用いた。ふるいはアズワン株式会社のMVS-1を用いた。染色したゲルはGEヘルスケア・ジャパン株式会社のTyphoonFLA9500を用いて解析した。ゲルの画像解析は、Molecular Dynamics社のImageQuant TL(登録商標)を用いた。
 また、リアルタイムPCRでセルフリーDNAを定量した際には、リアルタイムPCRの結果、増幅サイクル数(Cq値)が35以下の場合に、セルフリーDNAを回収できていると判定した。また、40以上の場合は、測定下限以下となるため、N.Dと記載する。
 体液試料としては、がんに罹患していない検体としては、Tennessee Blood Services社から購入した複数人由来の混合血しょう、CureLine社より入手したがんに罹患していない女性及び男性由来の血しょうを用いた。がんに罹患している検体としては、CureLine社より入手したがん患者の血しょうを用いた。
 <比較例1>ポリマーコーティングしていない酸化アルミニウム担体を用いたセルフリーDNA回収
 特許文献4(実施例4、Table2)に記載の酸化アルミニウムAと組成の近い塩基性のガンマ酸化アルミニウム(N613N:日揮触媒化成株式会社)を用いて、セルフリーDNAを効率的に回収することができるかを検討した。体液試料としては、Tennessee Blood Services社から購入した複数人由来の混合血しょうを用いた。酸化アルミニウムに吸着させたセルフリーDNAを溶出させる溶出液として、特許文献4、5に、リン酸緩衝液、又はTris-EDTA緩衝液を溶出液として利用できることが記載されおり、特許文献6には、リン酸溶液が核酸と酸化アルミニウムとの結合を阻害する旨が記載されていたことから、リン酸緩衝液(0.5M,pH7)を溶出液として、以下の実験を行った。
 1.5mLチューブに0.5mgずつガンマ酸化アルミニウムを量り取った。そこにエタノール400μL添加し、ボルテックスで撹拌し、遠心機で遠心(10000G、1min)し上清を除いた。この操作を再度繰り返し、エタノールによって、ビーズ表面のごみなどを除去した。
 洗浄を終えたガンマ酸化アルミニウムに血しょう300μLを添加し、15分間ボルテックスで撹拌した。遠心機で遠心(10000G、1min)して上清を除き、血しょうを取り除いた。次に滅菌蒸留水400μL添加し、ボルテックスで撹拌し、遠心機で遠心(10000G、1min)し上清を除いた。この操作を再度繰り返し、滅菌蒸留水によって、チューブ内の残血しょうを完全に除去した。チューブ内の滅菌蒸留水を極力取り除いた後に、溶出液としてリン酸緩衝液(0.5M,pH7.0)を50μL添加し、すぐにボルテックスで15分間撹拌した。遠心機で遠心(10000G、1min)し、セルフリーDNAが含まれた上清を回収した。
 回収したセルフリーDNA量を確認するために、リアルタイムPCRにてアクチン-βの遺伝子配列のうち93bp分の塩基長(ACTIN93)を増幅させた。増幅プライマーとして、配列番号1および2を用いた。リアルタイムPCRは以下のような手順で実施した。
 まず、氷上にてSYBR Premix Ex Taqを12.5μL、0.5μMに調製したプライマーを1.0μL、滅菌蒸留水を8.5μL、上記の方法で回収したセルフリーDNAを含むサンプルを滅菌蒸留水で10倍希釈したうちの2μLを,1.5mLチューブ内で混合した(計25μL)。25μL全量をリアルタイムPCR用プレートに添加し、プレートシートで蓋をし、装置へセットした。リアルタイムPCR測定条件は、95℃30secで2本鎖DNAを1本鎖DNAに別れさせた後→95℃5sec、56℃1minの伸長反応を40サイクル行い、Amplification Curveから、増幅サイクル数を得た。PCR反応後、反応液の温度を60℃から95℃まで徐々に上昇させ融解曲線分析を行い、得られたMeltCurveからプライマーダイマーができていないことを確認した。
 結果を表1に示した。リアルタイムPCRの増幅サイクル数(Cq値)が検出限界以下の40以上となった。
 この結果により、ポリマーが吸着していないガンマ酸化アルミニウムを担体として用いた場合、セルフリーDNAを回収できないことが分かった。従って、特許文献4および5に記載の方法ではセルフリーDNAが回収できないことがわかった。
Figure JPOXMLDOC01-appb-T000001
 <比較例2>水溶性の中性ポリマー以外の水溶性のポリマーが吸着した酸化アルミニウム担体を用いたセルフリーDNA回収
