WO2018051412A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018051412A1
WO2018051412A1 PCT/JP2016/076978 JP2016076978W WO2018051412A1 WO 2018051412 A1 WO2018051412 A1 WO 2018051412A1 JP 2016076978 W JP2016076978 W JP 2016076978W WO 2018051412 A1 WO2018051412 A1 WO 2018051412A1
Authority
WO
WIPO (PCT)
Prior art keywords
breakdown voltage
high breakdown
side circuit
circuit region
pchmos
Prior art date
Application number
PCT/JP2016/076978
Other languages
English (en)
French (fr)
Inventor
学 吉野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112016007213.9T priority Critical patent/DE112016007213B4/de
Priority to PCT/JP2016/076978 priority patent/WO2018051412A1/ja
Priority to JP2018538990A priority patent/JP6590076B2/ja
Priority to CN201680089138.0A priority patent/CN109690770B/zh
Priority to US16/096,168 priority patent/US11063116B2/en
Publication of WO2018051412A1 publication Critical patent/WO2018051412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Definitions

  • the present invention relates to a semiconductor device including a horizontal high withstand voltage element.
  • An HVIC (High Voltage IC) for driving a power chip forming a half bridge has a low side circuit area, a high side circuit area, and a level shift circuit for transmitting a signal between the two.
  • the low side circuit region is based on the substrate potential, and the high side circuit region is separated from the substrate at a high withstand voltage.
  • the high withstand voltage separation from the substrate voltage in the high side circuit region is realized by the Resurf effect, and the outer periphery of the high side circuit region is surrounded by the Resurf separation structure in plan view (see, for example, Patent Document 1).
  • the level shift circuit has a high breakdown voltage NchMOS transmitting a signal from the low side circuit region to the high side circuit region and a high breakdown voltage Pch MOS transmitting a signal from the high side circuit region to the low side circuit region.
  • the high withstand voltage NchMOS and the high withstand voltage PchMOS have the same withstand voltage as the resurf isolation region surrounding the outer periphery of the high side circuit region (see, for example, Non-Patent Document 1), and have the same Resurf isolation structure surrounding the outer periphery of the high side circuit region. (See, for example, Patent Document 2 and Non-Patent Document 2).
  • the high breakdown voltage NchMOS maintains high breakdown voltage by completely depleting the N-type resurf region.
  • the high breakdown voltage PchMOS maintains the high breakdown voltage by completely depleting the P type diffusion layer on the surface in addition to the N type resurf region. Therefore, a leak current transiently flows in a period from the time when a high voltage is applied to both the high breakdown voltage NchMOS and the high breakdown voltage PchMOS, the depletion layer spreads in the high breakdown voltage isolation region and the complete depletion is achieved. If this transient leak current flows for a long time, the level shift circuit may malfunction.
  • the field plate on the low side is long, depletion is promoted in the high breakdown voltage NchMOS and the period during which the leak current flows transiently becomes short, but in the high breakdown voltage PchMOS, the depletion of the P type diffusion layer is inhibited and the leakage current transiently The period during which the As a result, the high breakdown voltage PchMOS of the level shift circuit is likely to malfunction.
  • the field plate on the low side is shortened, the high breakdown voltage NchMOS of the level shift circuit is likely to malfunction.
  • the field plate structures of the high breakdown voltage NchMOS and the high breakdown voltage PchMOS are the same, the period in which the leak current flows can not be shortened in both the high breakdown voltage NchMOS and the high breakdown voltage PchMOS.
  • the present invention has been made to solve the problems as described above, and its object is to shorten the period in which a leak current transiently flows when a high voltage is applied to both the high breakdown voltage NchMOS and the high breakdown voltage PchMOS. And a semiconductor device capable of improving the malfunction tolerance of the level shift circuit.
  • a semiconductor device comprises a high side circuit area, a low side circuit area, and a resurf isolation structure surrounding the outer periphery of the high side circuit area and separating the high side circuit area and the low side circuit area.
  • the resurf isolation structure includes high breakdown voltage isolation, high breakdown voltage NchMOS and high breakdown voltage PchMOS, and the high breakdown voltage isolation, high breakdown voltage NchMOS and high breakdown voltage PchMOS are formed on a thermal oxide film and the thermal oxide film.
  • the inner end of the field plate closest to the low side circuit region in the high breakdown voltage PchMOS has a plurality of field plates, and the inner end of the field plate closest to the low side circuit region in the high breakdown Nch MOS has the inner end It is characterized in that it is located on the low side circuit area side.
  • the inner end of the field plate closest to the low side circuit region in the high breakdown voltage PchMOS is located closer to the low side circuit region than the inner end of the field plate closest to the low side circuit region in the high breakdown voltage NchMOS.
  • FIG. 1 is a view showing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 5 is a diagram showing a high breakdown voltage NchMOS of the level shift circuit according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a high breakdown voltage PchMOS of the level shift circuit according to the first embodiment of the present invention. It is a top view which shows the high side circuit area
  • FIG. 5 is a cross-sectional view of high breakdown voltage separation along I-II in FIG. 4;
  • FIG. 5 is a cross-sectional view of the high breakdown voltage NchMOS along III-IV in FIG. 4;
  • FIG. 5 is a cross sectional view of the high breakdown voltage PchMOS along V-VI in FIG. 4; It is a top view showing the high side circuit field of the semiconductor device concerning a comparative example.
  • FIG. 9 is a cross-sectional view of high breakdown voltage separation along I-II in FIG. 8;
  • FIG. 9 is a cross sectional view of the high breakdown voltage NchMOS along the line III-IV in FIG. 8;
  • FIG. 9 is a cross sectional view of the high breakdown voltage PchMOS along V-VI in FIG. 8;
  • FIG. 16 is a cross-sectional view for illustrating the depletion of the high breakdown voltage NchMOS according to the comparative example.
  • FIG. 16 is a cross-sectional view for illustrating the depletion of the high breakdown voltage NchMOS according to the comparative example.
  • FIG. 16 is a cross sectional view for illustrating the depletion of the high breakdown voltage PchMOS according to the comparative example.
  • FIG. 16 is a cross sectional view for illustrating the depletion of the high breakdown voltage PchMOS according to the comparative example. It is a top view which shows the high side circuit area
  • FIG. 17 is a cross-sectional view of the high breakdown voltage separation along I-II in FIG. 16;
  • FIG. 17 is a cross-sectional view of the high breakdown voltage NchMOS along the line III-IV in FIG. 16; FIG.
  • FIG. 17 is a cross sectional view of the high breakdown voltage PchMOS along V-VI in FIG. 16; It is a top view which shows the high side circuit area
  • FIG. 21 is a cross-sectional view of the high breakdown voltage separation along I-II in FIG. 20.
  • FIG. 21 is a cross-sectional view of the high breakdown voltage NchMOS along III-IV in FIG. 20.
  • FIG. 21 is a cross-sectional view of the high breakdown voltage PchMOS along V-VI in FIG. 20. It is a top view which shows the high side circuit area
  • FIG. 25 is a cross-sectional view of the high breakdown voltage separation along I-II in FIG. 24.
  • FIG. 25 is a cross-sectional view of the high breakdown voltage NchMOS along the line III-IV in FIG. 24.
  • FIG. 25 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG. 24. It is a top view which shows the high side circuit area
  • FIG. 29 is a cross-sectional view of the high voltage separation according to I-II in FIG. 28.
  • FIG. 29 is a cross-sectional view of the high breakdown voltage NchMOS along III-IV in FIG. 28.
  • FIG. 29 is a cross sectional view of the high breakdown voltage PchMOS along V-VI in FIG. 28.
  • FIG. 1 is a view showing a semiconductor device according to a first embodiment of the present invention.
  • This semiconductor device is a high voltage IC (HVIC) 3 that drives power chips 1 and 2 forming a half bridge.
  • the HVIC 3 includes a high side circuit area 4 for driving the power chip 1, a low side circuit area 5 for driving the power chip 2, and a level shift circuit 6 for transmitting signals between the low side circuit area 5 and the high side circuit area 4.
  • HVIC high voltage IC
