WO2018047559A1 - 無段変速機及び無段変速機の制御方法 - Google Patents

無段変速機及び無段変速機の制御方法 Download PDF

Info

Publication number
WO2018047559A1
WO2018047559A1 PCT/JP2017/028585 JP2017028585W WO2018047559A1 WO 2018047559 A1 WO2018047559 A1 WO 2018047559A1 JP 2017028585 W JP2017028585 W JP 2017028585W WO 2018047559 A1 WO2018047559 A1 WO 2018047559A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil pump
oil chamber
continuously variable
pulley
Prior art date
Application number
PCT/JP2017/028585
Other languages
English (en)
French (fr)
Inventor
耕平 豊原
智普 中野
啓 寺井
良平 豊田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/331,735 priority Critical patent/US10458546B2/en
Priority to CN201780051637.5A priority patent/CN109642659B/zh
Publication of WO2018047559A1 publication Critical patent/WO2018047559A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/30Hydraulic or pneumatic motors or related fluid control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • the present invention relates to a continuously variable transmission and a control method for a continuously variable transmission.
  • JP2000-193074A discloses a technology of a belt type continuously variable transmission.
  • the belt is held by supplying the secondary pressure to the oil chamber of the secondary pulley with the first electric oil pump for holding the belt.
  • a second electric oil pump for shifting is provided in an oil passage that communicates the oil chambers of the primary pulley and the secondary pulley, and the second electric oil pump is used to shift the oil in and out of the oil chamber of the primary pulley.
  • the present invention has been made in view of such problems, and provides a continuously variable transmission and a control method for the continuously variable transmission that can improve the occurrence of continuous rattling noise in an oil pump used for shifting. With the goal.
  • a continuously variable transmission includes a primary pulley having a primary oil chamber, a secondary pulley having a secondary oil chamber, a belt wound around the primary pulley and the secondary pulley, and the secondary pulley
  • a continuously variable transmission comprising: a variator that supplies secondary pressure to an oil chamber; and an oil pump that is provided in an oil passage that communicates the primary oil chamber and the secondary oil chamber and that controls the oil in and out of the primary oil chamber.
  • the oil pump is a gear pump and controls the oil pump so as to achieve a target gear ratio of the variator, while a differential pressure between the primary oil chamber and the secondary oil chamber is preset. If the oil pump is in an unstable region, the oil pump is controlled so as to suppress the forward / reverse rotation of the oil pump. Further comprising a control unit that performs correction control for controlling the pump.
  • a variator having a primary pulley having a primary oil chamber, a secondary pulley having a secondary oil chamber, a belt wound around the primary pulley and the secondary pulley, and the primary oil
  • an oil pump provided in an oil passage communicating with the secondary oil chamber, a secondary pressure is supplied to the secondary oil chamber, and the oil pump allows oil to enter and exit from the primary oil chamber.
  • a control method for a continuously variable transmission to be controlled wherein when the oil pump is a gear pump, the oil pump is controlled to achieve a target gear ratio of the variator, the primary oil chamber, If the differential pressure between the secondary oil chambers is within a preset unstable region, A control method for a CVT including a possible to perform correction control for controlling the oil pump so as to suppress the occurrence of forward and reverse rotation of the oil pump is provided.
  • FIG. 1 is a schematic configuration diagram illustrating a main part of the transmission.
  • FIG. 2 is a flowchart illustrating an example of control performed by the controller.
  • FIG. 3 is a diagram schematically illustrating control performed by the controller.
  • FIG. 4A is a first diagram illustrating an unstable region according to a piston pressure receiving area.
  • FIG. 4B is a second diagram illustrating an unstable region according to the piston pressure receiving area.
  • FIG. 5 is an explanatory diagram of a mechanism for generating continuous rattling noise.
  • FIG. 1 is a schematic configuration diagram showing a main part of the transmission 1.
  • the transmission 1 is a belt-type continuously variable transmission and is mounted on a vehicle together with an engine ENG that constitutes a drive source of the vehicle.
  • the transmission 1 receives rotation from the engine ENG.
  • the output rotation of the engine ENG is input to the transmission 1 via a torque converter TC having a lockup clutch LU.
  • the transmission 1 outputs the input rotation at a rotation corresponding to the gear ratio.
  • the transmission 1 has a variator 2, a hydraulic circuit 3, and a controller 10.
  • the variator 2 is a belt type continuously variable transmission mechanism having a primary pulley 21, a secondary pulley 22, and a belt 23 wound around the primary pulley 21 and the secondary pulley 22.
  • the variator 2 changes the winding width of the belt 23 by changing the groove widths of the primary pulley 21 and the secondary pulley 22, respectively, and performs speed change.
  • the primary is referred to as PRI and the secondary is referred to as SEC.
  • the PRI pulley 21 includes a fixed pulley 21a, a movable pulley 21b, and a PRI oil chamber 21c.
  • oil is supplied to the PRI oil chamber 21c.
  • the movable pulley 21b is moved by the oil in the PRI oil chamber 21c, the groove width of the PRI pulley 21 is changed.
  • PRI pressure Ppri the hydraulic pressure in the PRI oil chamber 21c is referred to as PRI pressure Ppri.
  • the SEC pulley 22 has a fixed pulley 22a, a movable pulley 22b, and an SEC oil chamber 22c.
  • oil is supplied to the SEC oil chamber 22c.
  • the movable pulley 22b is moved by the oil in the SEC oil chamber 22c, the groove width of the SEC pulley 22 is changed.
  • the hydraulic pressure in the SEC oil chamber 22c is referred to as SEC pressure Psec.
  • the belt 23 has a V-shaped sheave surface formed by a fixed pulley 21 a and a movable pulley 21 b of the PRI pulley 21, and a V-shape formed by a fixed pulley 22 a and a movable pulley 22 b of the SEC pulley 22. Wound around the sheave surface.
  • the belt 23 is held by the belt clamping force generated by the SEC pressure Psec.
  • the hydraulic circuit 3 includes a first oil pump 31, a second oil pump 32, a line pressure adjustment valve 33, a solenoid 34, a first oil passage 35, and a second oil passage 36.
  • the first oil pump 31 is composed of a mechanical oil pump that is driven by the power of the engine ENG.
  • the oil discharged from the first oil pump 31 is supplied to the first oil passage 35.
  • the first oil passage 35 is provided with a line pressure adjustment valve 33.
  • the line pressure adjusting valve 33 adjusts the pressure of the oil discharged from the first oil pump 31 to the line pressure PL.
  • the line pressure adjustment valve 33 operates according to the pilot pressure generated by the solenoid 34.
  • the solenoid 34 generates a pilot pressure corresponding to the command value of the line pressure PL and supplies the pilot pressure to the line pressure adjustment valve 33.
  • the first oil passage 35 connects the first oil pump 31 and the second oil passage 36.
  • the second oil passage 36 communicates the PRI oil chamber 21c and the SEC oil chamber 22c.
  • a second oil pump 32 is provided in the second oil passage 36, and the first oil passage 35 is connected to a portion of the second oil passage 36 closer to the SEC oil chamber 22 c than the second oil pump 32. For this reason, the line pressure PL is supplied to the SEC oil chamber 22c as the SEC pressure Psec.