 1.5mlチューブに、0.5mgずつガンマ酸化アルミニウムを量り取った。これにポリマー溶液として、ポリアクリル酸(PAcA, 5.1kD, 10wt%)、デキストラン硫酸(DS, 4kD, 10wt%)、ポリビニルスルホン酸(PVSA, 10wt%)、ポリアリルアミン(PAA, 17kD, 10wt%)、ポリ-L-リシン(PLL, 150kD, 1wt%)をそれぞれ50μLずつ加えて10分間ミキサーで攪拌した。遠心機で遠心(10000G, 1min)して上清を除き、それぞれのポリマーが吸着したガンマ酸化アルミニウム得た。
 水溶性の中性ポリマー以外の水溶性のポリマーが吸着した酸化アルミニウム担体に比較例1で用いた血しょう300μLとタンパク質変性剤としてグアジニン塩酸塩を含むRLT(株式会社キアゲン、Buffer RLT)450μLを予め混合したのちにポリマーが表面に吸着したガンマ酸化アルミニウム担体に添加した。その他の操作は比較例1と同様で行った。また、回収したセルフリーDNAの検出は、比較例1と同様の方法で確認した。
 結果を表2に示した。これらの結果から、いずれの担体を用いた場合でも、リアルタイムPCRの検出下限以下の回収であったとわかる。これらの結果から、水溶性の中性ポリマー以外の水溶性のポリマーが吸着したガンマ酸化アルミニウムを担体として用いた場合、増幅サイクル数(Cq値)が35以上もしくは検出限界以下(N.D)となり、セルフリーDNAを回収できないことが分かった。
Figure JPOXMLDOC01-appb-T000002
 <比較例3>シリカ担体を用いたセルフリーDNA回収
 シリカ担体を用いたセルフリーDNA回収キット(サーモフィッシャー株式会社、MagMax cell-FreeDNA Isolation kit)を用いて血しょうセルフリーDNAを効率的に回収することができるかを検討した。
 タンパク質変性剤としては、キットプロトコルどおりのProteinaseKまたは、グアジニン塩酸塩を含むRLT(株式会社キアゲン、Buffer RLT)を用いた。体液試料は、比較例1と同様の血しょうを用いた。タンパク質変性剤として、RLTを用いた場合は、比較例1で用いた血しょう300μLとRLT450μLを予め混合したのちにシリカ担体に添加した。それ以外の回収操作はキットプロトコル通りでおこなった。
また、回収したセルフリーDNAの検出は、比較例1と同様の方法で確認した。
 結果を表3に示す。これらの結果から、シリカ担体を用いた場合はCq値が35以上となった。
 さらに、図1に回収したセルフリーDNAのゲル電気泳動の結果を示した。ゲル電気泳動の結果、回収したセルフリーDNAはバンドが確認できなかった。
Figure JPOXMLDOC01-appb-T000003
 <実施例1>水溶性の中性ポリマーであるPEGが表面に吸着したガンマ酸化アルミニウム担体を用いたセルフリーDNA回収(タンパク質変性剤:ProteinaseK)
 1.5mLチューブに0.5mgずつガンマ酸化アルミニウムを量り取った。そこにエタノール400μL添加し、ボルテックスで撹拌し、遠心機で遠心(10000G、1min)し上清を除いた。この操作を再度繰り返し、エタノールによって、ビーズ表面のごみなどを除去した。これにポリマー水溶液として、水溶性の中性ポリマーであるポリエチレングリコール(PEG,10kD,10wt%)を50μL加えて10分間ミキサーで撹拌した。遠心機で遠心(10000G、1min)して上清を除き、ポリマーが表面に吸着したガンマ酸化アルミニウム担体を得た。
 続いて、ポリマーが表面に吸着したガンマ酸化アルミニウム担体が含まれる溶液に、比較例3のキットプロトコルと同一の血しょう条件とするために、タンパク質変性剤としてProteinaseKで60℃20min変性処理した比較例1で用いた血しょう300μLを添加し、15分間ボルテックスで撹拌した。その後の操作は比較例1と同様に行った。回収したセルフリーDNA量は比較例1と同様に確認した。結果を表3に示す。
 <実施例2>水溶性の中性ポリマーであるPEGが表面に吸着したガンマ酸化アルミニウム担体を用いたセルフリーDNA回収(タンパク質変性剤:Buffer RLT)
 実施例1で行った、血しょうのタンパク質変性処理の変性剤は、グアジニン塩酸塩を含むRLT(株式会社キアゲン、Buffer RLT)に変更した。使用方法は、比較例1で用いた血しょう300μLとRLT450μLを予め混合したのちにポリマーが表面に吸着したガンマ酸化アルミニウム担体に添加した。その他の作業は比較例1と同様である。結果を表3に示す。 
 さらに、図1に回収したセルフリーDNAのゲル電気泳動の結果を示した。これらの結果から、比較例3で回収したセルフリーDNAはバンドが確認できないのに対し、実施例2で回収したセルフリーDNAは160bp付近でバンドを確認することができ、本発明の方法は、セルフリーDNAが高い純度で回収されていることがわかった。