  • FIG. 2 is a diagram showing a high breakdown voltage NchMOS of the level shift circuit according to the first embodiment of the present invention. Signal transmission from low side circuit region 5 to high side circuit region 4 is performed by high breakdown voltage Nch MOS 7 of level shift circuit 6.
  • FIG. 3 is a diagram showing a high breakdown voltage PchMOS of the level shift circuit according to the first embodiment of the present invention. Signal transmission from the high side circuit area 4 to the low side circuit area 5 is performed by the high breakdown voltage Pch MOS 8.
  • FIG. 4 is a plan view showing the high side circuit region of the semiconductor device according to the first embodiment of the present invention. Only a part of the configuration is shown for simplicity.
  • the resurf isolation structure surrounds the outer periphery of the high side circuit area in plan view and separates the high side circuit area and the low side circuit area.
  • the resurf isolation structure includes high breakdown voltage isolation, high breakdown voltage NchMOS and high breakdown voltage PchMOS.
  • the low side circuit region is based on the substrate potential, and the high breakdown voltage separation separates the high side circuit region from the substrate potential to a high breakdown voltage.
  • the high breakdown voltage NchMOS and the high breakdown voltage PchMOS have the same breakdown voltage as the high breakdown voltage separation.
  • the spiral polysilicon 9 is a resistor that surrounds the outer periphery of the high side circuit region in the resurf isolation structure.
  • FIG. 5 is a cross-sectional view of high breakdown voltage separation along I-II in FIG.
  • a P type epitaxial layer (not shown) is formed on a P type substrate 10, and an N type diffusion layer 11a which is a resurf region is formed thereon.
  • the P-type diffusion layer 12 reaching the P-type substrate 10 surrounds the high side circuit region and the N-type diffusion layer 11 a.
  • a P-type diffusion layer 13 a is formed inside the end of the P-type diffusion layer 12 so as to partially overlap with the P-type diffusion layer 12.
  • An N + -type buried diffusion layer 14a is formed on the inner side of the end of the P-type diffusion layer 13a so as to be in contact with the lower surface of the P-type epitaxial layer.
  • N + -type diffusion layer 15a is formed on the surface of the N-type diffusion layer 11a at a predetermined distance from the P-type diffusion layer 12.
  • a P + -type diffusion layer 16a is formed on part of the surface of the P-type diffusion layer 13a.
  • a thermal oxide film 17 is formed on the upper surface of the N-type diffusion layer 11 a between the P-type diffusion layer 12 and the N + -type diffusion layer 15 a.
  • Polysilicons 18a and 19a are formed at a predetermined distance apart so as to cover the inner end and the outer end of thermal oxide film 17, respectively.
  • An insulating film 20 is formed to cover these surfaces.
  • Metal interconnection layers 21 and 22 are formed on insulating film 20.
  • Metal interconnection layer 21 is electrically connected to N + type diffusion layer 15a and polysilicon 18a through the contact hole.
  • the metal wiring layer 22 is electrically connected to the P + type diffusion layer 16 a and the polysilicon 19 a through a contact hole penetrating the insulating film 20.
  • polysilicon 9 is formed in the insulating film 20, polysilicon 9 is formed. One end of the polysilicon 9 is electrically connected to the metal wiring layer 22, and the other end is electrically connected to the metal wiring layer 21.
  • the impurity concentration is higher in the order of the N + -type buried diffusion layer 14 a, the P-type diffusion layer 12, the N-type diffusion layer 11 a, and the P-type substrate 10.
  • the N type diffusion layer 11a satisfies the Resurf condition.
  • FIG. 6 is a cross-sectional view of the high breakdown voltage NchMOS taken along line III-IV of FIG.
  • the N-type diffusion layer 11b of the high breakdown voltage NchMOS is electrically separated from the N-type diffusion layer 11a of high breakdown voltage separation (the separation structure is not shown; see, for example, Patent Document 2 and Non-patent Document 2).
  • the N + -type buried diffusion layer 14b is also electrically separated from the N + -type buried diffusion layer 14a.
  • a P + -type diffusion layer 23 is formed on part of the surface of the P-type diffusion layer 12.
  • a P-type diffusion layer 13 b is formed on the surface of the N-type diffusion layer 11 b between the P-type diffusion layer 12 and the thermal oxide film 17.
  • An N + -type diffusion layer 15 b is formed on the surface of the N-type diffusion layer 11 b at a predetermined distance from the P-type diffusion layer 12.
  • the P + -type diffusion layer 16b and the N + -type diffusion layer 24 are formed on part of the surface of the P-type diffusion layer 13b.
  • Polysilicons 18 b and 19 b are formed on the thermal oxide film 17 at a predetermined distance apart so as to cover the inner end and the outer end of the thermal oxide film 17, respectively.
  • the polysilicon 19 b is also formed on the P type diffusion layer 13 b via a gate oxide film.
  • Polysilicon 9 is formed on thermal oxide film 17 between polysilicon 18b and 19b.
  • Metal interconnection layers 25, 26, 27, 28 are formed on insulating film 20.
  • Metal interconnection layer 25 is electrically connected to N + type diffusion layer 15 b and polysilicon 18 b through the contact hole.
  • Metal interconnection layer 26 is electrically connected to polysilicon 19b through the contact hole.
  • Metal interconnection layer 27 is electrically connected to P + type diffusion layer 16 b and N + type diffusion layer 24 through the contact holes.
  • the metal wiring layer 28 is electrically connected to the P + -type diffusion layer 23 through a contact hole penetrating the insulating film 20.
  • the metal wiring layer 28 is also electrically connected to the metal wiring layer 22.
  • FIG. 7 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG.
  • the N type diffusion layer 11c of the high breakdown voltage PchMOS is electrically separated from the N type diffusion layer 11a of high breakdown voltage separation.
  • the N + -type buried diffusion layer 14c is also electrically separated from the N + -type buried diffusion layer 14a.
  • a P-type diffusion layer 13 c is formed on the surface of the N-type diffusion layer 11 c between the P-type diffusion layer 12 and the thermal oxide film 17.
  • a P + -type diffusion layer 16c is formed on part of the surface of the P-type diffusion layer 13c.
  • a P-type diffusion layer 29 is formed on the surface of the N-type diffusion layer 11 c so as to be in contact with the lower surface of the thermal oxide film 17.
  • a P + -type diffusion layer 30 is formed on the surface of the N-type diffusion layer 11 c spaced apart from the P-type diffusion layer 29 by a fixed distance.
  • An N + -type diffusion layer 15 c is formed on the opposite side of the P-type diffusion layer 29 to the P-type diffusion layer 30.
  • Polysilicons 18c and 19c are formed at a predetermined distance apart so as to cover the inner end and the outer end of the thermal oxide film 17, respectively.
  • the polysilicon 18 c is formed between the P type diffusion layer 29 and the P type diffusion layer 30 on the N type diffusion layer 11 c via a gate oxide film.
  • Metal interconnection layers 31, 32, and 33 are formed on insulating film 20.
  • the metal wiring layer 31 is electrically connected to the P + -type diffusion layer 30 and the N + -type diffusion layer 15 c through the contact holes.
  • Metal interconnection layer 32 is electrically connected to polysilicon 18c through the contact hole.
  • the metal interconnection layer 33 is electrically connected to the P + -type diffusion layer 16 c and the polysilicon 19 c through a contact hole penetrating the insulating film 20.
  • the high breakdown voltage separated polysilicon 9, 18a, 19a, the high breakdown voltage NchMOS polysilicon 9, 18b, 19b, and the high breakdown voltage PchMOS polysilicon 9, 18c, 19c are respectively field plates.
  • the length Lp of the polysilicon 19c on the thermal oxide film 17 satisfies the relationship of Formula (1).
  • Ln Li> Lp (1) Therefore, the inner end of the polysilicon 19c, which is the field plate closest to the low side circuit region in the high breakdown voltage PchMOS, is lower side than the inner end of the polysilicon 19b which is the field plate closest to the low side circuit region in the high breakdown voltage NchMOS. Located on the circuit area side.
  • the spacing between the plurality of polysilicons 9 in the high breakdown voltage PchMOS is wider than the spacing between the plurality of polysilicons 9 in the high breakdown voltage NchMOS and the high breakdown voltage separation.
  • the spacing between the plurality of polysilicons 9 in the high breakdown voltage PchMOS may not be constant.
  • FIG. 8 is a plan view showing the high side circuit region of the semiconductor device according to the comparative example.
  • FIG. 9 is a cross-sectional view of the high-breakdown-voltage isolation along I-II in FIG.
  • FIG. 10 is a cross-sectional view of the high breakdown voltage NchMOS taken along line III-IV of FIG.