  • the second oil pump 32 is an electric oil pump that can rotate in the forward and reverse directions.
  • the second oil pump 32 is a gear pump.
  • the second oil pump 32 is provided with a motor 321 and a driver 322.
  • the motor 321 drives the second oil pump 32 in the forward and reverse directions. Specifically, a servo motor is used for the motor 321. Electric power is supplied to the motor 321 from the battery BATT via the driver 322. The driver 322 controls driving of the motor 321. Specifically, a servo amplifier is used for the driver 322.
  • the first oil pump 31 supplies the SEC pressure Psec to the SEC oil chamber 22c, and the second oil pump 32 controls the oil in and out of the PRI oil chamber 21c.
  • the first oil pump 31 is used for holding the belt 23, and the second oil pump 32 is used for shifting.
  • the speed is changed by moving the oil from one of the PRI oil chamber 21c and the SEC oil chamber 22c to the other by the second oil pump 32.
  • a differential pressure ⁇ P is generated between the PRI oil chamber 21c and the SEC oil chamber 22c even if the pulley thrust on the PRI pulley 21 side and the pulley thrust on the SEC pulley 22 side are balanced.
  • the controller 10 is an electronic control device and constitutes a control unit in the present embodiment.
  • the controller 10 includes a rotation sensor 41 for detecting the rotation speed on the input side of the variator 2, a rotation sensor 42 for detecting the rotation speed on the output side of the variator 2, and a pressure sensor 43 for detecting the PRI pressure Ppri.
  • a signal from the pressure sensor 44 for detecting the SEC pressure Psec is input.
  • the rotation sensor 41 detects the rotation speed Npri of the PRI pulley 21.
  • the rotation sensor 42 detects the rotation speed Nsec of the SEC pulley 22.
  • the controller 10 can detect the vehicle speed VSP based on the input from the rotation sensor 42.
  • signals from the accelerator opening sensor 45, the selection range detection switch 46, the engine rotation sensor 47, and the oil temperature sensor 48 are input to the controller 10.
  • the accelerator opening sensor 45 detects an accelerator opening APO that represents the amount of operation of the accelerator pedal.
  • the accelerator opening APO indicates an acceleration request by the driver.
  • the selection range detection switch 46 detects the range RNG selected by the shift lever.
  • the engine rotation sensor 47 detects the rotation speed Ne of the engine ENG.
  • the oil temperature sensor 48 detects the oil temperature T OIL of the transmission 1.
  • the oil temperature T OIL is the temperature of oil used as hydraulic oil in the variator 2.
  • the controller 10 also receives a signal from a current sensor 50 that detects the current flowing between the motor 321 and the battery BATT, a signal from the rotation sensor 51 that detects the rotation speed of the motor 321, and the like. Both signals from the current sensor 50 and the rotation sensor 51 are input to the controller 10 via the driver 322.
  • the controller 10 is further connected to an engine controller 11 for controlling the engine ENG so as to communicate with each other.
  • the engine torque information Te is further input from the engine controller 11 to the controller 10.
  • the controller 10 calculates the input torque Tin of the variator 2 based on the input engine torque information Te.
  • the input torque Tin can be calculated, for example, by multiplying the engine torque obtained from the engine torque information Te by a gear ratio set between the engine ENG and the variator 2.
  • a signal from the accelerator opening sensor 45 and a signal from the engine rotation sensor 47 may be input to the controller 10 via the engine controller 11, for example.
  • the controller 10 generates a shift control signal based on the input signal, and outputs the generated shift control signal to the hydraulic circuit 3.
  • the line pressure adjustment valve 33 and the second oil pump 32 are controlled based on the shift control signal from the controller 10.
  • the gear ratio Ratio of the variator 2 is controlled to a gear ratio corresponding to the gear shift control signal, that is, the target gear ratio.
  • the target gear ratio is set in advance in the shift map.
  • the controller 10 When controlling the gear ratio Ratio, the controller 10 specifically controls the second oil pump 32 so as to achieve the target gear ratio.
  • the second oil pump 32 is controlled by controlling the motor 321, and the motor 321 is controlled by controlling the driver 322.
  • the line pressure adjusting valve 33 is controlled by controlling the solenoid 34.
  • FIG. 5 is an explanatory diagram of a mechanism for generating continuous rattling noise.
  • the second oil pump 32 is a gear pump, and the backlash BL is provided between the gear teeth of the gears that mesh with each other. For this reason, in the transmission 1, there are concerns about the following.
  • the speed ratio Ratio is maintained at the target speed ratio in a state where the differential pressure ⁇ P is generated between the PRI oil chamber 21c and the SEC oil chamber 22c. There is.
  • the pressure of the oil discharged from the first oil pump 31 is adjusted to the line pressure PL by the line pressure adjustment valve 33, and then the SEC pressure Psec as the SEC via the second oil passage 36. It is supplied to the oil chamber 22c. Due to the structure of the hydraulic circuit 3 as described above, the hydraulic pressure fluctuation VR generated in the first oil pump 31 becomes the fluctuation of the SEC pressure Psec, which is particularly likely to act on the second oil pump 32.
  • the second oil pump 32 is driven at a high speed such as several thousand rpm.
  • the second oil pump 32 is driven as follows in order to maintain the gear ratio Ratio constant when the piston pressure receiving area is the same between the PRI pulley 21 and the SEC pulley 22.
  • the second oil pump 32 is driven so as to supplement oil leaking from the one of the SEC oil chamber 22c and the PRI oil chamber 21c toward the other through the second oil pump 32.
  • the second oil pump 32 is driven at a very low speed, such as 100 rpm.
  • the drive torque of the second oil pump 32 can be small.
  • the magnitude of the driving torque is small, there is a concern that the second oil pump 32 may generate continuous rattling noise as a result of the forward / reverse rotation of the second oil pump 32 due to fluctuations in the SEC pressure.
  • the controller 10 performs the control described below.
  • FIG. 2 is a flowchart illustrating an example of the control performed by the controller 10.
  • step S1 the controller 10 determines whether or not the gear ratio Ratio is in a steady state. Whether or not the gear ratio Ratio is in a steady state can be determined by, for example, the rate of change of the gear ratio Ratio, in other words, whether or not the gear speed is equal to or less than a predetermined change rate set in advance.
  • the predetermined change rate is a value for defining that the transmission ratio Ratio is in a steady state, and can be set in advance. If a negative determination is made in step S1, the process is temporarily terminated. If the determination is affirmative in step S1, the process proceeds to step S2.
  • step S2 the controller 10 determines whether or not the differential pressure ⁇ P between the SEC oil chamber 22c and the PRI oil chamber 21c is within the unstable region R.
  • the unstable region R is a region where forward / reverse rotation of the second oil pump 32 occurs due to fluctuations in the SEC pressure, and is set in advance.
  • the unstable region R is set as a region in which the magnitude of the differential pressure ⁇ P is smaller than a predetermined differential pressure when the transmission ratio Ratio is maintained constant.
