WO2018051522A1 - 立体構造体 - Google Patents

立体構造体 Download PDF

Info

Publication number
WO2018051522A1
WO2018051522A1 PCT/JP2016/077596 JP2016077596W WO2018051522A1 WO 2018051522 A1 WO2018051522 A1 WO 2018051522A1 JP 2016077596 W JP2016077596 W JP 2016077596W WO 2018051522 A1 WO2018051522 A1 WO 2018051522A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional structure
porous portion
porous
region
etching
Prior art date
Application number
PCT/JP2016/077596
Other languages
English (en)
French (fr)
Inventor
洋史 久保
奈美 金谷
Original Assignee
日本蓄電器工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本蓄電器工業株式会社 filed Critical 日本蓄電器工業株式会社
Priority to CN201680089307.0A priority Critical patent/CN109716467B/zh
Priority to US15/549,317 priority patent/US10529497B2/en
Priority to EP16916302.9A priority patent/EP3489976B1/en
Priority to PCT/JP2016/077596 priority patent/WO2018051522A1/ja
Priority to KR1020197010166A priority patent/KR102218601B1/ko
Priority to JP2018539495A priority patent/JP6750179B2/ja
Priority to TW106127924A priority patent/TWI704589B/zh
Publication of WO2018051522A1 publication Critical patent/WO2018051522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a three-dimensional structure, and particularly to a three-dimensional structure capable of supporting a functional material such as a solid electrolyte or a catalyst.
  • the three-dimensional structure can be used for an anode body or a catalyst carrier of an electrolytic capacitor, but the use of the three-dimensional structure is not limited to the above and can be applied to various applications.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-177199
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-177200
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-278124
  • Patent Document 4 JP-A-2012-161718 is a prior document disclosing a catalyst carrier for supporting a catalyst.
  • the catalyst carrier described in Patent Document 4 is made of an aluminum wire provided with a spongy structure layer by etching or the like.
  • the three-dimensional structure includes many voids and has a high expansion ratio corresponding to the surface area of the three-dimensional structure.
  • the surface expansion magnification of the three-dimensional structure is high.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a three-dimensional structure capable of obtaining a high surface expansion magnification while ensuring mechanical strength.
  • the three-dimensional structure based on the present invention is a three-dimensional structure containing a conductive material.
  • the three-dimensional structure includes a core part and a porous part located around the core part.
  • the porosity per unit area of the porous portion located on the inner side by 3/20 of the diameter of the three-dimensional structure from the outer edge of the porous portion is 80% or less. .
  • the region between the two is defined as a void forming region, in the above-mentioned arbitrary cross section, it is located on the inner side of the inner side by 1/20 of the diameter of the three-dimensional structure from the outer edge of the porous portion, and the void is formed.
  • the porosity per unit area of the porous portion located in the region is 15% or more and 80% or less.
  • the porosity per unit area of the porous portion located in the void forming region is 15% or more and 80% or less in the above arbitrary cross section.
  • the porosity per unit area is at least a part of the outer region at a position that is 1/20 of the diameter of the three-dimensional structure from the outer edge of the porous portion.
  • the porous part having a height of more than 80% is present.
  • the second virtual shape that is in contact with the inner edge of the porous portion when the outer shape of the three-dimensional structure is reduced in a similar manner in the above arbitrary cross section, and the first virtual shape The interval between them is 10 ⁇ m or less.
  • the three-dimensional structure according to one embodiment of the present invention is a three-dimensional structure containing a conductive material.
  • the three-dimensional structure includes a core part and a porous part located around the core part.
  • the porous portion may be provided by partially removing the base material by etching or the like, or may be provided by laminating a material on the base material by vapor deposition or sintering.
  • the shape of the substrate may be a wire shape including a thread shape, a fiber shape and a round bar shape, or may be a block shape including a sphere shape, an ellipsoid shape, a pellet shape and a coin shape.
  • the block shape does not include shapes having a thickness of 1 mm or less, such as a foil shape and a paper shape.
  • FIG. 1 is a perspective view showing the shape of the base material of the first example.
  • FIG. 2 is a perspective view showing the shape of the base material of the second example.
  • FIG. 3 is a perspective view showing the shape of the base material of the third example.
  • the shape of the base material 10a of the first example is such that the diameter of the cross section is r, the length is L, and r ⁇ L.
  • the shape of the base material 10c of the third example is such that the diameter of the cross section is r, the length is L, and r> L.
  • the size relationship between the diameter r and the length L of the cross section of the base material is not particularly limited, but when the length L of the base material and the length of the three-dimensional structure are the same, the base material is Since the process of cutting according to the length of the three-dimensional structure becomes unnecessary, the number of manufacturing processes of the three-dimensional structure can be reduced.
  • the base material does not have a corner portion that is not rounded on the outer shape.
  • the outer shape of the substrate has corners, when the voids are formed in order from the outer periphery to the center of the substrate by etching, the voids are combined with each other in the vicinity of the corners to form a large void. In this case, an increase in the surface area of the porous portion is suppressed, and it becomes difficult to obtain a high surface expansion magnification.
  • the shape of the cross section of the substrate is preferably circular.
  • the material constituting the base material is appropriately selected according to the use of the three-dimensional structure.
  • a dielectric layer is formed on the surface of the porous portion.
  • the dielectric layer is preferably composed of an oxide of a metal component constituting the porous portion. Therefore, when the porous portion is provided by removing a part of the base material by etching or the like, the base material is made of a valve metal such as aluminum, niobium or tantalum.
  • the three-dimensional structure may be formed by partially removing the base material by etching or the like, or may be formed by laminating the material on the base material by vapor deposition or sintering. . Furthermore, the three-dimensional structure may be formed by cutting a base material provided with a porous portion.
  • the external shape of the three-dimensional structure may be a wire shape or a block shape. The magnitude relationship between the diameter and length of the cross section of the three-dimensional structure is not particularly limited.
  • FIG. 4 is a cross-sectional view showing a configuration of a three-dimensional structure according to an embodiment of the present invention.
  • the three-dimensional structure 11 according to an embodiment of the present invention includes a core part 12 and a porous part 13 positioned around the core part 12.
  • the state in which the inner edge 13 b of the porous portion 13 has minute radial irregularities over the entire circumference is exaggeratedly shown.
  • the diameter of the cross section of the porous portion 13 is r.
  • the three-dimensional structure 11 has a porous portion 13 located on the inner side of the inner position 11a by 3/20 of the diameter r of the three-dimensional structure 11 from the outer edge 13a of the porous portion 13 in an arbitrary cross section.
  • the porosity per unit area is 80% or less.
  • the porosity per unit area of the porous portion 13 located on the inner side of the position 11a is more preferably 75% or less.
  • the porous portion 13 of the three-dimensional structure 11 does not have a portion where voids are excessively formed, the mechanical strength of the three-dimensional structure 11 can be ensured.
  • the three-dimensional structure 11 may be formed by partially removing the base material by etching or the like, or may be formed by laminating materials on the base material by vapor deposition or sintering.
  • a method for forming the three-dimensional structure 11 by partially removing the base material by etching or the like there are methods such as AC etching or chemical etching.
  • the etchant for example, an aqueous solution containing hydrochloric acid can be used. From the viewpoint of uniformly forming voids in the porous portion 13, AC etching is preferable to chemical etching.
  • the three-dimensional structure 11 when the voids are formed in order from the outer peripheral portion of the three-dimensional structure 11 toward the center, the three-dimensional structure 11 is formed from the outer edge 13a of the porous portion 13. From the point in time when the etching progresses inward from the position 11a on the inner side by 3/20 of the diameter r, the circulating amount of the etchant in the etching bath is increased as the etching progresses. Thereby, it is possible to forcibly circulate the etching solution that has entered the space located in the innermost part of the three-dimensional structure 11.
  • the composition and temperature of the etching solution that has entered the innermost space in the three-dimensional structure 11 can be brought close to the composition and temperature of the etching solution in the etching bath outside the three-dimensional structure 11.
  • the porosity per unit area of the porous portion 13 is from the outer edge 13a of the porous portion 13 to the porous portion 13 located on the inner side of the inner position 11a by 3/20 of the diameter r of the three-dimensional structure 11. It can be ensured that there are no more than 80% voids formed excessively.
  • the particle size and density of particles to be deposited on the base material by vapor deposition or sintering are determined by changing the porous portion 13. It adjusts suitably with progress of lamination
  • the heating temperature and the heating time are also adjusted as appropriate.
  • FIG. 5 is a cross-sectional view showing a configuration of a three-dimensional structure according to a first modification of one embodiment of the present invention.
  • the first virtual shape 13 c that first contacts the inner edge 13 b of the porous portion 13 when the outer shape of the three-dimensional structure 11 is reduced in a similar manner as indicated by an arrow S in an arbitrary cross section.
  • a region between the outer edge 13a of the porous portion 13 and the void forming region 13t is a region between the outer edge 13a of the porous portion 13 and the void forming region 13t.
  • the porosity per unit area of the porous portion 13 located in the void forming region 13t is 15% or more and 80% or less, and 20 % To 75% is more preferable.
  • the porous portion 13 in the void forming region 13t When the porosity of the porous portion 13 in the void forming region 13t is 15% or more and 80% or less, the porous portion 13 in the void forming region 13t does not have a portion where voids are excessively formed.
  • the porosity of the porous portion 13 in the region between the inner edge 13b and the first virtual shape 13c (hereinafter referred to as the deep layer region 13i) is 80% or less. Therefore, the mechanical strength of the three-dimensional structure 11 can be ensured.
  • region 13t when a porosity is ensured 15% or more, a high surface expansion magnification can be obtained.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a three-dimensional structure according to a second modification of the embodiment of the present invention.
  • the porosity per unit area of the porous portion 13 that is located inward of the inner position 11b by 20 and located in the void formation region 13t is 15% or more and 80% or less.
  • a region located on the inner side of the inner position 11b by 1/20 of the diameter of the three-dimensional structure 11 from the outer edge 13a of the porous portion 13 and located in the void forming region 13t is defined as a main region 13s.
  • the porosity per unit area of the porous portion 13 in the main region 13s is more preferably 20% or more and 75% or less.
  • the porosity is 80% or less. Therefore, the mechanical strength of the three-dimensional structure 11 can be ensured. Moreover, in the porous portion 13 of the main region 13s, a high area expansion ratio can be obtained by ensuring a porosity of 15% or more.
  • a region outside the position 11b that is 1/20 of the diameter of the three-dimensional structure 11 from the outer edge 13a of the porous portion 13 is defined as a surface layer region 13h.
  • the porous portion 13 having a porosity per unit area higher than 80% exists in at least a part of the surface layer region 13h.
  • the porosity per unit area of the porous portion 13 may be higher than 80%.
  • the three-dimensional structure 11 can be configured so that the rigidity of the porous portion 13 in the surface layer region 13h is reduced and the surface layer region 13h is easily compressively deformed. Thereby, when a bending stress is applied to the three-dimensional structure 11, the bending stress is relaxed in the surface layer region 13h, so that the porous portion 13 in the main region 13s can be prevented from being cracked or cracked.
  • the porosity is 80% or less in the porous portion 13 of the main region 13s and the deep layer region 13i, the mechanical strength of the three-dimensional structure 11 can be ensured.
  • a high area expansion ratio can be obtained by ensuring a porosity of 15% or more.
  • the alternating current etching is started. Reduce the AC frequency only in the initial stage. As a result, the voids can be formed excessively only in the porous portion 13 located in the surface layer region 13h.
  • the porous portion 13 When the porous portion 13 is formed by laminating a material on the base material by vapor deposition or sintering, the porous portion having a porosity per unit area higher than 80% in at least a part of the surface layer region 13h.
  • the particle size and density of the particles arranged in the surface layer region 13h are adjusted as appropriate so that 13 exists. For example, the particle diameter of the particles disposed in the surface layer region 13h is increased, and the density of the particles disposed in the surface layer region 13h is decreased.
  • FIG. 7 is a cross-sectional view showing a configuration of a three-dimensional structure according to a third modification of one embodiment of the present invention.
  • the outer shape of the three-dimensional structure 11 is reduced in a similar manner as indicated by an arrow S in an arbitrary cross section as shown in FIG.
  • the distance m between the second virtual shape 13d that is in contact with the inner edge 13b of the porous portion 13 and the first virtual shape 13c at the time is made to be 10 ⁇ m or less.
  • the interval m is 5 ⁇ m or less.
  • the interval m is determined by the size of minute unevenness in the radial direction that appears over the entire circumference at the inner edge 13 b of the porous portion 13.
  • the minute unevenness appears when the etching proceeds non-uniformly from the outer peripheral portion to the central portion of the three-dimensional structure 11.
  • voids are concentrated and formed in a portion where etching has further progressed.
  • the porosity varies depending on the location.
  • the distance m is 10 ⁇ m or less, it is possible to suppress variation in the porosity of the porous portion 13 located in the vicinity of the inner edge 13b.
  • the porous portion 13 of the main region 13s and the deep region 13i in addition to the porosity being 80% or less, excessive voids are formed in the porous portion 13 located in the vicinity of the inner edge 13b. In order to suppress this, the mechanical strength of the three-dimensional structure 11 can be ensured.
  • the voids are combined to form a large void. Therefore, a high surface expansion magnification can be obtained.
  • FIG. 8 is a cross-sectional view showing a configuration of a three-dimensional structure according to a fourth modification of the embodiment of the present invention.
  • each of the outer edge 13 a and the inner edge 13 b of the porous portion 13 is circular in an arbitrary cross section.