  • FIG. 11 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG.
  • the high breakdown voltage NchMOS maintains the high breakdown voltage by completely depleting the N type diffusion layer 11b.
  • the high breakdown voltage PchMOS maintains the high breakdown voltage by completely depleting the P-type diffusion layer 29 on the surface in addition to the N-type diffusion layer 11c. Therefore, a leak current transiently flows in a period from the time when a high voltage is applied to both the high breakdown voltage NchMOS and the high breakdown voltage PchMOS, the depletion layer spreads in the high breakdown voltage isolation region and the complete depletion is achieved. If the transient leak current flows for a long time, the level shift circuit 6 malfunctions.
  • FIG. 12 and 13 are cross-sectional views for illustrating the depletion of the high breakdown voltage NchMOS according to the comparative example.
  • the polysilicon 19b which is the field plate closest to the low side circuit region, is longer than that in FIG. 12, and the low voltage polysilicon 19b extends to the high side circuit region. Therefore, when a high voltage is applied to the metal wiring layer 25 and a low voltage is applied to the metal wiring layers 26, 27, 28, movement of electrons 34 in the N-type diffusion layer 11b to the high side is promoted. As a result, depletion is promoted and the period in which the leak current flows transiently becomes short.
  • FIG. 14 and 15 are cross-sectional views for describing the depletion of the high breakdown voltage PchMOS according to the comparative example.
  • the polysilicon 19c which is the field plate closest to the low side circuit region, is longer than that in FIG. 14, and the polysilicon 19c, which is a low voltage, protrudes to the high side circuit region. Therefore, when a high voltage is applied to the metal interconnection layers 31 and 32 and a low voltage is applied to the metal interconnection layers 28 and 33, the holes 35 in the P type diffusion layer 29 are drawn under the polysilicon 19c. As a result, the depletion of the P-type diffusion layer 29 is inhibited, and the period during which the leak current flows transiently becomes longer.
  • the polysilicon 19b which is the field plate closest to the low side circuit region in the high breakdown voltage NchMOS is long and extended to the high side circuit region side, depletion of the N type diffusion layer 11b Is promoted.
  • the polysilicon 19c which is the field plate closest to the low side circuit region in the high breakdown voltage PchMOS is short and its inner end is located closer to the low side circuit region than in the high breakdown voltage NchMOS, the depletion of the P type diffusion layer 29 Is promoted. Therefore, the period in which the leak current transiently flows when the high voltage is applied can be shortened in both the high breakdown voltage NchMOS and the high breakdown voltage PchMOS, and the malfunction tolerance of the level shift circuit 6 can be improved.
  • FIG. 16 is a plan view showing the high side circuit region of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of the high breakdown voltage separation along I-II in FIG.
  • FIG. 18 is a cross-sectional view of the high breakdown voltage NchMOS taken along line III-IV of FIG.
  • FIG. 19 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG.
  • the distance between the plurality of polysilicons 9 in the high breakdown voltage PchMOS and the high breakdown voltage separation is longer than the distance between the plurality of polysilicons 9 in the high breakdown voltage NchMOS.
  • the inner end portion of polysilicon 19c which is the field plate closest to the low side circuit region in high breakdown voltage PchMOS is the inside of polysilicon 19b which is the field plate closest to the low side circuit region in high breakdown voltage NchMOS. It is located closer to the low side circuit area than the end.
  • FIG. 20 is a plan view showing the high side circuit region of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of the high-breakdown-voltage isolation along I-II in FIG.
  • FIG. 22 is a cross-sectional view of the high breakdown voltage NchMOS taken along line III-IV of FIG.
  • FIG. 23 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG.
  • the interval of the spiral shaped polysilicon 9 is the same.
  • the plurality of polysilicons 9 in the high breakdown voltage PchMOS are arranged closer to the low side circuit region than the plurality of polysilicons 9 in the high breakdown voltage NchMOS.
  • the inner end portion of polysilicon 19c which is the field plate closest to the low side circuit region in high breakdown voltage PchMOS is the inside of polysilicon 19b which is the field plate closest to the low side circuit region in high breakdown voltage NchMOS. It is located closer to the low side circuit area than the end. Thereby, the same effect as that of the first embodiment can be obtained. In addition, since it is not necessary to widen the intervals of the plurality of polysilicons 9 of the high breakdown voltage PchMOS, it is possible to suppress a drop in the breakdown voltage stability.
  • FIG. 24 is a plan view showing the high side circuit region of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 25 is a cross-sectional view of the high-breakdown-voltage isolation along I-II in FIG.
  • FIG. 26 is a cross-sectional view of the high breakdown voltage NchMOS along the line III-IV in FIG.
  • FIG. 27 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG.
  • polysilicon 19c which is the field plate closest to the low side circuit region in high breakdown voltage PchMOS
  • polysilicon 19b which is the field plate closest to the low side circuit region in high breakdown voltage NchMOS. Less than.
  • the polysilicon 19c on the thermal oxide film 17 of the high breakdown voltage PchMOS is moved parallel to the polysilicon 18c side, and the distance between them is made the same as the distance between the polysilicon 18a and 19a and the distance between the polysilicon 18b and 19b.
  • the distance between the field plate closest to the low side circuit region and the field plate closest to the high side circuit region is the same in high breakdown voltage isolation, high breakdown voltage NchMOS and high breakdown voltage PchMOS.
  • the P-type diffusion layer 12, the P + -type diffusion layer 23, the P + -type diffusion layer 16c, the P-type diffusion layer 13c, and the metal wiring layer 33 also move parallel to the polysilicon 18c by the same length as the polysilicon 19c. Further, the lengths of the P type diffusion layer 29 and the thermal oxide film 17 become shorter by the moving length of the polysilicon 19c.
  • the distance between the field plate closest to the low side circuit region and the field plate closest to the high side circuit region is the same, and the position of the polysilicon 9 of spiral shape Can be the same. Therefore, the spiral polysilicon 9 can be formed only by the straight line and the arc pattern, and the layout design becomes easy. Further, the area on the low side of the high breakdown voltage PchMOS can be saved.
  • FIG. 28 is a plan view showing the high side circuit region of the semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 29 is a cross-sectional view of the high breakdown voltage separation taken along I-II in FIG.
  • FIG. 30 is a cross-sectional view of the high breakdown voltage NchMOS taken along line III-IV of FIG.
  • FIG. 31 is a cross-sectional view of the high breakdown voltage PchMOS taken along V-VI in FIG.
  • polysilicon 36 and metal interconnection layer 37 capacitively coupled to each other are formed on thermal oxide film 17 in place of spiral shaped polysilicon 9 of the first embodiment. Even in this case, the same effect as that of the first embodiment can be obtained.
  • Polysilicon 36 is in the same layer as polysilicon 18a, 18b, 18c, 19a, 19b and 19c, and metal interconnection layer 37 is formed of metal interconnection layers 21, 22, 25, 26, 27, 28, 31, 32, 33. Can be formed simultaneously. Therefore, the step of forming polysilicon 9 can be omitted as compared with the first embodiment.
  • the P-type substrate 10 and the semiconductor layer thereon are not limited to those formed of silicon, but may be formed of a wide band gap semiconductor having a larger band gap than silicon.
  • the wide band gap semiconductor is, for example, silicon carbide, gallium nitride based material, or diamond.
  • a power semiconductor element formed of such a wide band gap semiconductor can be miniaturized because of its high voltage resistance and allowable current density. By using this miniaturized device, it is possible to miniaturize a semiconductor module incorporating this device. Further, since the heat resistance of the element is high, the heat dissipating fins of the heat sink can be miniaturized, and the water cooling portion can be air cooled, so that the semiconductor module can be further miniaturized. In addition, since the power loss of the element is low and the efficiency is high, the semiconductor module can be highly efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