 <実施例3>水溶性の中性ポリマーであるPEGが表面に吸着したガンマ酸化アルミニウム担体を用いたセルフリーDNA回収(タンパク質変性剤:尿素)
 実施例1で行った、血しょうのタンパク質変性処理の変性剤の種類を尿素に変更した。使用方法は、比較例1で用いた血しょう300μLと尿素(終濃度6M)450μLを予め混合したのちにポリマーが表面に吸着したガンマ酸化アルミニウム担体に添加した。その他の作業は比較例1と同様である。結果を表3に示す。
 <実施例4>水溶性の中性ポリマーであるPEGが表面に吸着したガンマ酸化アルミニウム担体を用いたセルフリーDNA回収(タンパク質変性剤:なし)
 実施例1で行った、血しょうのタンパク質変性処理を行わないで、血しょうをポリマーが表面に吸着したガンマ酸化アルミニウム担体に添加した。比較例1で用いた血しょう300μLに蒸留水45μLを添加した以外の作業は実施例1と同様である。結果を表3に示す。
 表3の実施例1、2、3、4の結果から、Cq値は35以下となり、水溶性の中性ポリマーが表面に吸着したガンマ酸化アルミニウム担体を用いると、タンパク質変性剤の有無や、種類に関係なく、300μLの血しょうからセルフリーDNAを回収できることがわかった。
 <実施例5>水溶性の中性ポリマーが表面に吸着したガンマ酸化アルミニウム担体を用いたセルフリーDNA回収
 水溶性の中性ポリマーとして、ゼータ電位が異なる以下にあげる各種ポリマーを各10wt%水溶液に調製した。PEG(ポリエチレングリコール)、PVA(ポリビニルアルコール)、PEOz(ポリ(2-エチル-2オキサゾリン))、HPMC(ヒドロキシプロピルメチルセルロース)、PVP(ポリビニルピロリドン)。調製した各ポリマー溶液とガンマ酸化アルミニウム担体を混合させ、各ポリマーが表面に吸着したガンマ酸化アルミニウム担体を作製した。それ以外の作業は実施例1と同様である。
 その結果を表4に示す。リアルタイムPCRの増幅サイクル数(Cq値)が35以下であることから、ゼータ電位が±10mVの範囲である中性の水溶性ポリマーをガンマ酸化アルミニウム表面に吸着させた担体を用いれば、300μLという少量の血しょうから、セルフリーDNAを効率的に回収できることができることが分かった。
Figure JPOXMLDOC01-appb-T000004
 <比較例4>シリカ担体を用いたセルフリーDNA回収 
 体液試料として、CureLine社より入手したがんに罹患していない女性及び男性由来の血しょう、並びにCureLine社より入手した乳がん患者(女性)の血しょうを用いた以外は、比較例3と同様の方法でセルフリーDNAの回収を行い、Quantus Fluorometer(登録商標)を用いてDNA濃度を測定した。結果を表5に示す。
 これらの結果から、いずれの検体も測定限界以下の値である0.005ng/μLとなり、シリカ担体を用いた場合、300μLのがんに罹患していない検体由来の血しょう及びがん患者由来の血しょうからセルフリーDNAを回収できないことがわかった。
 <実施例6>水溶性の中性ポリマーであるPEGが表面に吸着したガンマ酸化アルミニウム担体を用いたセルフリーDNA回収(タンパク質変性剤:尿素)
 実施例1で用いた担体を使用した以外は、比較例4と同様の検体から、比較例4と同様作業でセルフリーDNAの回収を行った。回収したセルフリーDNAの濃度を比較例4と同様の方法で確認した。結果を表5に示す。
 その結果、がんに罹患していない男性由来の血しょうからは0.0149pg/μL、がんに罹患していない女性由来の血しょうからは0.0077pg/μL、乳がん患者由来の血しょうからは0.0323pg/μL得られた。
Figure JPOXMLDOC01-appb-T000005
 <比較例5>シリカ担体を用いたがん患者由来血しょう由来セルフリーDNAからの遺伝子変異の検出
 シリカ担体を用いたセルフリーDNA回収キット(サーモフィッシャー株式会社、MagMax cell-FreeDNA Isolation kit)を用いて、体液試料300μLからセルフリーDNAを回収し、がん特異的な遺伝子変異を検出した。体液試料として、CureLine社より入手したがんに罹患していない女性及び男性由来の血しょう、並びにCureLine社より入手した肺がん(男性)患者の血しょうを用いた。セルフリーDNAの回収方法は、比較例3において変性剤にRLTを用いた方法と同様に実施した。得られた溶出液の1/25の体積を20μLにして用いて、肺がん患者に特異的なEGFR exon19 deletion変異をデジタルPCRで検出した。結果を表6に示す。その結果、がんに罹患していない男性、女性の検体では遺伝子変異は検出されなかったが、肺がん患者のセルフリーDNAからは49.45%の頻度でEGFR exon19 deletion変異を検出した。