  • the inner edge 13b of the porous portion 13 has no minute unevenness in the radial direction.
  • the outer edge 13a and the inner edge 13b of the porous part 13 are located concentrically. Therefore, the thickness of the porous portion 13 is constant.
  • FIG. 9 is a cross-sectional view of a three-dimensional structure for explaining a method of measuring the porosity per unit area of the porous portion of the three-dimensional structure. .
  • an image obtained by capturing the cross section of the three-dimensional structure 11 with a microscope is observed.
  • the difference in the color tone of the image is not due to the difference in the composition of the observation target, but reflects the unevenness of the surface of the observation target.
  • a place where the color tone is dark is a place where there are many voids.
  • a straight line CP1 connecting an arbitrary point P1 on the outer edge 13a of the porous portion 13 and the center C of the three-dimensional structure 11 is drawn.
  • an intersection P2 between the straight line CP1 rotated 45 degrees clockwise around the center C and the outer edge 13a of the porous portion 13 is obtained, and the straight line CP2 is drawn.
  • intersections between the straight line rotated clockwise by 45 degrees and the outer edge 13a of the porous portion 13 are obtained, and eight straight lines CP1 to CP8 are drawn.
  • each of the straight lines CP1 to CP8 is binarized using image analysis software.
  • the porosity profile is measured in the range of 15 ⁇ m in width from each of the points P1 to P8 toward the center C around the straight lines CP1 to CP8.
  • the eight measurement results on the straight lines CP1 to CP8 by calculating the arithmetic average of the porosity at the same distance from the outer edge 13a of the porous portion 13, the radial direction inside the porous portion 13 is obtained. Obtain the porosity distribution.
  • an aqueous solution of ammonium adipate is used when the dielectric layer is thin, and an aqueous solution of ammonium borate is used when the dielectric layer is thick. Used as an aqueous solution for measuring the surface magnification. And the ratio of the electrostatic capacitance of the three-dimensional structure with respect to the electrostatic capacitance of a base material is calculated
  • the size of the area expansion ratio depends on the capacitance of the electrolytic capacitor when the three-dimensional structure is used as the anode body of the electrolytic capacitor, and on the yield of the catalytic reaction when the three-dimensional structure is used as the catalyst carrier. affect.
  • the width when the three-dimensional structure is bundled horizontally and the width of the vinyl chloride masking line tape to be used are approximately 2: 3. Adjust the number of three-dimensional structures and the width of the vinyl chloride masking line tape.
  • the end of the FRP plate is fixed to the lower chuck of the tensile tester, and the gripping margin of the vinyl chloride masking line tape is fixed to the upper chuck of the tensile tester.
  • the vinyl chloride masking line tape is peeled off from the three-dimensional structure at a peeling speed of 10 mm / sec.
  • peel strength a value obtained by dividing the maximum load by the number of three-dimensional structures subjected to the test.
  • the degree of adhesion of the porous portion peeled from the three-dimensional structure to the vinyl chloride masking line tape after being peeled off is visually observed to evaluate the mechanical strength of the three-dimensional structure.
  • the three-dimensional structure according to Example 1 was manufactured using a columnar base material having a diameter of 0.2 mm.
  • the component of the base material was aluminum having a purity of 99.99%.
  • an etching solution is supplied to the base material in the axial direction of the base material so that the gap forming region has a thickness of about 55 ⁇ m while circulating the etching solution. AC etching was performed.
  • the temperature of the etching solution was 35 ° C.
  • the current density was 280 mA / cm 2
  • the current waveform (half wave) was a triangular wave.
  • the circulating amount of the etching solution in the etching bath was increased as the etching progressed. Specifically, the flow rate of supplying the etching solution was 40 cm / min at the start of etching, and thereafter the flow rate of the etching solution was gradually increased to 100 cm / min at the end of etching.
  • the solid structure was subjected to acid treatment for the purpose of removing chlorine ions.
  • Example 2 The three-dimensional structure according to Example 2 was subjected to acid treatment for the purpose of degreasing the surface of the base material and then subjected to AC etching under the same conditions as in Example 1 at a frequency of 0.5 Hz. Similar to Example 1, except that AC etching was performed and the circulation rate of the etching solution in the etching bath was maintained at the circulation rate before increasing the circulation rate in Example 1 during AC etching. A three-dimensional structure was produced.
  • the three-dimensional structure according to the comparative example is the same as in Example 1 except that the circulating amount of the etching solution in the etching bath is maintained at the circulating amount before increasing the circulating amount in Example 1 during AC etching. A three-dimensional structure was produced.
  • Table 1 is a table showing the distribution of the porosity of the porous portion and the measurement results of the interval m of the three-dimensional structures according to Example 1, Example 2, and Comparative Example.
  • the surface layer region from the outer edge 13a to the position 11b of the porous portion 13, the first main region from the position 11b to the position 11a of the porous portion 13, and the porous portion 13 The range of the porosity in each of the second main region from the position 11a to the first virtual shape 13c and the deep layer region from the first virtual shape 13c to the inner edge 13b is shown.
  • a region obtained by combining the first main region and the second main region is a main region.
  • a region formed by combining the surface layer region and the main region is a void forming region.
  • a region obtained by combining the void forming region and the deep layer region is the entire porous portion 13.
  • Table 2 is a table showing the evaluation results of the expansion ratio, the mechanical strength of the three-dimensional structure, the peel strength, and the bending deformability of the three-dimensional structure of the three-dimensional structures according to Example 1, Example 2, and Comparative Example. is there.
  • the value of the three-dimensional structure of the comparative example 1 is set to 100.
  • the mechanical strength of the three-dimensional structure the amount of the porous portion adhering to the vinyl chloride masking line tape was visually confirmed, and the case where it was small was evaluated as “Good”, and the case where it was large was evaluated as “Insufficient”.
  • FIG. 10 is a photograph of the cross section of the three-dimensional structure of Example 1 taken with a microscope.
  • FIG. 11 is a photograph of a cross section of the three-dimensional structure of the comparative example taken with a microscope.
  • 12 is a photograph showing a state in which the vinyl chloride masking line tape has been peeled off from the three-dimensional structure of Example 1.
  • FIG. 13 is a photograph showing a state in which the vinyl chloride masking line tape is peeled off from the three-dimensional structure of the comparative example.
  • the porosity of the entire porous portion was 80% or less, and the interval m was 3 ⁇ m.
  • the porosity of the porous portion in the surface layer region was higher than 80%, and the interval m was 5 ⁇ m.
  • the porosity of the porous portion in the surface layer region and the second main region was higher than 80%, and the interval m was 2 ⁇ m.
  • the color tone in the porous portion 13 was substantially constant from the outer edge to the inner edge.
  • excessive formation of voids in the vicinity of the inner edge of the porous portion 13 was not recognized.
  • minute unevenness in the radial direction was observed over the entire circumference.
  • the color tone in the porous portion 93 increases as it goes from the outer edge to the inner edge, and the color tone difference at the boundary between the core portion 92 and the porous portion 93 is It was big.
  • the three-dimensional structure 91 of the comparative example it was confirmed that voids were excessively formed in the vicinity of the inner edge of the porous portion 93.
  • the expansion ratio was 108, the mechanical strength of the three-dimensional structure was Good, the peel strength was 750, and the maximum radius of curvature of the three-dimensional structure was 200. .
  • the surface expansion magnification was 102, the mechanical strength of the three-dimensional structure was Good, the peel strength was 730, and the maximum curvature radius was 75.
  • the expansion ratio was 100, the mechanical strength of the three-dimensional structure was Insufficient, the peel strength was 100, and the maximum radius of curvature was 100.
  • the porosity per unit area of the porous portion 13 located on the inner side from the inner position 11a by 3/20 of the diameter r of the three-dimensional structure 11 from the outer edge 13a of the porous portion 13 is 80% or less.
  • Example 2 When comparing Example 1 and Example 2, Example 2 had a smaller maximum radius of curvature than Example 1. That is, in Example 2, the bending deformability of the three-dimensional structure was larger than that in Example 1. On the other hand, Example 1 and Example 2 were equivalent in the mechanical strength of the three-dimensional structure.
  • the mechanical strength of the three-dimensional structure is maintained by making the porosity of the region outside the position 11b inside the outer edge 13a of the porous portion 13 by 1/20 of the diameter of the three-dimensional structure 11 higher than 80%.
  • the bending deformability of the three-dimensional structure can be increased.
  • FIG. 14 is a partial cross-sectional view illustrating a configuration of an electrolytic capacitor including a three-dimensional structure according to an embodiment of the present invention as an anode body.
  • the separator is not shown.
  • the electrolytic capacitor 6 includes an anode body 1, a dielectric body 2, an electrolyte 3, a dielectric body 4, and a cathode body 5.
  • a method for forming the dielectric 2 on the surface of the three-dimensional structure to be the anode body 1 there is a method in which the three-dimensional structure is anodized in an aqueous solution such as ammonium borate, ammonium phosphate or ammonium adipate.
  • Electrolyte 3 may be either an electrolytic solution or a solid electrolyte.
  • an electrolytic solution using polyethylene glycol or ⁇ -butyrolactone as a solvent can be used.
  • a solid electrolyte a solid electrolyte containing a conductive polymer such as polypyrrole, polythiophene, polyfuran, or polyaniline can be used.
  • an aluminum foil can be used as the cathode body 5.
  • the electrolyte 3 is a solid electrolyte, a laminate of a carbon layer and a silver paste layer can be used.
  • the electrolytic capacitor further includes a separator sandwiched between the anode body and the cathode body, an anode terminal connected to the anode body, a cathode terminal connected to the cathode body, an aluminum case, and a sealing rubber.
  • a separator sandwiched between the anode body and the cathode body, an anode terminal connected to the anode body, a cathode terminal connected to the cathode body, an aluminum case, and a sealing rubber.
  • the dielectric 2 is formed on the surface of the anode body 1 by anodic oxidation, and then the anode terminal is connected to the anode body 1 by laser welding or the like.
  • the cathode body 5 to which the cathode terminal is connected is wound on the outer side to form a multi-roll body.
  • the multi-roll body is impregnated with the electrolytic solution.
  • the multiple roll body impregnated with the electrolytic solution is accommodated in an aluminum case, and the opening of the aluminum case is sealed with a sealing rubber.
  • the dielectric 2 is formed on the surface of the anode body 1 by anodic oxidation, and then the anode terminal is connected to the anode body 1 by laser welding or the like.
  • the cathode body 5 to which the cathode terminal is connected is wound on the outer side to form a multi-roll body.
  • a solid electrolyte layer is formed on the multi-roll body by chemical oxidative polymerization, electrolytic polymerization, or application of a dispersion solution.
  • the multiple roll body on which the solid electrolyte layer is formed is accommodated in an aluminum case, and the opening of the aluminum case is sealed with a sealing rubber.
  • the capacitance of the electrolytic capacitor 6 is a combined capacitance in which a capacitor composed of the anode body 1, the dielectric body 2 and the electrolyte 3 and a capacitor composed of the electrolyte body 3, the dielectric body 4 and the cathode body 5 are connected in series. It becomes.
  • the capacitance of the electrolytic capacitor 6 is equal to the capacitance of the capacitor composed of the anode body 1, the dielectric 2 and the electrolyte 3. It is greatly influenced by the value.
  • an electrolytic capacitor having a high capacitance can be manufactured by using the three-dimensional structure according to the present embodiment having a high surface expansion magnification while ensuring mechanical strength.
  • the characteristics required for the electrolytic capacitor 6 are not only the capacitance but also a low leakage current. Since the dielectric 2 has defects and is not a complete insulator, when a DC voltage is applied to the electrolytic capacitor 6, a slight leakage current is generated, which adversely affects the circuit to which the electrolytic capacitor 6 is connected. Sometimes. In particular, when the area occupied by the cut surface of the three-dimensional structure is large in the surface area of the three-dimensional structure, the influence of leakage current becomes large.
  • the electrolytic capacitor 6 when used as a noise filter such as a low-pass filter, the electrolytic capacitor 6 is disposed in parallel with the signal line, and the electrolytic capacitor 6 is connected to the ground. As a result, a signal having a high frequency that causes noise can be removed from the signal line.
  • Formula 1 is a formula which shows the relationship of an impedance, a frequency, and an electrostatic capacitance at the time of using an electrolytic capacitor as a noise filter.
  • the inductor is not considered.
  • the impedance of the electrolytic capacitor 6 decreases as the frequency increases, a signal having a high frequency is easily separated from the signal line and flows into the electrolytic capacitor 6.
  • leakage current flows from the electrolytic capacitor 6.
  • the dielectric formed on the surface of the anode body breaks down due to the leakage current, the effect as a noise filter such as a low-pass filter is reduced. Therefore, it is necessary to reduce the leakage current.
  • the leakage current of the electrolytic capacitor 6 can be kept low, and the performance of the electrolytic capacitor 6 as a noise filter is improved. Can do.
  • the catalyst body can be used in a precise chemical reaction system such as a microreactor.
  • the three-dimensional structure is anodized in an acidic electrolyte.
  • the hydration treatment is performed after the anodization, and the firing treatment is further performed at a temperature of 300 ° C. or higher and 550 ° C. or lower.
  • the metal having catalytic activity to be supported on the three-dimensional structure is not particularly limited, and a metal, alloy, or metal oxide having catalytic activity such as platinum-based metal can be used.
  • an impregnation method in which the three-dimensional structure is immersed in an aqueous solution containing metal ions having catalytic activity can be used.
  • one key is how many metals having catalytic activity can be supported on the catalyst carrier. That is, a high yield can be obtained in the catalytic reaction by using the three-dimensional structure according to the present embodiment having a high surface expansion ratio while ensuring mechanical strength.
  • the three-dimensional structure according to the present embodiment can be used for applications that require high surface expansion magnification while ensuring mechanical strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • ing And Chemical Polishing (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)