  • the predetermined differential pressure is a value for defining a differential pressure ⁇ P at which forward / reverse rotation of the second oil pump 32 occurs due to fluctuations in the SEC pressure, and can be set in advance by experiments or the like.
  • the controller 10 can determine whether or not the differential pressure ⁇ P is in the unstable region R by determining whether or not the magnitude of the differential pressure ⁇ P is smaller than a predetermined differential pressure. .
  • step S2 If the determination in step S2 is negative, the process is temporarily terminated. When a negative determination is made in step S2, the controller 10 can perform control to maintain the speed ratio Ratio in a steady state. If the determination is affirmative in step S2, the process proceeds to step S3.
  • step S3 the controller 10 performs correction control of the second oil pump 32.
  • the correction control is control for controlling the second oil pump 32 so as to suppress the occurrence of forward / reverse rotation of the second oil pump 32.
  • FIG. 3 is a diagram schematically illustrating the control performed by the controller 10.
  • the control performed by the controller 10 is schematically shown on the shift map of the variator 2 together with the unstable region R.
  • the variator 2 is shifted based on the shift map.
  • the operating point of the variator 2 is indicated according to the vehicle speed VSP and the rotational speed Ne.
  • the rotational speed Npri may be used instead of the rotational speed Ne.
  • the transmission ratio Ratio is indicated by the slope of a line connecting the operating point of the variator 2 and the zero point of the transmission map.
  • the shift of the variator 2 can be performed between the lowest line obtained by maximizing the transmission ratio Ratio and the highest line obtained by minimizing the transmission ratio Ratio.
  • the correction control is a control for maintaining the gear ratio Ratio at a value offset from the target gear ratio so that the differential pressure ⁇ P is outside the unstable region R.
  • the operating point of the variator 2 moves from the operating point M1 in the unstable region R to the operating point M2 outside the unstable region R.
  • step S4 the controller 10 determines whether or not the variator 2 is instructed to shift. Whether or not the variator 2 is instructed to shift can be determined, for example, based on whether or not the target gear ratio has been changed.
  • step S4 If the determination is negative in step S4, the process returns to step S3. Thus, the correction control is continued until the shift instruction is issued. If the determination is affirmative in step S4, the process proceeds to step S5.
  • step S5 the controller 10 ends the correction control. That is, when the gear ratio Ratio is no longer in a steady state, the correction control is terminated. After step S5, the process is temporarily terminated.
  • step S ⁇ b> 3 the controller 10 controls the second oil pump 32 as correction control to increase or decrease the speed ratio Ratio with respect to the target speed ratio so that the differential pressure ⁇ P does not remain in the unstable region R. May be performed.
  • the operating point of the variator 2 is the upper side when the speed ratio Ratio is increased around the unstable region R, that is, when it is changed to the Low side.
  • the gear ratio Ratio is decreased, that is, when the gear ratio Ratio is changed to the High side, it moves downward. As a result, the operating point does not remain in the unstable region R continuously.
  • 4A and 4B are explanatory diagrams of the unstable region R corresponding to the piston pressure receiving area.
  • 4A and 4B show the gear ratio Ratio according to the hydraulic pressure ratio and the transmission torque ratio.
  • the gear ratio Ratio is 1.
  • the hydraulic pressure ratio is a value obtained by dividing the PRI pressure Ppri by the SEC pressure Psec.
  • the transmission torque ratio is a value obtained by dividing the transmission torque Tpri of the PRI pulley 21 by the transmission torque Tsec of the SEC pulley 22.
  • the unstable region R ′ is obtained by converting the unstable region R corresponding to the differential pressure ⁇ P into a region corresponding to the hydraulic pressure ratio.
  • FIG. 4A shows a case where the piston pressure receiving area is the same between the PRI pulley 21 and the SEC pulley 22.
  • the hydraulic pressure ratio is 1, the magnitude of the transmission torque ratio becomes 1, and the pulley thrust is balanced between the PRI pulley 21 and the SEC pulley 22.
  • the gear ratio Ratio is in a steady state.
  • the hydraulic ratio is 1, the differential pressure ⁇ P is zero, and the hydraulic ratio is included in the unstable region R ′.
  • FIG. 4B shows the case where the SEC pulley 22 has a larger piston pressure receiving area than the PRI pulley 21.
  • the gear ratio Ratio is 1
  • the transmission torque ratio becomes 1 when the hydraulic ratio is greater than 1
  • the pulley thrust is balanced between the PRI pulley 21 and the SEC pulley 22.
  • the unstable region R ′ is the same as in the case of FIG. 4A. Therefore, in this case, the hydraulic pressure ratio is not included in the unstable region R ′ even if the gear ratio Ratio is in a steady state.
  • the transmission 1 is provided in the variator 2 to which the SEC pressure is supplied to the SEC oil chamber 22c, and the second oil passage 36 that connects the PRI oil chamber 21c and the SEC oil chamber 22c, and allows the oil to enter and exit from the PRI oil chamber 21c.
  • the second oil pump 32 is a gear pump.
  • the transmission 1 controls the second oil pump 32 so as to achieve the target gear ratio of the variator 2.
  • the differential pressure ⁇ P is within the preset unstable region R, the second oil pump 32.
  • the controller 10 further performs correction control for controlling the second oil pump 32 so as to suppress the occurrence of forward and reverse rotation.
  • the second oil pump 32 is corrected and controlled to suppress the occurrence of forward / reverse rotation.
  • the occurrence of continuous rattling noise can be improved.
  • the controller 10 performs control to maintain the transmission ratio Ratio at a value offset from the target transmission ratio so that the differential pressure ⁇ P is outside the unstable region R.
  • the unstable region R is a region where the forward and reverse rotation of the second oil pump 32 occurs due to the fluctuation of the SEC pressure.
  • the controller 10 may perform control for increasing or decreasing the speed ratio Ratio with respect to the target speed ratio so that the differential pressure ⁇ P does not remain in the unstable region R as correction control for the second oil pump 32. Good.
  • the case where the first oil pump 31 is a mechanical oil pump has been described.
  • an electric oil pump may be used as the first oil pump 31.
  • the line pressure adjusting valve 33 may be unnecessary.
  • the oil pressure fluctuation VR generated in the first oil pump 31 becomes the fluctuation of the SEC pressure Psec and acts on the second oil pump 32, so that it is possible to improve the generation of continuous rattling noise.
  • the line pressure PL is supplied as the SEC pressure Psec.
  • the SEC pressure Psec for example, a hydraulic pressure generated and adjusted from the line pressure PL by a pressure regulating valve may be supplied.
  • the oil pressure fluctuation VR generated in the first oil pump 31 becomes the fluctuation of the SEC pressure Psec and acts on the second oil pump 32, so that it is possible to improve the generation of continuous rattling noise.
  • control unit may be configured by a plurality of controllers, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