 <実施例7>PEGが表面に吸着したガンマ酸化アルミニウム担体を用いて回収したセルフリーDNAからの遺伝子変異の検出
 比較例3において変性剤にRLTを用いた方法と同様の方法を用いて、比較例5と同じ検体であるがんに罹患していない男性、女性、及び肺がん患者の血しょう300μLからセルフリーDNAを回収し、がん特異的な遺伝子変異を検出した。得られた溶出液の1/25の体積を20μLにして用いて、肺がん患者に特異的なEGFR exon19 deletion変異をデジタルPCRで検出した。その結果、がんに罹患していない男性、女性の検体では遺伝子変異は検出されなかったが、肺がん患者のセルフリーDNAからは55.82%の頻度でEGFR exon19 deletion変異を検出した。この数値は比較例5の方法で得られた遺伝子変異検出頻度(49.45%)よりも高いことから(表6)、本発明の方法は既存の方法よりもがん特異的な遺伝子変異を高感度に検出できることが示された。
Figure JPOXMLDOC01-appb-T000006
 <比較例6>シリカ担体を用いて回収したセルフリーDNA量によるがんの検出
 シリカ担体を用いたセルフリーDNA回収キット(サーモフィッシャー株式会社、MagMax cell-FreeDNA Isolation kit)を用いて、体液試料300μLからセルフリーDNAを回収し、リアルタイムPCRで測定されたセルフリーDNA量を用いてがんの有無を検出した。体液試料として、CureLine社より入手したがんに罹患していない女性及び男性由来の血しょう、並びに、CureLine社より入手した肺がん(男性)、乳がん(女性)、及び大腸がん(男性)の血しょうを用いた。セルフリーDNAの回収方法は、比較例3において変性剤にRLTを用いた方法と同様に実施した。DNAは50μLに溶出し、10倍希釈したうちの4μLを分取し、がん由来のセルフリーDNAをより検出し易くなるよう設計した配列1と配列3のプライマーから増幅されるアクチン配列遺伝子の断片である約306bpをリアルタイムPCRで検出した。検出対象の塩基長を300bpよりも長くすることで、非がん細胞では放出され難いが、がん細胞では放出されるセルフリーDNAを捕捉し、非がんとがんの区別を試みた。がんに罹患していない男性、およびがんに罹患してない女性由来の検体測定値の95%信頼下限区間をベースラインとし、これよりセルフリーDNA量が1.5倍以上多い(PCRサイクル数が約0.59少ない)検体はがんが検出されたとしてがん陽性、そうでない検体はがんが検出されないとして、がん陰性と判定した。
 上記の判断基準に、それぞれの検体のPCRサイクル数当てはめると、肺がん患者と大腸がん患者由来の検体は、がんに罹患していない検体のベースラインよりもセルフリーDNA量が多く検出されたため、がん陽性と判定した。一方で、乳がん患者由来の検体は、がんに罹患していない検体由来の測定値のベースラインと重なり、陰性と判定した。従って、本法では3つのがん検体のうち1つの検体についてがんと判定できなかったため、感度は66%であった。
 <実施例8>PEGが表面に吸着したガンマ酸化アルミニウム担体を用いて回収したセルフリーDNA量によるがんの検出
 実施例2において変性剤にRLTを用いた方法と同様の方法を用いて、比較例6と同じ体液試料300μLからセルフリーDNAを回収し、リアルタイムPCRで測定されたセルフリーDNA量を用いてがんの有無を検出した。セルフリーDNAの回収方法は、比較例3において変性剤にRLTを用いた方法と同様に実施した。DNAは50μLに溶出し、10倍希釈したうちの4μLを分取し、がん由来のセルフリーDNAをより検出し易くなるよう設計した配列1と配列3のプライマーから増幅されるアクチン配列遺伝子の断片をリアルタイムPCRで検出した。がんの有無に関する判定については、比較例6と同様に実施した。その結果、肺がん(男性)、乳がん(女性)、大腸がん(男性)患者の血しょうは、それぞれ、がんに罹患していない検体のベースラインよりもセルフリーDNA量が多く検出され、全検体が、がん陽性と判定した。従って、本法では3つのがん検体のうち3つの検体全てが陽性であったため、感度は100%であった。この感度は、比較例6の方法で得られた感度(66%)よりも高いことから(表7)、本発明の方法は既存の方法よりも高感度にセルフリーDNAからがんを検出できることが示された。
Figure JPOXMLDOC01-appb-T000007