Abstract

立体構造体(11)は、芯部(12)と、芯部(12)の周囲に位置する多孔質部(13)とを備える。立体構造体(11)の任意の横断面において、多孔質部(13)の外縁(13a)から立体構造体(11)の径の3/20だけ内側の位置(11a)より内側に位置する多孔質部(13)の単位面積当たりの空隙率が80%以下である。

Description

立体構造体
 本発明は、立体構造体に関し、特に、固体電解質または触媒などの機能材料を担持可能な立体構造体に関する。
 立体構造体は、電解コンデンサの陽極体または触媒担体などに用いることが可能であるが、立体構造体の用途は、上記に限られず、種々の用途に適用可能である。
 固体電解質を担持する陽極体を開示した先行文献として、特開2008-177199号公報(特許文献1)、特開2008-177200号公報(特許文献2)および特開昭61-278124号公報(特許文献3)がある。特許文献1、特許文献2および特許文献3に記載された固体電解コンデンサは、陽極体として、エッチングにより表面を粗面化されたアルミニウム線を用いている。
 触媒を担持する触媒担体を開示した先行文献として、特開2012-161718号公報(特許文献4)がある。特許文献4に記載された触媒担体は、エッチングなどにより海綿状構造層が設けられたアルミニウム製のワイヤーからなる。
特開2008-177199号公報 特開2008-177200号公報 特開昭61-278124号公報 特開2012-161718号公報
 固体電解質または触媒などの機能材料を立体構造体により多く担持させるためには、立体構造体が多くの空隙を含み、立体構造体の表面積に相当する拡面倍率が高いことが好ましい。また、電解液と立体構造体との接触面をより多くするためにも、立体構造体の拡面倍率が高いことが好ましい。しかし、立体構造体が含む空隙が多すぎる場合、空隙が存在している部分の立体構造体の機械的強度を維持することが難しくなる。
 特に、エッチングによって立体構造体の外周部から中心部に向かって順に空隙を形成した場合、立体構造体の中心部に近づくに従って空隙が多く形成され、空隙が過剰に形成された部分の機械的強度が不十分となることがあった。また、空隙が過剰に形成された部分において、空隙同士が結合して大きな空隙が形成され、高い拡面倍率を得ることが難しかった。
 本発明は上記の問題点に鑑みてなされたものであって、機械的強度を確保しつつ高い拡面倍率を得ることができる立体構造体を提供することを目的とする。
 本発明に基づく立体構造体は、導電性材料を含有する立体構造体である。立体構造体は、芯部と、芯部の周囲に位置する多孔質部とを備える。立体構造体の任意の横断面において、多孔質部の外縁から立体構造体の径の3/20だけ内側の位置より内側に位置する多孔質部の単位面積当たりの空隙率が80%以下である。
 本発明の一形態においては、上記任意の横断面において、立体構造体の外形を相似状に縮小させた際に多孔質部の内縁と最初に接する第1仮想形状と、多孔質部の外縁との間の領域を、空隙形成領域と規定した場合、上記任意の横断面において、多孔質部の外縁から立体構造体の径の1/20だけ内側の位置より内側に位置し、かつ、空隙形成領域に位置する、多孔質部の単位面積当たりの空隙率が15%以上80%以下である。
 本発明の一形態においては、上記任意の横断面において、空隙形成領域に位置する多孔質部の単位面積当たりの空隙率が15%以上80%以下である。
 本発明の一形態においては、上記任意の横断面において、多孔質部の外縁から立体構造体の径の1/20だけ内側の位置の外側の領域の少なくとも一部に、単位面積当たりの空隙率が80%より高い前記多孔質部が存在している。
 本発明の一形態においては、上記任意の横断面において、立体構造体の外形を相似状に縮小させた際に多孔質部の内縁と最後に接する第2仮想形状と、第1仮想形状との間の間隔が、10μm以下である。
 本発明によれば、機械的強度を確保しつつ高い拡面倍率を得ることができる。
第1例の基材の形状を示す斜視図である。 第2例の基材の形状を示す斜視図である。 第3例の基材の形状を示す斜視図である。 本発明の一実施形態に係る立体構造体の構成を示す横断面図である。 本発明の一実施形態の第1変形例に係る立体構造体の構成を示す横断面図である。 本発明の一実施形態の第2変形例に係る立体構造体の構成を示す横断面図である。 本発明の一実施形態の第3変形例に係る立体構造体の構成を示す横断面図である。 本発明の一実施形態の第4変形例に係る立体構造体の構成を示す横断面図である。 立体構造体の多孔質部の単位面積当たりの空隙率を測定する方法を説明するための、立体構造体の横断面図である。 実施例1の立体構造体の横断面をマイクロスコープで撮像した写真である。 比較例の立体構造体の横断面をマイクロスコープで撮像した写真である。 実施例1の立体構造体から塩化ビニルマスキングラインテープを引き剥がした状態を示す写真である。 比較例の立体構造体から塩化ビニルマスキングラインテープを引き剥がした状態を示す写真である。 本発明の一実施形態に係る立体構造体を陽極体として備える電解コンデンサの構成を示す一部断面図である。
 以下、本発明の一実施形態に係る立体構造体について図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 本発明の一実施形態に係る立体構造体は、導電性材料を含有する立体構造体である。立体構造体は、芯部と、芯部の周囲に位置する多孔質部とを備える。多孔質部は、基材をエッチングなどにより一部除去することによって設けられる場合と、蒸着または焼結などにより材料を基材上に積層することによって設けられる場合とがある。
 基材の形状は、糸状、繊維状および丸棒状などを含むワイヤー状であってもよいし、球体状、楕円体状、ペレット状およびコイン状などを含むブロック状であってもよい。なお、ブロック状には、箔状および紙状などの厚さが1mm以下である形状は含まれない。
 図1は、第1例の基材の形状を示す斜視図である。図2は、第2例の基材の形状を示す斜視図である。図3は、第3例の基材の形状を示す斜視図である。図1に示すように、第1例の基材10aの形状は、横断面の径がr、長さがLであり、r<Lである。図2に示すように、第2例の基材10bの形状は、横断面の径がr、長さがLであり、r=Lである。図3に示すように、第3例の基材10cの形状は、横断面の径がr、長さがLであり、r>Lである。
 上記のように、基材の横断面の径rと長さLとの大小関係は、特に限定されないが、基材の長さLと立体構造体の長さとが同一である場合、基材を立体構造体の長さに合わせて切断する工程が不要となるため、立体構造体の製造工程を少なくすることができる。
 多孔質部がエッチングなどにより基材の一部を除去して設けられる場合、基材は外形に、丸みを帯びていない角部を有さないことが好ましい。基材の外形に角部がある場合、エッチングによって基材の外周部から中心部に向かって順に空隙を形成した際、角部の近傍において空隙が互いに結合して大きな空隙が形成される。この場合、多孔質部の表面積の増加が抑制され、高い拡面倍率を得ることが難しくなる。高い拡面倍率を得る観点から、基材の横断面の形状は、円形であることが好ましい。
 基材を構成する材料は、立体構造体の用途に合わせて適宜選定される。立体構造体が電解コンデンサの陽極体として用いられる場合には、多孔質部の表面に誘電体層が形成される。多孔質部と誘電体層との密着性の観点から、多孔質部を構成する金属成分の酸化物で誘電体層を構成することが好ましい。そのため、多孔質部がエッチングなどにより基材の一部を除去して設けられる場合には、基材は、アルミニウム、ニオブまたはタンタルなどの弁作用金属で構成される。
 上記のように、立体構造体は、基材をエッチングなどにより一部除去することによって形成されてもよいし、蒸着または焼結などにより材料を基材上に積層することによって形成されてもよい。さらに、立体構造体は、多孔質部が設けられた基材を切断することにより形成されてもよい。立体構造体の外形は、ワイヤー状であってもよいし、ブロック状であってもよい。立体構造体の横断面の径と長さとの大小関係は、特に限定されない。
 図4は、本発明の一実施形態に係る立体構造体の構成を示す横断面図である。図4に示すように、本発明の一実施形態に係る立体構造体11は、芯部12と、芯部12の周囲に位置する多孔質部13とを備える。図4においては、多孔質部13の内縁13bに、全周に亘って径方向の微小な凹凸がある状態を、誇張して示している。多孔質部13の横断面の径はrである。
 本実施形態に係る立体構造体11は、任意の横断面において、多孔質部13の外縁13aから立体構造体11の径rの3/20だけ内側の位置11aより内側に位置する多孔質部13の単位面積当たりの空隙率が80%以下である。多孔質部13の位置11aにおける径をr1とすると、r1=17r/20を満たす。位置11aより内側に位置する多孔質部13の単位面積当たりの空隙率は、75%以下であることがより好ましい。
 上記の構成により、立体構造体11の多孔質部13には、空隙が過剰に形成された部分が存在しないため、立体構造体11の機械的強度を確保することができる。
 ここで、本実施形態に係る立体構造体11の製造方法について説明する。立体構造体11は、基材をエッチングなどにより一部除去することによって形成してもよいし、蒸着または焼結などにより材料を基材上に積層することによって形成してもよい。
