WO2011111169A1 - 駆動力制御装置 - Google Patents

駆動力制御装置 Download PDF

Info

Publication number
WO2011111169A1
WO2011111169A1 PCT/JP2010/053888 JP2010053888W WO2011111169A1 WO 2011111169 A1 WO2011111169 A1 WO 2011111169A1 JP 2010053888 W JP2010053888 W JP 2010053888W WO 2011111169 A1 WO2011111169 A1 WO 2011111169A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
hydraulic pressure
automatic transmission
engagement
vehicle
Prior art date
Application number
PCT/JP2010/053888
Other languages
English (en)
French (fr)
Inventor
松永 仁
高波 陽二
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/053888 priority Critical patent/WO2011111169A1/ja
Priority to DE112010005368T priority patent/DE112010005368T5/de
Priority to JP2010541642A priority patent/JP5177234B2/ja
Priority to CN201080002017.0A priority patent/CN102257297B/zh
Priority to US13/001,889 priority patent/US8522644B2/en
Publication of WO2011111169A1 publication Critical patent/WO2011111169A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0028Supply of control fluid; Pumps therefore using a single pump driven by different power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19149Gearing with fluid drive
    • Y10T74/19158Gearing with fluid drive with one or more controllers for gearing, fluid drive, or clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19149Gearing with fluid drive
    • Y10T74/19158Gearing with fluid drive with one or more controllers for gearing, fluid drive, or clutch
    • Y10T74/19163Gearing with fluid drive with one or more controllers for gearing, fluid drive, or clutch with interrelated controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control
    • Y10T74/20024Fluid actuator

Definitions

  • the present invention relates to a driving force control device for a vehicle such as an automobile, and more particularly to a technical field of a driving force control device that performs driving force control when the vehicle is traveling inertially.
  • the present invention has been made in view of the above-described problems, for example, and an object of the present invention is to propose a driving force control device capable of appropriately performing shift control even when the vehicle is in a free-run state.
  • the driving force control device of the present invention is mounted on a vehicle, and transmits power between the engine and the automatic transmission according to the degree of engagement with the engine and the automatic transmission.
  • Engaging means that can adjust the degree of the engine, an oil pump that generates hydraulic pressure by rotation of the drive shaft of the engine, the engine is stopped, and power between the engine and the automatic transmission is stopped by the engaging means.
  • the first hydraulic pressure which is the hydraulic pressure of the automatic transmission, is necessary for performing the shift when the automatic transmission is shifted in a free-run state in which the vehicle travels with the transmission disconnected.
  • the driving force control device is mounted on a vehicle such as an automobile.
  • the engagement means such as a clutch can adjust the degree of power transmission between the engine and the automatic transmission according to the degree of engagement.
  • Oil pump generates hydraulic pressure by rotation of engine drive shaft.
  • the oil pump is a trochoidal oil pump including an inner rotor having trochoidal external teeth and an outer rotor having internal teeth engaging with the external teeth.
  • the inner rotor is driven to rotate with the rotation of the drive shaft of the engine, the inner teeth and the outer teeth are engaged with each other, so that the outer rotor also rotates, and hydraulic pressure is generated due to the rotation of both rotors. .
  • control means comprising a memory, a processor, etc.
  • the control means is capable of automatic shifting in a free-run state where the vehicle travels with the engine stopped and the transmission of power between the engine and the automatic transmission cut off by the engaging means.
  • the first hydraulic pressure and the first hydraulic pressure are set on condition that the first hydraulic pressure, which is the hydraulic pressure of the automatic transmission, does not reach the second hydraulic pressure, which is the hydraulic pressure required to perform the shift.
  • the degree of engagement of the engagement means is controlled according to the hydraulic pressure difference between the two hydraulic pressures (that is, the shortage of hydraulic pressure).
  • controlling the degree of engagement of the engagement means according to the hydraulic pressure difference between the first hydraulic pressure and the second hydraulic pressure means that the hydraulic pressure corresponding to the hydraulic pressure difference between the first hydraulic pressure and the second hydraulic pressure is the oil pressure. This means that the degree of engagement of the engagement means is controlled so that the rotational speed of the drive shaft of the engine that can be generated by the pump can be obtained.