リサーフ分離構造が、ハイサイド回路領域の外周を囲い、ハイサイド回路領域とローサイド回路領域を分離する。リサーフ分離構造は、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSを有する。高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSは、複数のフィールドプレート(9,19a,19b,19c)を有する。高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレート(19c)の内端部は、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレート(19b)の内端部よりもローサイド回路領域側に位置する。

Description

半導体装置
 本発明は、横型の高耐圧素子を含む半導体装置に関する。
 ハーフブリッジを構成するパワーチップを駆動するHVIC(High Voltage IC)は、ローサイド回路領域と、ハイサイド回路領域と、両者の間の信号伝達を行うレベルシフト回路とを有する。ローサイド回路領域は基板電位を基準とし、ハイサイド回路領域は基板から高耐圧に分離されている。ハイサイド回路領域の基板電圧からの高耐圧の分離はリサーフ効果により実現され、平面視でハイサイド回路領域の外周はリサーフ分離構造に囲われている(例えば、特許文献1参照)。
 レベルシフト回路は、ローサイド回路領域からハイサイド回路領域へ信号伝達する高耐圧NchMOSと、ハイサイド回路領域からローサイド回路領域へ信号伝達する高耐圧PchMOSとを有する。高耐圧NchMOS及び高耐圧PchMOSは、ハイサイド回路領域の外周を囲うリサーフ分離領域と同等の耐圧を有し(例えば、非特許文献1参照)、ハイサイド回路領域の外周を囲う同一のリサーフ分離構造内に形成される(例えば、特許文献2及び非特許文献2参照)。
米国特許第4,292,642号明細書 日本特許第3917211号公報
T.Terashima, M.Yoshizawa, M.Fukunaga and G. Majumdar, "Structure of 600V IC and A New Voltage Sensing Device", 5th International Symposium on Power Semiconductor Devices & IC’s Kazuhiro Shimizu and Tomohide Terashima, "The 2nd Generation divided RESURF structure for High Voltage ICs", Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC’s May 18-22, 2008 Oralando, FL
 高耐圧NchMOSはN型のリサーフ領域を完全空乏化することで高耐圧を保持する。一方、高耐圧PchMOSはN型のリサーフ領域に加え、表面のP型拡散層を完全空乏化することで高耐圧を保持する。このため、高耐圧NchMOSも高耐圧PchMOSも高電圧が印加された時点から、高耐圧分離領域内に空乏層が広がり完全空乏化するまでの期間には過渡的にリーク電流が流れる。この過渡的なリーク電流の流れる期間が長いとレベルシフト回路の誤動作を引き起こす。
 ローサイド側のフィールドプレートが長いと、高耐圧NchMOSでは空乏化が促進され過渡的にリーク電流が流れる期間が短くなるが、高耐圧PchMOSではP型拡散層の空乏化が阻害され過渡的にリーク電流が流れる期間が長くなる。このため、レベルシフト回路の高耐圧PchMOSが誤動作を起こしやすくなる。一方、ローサイド側のフィールドプレートを短くすると、レベルシフト回路の高耐圧NchMOSが誤動作を起こしやすくなる。従来は、高耐圧NchMOSと高耐圧PchMOSのフィールドプレート構造が同一であるため、高耐圧NchMOSと高耐圧PchMOSの両者においてリーク電流の流れる期間を短くすることはできなかった。
 本発明は、上述のような課題を解決するためになされたもので、その目的は高電圧が印加された際に過渡的にリーク電流が流れる期間を高耐圧NchMOSと高耐圧PchMOSの両者で短くし、レベルシフト回路の誤動作耐量を向上することができる半導体装置を得るものである。
 本発明に係る半導体装置は、ハイサイド回路領域と、ローサイド回路領域と、前記ハイサイド回路領域の外周を囲い、前記ハイサイド回路領域と前記ローサイド回路領域を分離するリサーフ分離構造とを備え、前記リサーフ分離構造は、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSを有し、前記高耐圧分離、前記高耐圧NchMOS及び前記高耐圧PchMOSは、熱酸化膜と、前記熱酸化膜上に形成された複数のフィールドプレートとを有し、前記高耐圧PchMOSにおける最も前記ローサイド回路領域側のフィールドプレートの内端部は、前記高耐圧NchMOSにおける最も前記ローサイド回路領域側のフィールドプレートの内端部よりも前記ローサイド回路領域側に位置することを特徴とする。
 本発明では、高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレートの内端部は、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレートの内端部よりもローサイド回路領域側に位置する。これにより、高電圧が印加された際に過渡的にリーク電流が流れる期間を高耐圧NchMOSと高耐圧PchMOSの両者で短くし、レベルシフト回路の誤動作耐量を向上することができる。
本発明の実施の形態1に係る半導体装置を示す図である。 本発明の実施の形態1に係るレベルシフト回路の高耐圧NchMOSを示す図である。 本発明の実施の形態1に係るレベルシフト回路の高耐圧PchMOSを示す図である。 本発明の実施の形態1に係る半導体装置のハイサイド回路領域を示す平面図である。 図4のI-IIに沿った高耐圧分離の断面図である。 図4のIII-IVに沿った高耐圧NchMOSの断面図である。 図4のV-VIに沿った高耐圧PchMOSの断面図である。 比較例に係る半導体装置のハイサイド回路領域を示す平面図である。 図8のI-IIに沿った高耐圧分離の断面図である。 図8のIII-IVに沿った高耐圧NchMOSの断面図である。 図8のV-VIに沿った高耐圧PchMOSの断面図である。 比較例に係る高耐圧NchMOSの空乏化を説明するための断面図である。 比較例に係る高耐圧NchMOSの空乏化を説明するための断面図である。 比較例に係る高耐圧PchMOSの空乏化を説明するための断面図である。 比較例に係る高耐圧PchMOSの空乏化を説明するための断面図である。 本発明の実施の形態2に係る半導体装置のハイサイド回路領域を示す平面図である。 図16のI-IIに沿った高耐圧分離の断面図である。 図16のIII-IVに沿った高耐圧NchMOSの断面図である。 図16のV-VIに沿った高耐圧PchMOSの断面図である。 本発明の実施の形態3に係る半導体装置のハイサイド回路領域を示す平面図である。 図20のI-IIに沿った高耐圧分離の断面図である。 図20のIII-IVに沿った高耐圧NchMOSの断面図である。 図20のV-VIに沿った高耐圧PchMOSの断面図である。 本発明の実施の形態4に係る半導体装置のハイサイド回路領域を示す平面図である。 図24のI-IIに沿った高耐圧分離の断面図である。 図24のIII-IVに沿った高耐圧NchMOSの断面図である。 図24のV-VIに沿った高耐圧PchMOSの断面図である。 本発明の実施の形態5に係る半導体装置のハイサイド回路領域を示す平面図である。 図28のI-IIに沿った高耐圧分離の断面図である。 図28のIII-IVに沿った高耐圧NchMOSの断面図である。 図28のV-VIに沿った高耐圧PchMOSの断面図である。
 本発明の実施の形態に係る半導体装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体装置を示す図である。この半導体装置は、ハーフブリッジを構成するパワーチップ1,2を駆動するHVIC(High Voltage IC)3である。HVIC3は、パワーチップ1を駆動するハイサイド回路領域4と、パワーチップ2を駆動するローサイド回路領域5と、ローサイド回路領域5とハイサイド回路領域4との間の信号伝達を行うレベルシフト回路6とを有する。