 基材をエッチングなどにより一部除去することによって立体構造体11を形成する方法として、交流エッチングまたはケミカルエッチングなどの方法がある。エッチング液としては、たとえば、塩酸を含む水溶液を用いることができる。多孔質部13において空隙を均一に形成する観点からは、ケミカルエッチングより交流エッチングが好ましい。
 通常の交流エッチングを用いて、基材をエッチング浴中に浸漬し、立体構造体11の外周部から中心部に向かって順に空隙を形成した場合、立体構造体11の最も内奥に位置する空隙に浸入しているエッチング液は、空隙が入り組んだ複雑な形状となっているために循環し難く、立体構造体11の外部のエッチング浴中のエッチング液と比較して、組成および温度が大きく異なってくる。その結果、エッチングが局所的に集中して進行し、基材の一部を欠落させてしまうなどの異常溶解が起きやすくなる。そのため、立体構造体11の中心部に近づくに従って空隙が多く形成され、空隙が過剰に形成され易くなる。
 特に、多孔質部13の外縁13aから立体構造体11の径rの3/20だけ内側の位置11aより内側にエッチングが進行した時点から、空隙の過剰な形成が起こりやすくなる。空隙が過剰に形成された部分では、多孔質部13が脆化して剥離しやすくなって機械的強度が不十分となる。また、空隙同士が結合して大きな空隙が形成され、高い拡面倍率を得られない。
 そこで、本実施形態に係る立体構造体11の製造方法においては、立体構造体11の外周部から中心部に向かって順に空隙を形成する際、多孔質部13の外縁13aから立体構造体11の径rの3/20だけ内側の位置11aより内側にエッチングが進行した時点から、エッチングの進行に伴って、エッチング浴中のエッチング液の循環量を多くする。これにより、立体構造体11の最も内奥に位置する空隙に浸入しているエッチング液を強制的に循環させることができる。
 そのため、立体構造体11の最も内奥に位置する空隙に浸入しているエッチング液の組成および温度を、立体構造体11の外部のエッチング浴中のエッチング液の組成および温度に近づけることができる。その結果、多孔質部13の外縁13aから立体構造体11の径rの3/20だけ内側の位置11aより内側に位置する多孔質部13に、多孔質部13の単位面積当たりの空隙率が80%より高い、空隙が過剰に形成された部分が存在しないようにすることができる。
 蒸着または焼結などにより材料を基材上に積層することによって立体構造体11を形成する方法として、蒸着または焼結などにより基材上に付着させる粒子の粒径および密度を、多孔質部13の単位面積当たりの空隙率が80%以下となるように、基材上の材料の積層の進行に伴って適宜調整する。焼結の場合は、加熱温度および加熱時間についても適宜調整する。
 以下、本実施形態の第1変形例に係る立体構造体11について説明する。図5は、本発明の一実施形態の第1変形例に係る立体構造体の構成を示す横断面図である。図5に示すように、任意の横断面において、立体構造体11の外形を矢印Sで示すように相似状に縮小させた際に多孔質部13の内縁13bと最初に接する第1仮想形状13cと、多孔質部13の外縁13aとの間の領域を、空隙形成領域13tと規定する。
 本発明の一実施形態の第1変形例に係る立体構造体11においては、空隙形成領域13tに位置する多孔質部13の単位面積当たりの空隙率は、15%以上80%以下であり、20%以上75%以下であることがより好ましい。
 多孔質部13全体の空隙のほとんどが空隙形成領域13tに形成されているため、空隙形成領域13tの多孔質部13によって、立体構造体11の機械的強度および得られる拡面倍率が略決定される。
 空隙形成領域13tの多孔質部13の空隙率が15%以上80%以下であることにより、空隙形成領域13tの多孔質部13に、空隙が過剰に形成された部分が存在しない。加えて、内縁13bと第1仮想形状13cとの間の領域(以下、深層領域13iと称す)の多孔質部13においても、空隙率が80%以下である。そのため、立体構造体11の機械的強度を確保することができる。また、空隙形成領域13tの多孔質部13において、空隙率が15%以上確保されることにより、高い拡面倍率を得ることができる。
 以下、本実施形態の第2変形例に係る立体構造体11について説明する。図6は、本発明の一実施形態の第2変形例に係る立体構造体の構成を示す横断面図である。図6に示すように、本発明の一実施形態の第2変形例に係る立体構造体11においては、任意の横断面において、多孔質部13の外縁13aから立体構造体11の径の1/20だけ内側の位置11bより内側に位置し、かつ、空隙形成領域13tに位置する、多孔質部13の単位面積当たりの空隙率が15%以上80%以下である。
 多孔質部13の位置11bにおける径をr2とすると、r2=19r/20を満たす。多孔質部13の外縁13aから立体構造体11の径の1/20だけ内側の位置11bより内側に位置し、かつ、空隙形成領域13tに位置する領域を、主領域13sと規定する。主領域13sの多孔質部13の単位面積当たりの空隙率は、20%以上75%以下であることがより好ましい。
 上記の構成により、主領域13sの多孔質部13に、空隙が過剰に形成された部分が存在しない。加えて、深層領域13iの多孔質部13においても、空隙率が80%以下である。そのため、立体構造体11の機械的強度を確保することができる。また、主領域13sの多孔質部13において、空隙率が15%以上確保されることにより、高い拡面倍率を得ることができる。
 多孔質部13の外縁13aから立体構造体11の径の1/20だけ内側の位置11bの外側の領域を、表層領域13hと規定する。本発明の一実施形態の第2変形例に係る立体構造体11においては、表層領域13hの少なくとも一部に、単位面積当たりの空隙率が80%より高い多孔質部13が存在している。なお、表層領域13hの全体において、多孔質部13の単位面積当たりの空隙率が80%より高くてもよい。
 上記の構成により、表層領域13hの多孔質部13の剛性を低下させて、表層領域13hにて容易に圧縮変形するように、立体構造体11を構成することができる。これにより、立体構造体11に曲げ応力が負荷された際に、表層領域13hにて曲げ応力を緩和して、主領域13sの多孔質部13に割れまたは亀裂が生じることを抑制できる。加えて、主領域13sおよび深層領域13iの多孔質部13において、空隙率が80%以下であるため、立体構造体11の機械的強度を確保することができる。また、主領域13sの多孔質部13において、空隙率が15%以上確保されることにより、高い拡面倍率を得ることができる。
 仮に、多孔質部13の内縁13bの近傍において空隙率が過剰に高い場合、多孔質部13の内縁13bの近傍にて割れまたは亀裂が発生し、多孔質部13が内縁13bから外縁13aに亘って断裂し、多孔質部13の大部分が剥離する可能性がある。
 一方、表層領域13hの多孔質部13のみにおいて空隙率が過剰に高い場合、表層領域13hの多孔質部13にて割れまたは亀裂が発生し、多孔質部13が表層領域13hから外縁13aに亘って断裂し、表層領域13hの多孔質部13の一部が剥離したとしても、多孔質部13の破壊の程度は軽微である。表層領域13hの多孔質部13の一部が剥離することにより、曲げ応力を緩和して、主領域13sの多孔質部13に割れまたは亀裂が生じることを抑制できる。
 表層領域13hの少なくとも一部に、単位面積当たりの空隙率が80%より高い多孔質部13を存在させる方法として、交流エッチングにより多孔質部13を形成する場合には、交流エッチングを開始後の初期段階のみ、交流周波数を低くする。これにより、表層領域13hに位置する多孔質部13においてのみ、空隙を過剰に形成することができる。
 蒸着または焼結などにより材料を基材上に積層することにより多孔質部13を形成する場合には、表層領域13hの少なくとも一部に、単位面積当たりの空隙率が80%より高い多孔質部13が存在するように、表層領域13hに配置される粒子の粒径および密度を適宜調整する。たとえば、表層領域13hに配置される粒子の粒径を大きくし、表層領域13hに配置される粒子の密度を低くする。
 以下、本実施形態の第3変形例に係る立体構造体11について説明する。図7は、本発明の一実施形態の第3変形例に係る立体構造体の構成を示す横断面図である。本発明の一実施形態の第3変形例に係る立体構造体11においては、図7に示すように、任意の横断面において、立体構造体11の外形を矢印Sで示すように相似状に縮小させた際に多孔質部13の内縁13bと最後に接する第2仮想形状13dと、第1仮想形状13cとの間の間隔mが、10μm以下である。好ましくは、間隔mが、5μm以下である。
 間隔mは、図7に示すように、多孔質部13の内縁13bにおいて、全周に亘って現れる径方向の微小な凹凸の大きさによって決まる。この微小な凹凸は、たとえば、交流エッチングにより立体構造体11を形成する際に、エッチングが立体構造体11の外周部から中央部に向けて不均一に進行した場合に現れる。この場合、エッチングがより進行した部分に空隙が集中して形成される。その結果、多孔質部13の内縁13bの近傍において、多孔質部13の外縁13aからの距離が同一の位置であっても、場所によって空隙率にバラツキが生じる。