  • the shift of the automatic transmission in the free-run state is, for example, when the vehicle speed naturally increases or decreases, so that the running state of the vehicle changes from a predetermined upshift point or a predetermined downshift according to the automatic transmission. It means a shift performed when a point is straddled.
  • the engine speed is essentially zero.
  • the transmission of power between the engine and the automatic transmission that is, the drive wheel side
  • it is desirable that the automatic transmission is not shifted from the viewpoint of reducing reactive energy.
  • a relatively high hydraulic pressure and a relatively large amount of hydraulic oil flow are required to perform the shift of the automatic transmission.
  • the oil pump that generates the hydraulic pressure by the rotation of the drive shaft of the engine cannot generate the hydraulic pressure during the free-run state. If the hydraulic oil is generated by the electric oil pump during the shift of the automatic transmission in the free-run state, the required capacity of the electric oil pump becomes relatively large, and the electric power for driving the electric oil pump Since the amount becomes relatively large, there is a risk that the fuel consumption may deteriorate due to the power balance, or the manufacturing cost may increase.
  • the first hydraulic pressure which is the hydraulic pressure of the automatic transmission
  • the degree of engagement of the engagement means is controlled in accordance with the hydraulic pressure difference between the first hydraulic pressure and the second hydraulic pressure on the condition that the second hydraulic pressure, which is the first hydraulic pressure, is not reached.
  • the driving force control apparatus of the present invention it is possible to appropriately perform shift control even when the vehicle is in a free-run state.
  • the control means when the control means controls the degree of engagement according to the hydraulic pressure difference, the control means further determines the degree of engagement according to the engine speed. to correct.
  • control means controls the degree of engagement of the engagement means according to the hydraulic pressure difference (that is, the shortage of hydraulic pressure)
  • the control means further performs the engagement according to the engine speed. Correct the degree.
  • the engagement force (that is, the degree of engagement) of the arithmetic engagement means and the actually required engagement force are different due to, for example, variations in products, deterioration with time, etc. It turns out that there is.
  • feedback control is performed with the difference between the current engine speed (ie, measured value) and the engine control target speed (ie, theoretical value) as a deviation, and the engaging force of the engaging means Is corrected.
  • the shift control can be performed more appropriately.
  • the driving force control apparatus further includes a torque converter disposed between the engine and the engagement means and having a lock-up clutch, and the control means further includes When shifting to the run state, the lock-up clutch is engaged on the condition that the rotational speed of the engine becomes zero.
  • the torque converter having the lock-up clutch is disposed between the engine and the engaging means. That is, the input shaft of the torque converter is connected to the drive shaft of the engine, and the output shaft of the torque converter is connected to one end of the engaging means.
  • the torque converter includes a lock-up clutch, a pump impeller, a turbine liner, a stator, and the like.
  • the lockup clutch includes a torque converter cover and a lockup piston. The input shaft of the torque converter is connected to the pump impeller via the torque converter cover, and the output shaft of the torque converter is connected to the turbine liner and the lockup piston.
  • the oil pump is connected to the pump impeller of the torque converter via a connecting member, for example. Therefore, the oil pump generates hydraulic pressure by the rotation of the torque converter cover of the torque converter that is rotated due to the rotation of the drive shaft of the engine.
  • the lockup clutch is engaged by the control means on condition that the engine speed becomes zero when the vehicle shifts to the free-run state. For this reason, generation
  • the rotation speed of the oil pump can reach the target rotation speed.
  • control means further controls the automatic transmission so that a shift frequency is reduced on condition that the vehicle is in the free-run state.
  • FIG. 1 is a block diagram showing the configuration of the drive control apparatus according to the present embodiment.
  • a solid line indicates a mechanical connection (linkage)
  • a dotted line indicates a signal
  • a one-dot chain line indicates a hydraulic pressure supply
  • a two-dot chain line indicates an electrical connection.
  • FIG. 1 for convenience of explanation, only the portion directly related to the present embodiment is shown, and the other members are not shown.