 図2は、本発明の実施の形態1に係るレベルシフト回路の高耐圧NchMOSを示す図である。ローサイド回路領域5からハイサイド回路領域4への信号伝達はレベルシフト回路6の高耐圧NchMOS7により行われる。図3は、本発明の実施の形態1に係るレベルシフト回路の高耐圧PchMOSを示す図である。ハイサイド回路領域4からローサイド回路領域5への信号伝達は高耐圧PchMOS8により行われる。
 図4は、本発明の実施の形態1に係る半導体装置のハイサイド回路領域を示す平面図である。簡単のため一部の構成のみ図示している。リサーフ分離構造が、平面視でハイサイド回路領域の外周を囲い、ハイサイド回路領域とローサイド回路領域を分離する。リサーフ分離構造は、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSを有する。ローサイド回路領域は基板電位を基準とし、高耐圧分離がハイサイド回路領域を基板電位から高耐圧に分離する。高耐圧NchMOS及び高耐圧PchMOSは高耐圧分離と同等の耐圧を有する。渦巻き状のポリシリコン9は、リサーフ分離構造においてハイサイド回路領域の外周を囲う抵抗体である。
 図5は、図4のI-IIに沿った高耐圧分離の断面図である。P型基板10上にP型エピタキシャル層(不図示)が形成され、その上にリサーフ領域であるN型拡散層11aが形成されている。P型基板10まで到達するP型拡散層12がハイサイド回路領域及びN型拡散層11aを囲っている。P型拡散層13aがP型拡散層12の端より内側にP型拡散層12と部分的に重なるように形成されている。P型拡散層13aの端より内側にP型エピタキシャル層の下面と接するようにN型埋め込み拡散層14aが形成されている。P型拡散層12から一定の距離が離れたN型拡散層11aの表面にN型拡散層15aが形成されている。P型拡散層13aの表面の一部にP型拡散層16aが形成されている。P型拡散層12とN型拡散層15aの間のN型拡散層11aの上面には熱酸化膜17が形成されている。ポリシリコン18a,19aがそれぞれ熱酸化膜17の内端部と外端部を覆うように一定の距離を離して形成されている。これらの表面を覆うように絶縁膜20が形成されている。
 金属配線層21,22が絶縁膜20上に形成されている。金属配線層21は、コンタクトホールを通じてN型拡散層15a及びポリシリコン18aに電気的に接続されている。金属配線層22は、絶縁膜20を貫通するコンタクトホールを通じてP型拡散層16a及びポリシリコン19aに電気的に接続されている。
 絶縁膜20内にポリシリコン9が形成されている。ポリシリコン9の一端は金属配線層22に電気的に接続され、他端は金属配線層21に電気的に接続されている。N型埋め込み拡散層14a、P型拡散層12、N型拡散層11a、P型基板10の順に不純物濃度が高くなっている。N型拡散層11aはリサーフ条件を満足している。
 図6は、図4のIII-IVに沿った高耐圧NchMOSの断面図である。高耐圧NchMOSのN型拡散層11bは、高耐圧分離のN型拡散層11aと電気的に分離されている(分離構造は不図示。例えば、特許文献2及び非特許文献2参照)。N型埋め込み拡散層14bもN型埋め込み拡散層14aと電気的に分離されている。P型拡散層12の表面の一部にP型拡散層23が形成されている。P型拡散層12と熱酸化膜17の間のN型拡散層11bの表面にP型拡散層13bが形成されている。P型拡散層12から一定の距離が離れたN型拡散層11bの表面にN型拡散層15bが形成されている。P型拡散層13bの表面の一部にP型拡散層16b及びN型拡散層24が形成されている。
 ポリシリコン18b,19bがそれぞれ熱酸化膜17の内端部と外端部を覆うように一定の距離を離して熱酸化膜17上に形成されている。ポリシリコン19bは、P型拡散層13b上にもゲート酸化膜を介して形成されている。ポリシリコン18b,19bの間において熱酸化膜17上にポリシリコン9が形成されている。
 絶縁膜20上に金属配線層25,26,27,28が形成されている。金属配線層25は、コンタクトホールを通じてN型拡散層15b及びポリシリコン18bと電気的に接続されている。金属配線層26は、コンタクトホールを通じてポリシリコン19bと電気的に接続されている。金属配線層27は、コンタクトホールを通じてP型拡散層16b及びN型拡散層24と電気的に接続されている。金属配線層28は、絶縁膜20を貫通するコンタクトホールを通じてP型拡散層23と電気的に接続されている。金属配線層28は金属配線層22とも電気的に接続されている。
 図7は、図4のV-VIに沿った高耐圧PchMOSの断面図である。高耐圧PchMOSのN型拡散層11cは、高耐圧分離のN型拡散層11aと電気的に分離されている。N型埋め込み拡散層14cもN型埋め込み拡散層14aと電気的に分離されている。P型拡散層12と熱酸化膜17の間においてN型拡散層11cの表面にP型拡散層13cが形成されている。P型拡散層13cの表面の一部にP型拡散層16cが形成されている。N型拡散層11cの表面に熱酸化膜17の下面と接するようにP型拡散層29が形成されている。P型拡散層29から一定の距離が離れたN型拡散層11cの表面にP型拡散層30が形成されている。P型拡散層30に対してP型拡散層29と反対側にN型拡散層15cが形成されている。
 ポリシリコン18c,19cがそれぞれ熱酸化膜17の内端部と外端部を覆うように一定の距離を離して形成されている。ポリシリコン18cはP型拡散層29とP型拡散層30の間においてN型拡散層11c上にゲート酸化膜を介して形成されている。絶縁膜20上に金属配線層31,32,33が形成されている。金属配線層31は、コンタクトホールを通じてP型拡散層30及びN型拡散層15cと電気的に接続されている。金属配線層32は、コンタクトホールを通じてポリシリコン18cと電気的に接続されている。金属配線層33は、絶縁膜20を貫通するコンタクトホールを通じてP型拡散層16c及びポリシリコン19cと電気的に接続されている。
 ここで、高耐圧分離のポリシリコン9,18a,19a、高耐圧NchMOSのポリシリコン9,18b,19b、高耐圧PchMOSのポリシリコン9,18c,19cがそれぞれフィールドプレートである。
 最もローサイド回路領域側のフィールドプレートである高耐圧NchMOSの熱酸化膜17上のポリシリコン19bの長さLn、高耐圧分離の熱酸化膜17上のポリシリコン19aの長さLi、高耐圧PchMOSの熱酸化膜17上のポリシリコン19cの長さLpが数式(1)の関係を満たしている。
Ln=Li>Lp (1)
このため、高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19cの内端部が、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19bの内端部よりもローサイド回路領域側に位置する。
 また、高耐圧PchMOSにおける複数のポリシリコン9の間隔は、高耐圧NchMOS及び高耐圧分離における複数のポリシリコン9の間隔よりも広い。高耐圧PchMOSにおける複数のポリシリコン9の間隔は一定でなくてもよい。
 続いて、本実施の形態の効果を比較例と比較して説明する。図8は、比較例に係る半導体装置のハイサイド回路領域を示す平面図である。図9は、図8のI-IIに沿った高耐圧分離の断面図である。図10は、図8のIII-IVに沿った高耐圧NchMOSの断面図である。図11は、図8のV-VIに沿った高耐圧PchMOSの断面図である。比較例では、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSのフィールドプレート構造は同じになっている(Ln=Li=Lp)。
 高耐圧NchMOSはN型拡散層11bを完全空乏化することで高耐圧を保持する。一方、高耐圧PchMOSはN型拡散層11cに加え、表面のP型拡散層29を完全空乏化することで高耐圧を保持する。このため、高耐圧NchMOSも高耐圧PchMOSも高電圧が印加された時点から、高耐圧分離領域内に空乏層が広がり完全空乏化するまでの期間には過渡的にリーク電流が流れる。この過渡的なリーク電流の流れる期間が長いとレベルシフト回路6の誤動作を引き起こす。