Claims (9)

  1.  体液試料からセルフリーDNAを回収する方法であって、以下の工程:
    工程a)水溶性の中性ポリマーが表面に吸着した酸化アルミニウムの担体と前記体液試料を混合し、前記担体にセルフリーDNAを吸着させる工程、
    工程b)工程a)において混合した混合物から、前記セルフリーDNAが吸着した担体を分離する工程、および
    工程c)工程b)において分離した前記セルフリーDNAが吸着した担体に溶出液を加えてセルフリーDNAを回収する工程、
    を含むセルフリーDNAの回収方法。
  2.  前記体液試料が、全血、血清、血しょう、尿または唾液である請求項1に記載のセルフリーDNAの回収方法。
  3.  前記水溶性の中性ポリマーが、pH7の溶液中で-10mV以上+10mV以下のゼータ電位を有するポリマーである請求項1または2に記載のセルフリーDNAの回収方法。
  4.  前記ポリマーが、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリ(2-エチル-2-オキサゾリン)又はヒドロキシプロピルメチルセルロースである請求項1から3に記載のセルフリーDNAの回収方法。
  5.  前記溶出液が緩衝液である請求項1から4のいずれかに記載のセルフリーDNAの回収方法。
  6.  前記体液試料を、タンパク質変性剤で処理する請求項1から5のいずれかに記載のセルフリーDNAの回収方法。
  7.  前記タンパク質変性剤が、カオトロピック塩またはタンパク質変性酵素である請求項6に記載のセルフリーDNAの回収方法。
  8.  セルフリーDNAの遺伝子配列を解析し、がんに特異的な遺伝子変異を検出する方法であって、請求項1~7のいずれかに記載のセルフリーDNAの回収方法を用いて被験者の体液試料からセルフリーDNAを回収する工程、および当該回収したセルフリーDNAからがんに特異的な遺伝子変異を検出する工程、を含む遺伝子変異の検出方法。
  9.  被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量を比較することによってがんを検出方法であって、請求項1~7のいずれかに記載のセルフリーDNAの回収方法を用いて被験者およびがんに罹患していない検体の体液試料からセルフリーDNAを回収する工程、および当該回収した被験者由来のセルフリーDNA量と、がんに罹患していない検体由来のセルフリーDNA量を比較してがんを検出する工程、を含むがんの検出方法。
     