  • a driving force control device 100 is mounted on a vehicle 1, and includes an engine (engine) 11, an automatic transmission 12, a mechanical oil pump 13, an electric oil pump 14, a power storage device (power source) 15, and an ECU ( (Electronic Control Unit) 20.
  • the engine 11 is a main power source for driving the vehicle, and is constituted by an internal combustion engine such as a gasoline engine or a diesel engine.
  • the engine 11 includes at least one of an alternator, an electronic throttle, a variable valve mechanism, and a variable compression ratio mechanism that can change the characteristics of the engine 11.
  • the axle 121 of the automatic transmission 12 is selectively connected to the drive shaft of the engine 11 via the input clutch 122.
  • the input clutch 122 as an example of the “engagement means” according to the present invention is a hydraulic friction engagement device that is an engagement element often used in a known vehicle transmission, and is overlapped with each other.
  • this is a wet multi-plate engagement device in which a plurality of friction plates are pressed by a hydraulic actuator.
  • a mechanical oil pump 13 includes, for example, an inner rotor having trochoidal external teeth connected to a drive shaft of the engine 11 and internal teeth that engage with the external teeth. It is a trochoid type oil pump provided with an outer rotor which has. When the inner rotor is driven to rotate in accordance with the rotation of the drive shaft of the engine 11, the inner teeth and the outer teeth are engaged with each other, so that the outer rotor also rotates, and hydraulic pressure is generated due to the rotation of both rotors. To do.
  • the electric oil pump 14 is driven by electric power supplied from a power storage device 15 such as a lead storage battery, and supplies hydraulic pressure to the automatic transmission 12 mainly when the vehicle 1 is free running.
  • the electric oil pump 14 is an auxiliary oil pump, and its capacity is relatively small.
  • the driving force control device 100 may include a stock pressure device that can hold the hydraulic pressure of the hydraulic oil in the automatic transmission 12 for a certain period, instead of the electric oil pump 14.
  • the ECU 20 causes the vehicle 1 to travel in a state where the engine 10 is stopped and the transmission of power between the engine 10 and the automatic transmission 12 is cut off by the input clutch 122.
  • the first hydraulic pressure that is the hydraulic pressure of the automatic transmission 12 does not reach the second hydraulic pressure that is the hydraulic pressure required to perform the shift.
  • the degree of engagement of the input clutch 122 is controlled according to the hydraulic pressure difference between the first hydraulic pressure and the second hydraulic pressure.
  • the driving force control device 100 includes one or more rotation sensors (not shown) capable of grasping the rotation state of the automatic transmission 12 such as the vehicle speed of the vehicle 1, the rotation speed of the engine 11, and the rotation speed of the mechanical oil pump. Further).
  • a part of the functions of the ECU 20 for various electronic controls of the vehicle 1 is used as a part of the driving force control device 100.
  • step S101 the ECU 20 determines whether or not the vehicle 1 is in a free-run state.
  • step S101: No the ECU 20 executes the process of step S101 again.
  • step S101 when it is determined that the vehicle 1 is in the free-run state (step S101: Yes), the ECU 20 determines the automatic transmission based on, for example, the shift line related to the automatic transmission 12, the current vehicle speed of the vehicle 1, and the like. It is determined whether or not 12 shifts are necessary (step S102). When it is determined that shifting of the automatic transmission 12 is not required (step S102: No), the ECU 20 executes the process of step S101.
  • step S102 determines that shifting of the automatic transmission 12 is necessary.
  • the ECU 20 determines that the current hydraulic oil pressure or supply flow rate in the automatic transmission 12 causes the automatic transmission 12 to shift. It is determined whether or not the hydraulic oil pressure or supply flow rate required for the operation is lower (that is, whether or not the hydraulic pressure or supply flow rate is insufficient) (step S103).
  • step S103 the ECU 20 executes a process of step S108 described later.
  • step S103 When it is determined that the hydraulic pressure or supply flow rate of the current hydraulic oil in the automatic transmission 12 is less than the hydraulic pressure or supply flow rate of the hydraulic oil necessary for performing the shift of the automatic transmission 12 (step S103: Yes).
  • the ECU 20 calculates the rotational speed of the mechanical oil pump 13 necessary to make up for the shortage of hydraulic pressure and supply flow rate (step S104).