 図12及び図13は、比較例に係る高耐圧NchMOSの空乏化を説明するための断面図である。図13は図12に比べて最もローサイド回路領域側のフィールドプレートであるポリシリコン19bが長く、低電圧であるポリシリコン19bがハイサイド回路領域側に張出している。このため、金属配線層25に高電圧、金属配線層26,27,28に低電圧が印加された時に、N型拡散層11b内の電子34のハイサイド側への移動が促進される。この結果、空乏化が促進され過渡的にリーク電流が流れる期間が短くなる。
 図14及び図15は、比較例に係る高耐圧PchMOSの空乏化を説明するための断面図である。図15は図14に比べて最もローサイド回路領域側のフィールドプレートであるポリシリコン19cが長く、低電圧であるポリシリコン19cがハイサイド回路領域側に張出している。このため、金属配線層31,32に高電圧、金属配線層28,33に低電圧が印加された時に、P型拡散層29内の正孔35がポリシリコン19cの下に引き寄せられる。この結果、P型拡散層29の空乏化が阻害され過渡的にリーク電流が流れる期間が長くなる。
 これに対して、本実施の形態では、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19bが長く、ハイサイド回路領域側に張出しているため、N型拡散層11bの空乏化が促進される。一方、高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19cが短く、その内端部が高耐圧NchMOSの場合よりもローサイド回路領域側に位置するため、P型拡散層29の空乏化が促進される。よって、高電圧が印加された際に過渡的にリーク電流が流れる期間を高耐圧NchMOSと高耐圧PchMOSの両者で短くし、レベルシフト回路6の誤動作耐量を向上することができる。
実施の形態2.
 図16は、本発明の実施の形態2に係る半導体装置のハイサイド回路領域を示す平面図である。図17は、図16のI-IIに沿った高耐圧分離の断面図である。図18は、図16のIII-IVに沿った高耐圧NchMOSの断面図である。図19は、図16のV-VIに沿った高耐圧PchMOSの断面図である。
 本実施の形態では、高耐圧PchMOS及び高耐圧分離における複数のポリシリコン9の間隔は、高耐圧NchMOSにおける複数のポリシリコン9の間隔よりも長い。高耐圧NchMOSの熱酸化膜17上のポリシリコン19bの長さLn、高耐圧分離の熱酸化膜17上のポリシリコン19aの長さLi、高耐圧PchMOSの熱酸化膜17上のポリシリコン19cの長さLpが数式(2)の関係を満たしている。
Ln>Li=Lp ・・・(2)
 本実施の形態の構成でも、高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19cの内端部は、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19bの内端部よりもローサイド回路領域側に位置する。これにより、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 図20は、本発明の実施の形態3に係る半導体装置のハイサイド回路領域を示す平面図である。図21は、図20のI-IIに沿った高耐圧分離の断面図である。図22は、図20のIII-IVに沿った高耐圧NchMOSの断面図である。図23は、図20のV-VIに沿った高耐圧PchMOSの断面図である。
 本実施の形態では、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSにおいて渦巻き形状のポリシリコン9の間隔が同じである。高耐圧PchMOSにおける複数のポリシリコン9は高耐圧NchMOSにおける複数のポリシリコン9よりもローサイド回路領域側に配置されている。
 本実施の形態の構成でも、高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19cの内端部は、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19bの内端部よりもローサイド回路領域側に位置する。これにより、実施の形態1と同様の効果を得ることができる。また、高耐圧PchMOSの複数のポリシリコン9の間隔を広げる必要が無いため、耐圧安定性の低下を抑制することができる。
実施の形態4.
 図24は、本発明の実施の形態4に係る半導体装置のハイサイド回路領域を示す平面図である。図25は、図24のI-IIに沿った高耐圧分離の断面図である。図26は、図24のIII-IVに沿った高耐圧NchMOSの断面図である。図27は、図24のV-VIに沿った高耐圧PchMOSの断面図である。
 本実施の形態では、実施の形態1と同様に、高耐圧PchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19cは、高耐圧NchMOSにおける最もローサイド回路領域側のフィールドプレートであるポリシリコン19bよりも短い。そして、高耐圧PchMOSの熱酸化膜17上のポリシリコン19cをポリシリコン18c側へ平行移動して、両者の間隔をポリシリコン18a,19aの間隔及びポリシリコン18b,19bの間隔と同じにしている。即ち、最もローサイド回路領域側のフィールドプレートと最もハイサイド回路領域側のフィールドプレートの間隔は、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSにおいて同じである。P型拡散層12、P型拡散層23、P型拡散層16c、P型拡散層13c、金属配線層33もポリシリコン19cと同じ長さだけポリシリコン18c側へ平行移動している。また、P型拡散層29及び熱酸化膜17の長さはポリシリコン19cの移動長さ分だけ短くなる。
 これにより、高電圧が印加された際に過渡的にリーク電流が流れる期間を高耐圧NchMOSと高耐圧PchMOSの両者で短くし、レベルシフト回路6の誤動作耐量を向上することができる。
 また、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSにおいて、最もローサイド回路領域側のフィールドプレートと最もハイサイド回路領域側のフィールドプレートの間隔を同じにすることで、渦巻き形状のポリシリコン9の位置を同じにすることができる。このため、渦巻き形状のポリシリコン9を直線及び円弧パターンのみで形成することができ、レイアウト設計が容易になる。また、高耐圧PchMOSのローサイド側の領域を省スペース化することができる。
実施の形態5.
 図28は、本発明の実施の形態5に係る半導体装置のハイサイド回路領域を示す平面図である。図29は、図28のI-IIに沿った高耐圧分離の断面図である。図30は、図28のIII-IVに沿った高耐圧NchMOSの断面図である。図31は、図28のV-VIに沿った高耐圧PchMOSの断面図である。
 本実施の形態では、実施の形態1の渦巻き形状のポリシリコン9の代わりに、互いに容量結合したポリシリコン36と金属配線層37を熱酸化膜17上に形成している。この場合でも、実施の形態1と同様の効果を得ることができる。
 また、ポリシリコン36はポリシリコン18a,18b,18c,19a,19b,19cと同じ層であり、金属配線層37は金属配線層21,22,25,26,27,28,31,32,33と同じ層であるため、それぞれ同時に形成することができる。従って、実施の形態1に比べてポリシリコン9を形成する工程を省略することができる。
 なお、P型基板10及びその上の半導体層は、珪素によって形成されたものに限らず、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されたものでもよい。ワイドバンドギャップ半導体は、例えば、炭化珪素、窒化ガリウム系材料、又はダイヤモンドである。このようなワイドバンドギャップ半導体によって形成されたパワー半導体素子は、耐電圧性や許容電流密度が高いため、小型化できる。この小型化された素子を用いることで、この素子を組み込んだ半導体モジュールも小型化できる。また、素子の耐熱性が高いため、ヒートシンクの放熱フィンを小型化でき、水冷部を空冷化できるので、半導体モジュールを更に小型化できる。また、素子の電力損失が低く高効率であるため、半導体モジュールを高効率化できる。
4 ハイサイド回路領域、5 ローサイド回路領域、7 高耐圧NchMOS、8 高耐圧PchMOS、9,18a,18b,18c,19a,19b,19c,36 ポリシリコン、17 熱酸化膜、37 金属配線層