変速機は、SEC油室にSEC圧が供給されるバリエータと、PRI油室及びSEC油室を連通する第2油路に設けられ、PRI油室の油の出入りを制御する第2オイルポンプと、を備える。第2オイルポンプは、ギヤポンプで構成される。変速機は、バリエータの目標変速比を達成するように第2オイルポンプを制御する一方、差圧が不安定領域内にある場合に、第2オイルポンプの正逆回転の発生を抑制するように第2オイルポンプを制御する補正制御を行うコントローラをさらに備える。

Description

無段変速機及び無段変速機の制御方法
 本発明は、無段変速機及び無段変速機の制御方法に関する。
 JP2000-193074Aには、ベルト式無段変速機の技術が開示されている。特許文献1の技術では、ベルト保持用の第1電動オイルポンプでセカンダリプーリの油室にセカンダリ圧を供給することでベルトを保持する。また、変速用の第2電動オイルポンプをプライマリプーリ及びセカンダリプーリの油室を連通する油路に設け、第2電動オイルポンプでプライマリプーリの油室に油を出入りさせることで変速を行う。
 JP2000-193074Aが開示するような技術では、変速により目標変速比が達成されると、プライマリプーリ及びセカンダリプーリの油室間で差圧が発生した状態で、変速比が目標変速比に維持されることがある。
 その一方で、JP2000-193074Aの技術では、第1電動オイルポンプで発生する油圧変動が、第2電動オイルポンプに作用する。
 このため、上述の差圧が小さい状況下では、第2電動オイルポンプが油圧変動の影響を受けて正逆回転を繰り返す虞がある。結果、第2電動オイルポンプがギヤポンプで構成される場合においては、互いに噛合うギヤのギヤ歯同士の間にバックラッシが設けられる関係上、連続歯打ち音が発生する虞がある。
 本発明はこのような課題に鑑みてなされたもので、変速に用いられるオイルポンプで連続歯打ち音が発生することを改善可能な無段変速機及び無段変速機の制御方法を提供することを目的とする。
 本発明のある態様の無段変速機は、プライマリ油室を有するプライマリプーリと、セカンダリ油室を有するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられるベルトと、を有し、前記セカンダリ油室にセカンダリ圧が供給されるバリエータと、前記プライマリ油室及び前記セカンダリ油室を連通する油路に設けられ、前記プライマリ油室の油の出入りを制御するオイルポンプと、を備える無段変速機であって、前記オイルポンプはギヤポンプで構成され、前記バリエータの目標変速比を達成するように前記オイルポンプを制御する一方、前記プライマリ油室及び前記セカンダリ油室間の差圧が予め設定された不安定領域内にある場合には、前記オイルポンプの正逆回転の発生を抑制するように前記オイルポンプを制御する補正制御を行う制御部をさらに備える。
 本発明の別の態様によれば、プライマリ油室を有するプライマリプーリと、セカンダリ油室を有するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられるベルトと、を有するバリエータと、前記プライマリ油室及び前記セカンダリ油室を連通する油路に設けられるオイルポンプと、を備える無段変速機で、前記セカンダリ油室にセカンダリ圧を供給し、前記オイルポンプにより前記プライマリ油室の油の出入りを制御する無段変速機の制御方法であって、前記オイルポンプがギヤポンプで構成される場合において、前記バリエータの目標変速比を達成するように前記オイルポンプを制御することと、前記プライマリ油室及び前記セカンダリ油室間の差圧が予め設定された不安定領域内にある場合には、前記オイルポンプの正逆回転の発生を抑制するように前記オイルポンプを制御する補正制御を行うことと、を含む無段変速機の制御方法が提供される。
図1は、変速機の要部を示す概略構成図である。 図2は、コントローラが行う制御の一例をフローチャートで示す図である。 図3は、コントローラが行う制御を模式的に説明する図である。 図4Aは、ピストン受圧面積に応じた不安定領域の説明図の第1図である。 図4Bは、ピストン受圧面積に応じた不安定領域の説明図の第2図である。 図5は、連続歯打ち音の発生メカニズムの説明図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、変速機1の要部を示す概略構成図である。変速機1は、ベルト式無段変速機であり、車両の駆動源を構成するエンジンENGとともに車両に搭載される。変速機1には、エンジンENGからの回転が入力される。エンジンENGの出力回転は、ロックアップクラッチLUを有するトルクコンバータTC等を介して、変速機1に入力される。変速機1は、入力回転を変速比に応じた回転で出力する。
 変速機1は、バリエータ2と、油圧回路3と、コントローラ10と、を有する。
 バリエータ2は、プライマリプーリ21と、セカンダリプーリ22と、プライマリプーリ21及びセカンダリプーリ22に巻き掛けられたベルト23と、を有するベルト式無段変速機構である。バリエータ2は、プライマリプーリ21とセカンダリプーリ22との溝幅をそれぞれ変更することで、ベルト23の巻掛け径を変更して変速を行う。以下では、プライマリをPRIと称し、セカンダリをSECと称す。
 PRIプーリ21は、固定プーリ21aと、可動プーリ21bと、PRI油室21cと、を有する。PRIプーリ21では、PRI油室21cに油が供給される。PRI油室21cの油により、可動プーリ21bが移動すると、PRIプーリ21の溝幅が変更される。以下では、PRI油室21cの油圧をPRI圧Ppriと称す。
 SECプーリ22は、固定プーリ22aと、可動プーリ22bと、SEC油室22cと、を有する。SECプーリ22では、SEC油室22cに油が供給される。SEC油室22cの油により、可動プーリ22bが移動すると、SECプーリ22の溝幅が変更される。以下では、SEC油室22cの油圧をSEC圧Psecと称す。
 ベルト23は、PRIプーリ21の固定プーリ21aと可動プーリ21bとにより形成されるV字形状をなすシーブ面と、SECプーリ22の固定プーリ22aと可動プーリ22bとにより形成されるV字形状をなすシーブ面に巻き掛けられる。ベルト23は、SEC圧Psecによって発生するベルト挟持力により保持される。
 油圧回路3は、第1オイルポンプ31と、第2オイルポンプ32と、ライン圧調整弁33と、ソレノイド34と、第1油路35と、第2油路36と、を有する。
 第1オイルポンプ31は、エンジンENGの動力で駆動する機械式のオイルポンプで構成される。第1オイルポンプ31が吐出する油は、第1油路35に供給される。第1油路35には、ライン圧調整弁33が設けられる。