  • the maximum discharge flow rate of the electric oil pump 14 is Q1
  • the necessary flow rate required to generate the hydraulic pressure required for shifting the automatic transmission 12 is Q2.
  • the discharge flow rate Q3 is obtained as Q2-Q1.
  • the required rotational speed of the mechanical oil pump 13 is obtained from the relationship between the rotational speed of the mechanical oil pump 13 and the discharge flow rate as shown in FIG.
  • FIG. 3 is a characteristic diagram showing an example of the relationship between the rotational speed of the mechanical oil pump and the discharge flow rate.
  • step S104 the ECU 20 further determines the engagement force of the input clutch 122 from the calculated rotational speed of the mechanical oil pump 13 and the current vehicle speed of the vehicle 1.
  • the engagement force of the input clutch 122 necessary to achieve the calculated rotational speed of the mechanical oil pump 13 is:
  • the final engagement force of the input clutch 122 is determined by calculating the loss torque with respect to the target rotation speed of the engine 11 (that is, the calculated rotation speed of the mechanical oil pump 13).
  • the torque loss mainly includes mechanical loss due to rotation of the engine 11, pump loss generated in the four steps of suction, compression, expansion and exhaust, mechanical loss of the mechanical oil pump 13 directly connected to the engine 11, And inertia torque due to rotation change can be considered. Therefore, if these losses are factored into the process of obtaining the engagement force of the input clutch 122 using a control model or a map, an accurate (ie, final) engagement force of the input clutch 122 can be obtained.
  • step S104 the ECU 20 determines whether the negative torque when the input clutch 122 is engaged is large (step S105). When it is determined that the negative torque is not large (step S105: No), the ECU 20 executes a process of step S107 described later.
  • the ECU 20 controls the characteristics of the engine 11 by controlling at least one of an alternator, an electronic throttle, a variable valve mechanism, and a variable compression ratio mechanism, for example. To change. Specifically, for example, when the input clutch 122 is engaged, the pumping loss is reduced by reducing the compression ratio, changing the lift amount or opening / closing timing of the intake / exhaust valve, or increasing the throttle opening. To do. The ECU 20 again determines the engagement force of the input clutch 122 according to the changed characteristics of the engine 11.
  • the ECU 20 engages the input clutch 122 based on the determined engagement force of the input clutch 122 (step S107), and then starts shifting the automatic transmission 12 (step S108).
  • the engaging force of the input clutch 122 in arithmetic may be different from the actually required engaging force due to, for example, product variations and deterioration over time. Therefore, in this embodiment, feedback control is performed with the difference between the current rotational speed of the engine 11 and the rotational speed of the control target of the engine 11 as a deviation, and the engaging force of the input clutch 122 is corrected.
  • learning control for reflecting the corrected engagement force obtained by the feedback control in the next control may be incorporated. Thereby, it is possible to control the input clutch 122 appropriately from the beginning of the control.
  • step S109 determines whether or not the shift of the automatic transmission 12 has been completed.
  • step S109: No the ECU 20 executes the process of step S109 again.
  • step S109 when it is determined that the shift of the automatic transmission 12 has ended (step S109: Yes), the ECU 20 releases the input clutch 122 (step S110). Note that the ECU 20 restores the characteristics of the engine 11 only when the characteristics of the engine 11 are changed in the process of step S106.
  • the mechanical oil pump 13 can be operated to the minimum necessary by immediately releasing the input clutch 122. As a result, it is possible to reduce the load on the input clutch 122 and reduce a sense of discomfort.
  • FIGS. 4 and 5 A second embodiment of the driving force control apparatus of the present invention will be described with reference to FIGS.
  • the configuration is the same as that of the first embodiment except that a torque converter having a lockup is arranged between the engine and the automatic transmission. Therefore, in the second embodiment, the description overlapping with that of the first embodiment is omitted, and the same reference numerals are given to the common portions in the drawings, and only FIGS. 4 and 5 are basically different only. The description will be given with reference.
  • FIG. 4 is a conceptual diagram showing a configuration of a torque converter that constitutes a part of the driving force control apparatus according to the present embodiment.