Claims (5)

  1.  ハイサイド回路領域と、
     ローサイド回路領域と、
     前記ハイサイド回路領域の外周を囲い、前記ハイサイド回路領域と前記ローサイド回路領域を分離するリサーフ分離構造とを備え、
     前記リサーフ分離構造は、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSを有し、
     前記高耐圧分離、前記高耐圧NchMOS及び前記高耐圧PchMOSは、熱酸化膜と、前記熱酸化膜上に形成された複数のフィールドプレートとを有し、
     前記高耐圧PchMOSにおける最も前記ローサイド回路領域側のフィールドプレートの内端部は、前記高耐圧NchMOSにおける最も前記ローサイド回路領域側のフィールドプレートの内端部よりも前記ローサイド回路領域側に位置することを特徴とする半導体装置。
  2.  前記複数のフィールドプレートは、前記熱酸化膜上に形成された渦巻き形状のポリシリコンを有し、
     前記高耐圧PchMOSにおける前記渦巻き形状のポリシリコンの間隔は前記高耐圧NchMOSにおける前記渦巻き形状のポリシリコンの間隔よりも広いことを特徴とする請求項1に記載の半導体装置。
  3.  前記複数のフィールドプレートは、前記熱酸化膜上に形成された渦巻き形状のポリシリコンを有し、
     前記渦巻き形状のポリシリコンの間隔は前記高耐圧PchMOSと前記高耐圧NchMOSにおいて同じであり、
     前記高耐圧PchMOSにおける前記渦巻き形状のポリシリコンは、前記高耐圧NchMOSにおける前記渦巻き形状のポリシリコンよりも前記ローサイド回路領域側に配置されていることを特徴とする請求項1に記載の半導体装置。
  4.  前記複数のフィールドプレートは、前記熱酸化膜上に形成されて互いに容量結合したポリシリコンと金属配線層を有することを特徴とする請求項1に記載の半導体装置。
  5.  ハイサイド回路領域と、
     ローサイド回路領域と、
     前記ハイサイド回路領域の外周を囲い、前記ハイサイド回路領域と前記ローサイド回路領域を分離するリサーフ分離構造とを備え、
     前記リサーフ分離構造は、高耐圧分離、高耐圧NchMOS及び高耐圧PchMOSを有し、
     前記高耐圧分離、前記高耐圧NchMOS及び前記高耐圧PchMOSは、熱酸化膜と、前記熱酸化膜上に形成された渦巻き形状のポリシリコンを含む複数のフィールドプレートとを有し、
     前記高耐圧PchMOSにおける最も前記ローサイド回路領域側のフィールドプレートは、前記高耐圧NchMOSにおける最も前記ローサイド回路領域側のフィールドプレートよりも短く、
     最も前記ローサイド回路領域側のフィールドプレートと最も前記ハイサイド回路領域側のフィールドプレートとの間隔は、前記高耐圧分離、前記高耐圧NchMOS及び前記高耐圧PchMOSにおいて同じであることを特徴とする半導体装置。
PCT/JP2016/076978 2016-09-13 2016-09-13 半導体装置 WO2018051412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016007213.9T DE112016007213B4 (de) 2016-09-13 2016-09-13 Halbleitervorrichtung
PCT/JP2016/076978 WO2018051412A1 (ja) 2016-09-13 2016-09-13 半導体装置
JP2018538990A JP6590076B2 (ja) 2016-09-13 2016-09-13 半導体装置
CN201680089138.0A CN109690770B (zh) 2016-09-13 2016-09-13 半导体装置
US16/096,168 US11063116B2 (en) 2016-09-13 2016-09-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076978 WO2018051412A1 (ja) 2016-09-13 2016-09-13 半導体装置