 ライン圧調整弁33は、第1オイルポンプ31が吐出する油の圧力をライン圧PLに調整する。ライン圧調整弁33は、ソレノイド34が生成するパイロット圧に応じて動作する。ソレノイド34は、ライン圧PLの指令値に応じたパイロット圧を生成し、ライン圧調整弁33に供給する。
 第1油路35は、第1オイルポンプ31と第2油路36とを接続する。第2油路36は、PRI油室21cとSEC油室22cとを連通する。第2油路36には、第2オイルポンプ32が設けられ、第1油路35は、第2油路36のうち第2オイルポンプ32よりもSEC油室22c側の部分に接続される。このため、SEC油室22cには、ライン圧PLがSEC圧Psecとして供給される。
 第2オイルポンプ32は、電動式のオイルポンプであり、正転及び逆転方向に回転可能とされる。第2オイルポンプ32は、ギヤポンプで構成される。第2オイルポンプ32には、モータ321及びドライバ322が設けられる。
 モータ321は、第2オイルポンプ32を正転及び逆転方向に駆動する。モータ321には具体的には、サーボモータが用いられる。モータ321には、バッテリBATTからドライバ322を介して電力が供給される。ドライバ322は、モータ321の駆動を制御する。ドライバ322には具体的には、サーボアンプが用いられる。
 このように構成された油圧回路3では、第1オイルポンプ31がSEC油室22cにSEC圧Psecを供給し、第2オイルポンプ32がPRI油室21cの油の出入りを制御する。第1オイルポンプ31は、ベルト23の保持に用いられ、第2オイルポンプ32は、変速に用いられる。
 つまり、変速原理としては、第2オイルポンプ32によりPRI油室21c及びSEC油室22cの一方から他方に油を移動させることで、変速が行われる。但し、PRI油室21c及びSEC油室22c間では、PRIプーリ21側のプーリ推力とSECプーリ22側のプーリ推力とがバランスした状態でも、ピストン受圧面積の相違等により差圧ΔPが発生する。
 コントローラ10は電子制御装置であり、本実施形態における制御部を構成する。コントローラ10には、バリエータ2の入力側の回転速度を検出するための回転センサ41、バリエータ2の出力側の回転速度を検出するための回転センサ42、PRI圧Ppriを検出するための圧力センサ43、SEC圧Psecを検出するための圧力センサ44からの信号が入力される。回転センサ41は具体的には、PRIプーリ21の回転速度Npriを検出する。また、回転センサ42は具体的には、SECプーリ22の回転速度Nsecを検出する。コントローラ10は、回転センサ42からの入力に基づき車速VSPを検出できる。
 コントローラ10にはさらに、アクセル開度センサ45、選択レンジ検出スイッチ46、エンジン回転センサ47、油温センサ48からの信号が入力される。アクセル開度センサ45は、アクセルペダルの操作量を表すアクセル開度APOを検出する。アクセル開度APOは、運転者による加速要求を指標する。選択レンジ検出スイッチ46は、シフトレバーで選択されたレンジRNGを検出する。エンジン回転センサ47は、エンジンENGの回転速度Neを検出する。油温センサ48は、変速機1の油温TOILを検出する。油温TOILは、バリエータ2で作動油として用いられる油の温度である。
 コントローラ10にはこのほか、モータ321及びバッテリBATT間を流れる電流を検出する電流センサ50、モータ321の回転速度を検出する回転センサ51からの信号等も入力される。電流センサ50、回転センサ51からの信号はともに、ドライバ322を介してコントローラ10に入力される。
 コントローラ10はさらに、エンジンENGを制御するためのエンジンコントローラ11と相互通信可能に接続される。コントローラ10には、エンジンコントローラ11からエンジントルク情報Teがさらに入力される。コントローラ10は、入力されるエンジントルク情報Teに基づき、バリエータ2の入力トルクTinを算出する。入力トルクTinは例えば、エンジントルク情報Teから得られるエンジントルクにエンジンENG及びバリエータ2間に設定されたギヤ比を掛けることで算出することができる。アクセル開度センサ45からの信号、エンジン回転センサ47からの信号は例えば、エンジンコントローラ11を介してコントローラ10に入力されてもよい。
 コントローラ10は、入力される信号に基づき変速制御信号を生成し、生成した変速制御信号を油圧回路3に出力する。油圧回路3では、コントローラ10からの変速制御信号に基づき、ライン圧調整弁33、第2オイルポンプ32が制御される。これにより、バリエータ2の変速比Ratioが、変速制御信号に応じた変速比すなわち目標変速比に制御される。目標変速比は、変速マップで予め設定される。
 変速比Ratioを制御する際、コントローラ10は具体的には、目標変速比を達成するように第2オイルポンプ32を制御する。第2オイルポンプ32は、モータ321を制御することで制御され、モータ321はドライバ322を制御することで制御される。ライン圧調整弁33は、ソレノイド34を制御することで制御される。
 図5は、連続歯打ち音の発生メカニズムの説明図である。前述したように、第2オイルポンプ32はギヤポンプで構成され、互いに噛合うギヤのギヤ歯同士の間にはバックラッシBLが設けられる。このため、変速機1では、次のようなことが懸念される。
 ここで、変速機1では、変速により目標変速比が達成されると、PRI油室21c及びSEC油室22c間で差圧ΔPが発生した状態で変速比Ratioが目標変速比に維持されることがある。
 その一方で、変速機1では、第1オイルポンプ31で発生する油圧変動VRが、第2オイルポンプ32に作用する。
 このため、差圧ΔPが小さい状況下では、第2オイルポンプ32が油圧変動VRの影響を受けて正逆回転を繰り返す結果、第2オイルポンプ32で連続歯打ち音が発生することが懸念される。このことは、具体的には以下のように説明される。
 ここで、変速機1では、第1オイルポンプ31が吐出する油の圧力が、ライン圧調整弁33によってライン圧PLに調整された上で、SEC圧Psecとして第2油路36を介してSEC油室22cに供給される。そして、このような油圧回路3の構造上、第1オイルポンプ31で発生する油圧変動VRがSEC圧Psecの変動となって、第2オイルポンプ32に特に作用し易くなる。
 また、変速比Ratioを大きく変化させる場合、第2オイルポンプ32は、例えば数千rpmなど高回転で駆動される。その一方で、第2オイルポンプ32は、PRIプーリ21及びSECプーリ22間でピストン受圧面積が同等の場合において、変速比Ratioを一定に維持するために、次のように駆動される。
 すなわち、第2オイルポンプ32は、SEC油室22c及びPRI油室21cの一方から他方に向かって第2オイルポンプ32を介してリークする油を補填するように駆動される。リークする油を補填するにあたり、第2オイルポンプ32は、例えば100rpmなどごく低回転で駆動される。