  • the torque converter 16 includes a lockup clutch, a pump impeller 162, a turbine liner 163, and a stator 165.
  • the lockup clutch includes a torque converter cover 161 and a lockup piston 164.
  • the input shaft of the torque converter 16 has one end connected to the drive shaft of the engine 11 and the other end connected to the pump impeller 162 via the torque converter cover 161.
  • the output shaft of the torque converter 16 has one end connected to the input clutch 122 and the other end connected to the turbine liner 163 and the lockup piston 164.
  • the stator 165 has, for example, a one-way clutch (not shown) and has a torque amplification function. Engagement and release of the lockup clutch is controlled by the hydraulic pressure of oil supplied to the torque converter 16. The rotational speed of the output shaft of the torque converter 16 matches the turbine rotational speed.
  • the mechanical oil pump 13 is connected to the pump impeller 162 of the torque converter 16 via a connecting member.
  • the inner rotor is driven to rotate along with the rotation of the pump impeller 162 of the torque converter 16, the inner teeth and the outer teeth are engaged, so the outer rotor also rotates, and hydraulic pressure is generated due to the rotation of both rotors. Is done.
  • step S201 the ECU 20 determines whether or not the vehicle 1 is in a free-run state.
  • step S201: No the ECU 20 executes the process of step S201 again.
  • step S201 when it is determined that the vehicle 1 is in the free-run state (step S201: Yes), the ECU 20 determines whether or not the lockup clutch is engaged (step S202). When it is determined that the lockup clutch is not engaged (step S202: No), the ECU 20 determines whether or not the input clutch 122 is completely released (step S203).
  • step S203: No When it is determined that the input clutch 122 has not been completely released (step S203: No), the ECU 20 executes the process of step S201. On the other hand, when it is determined that the input clutch 122 is completely released (step S203: Yes), the ECU 20 determines whether or not the rotational speed of the engine 11 is zero (step S204).
  • step S204: No When it is determined that the rotation speed of the engine 11 is not zero (step S204: No), the ECU 20 executes the process of step S204 again. On the other hand, when it is determined that the rotation speed of the engine 11 is zero (step S204: Yes), the ECU 20 engages the lockup clutch (step S205).
  • the lockup clutch is engaged before the input clutch 122 is started to be engaged in step S107 in FIG. 2, the lockup clutch is engaged when the input clutch 122 is engaged. Compared with the case where it does, the period until the shifting of the automatic transmission 12 is completed can be shortened. In addition, since the oil flow in the torque converter 16 can be shut off by engaging the lockup clutch, the effect of reducing the consumption flow rate can be expected.
  • step S202 when it is determined that the lockup clutch is engaged (step S202: Yes), the ECU 20 determines whether or not the input clutch 122 is released (step S206). When it is determined that the input clutch 122 has been released (step S206: Yes), the ECU 20 releases the lockup clutch (step S207).
  • step S208 determines whether or not the vehicle 1 has returned to the free-run state.
  • step S208: Yes the ECU 20 executes the process of step S207.
  • step S208: No the ECU 20 executes the process of step S201.
  • the rotational speed of the engine 11 is released by releasing the lock-up clutch.
  • the acceleration changes due to the release of the input clutch 122 can be suppressed.
  • the uncomfortable feeling can be reduced, which is very advantageous in practice.
  • a third embodiment of the driving force control apparatus of the present invention will be described with reference to FIG.
  • the third embodiment is the same as the configuration of the first embodiment except that the reference relating to the shift of the automatic transmission is different. Accordingly, the description of the third embodiment that is the same as that of the first embodiment is omitted, and common portions in the drawing are denoted by the same reference numerals, and only fundamentally different points are described with reference to FIG. explain.
  • the shift line in the free-run state of the vehicle 1 is made different from that in the normal time (that is, in the non-free-run state). Thereby, deterioration of controllability can be prevented.
  • the upshift and the downshift are performed at a higher vehicle speed than usual, it is possible to avoid the case where the shortage of hydraulic pressure or the like cannot be compensated even if the input clutch 122 is completely engaged.
  • FIG. 6 shows an example of the relationship between the transmission vehicle speed and the engine speed when the input clutch is engaged.