 間隔mが10μm以下である場合、内縁13bの近傍に位置する多孔質部13の空隙率に、バラツキが生じることを抑制できる。その結果、主領域13sおよび深層領域13iの多孔質部13において、空隙率が80%以下であることに加えて、内縁13bの近傍に位置する多孔質部13に、空隙が過剰に形成されることを抑制するため、立体構造体11の機械的強度を確保することができる。また、主領域13sの多孔質部13において、空隙率が15%以上確保されることに加えて、内縁13bの近傍に位置する多孔質部13において、空隙同士が結合して大きな空隙が形成されることを抑制するため、高い拡面倍率を得ることができる。
 図8は、本発明の一実施形態の第4変形例に係る立体構造体の構成を示す横断面図である。図8に示すように、立体構造体11は、任意の横断面において、多孔質部13の外縁13aおよび内縁13bの各々が円形である。すなわち、多孔質部13の内縁13bには、径方向の微小な凹凸がない。多孔質部13の外縁13aと内縁13bとは、同心円状に位置している。よって、多孔質部13の厚さが一定である。
 上記の構成により、内縁13bの近傍に位置する多孔質部13の空隙率に、バラツキが生じることを、本発明の一実施形態の第3変形例に係る立体構造体よりも更に抑制できる。その結果、内縁13bの近傍に位置する多孔質部13に、空隙が過剰に形成されることを更に抑制して、立体構造体11の機械的強度を十分確保することができる。また、内縁13bの近傍に位置する多孔質部13において、空隙同士が結合して大きな空隙が形成されることを更に抑制して、十分高い拡面倍率を得ることができる。
 (実験例)
 以下、比較例および実施例に係る立体構造体の特性について検証した実験例について説明する。まず、立体構造体の各特性の評価方法について説明する。
 (1)多孔質部の単位面積当たりの空隙率
 図9は、立体構造体の多孔質部の単位面積当たりの空隙率を測定する方法を説明するための、立体構造体の横断面図である。
 図9に示すように、立体構造体11の横断面をマイクロスコープにて撮像した画像を観察する。画像の色調の違いは、観察対象の組成の違いによるものではなく、観察対象の表面の凹凸を反映している。色調が濃い場所は、空隙が多い場所である。
 撮像した画像上にて、多孔質部13の外縁13a上の任意の点P1と立体構造体11の中心Cとを結ぶ直線CP1を引く。次に、直線CP1を中心Cを中心にして右回りに45度回転させた直線と、多孔質部13の外縁13aとの交点P2を求め、直線CP2を引く。以降、同様にして、右回りに45度ずつ回転させた直線と多孔質部13の外縁13aとの交点を求め、直線CP1~CP8の8本の直線を引く。
 次に、直線CP1~CP8上の各々について、画像解析ソフトを用いて2値化処理する。2値化処理された画像において、矢印Sで示すように、点P1~P8の各々から中心Cに向かって、各直線CP1~CP8を中心に幅15μmの範囲で空隙率のプロファイルを測定する。そして、直線CP1~CP8上の8箇所の測定結果において、多孔質部13の外縁13aからの距離が同じ位置での空隙率の算術平均を求めることにより、多孔質部13の内部の径方向の空隙率の分布を求める。
 (2)空隙形成領域の厚さ
 図5に示すように、立体構造体11の横断面をマイクロスコープにて撮像する。第1仮想形状13cと、立体構造体11の外形との間の間隔を、空隙形成領域の厚さとする。
 (3)拡面倍率
 測定周波数120HzのLCRメーターにて、立体構造体および基材の各々の静電容量を、アジピン酸アンモニウム水溶液中またはホウ酸アンモニウム水溶液中にて測定する。なお、拡面倍率の測定に用いる水溶液は、下記のように使い分けてもよい。立体構造体に誘電体層を陽極酸化によって形成する場合は、陽極酸化の際に用いる水溶液を拡面倍率の測定用の水溶液として用いる。誘電体層を陽極酸化以外の方法によって形成する場合に、誘電体層の形成厚さが薄いときはアジピン酸アンモニウム水溶液を、誘電体層の形成厚さが厚いときはホウ酸アンモニウム水溶液を、拡面倍率の測定用の水溶液として用いる。そして、基材の静電容量に対する立体構造体の静電容量の比率を求め、これを拡面倍率とする。
 なお、拡面倍率の大小は、立体構造体を電解コンデンサの陽極体として用いる場合には、電解コンデンサの静電容量に、立体構造体を触媒担体として用いる場合には、触媒反応の収率に影響を及ぼす。
 (4)立体構造体の機械的強度
 複数の立体構造体を横一列に約2mmの幅になるように並べて束ね、その長さ方向の両端を、厚さが1mmであるFRP(Fiber Reinforced Plastics)製の板にセロファンテープで貼って固定する。複数の立体構造体に、幅が3mm、厚さが0.12mm、ステンレス板に対する引き剥がし粘着力が450gf/15mmである塩化ビニルマスキングラインテープを貼り付ける。塩化ビニルマスキングラインテープを複数の立体構造体に貼り付ける際には、2kgfのローラが立体構造体の全長を2往復するように押し付ける。
 なお、立体構造体の径が1mmを超える場合には、立体構造体を横一列に束ねたときの幅と、使用する塩化ビニルマスキングラインテープの幅とが、概ね2:3になるように、立体構造体の本数と塩化ビニルマスキングラインテープの幅を調整する。
 次に、引張試験機の下側のチャックにFRP板の端部を固定し、塩化ビニルマスキングラインテープの掴み代を引張試験機の上側のチャックに固定する。引き剥がし速度10mm/秒で、塩化ビニルマスキングラインテープを立体構造体から引き剥がす。
 塩化ビニルマスキングラインテープを立体構造体から引き剥がしている間に引張試験機が負荷した最大荷重を測定する。以後、この最大荷重を試験に供した立体構造体の本数で割った値を、ピール強度(gf)と称する。
 また、引き剥がした後の塩化ビニルマスキングラインテープに、立体構造体から剥離した多孔質部がどの程度付着しているか、目視にて観察して、立体構造体の機械的強度を評価する。
 (5)立体構造体の曲げ変形能
 立体構造体を20Vの印加電圧で陽極酸化した後、曲率半径の異なる丸棒に立体構造体を沿わせ、立体構造体が破断した時の丸棒の最大曲率半径を求める。この最大曲率半径が小さいほど、立体構造体の曲げ変形能が大きい。
 本実験例においては、実施例1、実施例2および比較例の3種類の立体構造体を用いて、上記の各特性について検証した。
 実施例1に係る立体構造体は、直径が0.2mmの円柱状の基材を用いて作製した。基材の成分は、純度が99.99%のアルミニウムとした。基材の表面の脱脂を目的とした酸処理を基材に施した後、4.5wt%の塩酸、0.9wt%の硫酸および2.0wt%の塩化アルミニウムを含有する水溶液(以下、エッチング液と称す)中にて、基材に対して、基材の軸方向に向かってエッチング液を供給することで、エッチング液の循環を行ないながら、空隙形成領域の厚さが約55μmになるように、交流エッチングを行なった。
 交流エッチングの条件としては、エッチング液の温度を35℃、電流密度を280mA/cm2、電流波形(半波)を三角波とした。交流エッチング中において、エッチングの進行に伴って、エッチング浴中のエッチング液の循環量が多くなるようにした。具体的には、エッチング液を供給する流速を、エッチング開始時には40cm/分とし、その後、エッチング液の流速を徐々に速くして、エッチング終了時には100cm/分とした。交流エッチングの終了後、塩素イオンの除去を目的とした酸処理を立体構造体に施した。
 実施例2に係る立体構造体は、基材の表面の脱脂を目的とした酸処理を基材に施した後、実施例1と同条件の交流エッチングを行なう前に、0.5Hzの周波数で交流エッチングを行なったこと、および、交流エッチング中にエッチング浴中のエッチング液の循環量を、実施例1において循環量を多くする前の循環量で維持したこと以外は、実施例1と同様に立体構造体を作製した。
 比較例に係る立体構造体は、交流エッチング中にエッチング浴中のエッチング液の循環量を、実施例1において循環量を多くする前の循環量で維持したこと以外は、実施例1と同様に立体構造体を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1は、実施例1、実施例2および比較例に係る立体構造体の、多孔質部の空隙率の分布、および、間隔mの測定結果を示す表である。多孔質部の空隙率の分布においては、多孔質部13の外縁13aから位置11bまでの表層領域、多孔質部13の位置11bから位置11aまでの第1主領域、および、多孔質部13の位置11aから第1仮想形状13cまでの第2主領域、第1仮想形状13cから内縁13bまでの深層領域の各々における空隙率の範囲を示している。なお、第1主領域と第2主領域とを合わせた領域が、主領域となる。表層領域と主領域とを合わせた領域が、空隙形成領域となる。空隙形成領域と深層領域とを合わせた領域が、多孔質部13の全体となる。
 表2は、実施例1、実施例2および比較例に係る立体構造体の、拡面倍率、立体構造体の機械的強度、ピール強度、立体構造体の曲げ変形能の評価結果を示す表である。
 なお、実施例1および実施例2の立体構造体の、拡面倍率、ピール強度、および、立体構造体の曲げ変形能を示す最大曲率半径については、比較例1の立体構造体の値を100として規格化している。立体構造体の機械的強度については、塩化ビニルマスキングラインテープに付着している多孔質部の量を目視にて確認し、少ない場合を「Good」、多い場合を「Insufficient」として評価した。
 図10は、実施例1の立体構造体の横断面をマイクロスコープで撮像した写真である。図11は、比較例の立体構造体の横断面をマイクロスコープで撮像した写真である。図12は、実施例1の立体構造体から塩化ビニルマスキングラインテープを引き剥がした状態を示す写真である。図13は、比較例の立体構造体から塩化ビニルマスキングラインテープを引き剥がした状態を示す写真である。