 変速比Ratioを一定に維持する場合、第2オイルポンプ32の駆動トルクの大きさは、差圧ΔPに比例する。このため、上述のようにリークする油を補填するように第2オイルポンプ32が駆動される場合、差圧ΔPは小さくなる。
 差圧ΔPが小さい場合には、第2オイルポンプ32の駆動トルクの大きさも小さくて済む。ところが、駆動トルクの大きさが小さいと、SEC圧の変動によって、第2オイルポンプ32の正逆回転が発生する結果、第2オイルポンプ32で連続歯打ち音が発生することが懸念される。
 このような事情に鑑み、本実施形態ではコントローラ10が次に説明する制御を行う。
 図2は、コントローラ10が行う制御の一例をフローチャートで示す図である。
 ステップS1で、コントローラ10は、変速比Ratioが定常状態であるか否かを判定する。変速比Ratioが定常状態であるか否かは例えば、変速比Ratioの変化率、換言すれば変速速度が予め設定された所定変化率以下であるか否かで判定することができる。所定変化率は、変速比Ratioが定常状態であることを規定するための値であり、予め設定することができる。ステップS1で否定判定であれば、処理は一旦終了する。ステップS1で肯定判定であれば、処理はステップS2に進む。
 ステップS2で、コントローラ10は、SEC油室22c及びPRI油室21c間の差圧ΔPが不安定領域R内にあるか否かを判定する。不安定領域Rは、SEC圧の変動によって第2オイルポンプ32の正逆回転が発生する領域であり、予め設定されている。
 不安定領域Rは具体的には、変速比Ratioを一定に維持するにあたり、差圧ΔPの大きさが所定差圧よりも小さい領域として設定される。所定差圧は、SEC圧の変動によって第2オイルポンプ32の正逆回転が発生する差圧ΔPを規定するための値であり、実験等により予め設定することができる。
 このため、コントローラ10は例えば、差圧ΔPの大きさが所定差圧よりも小さいか否かを判定することで、差圧ΔPが不安定領域R内にあるか否かを判定することができる。
 ステップS2で否定判定であれば、処理は一旦終了する。ステップS2で否定判定の場合、コントローラ10は、変速比Ratioを定常状態に維持する制御を行うことができる。ステップS2で肯定判定であれば、処理はステップS3に進む。
 ステップS3で、コントローラ10は、第2オイルポンプ32の補正制御を行う。補正制御は、第2オイルポンプ32の正逆回転の発生を抑制するように第2オイルポンプ32を制御する制御である。
 図3は、コントローラ10が行う制御を模式的に説明する図である。図3では、コントローラ10が行う制御を不安定領域Rとともにバリエータ2の変速マップ上に模式的に示す。バリエータ2は、変速マップに基づき変速される。変速マップでは、バリエータ2の動作点が、車速VSPと回転速度Neとに応じて示される。回転速度Neの代わりに回転速度Npriが用いられてもよい。
 変速マップにおいて、変速比Ratioは、バリエータ2の動作点と変速マップの零点を結ぶ線の傾きで示される。バリエータ2の変速は、変速比Ratioを最大にして得られる最Low線と、変速比Ratioを最小にして得られる最High線との間で行うことができる。
 補正制御は具体的には、差圧ΔPが不安定領域R外になるように、変速比Ratioを目標変速比からオフセットした値に維持する制御とされる。この場合、図3に示すように、バリエータ2の動作点は、不安定領域R内の動作点M1から不安定領域R外の動作点M2に移動する。
 図2に戻り、ステップS4で、コントローラ10は、バリエータ2が変速指示されたか否かを判定する。バリエータ2が変速指示されたか否かは例えば、目標変速比が変更されたか否かで判定することができる。
 ステップS4で否定判定であれば、処理はステップS3に戻る。これにより、変速指示があるまでの間、補正制御が継続される。ステップS4で肯定判定であれば、処理はステップS5に進む。
 ステップS5で、コントローラ10は、補正制御を終了する。つまり、変速比Ratioが定常状態でなくなった場合には、補正制御は終了される。ステップS5の後には、処理は一旦終了する。
 ステップS3で、コントローラ10は、第2オイルポンプ32の補正制御として、差圧ΔPが不安定領域R内に継続して留まらないように、変速比Ratioを目標変速比に対して増減変動させる制御を行ってもよい。
 この場合、図3に矢印で模式的に示すように、バリエータ2の動作点は、不安定領域Rを中心として、変速比Ratioが増加される場合、つまりLow側に変更される場合には上側に移動し、変速比Ratioが減少される場合、つまりHigh側に変更される場合には下側に移動する。結果、動作点が不安定領域R内に継続して留まらなくなる。
 図4A、図4Bは、ピストン受圧面積に応じた不安定領域Rの説明図である。図4A、図4Bでは、油圧比及び伝達トルク比に応じて変速比Ratioを示す。また、変速比Ratioは1の場合を示す。油圧比は、PRI圧PpriをSEC圧Psecで割って得られる値である。伝達トルク比は、PRIプーリ21の伝達トルクTpriをSECプーリ22の伝達トルクTsecで割って得られる値である。不安定領域R´は、差圧ΔPに応じた不安定領域Rを油圧比に応じた領域に変換したものである。
 図4Aは、PRIプーリ21及びSECプーリ22間で、ピストン受圧面積が同等である場合を示す。この場合、油圧比が1のときに伝達トルク比の大きさが1になり、PRIプーリ21及びSECプーリ22間でプーリ推力がバランスする。プーリ推力がバランスする場合に、変速比Ratioは定常状態になる。油圧比が1の場合、差圧ΔPはゼロとなり、油圧比は不安定領域R´に含まれる。
 図4Bは、SECプーリ22のほうがPRIプーリ21よりも、ピストン受圧面積が大きい場合を示す。この場合、変速比Ratioが1の状態では、油圧比が1よりも大きいときに伝達トルク比の大きさが1になり、PRIプーリ21及びSECプーリ22間でプーリ推力がバランスする。その一方で、不安定領域R´は、図4Aの場合と同様である。このためこの場合には、変速比Ratioが定常状態になっても、油圧比は不安定領域R´に含まれない。
 しかしながら、変速比Ratioが1とは異なる状態で、油圧比が不安定領域R´に含まれる場合がある。このため、PRIプーリ21及びSECプーリ22間で、ピストン受圧面積が異なる場合においても、図2に示すフローチャートの処理を同様に行えばよい。
 次に、本実施形態の主な作用効果について説明する。