  • FIG. 7 is an example of a coast down shift pattern when the automatic transmission is a stepped automatic transmission.
  • the automatic transmission 12 is a stepped automatic transmission, as shown in FIG. 7, in the free-run state, the number of shifts is reduced by skipping the shift stage within a range that does not cause a sense of incongruity. . Thereby, consumption of the hydraulic fluid flow rate can be suppressed.
  • FIG. 8 is an example of a coast down shift pattern when the automatic transmission is a continuously variable transmission.
  • the number of shifts is reduced by fixing the gear ratio within a certain vehicle speed range, as shown in FIG.

Abstract

 駆動力制御装置(100)は、車両(1)に搭載され、エンジン(11)と、自動変速機(12)と、係合の度合いに応じて、エンジン及び自動変速機間の動力の伝達の程度を調整可能な係合手段(122)と、エンジンの駆動軸の回転により油圧を発生させるオイルポンプ(13)と、エンジンが停止し、且つ係合手段によりエンジン及び自動変速機間の動力の伝達が切断された状態で車両が走行するフリーラン状態において、自動変速機の変速が行われる際に、自動変速機の油圧である第1油圧が変速を実施するために必要とされる油圧である第2油圧に達しないことを条件に、第1油圧及び第2油圧の油圧差に応じて前記係合の度合いを制御する制御手段(20)とを備える。

Description

駆動力制御装置
 本発明は、例えば自動車等の車両の駆動力制御装置に関し、特に、車両が慣性走行している際の駆動力制御を行う駆動力制御装置の技術分野に関する。
 この種の装置として、エンジンと、該エンジンの出力軸と同期回転する主オイルポンプを有する自動変速機と、エンジン自動停止中に自動変速機の作動油圧を保持する補助オイルポンプとを備える装置が提案されている(特許文献1参照)。ここでは特に、エンジン自動停止中に、自動変速機の作動油圧が所定値未満に低下した場合には、自動変速機をニュートラル状態に切り替えてからエンジンを自動再始動し、エンジン回転数を所定回転数まで上昇させた後に、エンジンの駆動力が駆動輪に伝達可能な状態に自動変速機を切り換える技術が提案されている。
特開2004-003425号公報
 車両の走行中にエンジンを自動停止させた場合、エンジンの再始動時の応答性を考慮して、自動変速機の変速制御を行うことが望ましい。しかしながら、上述の背景技術では、自動変速機の作動油圧が不足する可能性があるという技術的問題点がある。
 本発明は、例えば上記問題点に鑑みてなされたものであり、車両がフリーラン状態であっても適切に変速制御を行うことができる駆動力制御装置を提案することを課題とする。
 本発明の駆動力制御装置は、上記課題を解決するために、車両に搭載され、エンジンと、自動変速機と、係合の度合いに応じて、前記エンジン及び前記自動変速機間の動力の伝達の程度を調整可能な係合手段と、前記エンジンの駆動軸の回転により油圧を発生させるオイルポンプと、前記エンジンが停止し、且つ前記係合手段により前記エンジン及び前記自動変速機間の動力の伝達が切断された状態で前記車両が走行するフリーラン状態において、前記自動変速機の変速が行われる際に、前記自動変速機の油圧である第1油圧が前記変速を実施するために必要とされる油圧である第2油圧に達しないことを条件に、前記第1油圧及び前記第2油圧の油圧差に応じて前記係合の度合いを制御する制御手段とを備える。
 本発明の駆動力制御装置によれば、当該駆動力制御装置は、例えば自動車等の車両に搭載されている。例えばクラッチ等である係合手段は、その係合の程度に応じて、エンジン及び自動変速機間の動力の伝達の程度を調整可能である。