 表1に示すように、実施例1の立体構造体においては、多孔質部の全体における空隙率は80%以下であり、間隔mは3μmであった。実施例2の立体構造体においては、表層領域の多孔質部の空隙率は80%より高く、間隔mは5μmであった。比較例の立体構造体においては、表層領域および第2主領域の多孔質部の空隙率は80%より高く、間隔mは2μmであった。
 図10に示すように、実施例1の立体構造体11においては、多孔質部13における色調が外縁から内縁に亘って略一定であった。実施例1の立体構造体11においては、多孔質部13の内縁の近傍における空隙の過剰な形成は認められなかった。多孔質部13の内縁に、全周に亘って径方向の微小な凹凸が認められた。
 図11に示すように、比較例の立体構造体91においては、多孔質部93における色調が外縁から内縁に行くに従って濃くなっており、芯部92と多孔質部93との境界の色調差が大きかった。比較例の立体構造体91においては、多孔質部93の内縁の近傍に空隙が過剰に形成されていることが確認できた。
 表2に示すように、実施例1の立体構造体においては、拡面倍率が108、立体構造体の機械的強度はGood、ピール強度は750、立体構造体の最大曲率半径は200であった。実施例2の立体構造体においては、拡面倍率が102、立体構造体の機械的強度はGood、ピール強度は730、最大曲率半径は75であった。比較例の立体構造体においては、拡面倍率が100、立体構造体の機械的強度はInsufficient、ピール強度は100、最大曲率半径は100であった。
 図12に示すように、実施例1の立体構造体においては、塩化ビニルマスキングラインテープに付着している多孔質部の量は少なかった。図13に示すように、比較例の立体構造体においては、塩化ビニルマスキングラインテープに付着している多孔質部の量が多かった。
 上記の実験結果から、多孔質部13の外縁13aから立体構造体11の径rの3/20だけ内側の位置11aより内側に位置する多孔質部13の単位面積当たりの空隙率が80%以下であることにより、立体構造体11の機械的強度を確保しつつ、高い拡面倍率を得ることができることが確認できた。
 実施例1と実施例2とを比較すると、実施例2は、実施例1より最大曲率半径が小さかった。すなわち、実施例2は、実施例1より立体構造体の曲げ変形能が大きかった。一方、立体構造体の機械的強度は、実施例1と実施例2とは同等であった。
 従って、多孔質部13の外縁13aから立体構造体11の径の1/20だけ内側の位置11bの外側の領域の空隙率を80%より高くすることで、立体構造体の機械的強度を維持しつつ、立体構造体の曲げ変形能を高くできることが確認できた。
 以下、本実施形態に係る立体構造体を陽極体として備える電解コンデンサの一例について説明する。図14は、本発明の一実施形態に係る立体構造体を陽極体として備える電解コンデンサの構成を示す一部断面図である。なお、図14においては、セパレータを図示していない。
 図14に示すように、電解コンデンサ6は、陽極体1、誘電体2、電解質3、誘電体4および陰極体5を備える。陽極体1となる立体構造体の表面に誘電体2を形成する方法としては、ホウ酸アンモニウム、リン酸アンモニウムまたはアジピン酸アンモニウムなどの水溶液中で、立体構造体を陽極酸化する方法がある。
 電解質3は、電解液および固体電解質のいずれでもよい。電解液としては、ポリエチレングリコールまたはγ-ブチロラクトンなどを溶媒とする電解液を用いることができる。固体電解質としては、ポリピロール、ポリチオフェン、ポリフランまたはポリアニリンなどの導電性高分子を含む固体電解質を用いることができる。
 陰極体5としては、アルミニウム箔を用いることができ、電解質3が固体電解質の場合は、カーボン層と銀ペースト層との積層体などを用いることもできる。
 電解コンデンサは、陽極体と陰極体との間に挟まれるセパレータ、陽極体に接続される陽極端子、陰極体に接続される陰極端子、アルミケースおよび封口ゴムなどをさらに備えており、これらには、従来の電解コンデンサに用いられているものを用いることができる。
 電解質3が電解液である場合の電解コンデンサの製造方法としては、陽極体1の表面に陽極酸化によって誘電体2を形成した後、陽極端子をレーザー溶接などによって陽極体1に接続する。表面に誘電体2が形成された陽極体1をセパレータで巻いた後、その外側に、陰極端子が接続された陰極体5を巻いて、多重ロール体を形成する。多重ロール体に電解液を含浸する。電解液を含浸した多重ロール体を、アルミケースに収容し、アルミケースの開口部を封口ゴムで封止する。
 電解質3が固体電解質である場合の電解コンデンサの製造方法としては、陽極体1の表面に陽極酸化によって誘電体2を形成した後、陽極端子をレーザー溶接などによって陽極体1に接続する。表面に誘電体2が形成された陽極体1をセパレータで巻いた後、その外側に、陰極端子が接続された陰極体5を巻いて、多重ロール体を形成する。多重ロール体に、化学酸化重合、電解重合、または、分散溶液の塗布などによって固体電解質層を形成する。固体電解質層を形成された多重ロール体を、アルミケースに収容し、アルミケースの開口部を封口ゴムで封止する。
 電解コンデンサ6の静電容量は、陽極体1、誘電体2および電解質3から構成されるコンデンサと、電解質3、誘電体4および陰極体5から構成されるコンデンサとを、直列に接続した合成容量となる。通常、陰極体5は陽極体1と比較して静電容量が十分高いため、電解コンデンサ6の静電容量は、陽極体1、誘電体2および電解質3から構成されるコンデンサの静電容量の値に大きく影響される。そのため、陽極体1の表面積、より正確には、陽極体1の表面に誘電体2を形成した後の表面積が、電解コンデンサ6の静電容量に大きな影響を及ぼす。すなわち、機械的強度を確保しつつ拡面倍率が高い本実施形態に係る立体構造体を用いることで、高い静電容量の電解コンデンサを製造することができる。
 なお、電解コンデンサ6に求められる特性は、静電容量だけではなく、漏れ電流が低いことも重要である。誘電体2は、欠陥を有し、完全な絶縁物ではないため、電解コンデンサ6に直流電圧を印加すると、微少ではあるが漏れ電流が発生し、電解コンデンサ6が接続される回路に悪影響を及ぼすことがある。特に、立体構造体の表面積において、立体構造体の切断面の占める面積が大きい場合、漏れ電流の影響が大きくなる。
 たとえば、電解コンデンサ6をローパスフィルタなどのノイズフィルタとして用いる場合、信号ラインに対して並列に電解コンデンサ6を配置させ、電解コンデンサ6をグランドと接続する。これにより、信号ラインからノイズの原因となる周波数の高い信号を取り除くことができる。
 │Z│=1/(2πfC)・・・(式1)
 (Z:インピーダンス、f:周波数、C:静電容量)
 式1は、電解コンデンサをノイズフィルタとして用いた場合の、インピーダンス、周波数および静電容量の関係を示す式である。なお、式1においては、インダクタは考慮していない。式1から分かるように、電解コンデンサ6のインピーダンスは周波数が高いほど低くなるため、周波数が高い信号は信号ラインから離脱して、電解コンデンサ6に流れやすくなる。
 しかし、上記のように、電解コンデンサ6からは漏れ電流が流れる。漏れ電流に起因して、陽極体の表面に形成された誘電体が絶縁破壊した場合、ローパスフィルタなどのノイズフィルタとしての効果が低くなる。そのため、漏れ電流を低くする必要がある。
 よって、立体構造体の表面積において、立体構造体の切断面の占める面積を小さくすることにより、電解コンデンサ6の漏れ電流を低く抑えることができ、電解コンデンサ6のノイズフィルタとしての性能を向上することができる。
 以下、本実施形態に係る立体構造体を触媒担体として備える触媒体の一例について説明する。触媒体は、たとえば、マイクロリアクターのような精密な化学反応系に用いることができる。
 触媒担体の製造方法としては、立体構造体を酸性電解液中で陽極酸化する。好ましくは、陽極酸化後に水和処理を行ない、更に300℃以上550℃以下の温度で焼成処理を行なう。
 立体構造体に担持させる触媒活性を有する金属は、特に限定されず、白金系金属などの触媒活性を有する金属、合金または金属酸化物を用いることができる。
 立体構造体に触媒活性を有する金属を担持させる方法としては、たとえば、触媒活性を有する金属イオンを含有する水溶液に立体構造体を浸漬させる含浸法を用いることができる。また、触媒活性を有する金属を立体構造体に固着させるために焼成処理を行なってもよい。
 触媒体の収率を高くするためには、触媒担体にいかに多くの触媒活性を有する金属を担持させることができるのかが、ひとつの鍵となる。すなわち、機械的強度を確保しつつ拡面倍率が高い本実施形態に係る立体構造体を用いることで、触媒反応において、高い収率を得ることができる。
 その他、機械的強度を確保しつつ高い拡面倍率が要求される用途に、本実施形態に係る立体構造体を用いることができる。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 陽極体、2,4 誘電体、3 電解質、5 陰極体、6 電解コンデンサ、10a,10b,10c 基材、11,91 立体構造体、11a,11b 位置、12,92 芯部、13,93 多孔質部、13a 外縁、13b 内縁、13c 第1仮想形状、13d 第2仮想形状、13h 表層領域、13i 深層領域、13s 主領域、13t 空隙形成領域。