 変速機1は、SEC油室22cにSEC圧が供給されるバリエータ2と、PRI油室21c及びSEC油室22cを連通する第2油路36に設けられ、PRI油室21cの油の出入りを制御する第2オイルポンプ32と、を備える。第2オイルポンプ32は、ギヤポンプで構成される。変速機1は、バリエータ2の目標変速比を達成するように第2オイルポンプ32を制御する一方、差圧ΔPが予め設定された不安定領域R内にある場合には、第2オイルポンプ32の正逆回転の発生を抑制するように第2オイルポンプ32を制御する補正制御を行うコントローラ10をさらに備える。
 このような構成によれば、差圧ΔPが不安定領域R内にある場合には、正逆回転の発生を抑制するように第2オイルポンプ32を補正制御するので、第2オイルポンプ32で連続歯打ち音が発生することを改善できる。
 変速機1では、コントローラ10は、補正制御として、差圧ΔPが不安定領域R外になるように、変速比Ratioを目標変速比からオフセットした値に維持する制御を行う。
 このような構成によれば、差圧ΔPを不安定領域R外にすることで、第2オイルポンプ32で連続歯打ち音が発生することを改善できる。
 変速機1では、不安定領域Rは、SEC圧の変動によって第2オイルポンプ32の正逆回転が発生する領域とされる。
 このような構成によれば、第2オイルポンプ32で連続歯打ち音が発生することを適切に改善できる。
 コントローラ10は、第2オイルポンプ32の補正制御として、差圧ΔPが不安定領域R内に継続して留まらないように、変速比Ratioを目標変速比に対して増減変動させる制御を行ってもよい。
 この場合でも、差圧ΔPが不安定領域R内に継続して留まらなくなるので、第2オイルポンプ32で連続歯打ち音が発生することを改善できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上述した実施形態では、第1オイルポンプ31が機械式のオイルポンプである場合について説明した。しかしながら、第1オイルポンプ31には例えば、電動式のオイルポンプが用いられてもよい。またこの場合には、第1オイルポンプ31でSEC圧Psecを制御することができるので、ライン圧調整弁33は不要とされてもよい。この場合でも、第1オイルポンプ31で発生する油圧変動VRがSEC圧Psecの変動となって、第2オイルポンプ32に作用することで、連続歯打ち音が発生することを改善できる。
 上述した実施形態では、SEC圧Psecとしてライン圧PLが供給される場合について説明した。しかしながら、SEC圧Psecとしては例えば、調圧弁によってライン圧PLから生成及び調整される油圧が供給されてもよい。この場合でも、第1オイルポンプ31で発生する油圧変動VRがSEC圧Psecの変動となって、第2オイルポンプ32に作用することで、連続歯打ち音が発生することを改善できる。
 上述した実施形態では、コントローラ10が制御部を構成する場合について説明した。しかしながら、制御部は例えば、複数のコントローラで構成されてもよい。
 本願は2016年9月8日に日本国特許庁に出願された特願2016-175277に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  プライマリ油室を有するプライマリプーリと、セカンダリ油室を有するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられるベルトと、を有し、前記セカンダリ油室にセカンダリ圧が供給されるバリエータと、
     前記プライマリ油室及び前記セカンダリ油室を連通する油路に設けられ、前記プライマリ油室の油の出入りを制御するオイルポンプと、
    を備える無段変速機であって、
     前記オイルポンプはギヤポンプで構成され、
     前記バリエータの目標変速比を達成するように前記オイルポンプを制御する一方、
     前記プライマリ油室及び前記セカンダリ油室の差圧が予め設定された不安定領域内にある場合には、前記オイルポンプの正逆回転の発生を抑制するように前記オイルポンプを制御する補正制御を行う制御部をさらに備える、
    無段変速機。
  2.  請求項1に記載の無段変速機であって、
     前記制御部は、前記補正制御として、前記差圧が前記不安定領域外になるように、前記バリエータの変速比を前記目標変速比からオフセットした値に維持する制御を行う、
    無段変速機。
  3.  請求項1に記載の無段変速機であって、
     前記制御部は、前記補正制御として、前記差圧が前記不安定領域内に継続して留まらないように、前記バリエータの変速比を前記目標変速比に対して増減変動させる制御を行う、
    無段変速機。
  4.  請求項1から3いずれか1項に記載の無段変速機であって、
     前記不安定領域は、前記セカンダリ圧の変動によって前記オイルポンプの正逆回転が発生する領域である、
    無段変速機。
  5.  プライマリ油室を有するプライマリプーリと、セカンダリ油室を有するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに巻き掛けられるベルトと、を有するバリエータと、前記プライマリ油室及び前記セカンダリ油室を連通する油路に設けられるオイルポンプと、を備える無段変速機で、前記セカンダリ油室にセカンダリ圧を供給し、前記オイルポンプにより前記プライマリ油室の油の出入りを制御する無段変速機の制御方法であって、
     前記オイルポンプがギヤポンプで構成される場合において、
      前記バリエータの目標変速比を達成するように前記オイルポンプを制御することと、
      前記プライマリ油室及び前記セカンダリ油室間の差圧が予め設定された不安定領域内にある場合には、前記オイルポンプの正逆回転の発生を抑制するように前記オイルポンプを制御する補正制御を行うことと、
    を含む無段変速機の制御方法。
PCT/JP2017/028585 2016-09-08 2017-08-07 無段変速機及び無段変速機の制御方法 WO2018047559A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/331,735 US10458546B2 (en) 2016-09-08 2017-08-07 Continuously variable transmission and control method of continuously variable transmission
CN201780051637.5A CN109642659B (zh) 2016-09-08 2017-08-07 无级变速器以及无级变速器的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016175277A JP6805657B2 (ja) 2016-09-08 2016-09-08 無段変速機及び無段変速機の制御方法
JP2016-175277 2016-09-08