 オイルポンプは、エンジンの駆動軸の回転により油圧を発生させる。具体的には例えば、オイルポンプは、トロコイド型の外歯を有するインナロータと、該外歯と係合する内歯を有するアウタロータとを備えるトロコイド式のオイルポンプである。そして、エンジンの駆動軸の回転に伴ってインナロータが回転駆動されると、内歯と外歯とが係合しているので、アウタロータも回転し、両ロータの回転に起因して油圧が発生する。
 例えばメモリ、プロセッサ等を備えてなる制御手段は、エンジンが停止し、且つ係合手段によりエンジン及び自動変速機間の動力の伝達が切断された状態で車両が走行するフリーラン状態において、自動変速機の変速が行われる際に、自動変速機の油圧である第1油圧が前記変速を実施するために必要とされる油圧である第2油圧に達しないことを条件に、第1油圧及び第2油圧の油圧差(即ち、油圧の不足分)に応じて、係合手段の係合の度合いを制御する。
 ここで、「第1油圧及び第2油圧の油圧差に応じて、係合手段の係合の度合いを制御する」とは、第1油圧及び第2油圧の油圧差に対応する油圧を、オイルポンプで発生させることができるエンジンの駆動軸の回転数を得られるように、係合手段の係合の度合いを制御することを意味する。
 尚、フリーラン状態における自動変速機の変速とは、例えば、車両の車速が自然に増加又は低下したことにより、車両の走行状態が、自動変速機に係る所定のアップ変速点又は所定のダウン変速点を跨いだ場合に行われる変速を意味する。
 本願発明者の研究によれば、以下の事項が判明している。即ち、フリーラン状態では、エンジンの回転数は原則ゼロとなる。この場合、エンジンと自動変速機(即ち、駆動輪側)とは、係合手段により動力の伝達が切断されるため、無効エネルギー低減の観点からは、自動変速機の変速は実施されないことが望ましい。しかしながら、エンジンの再始動時を考慮すると、エンジンの停止時には低変速比に変速しておくことが望ましい。尚、自動変速機の変速の実施には、比較的高い油圧と比較的多い作動油流量が必要である。
 他方で、自動変速機の変速が実施されない場合には、フリーラン状態からの再加速時にギヤ比が合わず駆動力が不足したり、フリーラン状態からの復帰と同時に自動変速機の変速が実施されるため駆動力発生の遅れが生じたりする等のドライバビリティ上の問題が生じる可能性がある。
 上述の如く、フリーラン状態ではエンジンの回転数がゼロであるため、エンジンの駆動軸の回転により油圧を発生させるオイルポンプは、フリーラン状態中に油圧を発生させることができない。仮に、フリーラン状態における自動変速機の変速の際に、電動オイルポンプにより油圧を発生させようとすると、電動オイルポンプの必要容量が比較的大きくなってしまい、電動オイルポンプを駆動するための電力量が比較的大きくなるため電力収支の関係から燃費が悪化したり、製造コストが増加したりするおそれがある。
 しかるに本発明では、上述の如く、制御手段により、フリーラン状態において、自動変速機の変速が行われる際に、自動変速機の油圧である第1油圧が前記変速を実施するために必要とされる油圧である第2油圧に達しないことを条件に、第1油圧及び第2油圧の油圧差に応じて、係合手段の係合の度合いが制御される。
 このため、フリーラン状態であっても、自動変速機の変速が行われる際には、機械式オイルポンプにより変速に必要な油圧が発生されるので、ドライバビリティの悪化を抑制しつつ、燃費の悪化や製造コストの増加を抑制することができる。従って、本発明の駆動力制御装置によれば、車両がフリーラン状態であっても適切に変速制御を行うことができる。
 本発明の駆動力制御装置の一態様では、前記制御手段は、前記油圧差に応じて前記係合の度合いを制御する際に、更に、前記エンジンの回転数に応じて前記係合の度合いを補正する。
 この態様によれば、制御手段は、油圧差(即ち、油圧の不足分)に応じて係合手段の係合の度合いを制御する際に、更に、エンジンの回転数に応じて該係合の度合いを補正する。
 本願発明者の研究によれば、例えば製品のばらつき、径時劣化等により算術上の係合手段の係合力(即ち、係合の度合い)と、実際に必要な係合力とが異なる可能性があることが判明している。
 そこで、本発明では、エンジンの現在の回転数(即ち、実測値)と、エンジンの制御目標の回転数(即ち、理論値)との差を偏差としてフィードバック制御を行い、係合手段の係合力を補正している。これにより、より適切に変速制御を行うことができる。