Claims (5)

  1.  導電性材料を含有する立体構造体であって、
     芯部と、
     前記芯部の周囲に位置する多孔質部とを備え、
     前記立体構造体の任意の横断面において、前記多孔質部の外縁から前記立体構造体の径の3/20だけ内側の位置より内側に位置する前記多孔質部の単位面積当たりの空隙率が80%以下である、立体構造体。
  2.  前記任意の横断面において、前記立体構造体の外形を相似状に縮小させた際に前記多孔質部の内縁と最初に接する第1仮想形状と、前記多孔質部の外縁との間の領域を、空隙形成領域と規定した場合、
     前記任意の横断面において、前記多孔質部の外縁から前記立体構造体の径の1/20だけ内側の位置より内側に位置し、かつ、前記空隙形成領域に位置する、前記多孔質部の単位面積当たりの空隙率が15%以上80%以下である、請求項1に記載の立体構造体。
  3.  前記任意の横断面において、前記空隙形成領域に位置する前記多孔質部の単位面積当たりの空隙率が15%以上80%以下である、請求項2に記載の立体構造体。
  4.  前記任意の横断面において、前記多孔質部の外縁から前記立体構造体の径の1/20だけ内側の位置の外側の領域の少なくとも一部に、単位面積当たりの空隙率が80%より高い前記多孔質部が存在している、請求項2に記載の立体構造体。
  5.  前記任意の横断面において、前記立体構造体の外形を相似状に縮小させた際に前記多孔質部の内縁と最後に接する第2仮想形状と、前記第1仮想形状との間の間隔が、10μm以下である、請求項2から請求項4のいずれか1項に記載の立体構造体。
PCT/JP2016/077596 2016-09-16 2016-09-16 立体構造体 WO2018051522A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680089307.0A CN109716467B (zh) 2016-09-16 2016-09-16 立体结构体
US15/549,317 US10529497B2 (en) 2016-09-16 2016-09-16 Stereostructure
EP16916302.9A EP3489976B1 (en) 2016-09-16 2016-09-16 Three-dimensional structure
PCT/JP2016/077596 WO2018051522A1 (ja) 2016-09-16 2016-09-16 立体構造体
KR1020197010166A KR102218601B1 (ko) 2016-09-16 2016-09-16 입체 구조체
JP2018539495A JP6750179B2 (ja) 2016-09-16 2016-09-16 立体構造体
TW106127924A TWI704589B (zh) 2016-09-16 2017-08-17 立體構造體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077596 WO2018051522A1 (ja) 2016-09-16 2016-09-16 立体構造体