Publications (1)

Publication Number Publication Date
WO2018047559A1 true WO2018047559A1 (ja) 2018-03-15

Family

ID=61562018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028585 WO2018047559A1 (ja) 2016-09-08 2017-08-07 無段変速機及び無段変速機の制御方法

Country Status (4)

Country Link
US (1) US10458546B2 (ja)
JP (1) JP6805657B2 (ja)
CN (1) CN109642659B (ja)
WO (1) WO2018047559A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10527164B2 (en) * 2016-11-24 2020-01-07 Nissan Motor Co., Ltd. Method for controlling continuously variable transmission and continuously variable transmission system
US10982757B2 (en) * 2018-07-17 2021-04-20 GM Global Technology Operations LLC Hydraulic control system for a continuously variable transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165293A (ja) * 1999-12-06 2001-06-19 Fuji Heavy Ind Ltd ベルト式無段変速機の変速制御装置
JP2002349666A (ja) * 2001-05-30 2002-12-04 Okamura Corp 変速機付きトルクコンバータ
JP2007327543A (ja) * 2006-06-07 2007-12-20 Fuji Heavy Ind Ltd 車両制御装置および車両制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066978B2 (ja) * 1983-05-20 1994-01-26 トヨタ自動車株式会社 車両用無段変速機の制御装置
DE19609785A1 (de) * 1996-03-13 1997-09-18 Bosch Gmbh Robert Hydrauliknotsteuerung mit Vorschaltventilen für ein stufenloses Umschlingungsgetriebe
DE19859245A1 (de) * 1998-12-22 2000-07-06 Bosch Gmbh Robert Hydrauliksteuerung für ein stufenlos veränderliches Getriebe
JP3498900B2 (ja) * 1998-12-25 2004-02-23 日産自動車株式会社 ベルト式無段変速機の制御装置
DE19920378C2 (de) * 1999-05-04 2002-11-07 Zahnradfabrik Friedrichshafen Automatisch gesteuertes Getriebe
JP4277882B2 (ja) * 2006-07-10 2009-06-10 トヨタ自動車株式会社 無段変速機の変速制御装置
DE102006035264A1 (de) * 2006-07-29 2008-01-31 Piv Drives Gmbh Hydraulisch gesteuertes Kegelscheibenumschlingungsgetriebe
WO2008101458A2 (de) * 2007-02-21 2008-08-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrauliksystem
WO2011111169A1 (ja) * 2010-03-09 2011-09-15 トヨタ自動車株式会社 駆動力制御装置
JP5230703B2 (ja) * 2010-09-03 2013-07-10 ジヤトコ株式会社 エンジン自動停止車両及びその制御方法
BR112013020911A2 (pt) * 2011-02-24 2016-10-04 Honda Motor Co Ltd aparelho para controlar uma transmissão continuamente variável
CN102691650B (zh) * 2011-03-22 2015-07-01 日立汽车系统株式会社 电动油泵的控制装置和控制方法
JP5740293B2 (ja) * 2011-12-08 2015-06-24 ジヤトコ株式会社 車両制御装置および車両の制御方法
CN104968976B (zh) * 2013-02-06 2017-08-08 本田技研工业株式会社 自动变速器的液压供应装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165293A (ja) * 1999-12-06 2001-06-19 Fuji Heavy Ind Ltd ベルト式無段変速機の変速制御装置
JP2002349666A (ja) * 2001-05-30 2002-12-04 Okamura Corp 変速機付きトルクコンバータ
JP2007327543A (ja) * 2006-06-07 2007-12-20 Fuji Heavy Ind Ltd 車両制御装置および車両制御方法

Also Published As

Publication number Publication date
US20190203834A1 (en) 2019-07-04
CN109642659B (zh) 2020-06-19
CN109642659A (zh) 2019-04-16
US10458546B2 (en) 2019-10-29
JP6805657B2 (ja) 2020-12-23
JP2018040432A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
KR101682712B1 (ko) 벨트식 무단 변속기 및 그 변속 제어 방법
KR101362103B1 (ko) 무단 변속기의 제어 장치
JP4762875B2 (ja) ベルト式無段変速機の変速制御装置
JP4755970B2 (ja) ベルト式無段変速機の変速制御装置
KR100512223B1 (ko) 벨트식 무단 변속기
WO2017154632A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP2006292077A (ja) ベルト式無段変速機の変速制御装置
WO2018043052A1 (ja) 無段変速機の制御方法及び制御装置
WO2018047559A1 (ja) 無段変速機及び無段変速機の制御方法
JP2006090474A (ja) ベルト式無段変速機
KR101584475B1 (ko) 무단 변속기 및 그 유압 제어 방법
JP6673483B2 (ja) 無段変速機、及び、その制御方法
EP3273104A1 (en) Transmission control device and transmission control method
CN108779847B (zh) 无级变速器的控制装置及无级变速器的控制方法
JP4124625B2 (ja) 無段変速機の制御装置
JP2004084786A (ja) 無段変速機におけるライン圧制御装置
CN109964066B (zh) 无级变速器的控制方法以及无级变速器系统
JP6799580B2 (ja) 無段変速機の制御装置及び無段変速機の制御方法
WO2019102881A1 (ja) 自動変速機の制御方法および制御装置
JP3896754B2 (ja) 無段変速機の変速制御装置
JP2001248717A (ja) 無段変速機のライン圧制御装置
JP6990968B2 (ja) 無段変速機及び無段変速機の制御方法
JP2006105174A (ja) 無段変速機の制御装置
JP2009138871A (ja) 無段変速機の制御装置
JP2008075800A (ja) ベルト式無段変速機のライン圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848503

Country of ref document: EP

Kind code of ref document: A1