PCT/JP2017/033011 2016-09-14 2017-09-13 セルフリーdnaの回収方法 WO2018052011A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17850912.1A EP3514233B1 (en) 2016-09-14 2017-09-13 Method for recovering cell-free dna
KR1020197006101A KR102406951B1 (ko) 2016-09-14 2017-09-13 무세포 dna의 회수 방법
CA3035881A CA3035881A1 (en) 2016-09-14 2017-09-13 Method of collecting cell-free dna
US16/331,777 US20190203200A1 (en) 2016-09-14 2017-09-13 Method of collecting cell-free dna
CN201780054556.0A CN109689869B (zh) 2016-09-14 2017-09-13 无细胞dna的回收方法
JP2017553271A JP6996298B2 (ja) 2016-09-14 2017-09-13 セルフリーdnaの回収方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-179451 2016-09-14
JP2016179451 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018052011A1 true WO2018052011A1 (ja) 2018-03-22

Family

ID=61619472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033011 WO2018052011A1 (ja) 2016-09-14 2017-09-13 セルフリーdnaの回収方法

Country Status (7)

Country Link
US (1) US20190203200A1 (ja)
EP (1) EP3514233B1 (ja)
JP (1) JP6996298B2 (ja)
KR (1) KR102406951B1 (ja)
CN (1) CN109689869B (ja)
CA (1) CA3035881A1 (ja)
WO (1) WO2018052011A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131760A1 (ja) * 2017-12-27 2019-07-04 東レ株式会社 核酸の回収方法
WO2020085341A1 (ja) * 2018-10-23 2020-04-30 東レ株式会社 核酸の回収方法及び核酸回収用のキット
JPWO2020090900A1 (ja) * 2018-10-31 2021-09-24 東レ株式会社 核酸回収用カラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018514A1 (en) 1991-04-12 1992-10-29 Minnesota Mining And Manufacturing Company Purification of nucleic acids using metal oxide supports
US5234809A (en) 1989-03-23 1993-08-10 Akzo N.V. Process for isolating nucleic acid
JP2003235555A (ja) * 2002-02-08 2003-08-26 Jsr Corp 一本鎖核酸および/または二本鎖核酸の単離方法
JP2005505269A (ja) 2001-08-31 2005-02-24 エクストラーナ,インク. 核酸のアーカイブ
JP2007006728A (ja) * 2005-06-28 2007-01-18 Bando Chem Ind Ltd 被覆無機粒子およびその利用
JP2007529229A (ja) * 2004-03-18 2007-10-25 アンビオン インコーポレーティッド 核酸精製のための固相支持体として修飾された表面
JP2011522529A (ja) 2008-05-30 2011-08-04 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 短鎖核酸を単離する方法
JP2013505719A (ja) 2009-09-24 2013-02-21 キアジェン ゲイサーズバーグ インコーポレイテッド 陰イオン交換材料を使用した核酸の単離および分析のための組成物、方法およびキット
WO2015114641A1 (en) 2014-01-28 2015-08-06 Resource Life Sciences Private Limited Detection of cancer using pcr method
WO2015132615A1 (en) * 2014-03-07 2015-09-11 Oxford Gene Technology (Operations) Ltd. Enriching a sample of circulating cell-free nucleic acids
WO2016007755A1 (en) 2014-07-09 2016-01-14 Skog Johan Karl Olov Methods for isolating microvesicles and extracting nucleic acids from biological samples

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4321904B4 (de) * 1993-07-01 2013-05-16 Qiagen Gmbh Verfahren zur chromatographischen Reinigung und Trennung von Nucleinsäuregemischen
KR100745750B1 (ko) * 2005-01-25 2007-08-02 삼성전자주식회사 인터컬레이터를 이용한 핵산의 분리 방법
JP2006235555A (ja) * 2005-02-25 2006-09-07 Plus Jack Kk 眼鏡フレーム又は部品、及びそれ用のシート板
US8679741B2 (en) * 2006-05-31 2014-03-25 Sequenom, Inc. Methods and compositions for the extraction and amplification of nucleic acid from a sample
WO2016152763A1 (ja) * 2015-03-20 2016-09-29 東レ株式会社 核酸の回収方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234809A (en) 1989-03-23 1993-08-10 Akzo N.V. Process for isolating nucleic acid
WO1992018514A1 (en) 1991-04-12 1992-10-29 Minnesota Mining And Manufacturing Company Purification of nucleic acids using metal oxide supports
JP2005505269A (ja) 2001-08-31 2005-02-24 エクストラーナ,インク. 核酸のアーカイブ
JP2003235555A (ja) * 2002-02-08 2003-08-26 Jsr Corp 一本鎖核酸および/または二本鎖核酸の単離方法
JP2007529229A (ja) * 2004-03-18 2007-10-25 アンビオン インコーポレーティッド 核酸精製のための固相支持体として修飾された表面
JP2007006728A (ja) * 2005-06-28 2007-01-18 Bando Chem Ind Ltd 被覆無機粒子およびその利用
JP2011522529A (ja) 2008-05-30 2011-08-04 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 短鎖核酸を単離する方法
JP2013505719A (ja) 2009-09-24 2013-02-21 キアジェン ゲイサーズバーグ インコーポレイテッド 陰イオン交換材料を使用した核酸の単離および分析のための組成物、方法およびキット
WO2015114641A1 (en) 2014-01-28 2015-08-06 Resource Life Sciences Private Limited Detection of cancer using pcr method
WO2015132615A1 (en) * 2014-03-07 2015-09-11 Oxford Gene Technology (Operations) Ltd. Enriching a sample of circulating cell-free nucleic acids
WO2016007755A1 (en) 2014-07-09 2016-01-14 Skog Johan Karl Olov Methods for isolating microvesicles and extracting nucleic acids from biological samples