Publications (1)

Publication Number Publication Date
WO2018051412A1 true WO2018051412A1 (ja) 2018-03-22

Family

ID=61620007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076978 WO2018051412A1 (ja) 2016-09-13 2016-09-13 半導体装置

Country Status (5)

Country Link
US (1) US11063116B2 (ja)
JP (1) JP6590076B2 (ja)
CN (1) CN109690770B (ja)
DE (1) DE112016007213B4 (ja)
WO (1) WO2018051412A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035952A (zh) * 2019-12-25 2021-06-25 三菱电机株式会社 半导体装置及集成电路
US11552166B2 (en) * 2020-01-17 2023-01-10 Mitsubishi Electric Corporation Semiconductor device comprising resurf isolation structure surrounding an outer periphery of a high side circuit region and isolating the high side circuit region from a low side circuit region
US11711010B2 (en) 2020-08-27 2023-07-25 Mitsubishi Electric Corporation Drive circuit and inverter device
US11916116B2 (en) 2022-01-25 2024-02-27 Sanken Electric Co., Ltd. Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118230A (ja) * 2000-10-05 2002-04-19 Fuji Electric Co Ltd 半導体装置
US20130341718A1 (en) * 2012-06-26 2013-12-26 Fairchild Korea Semiconductor Ltd. Power semiconductor device
JP2015018832A (ja) * 2013-07-08 2015-01-29 ルネサスエレクトロニクス株式会社 半導体装置
JP2015170733A (ja) * 2014-03-07 2015-09-28 富士電機株式会社 半導体装置
JP2016046693A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置、電力制御装置および電子システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1131801A (en) 1978-01-18 1982-09-14 Johannes A. Appels Semiconductor device
JP3917211B2 (ja) 1996-04-15 2007-05-23 三菱電機株式会社 半導体装置
JP4667756B2 (ja) 2004-03-03 2011-04-13 三菱電機株式会社 半導体装置
EP2779225B1 (en) * 2011-11-11 2018-04-25 Fuji Electric Co., Ltd. Semiconductor device
JP6492903B2 (ja) * 2015-04-08 2019-04-03 富士電機株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118230A (ja) * 2000-10-05 2002-04-19 Fuji Electric Co Ltd 半導体装置
US20130341718A1 (en) * 2012-06-26 2013-12-26 Fairchild Korea Semiconductor Ltd. Power semiconductor device
JP2015018832A (ja) * 2013-07-08 2015-01-29 ルネサスエレクトロニクス株式会社 半導体装置
JP2015170733A (ja) * 2014-03-07 2015-09-28 富士電機株式会社 半導体装置
JP2016046693A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置、電力制御装置および電子システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035952A (zh) * 2019-12-25 2021-06-25 三菱电机株式会社 半导体装置及集成电路
US20210202694A1 (en) * 2019-12-25 2021-07-01 Mitsubishi Electric Corporation Semiconductor device and integrated circuit
JP2021103731A (ja) * 2019-12-25 2021-07-15 三菱電機株式会社 半導体装置および集積回路
US11824085B2 (en) * 2019-12-25 2023-11-21 Mitsubishi Electric Corporation Semiconductor device comprising a MOSFET having a RESURF region and higher peak impurity concentration diffusion region in the RESURF region
JP7407590B2 (ja) 2019-12-25 2024-01-04 三菱電機株式会社 半導体装置および集積回路
US11552166B2 (en) * 2020-01-17 2023-01-10 Mitsubishi Electric Corporation Semiconductor device comprising resurf isolation structure surrounding an outer periphery of a high side circuit region and isolating the high side circuit region from a low side circuit region
US11711010B2 (en) 2020-08-27 2023-07-25 Mitsubishi Electric Corporation Drive circuit and inverter device
US11916116B2 (en) 2022-01-25 2024-02-27 Sanken Electric Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JPWO2018051412A1 (ja) 2019-02-28
DE112016007213T5 (de) 2019-06-06
CN109690770B (zh) 2023-04-04
JP6590076B2 (ja) 2019-10-16
US20200203474A1 (en) 2020-06-25
DE112016007213B4 (de) 2022-05-25
US11063116B2 (en) 2021-07-13
CN109690770A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP4927340B2 (ja) 半導体装置
US8629513B2 (en) HV interconnection solution using floating conductors
WO2018051412A1 (ja) 半導体装置
KR100683102B1 (ko) 반도체 장치
WO2015001926A1 (ja) 半導体装置
US20080135940A1 (en) Semiconductor Device
JP6841161B2 (ja) 半導体装置
JP5798024B2 (ja) 半導体装置
JP4961686B2 (ja) 半導体装置
JP6828588B2 (ja) 半導体装置
JP6296535B2 (ja) ダイオードおよびそれを含む信号出力回路
JP2010034188A (ja) 半導体装置
TWI631707B (zh) 半導體裝置
US9012979B2 (en) Semiconductor device having an isolation region separating a lateral double diffused metal oxide semiconductor (LDMOS) from a high voltage circuit region
JP2016174128A (ja) 半導体装置および半導体装置の試験方法
JP6503202B2 (ja) 半導体装置
JP7160167B2 (ja) 半導体装置
JP2019145646A (ja) 半導体装置
JP7001050B2 (ja) 半導体装置
JP6099985B2 (ja) 半導体装置
JP2008205053A (ja) 半導体装置
JP2005109400A (ja) 半導体集積回路
JP6230455B2 (ja) 半導体装置
TWI472035B (zh) 場元件
KR102082643B1 (ko) 반도체 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538990

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916197

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16916197

Country of ref document: EP

Kind code of ref document: A1