Publications (1)

Publication Number Publication Date
WO2018051522A1 true WO2018051522A1 (ja) 2018-03-22

Family

ID=61619418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077596 WO2018051522A1 (ja) 2016-09-16 2016-09-16 立体構造体

Country Status (7)

Country Link
US (1) US10529497B2 (ja)
EP (1) EP3489976B1 (ja)
JP (1) JP6750179B2 (ja)
KR (1) KR102218601B1 (ja)
CN (1) CN109716467B (ja)
TW (1) TWI704589B (ja)
WO (1) WO2018051522A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174836A1 (ja) * 2019-02-25 2020-09-03 株式会社村田製作所 コンデンサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106112A (en) * 1980-12-24 1982-07-01 Nichicon Capacitor Ltd Aluminum electrolytic condenser
JPS62102515A (ja) * 1985-10-29 1987-05-13 日本電気株式会社 電解コンデンサ用陽極体およびその製造方法
JPH10189398A (ja) * 1996-12-25 1998-07-21 K D K Kk 電解コンデンサ用アルミニウム電極箔
JP2001257132A (ja) * 2000-03-10 2001-09-21 Matsushita Electric Ind Co Ltd 電解コンデンサおよびその製造方法
JP2001291646A (ja) * 2000-04-04 2001-10-19 Nippon Chemicon Corp 電解コンデンサ用アルミニウム電極箔及びその製造方法
JP2010171601A (ja) * 2009-01-21 2010-08-05 I Cast:Kk 低インピーダンス損失線路構造
JP2012193420A (ja) * 2011-03-17 2012-10-11 Panasonic Corp 電極箔の製造方法と電解コンデンサの製造方法、および電極箔と電解コンデンサ
JP2015073015A (ja) * 2013-10-03 2015-04-16 パナソニックIpマネジメント株式会社 電極箔、電解コンデンサおよび電極箔の製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461410A (en) * 1945-09-24 1949-02-08 Magnavox Co Porous electrode for electrolytic cells
JPS61278124A (ja) 1985-05-31 1986-12-09 ニチコン株式会社 固体電解コンデンサの製造方法
JP2000243665A (ja) * 1999-02-17 2000-09-08 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
TW200409153A (en) * 2002-09-04 2004-06-01 Nec Corp Strip line element, printed circuit board carrying member, circuit board, semiconductor package and method for forming same
JP4345363B2 (ja) 2003-05-30 2009-10-14 株式会社ブリヂストン 光触媒フィルタとこれを用いた脱臭装置及び水処理装置
EP1733403B1 (en) * 2004-03-08 2010-01-27 Vishay Bccomponents B.V. Method for production of high capacitance electrolytic capacitor foil
IL164017A0 (en) 2004-09-09 2005-12-18 Cerel Ceramic Technologies Ltd Solid electrolyte capacitor with controlled properties and method for manufacturing the same
JP4816640B2 (ja) 2005-03-23 2011-11-16 日本軽金属株式会社 アルミニウム電解コンデンサ、およびアルミニウム電解コンデンサの製造方法
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP4867666B2 (ja) 2007-01-16 2012-02-01 パナソニック株式会社 固体電解コンデンサ
JP4867667B2 (ja) 2007-01-16 2012-02-01 パナソニック株式会社 固体電解コンデンサ
CN101345137A (zh) * 2008-05-23 2009-01-14 深圳清研技术管理有限公司 电解电容器的阳极箔腐蚀工艺
WO2010125778A1 (ja) 2009-04-28 2010-11-04 三洋電機株式会社 コンデンサ用電極体、コンデンサ用電極体の製造方法、コンデンサ、およびコンデンサの製造方法
JP5570263B2 (ja) 2010-03-24 2014-08-13 日立エーアイシー株式会社 電解コンデンサ用陽極
JP5888718B2 (ja) 2011-02-04 2016-03-22 国立大学法人東京農工大学 触媒体及びこの触媒体による物質の化学反応方法
FR2972943B1 (fr) 2011-03-25 2014-11-28 3Dceram Procede de fabrication d'un support de catalyseur
JP5818136B2 (ja) 2011-06-13 2015-11-18 株式会社リコー 液滴吐出ヘッドアレイ及びこれを備えた画像形成装置
JP2013157392A (ja) 2012-01-27 2013-08-15 Tdk Corp 多孔質アルミニウム焼結体、固体電解コンデンサ用陽極電極材及び固体電解コンデンサ
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
JP5181401B1 (ja) 2012-07-12 2013-04-10 日本蓄電器工業株式会社 アルミニウム電解コンデンサ用陰極箔
JP6043133B2 (ja) 2012-09-13 2016-12-14 日本軽金属株式会社 アルミニウム電解コンデンサ用電極の製造方法
KR102078008B1 (ko) 2014-02-13 2020-02-17 삼성전기주식회사 고체 전해커패시터, 그 제조방법 및 칩형 전자부품
CN104465097B (zh) * 2014-11-19 2017-11-07 贵州中航聚电科技有限公司 一种耐高温高可靠性电解电容器的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106112A (en) * 1980-12-24 1982-07-01 Nichicon Capacitor Ltd Aluminum electrolytic condenser
JPS62102515A (ja) * 1985-10-29 1987-05-13 日本電気株式会社 電解コンデンサ用陽極体およびその製造方法
JPH10189398A (ja) * 1996-12-25 1998-07-21 K D K Kk 電解コンデンサ用アルミニウム電極箔
JP2001257132A (ja) * 2000-03-10 2001-09-21 Matsushita Electric Ind Co Ltd 電解コンデンサおよびその製造方法
JP2001291646A (ja) * 2000-04-04 2001-10-19 Nippon Chemicon Corp 電解コンデンサ用アルミニウム電極箔及びその製造方法
JP2010171601A (ja) * 2009-01-21 2010-08-05 I Cast:Kk 低インピーダンス損失線路構造
JP2012193420A (ja) * 2011-03-17 2012-10-11 Panasonic Corp 電極箔の製造方法と電解コンデンサの製造方法、および電極箔と電解コンデンサ
JP2015073015A (ja) * 2013-10-03 2015-04-16 パナソニックIpマネジメント株式会社 電極箔、電解コンデンサおよび電極箔の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489976A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174836A1 (ja) * 2019-02-25 2020-09-03 株式会社村田製作所 コンデンサ

Also Published As

Publication number Publication date
EP3489976B1 (en) 2023-04-12
JPWO2018051522A1 (ja) 2019-07-18
KR20190049823A (ko) 2019-05-09
KR102218601B1 (ko) 2021-02-22
EP3489976A1 (en) 2019-05-29
US10529497B2 (en) 2020-01-07
CN109716467B (zh) 2020-10-30
CN109716467A (zh) 2019-05-03
TWI704589B (zh) 2020-09-11
TW201814747A (zh) 2018-04-16
JP6750179B2 (ja) 2020-09-02
EP3489976A4 (en) 2019-09-25
US20180277308A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US10262807B2 (en) Electrode foil, winding capacitor, electrode foil manufacturing method, and winding capacitor manufacturing method
WO2018051522A1 (ja) 立体構造体
US11120951B2 (en) Electrode foil, winding capacitor, electrode foil manufacturing method, and winding capacitor manufacturing method
JP3416099B2 (ja) コンデンサ及びその製造方法
WO2020241174A1 (ja) アルミニウム化成箔、アルミニウム電解コンデンサ用電極、およびアルミニウム化成箔の製造方法
US20230260699A1 (en) Electrode Foil for Electrolytic Capacitor and Electrolytic Capacitor
JP6912691B2 (ja) 電解コンデンサ用電極部材、および電解コンデンサ
JP7028481B2 (ja) 電解コンデンサ用電極部材および電解コンデンサ
JPWO2018051520A1 (ja) 電解コンデンサ用電極部材および電解コンデンサ
CN114188160A (zh) 一种用于低压化成箔的电极结构材料及其应用
JPWO2016158493A1 (ja) アルミニウム電解コンデンサ陽極用化成箔、アルミニウム電解コンデンサ陽極用電極材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15549317

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016916302

Country of ref document: EP

Effective date: 20190220

ENP Entry into the national phase

Ref document number: 2018539495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010166

Country of ref document: KR

Kind code of ref document: A