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514233A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131760A1 (ja) * 2017-12-27 2019-07-04 東レ株式会社 核酸の回収方法
US11685915B2 (en) 2017-12-27 2023-06-27 Toray Industries, Inc. Method of collecting nucleic acid
WO2020085341A1 (ja) * 2018-10-23 2020-04-30 東レ株式会社 核酸の回収方法及び核酸回収用のキット
JPWO2020085341A1 (ja) * 2018-10-23 2021-09-09 東レ株式会社 核酸の回収方法及び核酸回収用のキット
JPWO2020090900A1 (ja) * 2018-10-31 2021-09-24 東レ株式会社 核酸回収用カラム
EP3875571A4 (en) * 2018-10-31 2022-08-24 Toray Industries, Inc. COLUMN FOR NUCLEIC ACID COLLECTION
US11795449B2 (en) 2018-10-31 2023-10-24 Toray Industries, Inc. Nucleic acid collection column
JP7424055B2 (ja) 2018-10-31 2024-01-30 東レ株式会社 核酸回収用カラム

Also Published As

Publication number Publication date
CN109689869A (zh) 2019-04-26
CN109689869B (zh) 2022-09-27
EP3514233A1 (en) 2019-07-24
JP6996298B2 (ja) 2022-01-17
EP3514233B1 (en) 2022-03-02
KR20190049717A (ko) 2019-05-09
KR102406951B1 (ko) 2022-06-10
US20190203200A1 (en) 2019-07-04
CA3035881A1 (en) 2018-03-22
EP3514233A4 (en) 2020-05-06
JPWO2018052011A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7189401B2 (ja) インサイチュ増幅により無細胞核酸分子を調製する方法
KR101569498B1 (ko) 위용종 및 위암 특이적 메틸화 마커 유전자를 이용한 위용종 및 위암의 검출방법
JP6996298B2 (ja) セルフリーdnaの回収方法
JP2022191311A (ja) Mitraチップ抽出を使用してdnaの変異を検出するための方法
JP6438119B2 (ja) ホットスポット変異の迅速かつ高感度の検出のための方法
WO2013041021A1 (zh) 一种分析基因表达定量的方法
JP6711270B2 (ja) 核酸の回収方法
JP2023512522A (ja) 標的化された核酸捕捉のためのシステムおよび方法
JP2016520330A (ja) 改良されたngsワークフロー
US10214776B2 (en) Nanoprobe-based genetic testing
KR102689348B1 (ko) 핵산의 회수 방법
JP6920683B2 (ja) ピロールイミダゾール含有ポリアミドを用いた標的二本鎖核酸分子の濃縮方法およびキット
WO2016082057A1 (zh) 游离dna测序文库的构建方法
US20190062840A1 (en) Tumor determination method
EP3639022A1 (en) Compositions and methods for detection of genomic variations
WO2024207698A1 (zh) 肿瘤的检测方法及试剂
Zhang et al. Clinical applications of circulating DNA
CN113584171A (zh) 基因突变位点的用途及突变位点检测方法
TWI586810B (zh) Nras基因的突變位點的檢測方法
JPWO2020085341A1 (ja) 核酸の回収方法及び核酸回収用のキット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017553271

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006101

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3035881

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850912

Country of ref document: EP

Effective date: 20190415