 本発明の駆動力制御装置の他の態様では、前記エンジンと前記係合手段との間に配置され、ロックアップクラッチを有するトルクコンバータを更に備え、前記制御手段は、更に、前記車両が前記フリーラン状態へ移行する際に、前記エンジンの回転数がゼロとなったことを条件に、前記ロックアップクラッチを係合させる。
 この態様によれば、ロックアップクラッチを有するトルクコンバータが、エンジンと係合手段との間に配置されている。即ち、トルクコンバータの入力軸は、エンジンの駆動軸に連結されており、トルクコンバータの出力軸は、係合手段の一端に連結されている。
 ここで、トルクコンバータは、ロックアップクラッチ、ポンプインペラ、タービンライナ及びステータ等を備えて構成されている。ロックアップクラッチは、トルクコンバータカバー及びロックアップピストンを備えて構成されている。そして、トルクコンバータの入力軸は、トルクコンバータカバーを介してポンプインペラに接続されており、トルクコンバータの出力軸は、タービンライナ及びロックアップピストンに接続されている。
 この態様では、オイルポンプは、例えば、連結部材を介してトルクコンバータのポンプインペラに接続されている。従って、オイルポンプは、エンジンの駆動軸の回転に起因して回転されるトルクコンバータのトルクコンバータカバーの回転により油圧を発生させる。
 本願発明者の研究によれば、車両の速度によっては、係合手段を完全に係合させたとしても、トルクコンバータにおけるすべりに起因して、オイルポンプの回転数を目標回転数に到達させることができない可能性があることが判明している。
 しかるに本発明では、制御手段により、車両がフリーラン状態へ移行する際に、エンジンの回転数がゼロとなったことを条件に、ロックアップクラッチが係合される。このため、トルクコンバータにおけるすべりの発生を防止することができる。この結果、この態様によれば、オイルポンプの回転数を目標回転数に到達させることができる。
 本発明の駆動力制御装置の他の態様では、前記制御手段は、更に、前記車両が前記フリーラン状態であることを条件に、変速頻度が低下するように前記自動変速機を制御する。
 この態様によれば、自動変速機の変速頻度が低減されるので、自動変速機における作動油流量の消費を抑制することができ(即ち、車両のフリーラン状態中に、オイルポンプが作動される機会を抑制することができ)、実用上非常に有利である。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
第1実施形態に係る駆動制御装置が搭載される車両の構成を示すブロック図である。 第1実施形態に係る駆動力制御装置が搭載される車両の主に走行中に、ECUが実行する入力クラッチの係合処理を示すフローチャートである。 機械式オイルポンプの回転数と吐出流量との関係の一例を示す特性図である。 第2実施形態に係る駆動力制御装置の一部を構成するトルクコンバータの構成を示す概念図である。 第2実施形態に係る駆動力制御装置が搭載される車両の主に走行中に、ECUが実行するロックアップクラッチの係合処理を示すフローチャートである。 変速車速と、入力クラッチ係合時のエンジンの回転数との関係の一例である。 自動変速機が、有段自動変速機である場合のコーストダウン変速パターンの一例である。 自動変速機が無段変速機である場合のコーストダウン変速パターンの一例である。
 以下、本発明に係る駆動力制御装置の実施形態について、図面に基づいて説明する。
 <第1実施形態>
 先ず、本発明に係る駆動力制御装置の第1実施形態について、図1乃至図3を参照して説明する。
 本実施形態に係る駆動力制御装置の構成について、図1を参照して説明する。図1は、本実施形態に係る駆動制御装置の構成を示すブロック図である。図1において、実線は機械的な接続(連結)を示しており、点線は信号を示しており、一点鎖線は油圧の供給を示しており、二点鎖線は電気的な接続を示している。尚、図1では、説明の便宜上、本実施形態に直接関係のある部分のみ図示しており、他の部材については図示を省略している。
 図1において、駆動力制御装置100は、車両1に搭載され、エンジン(発動機)11、自動変速機12、機械式オイルポンプ13、電動式オイルポンプ14、蓄電装置(電源)15及びECU(Electronic Control Unit)20を備えて構成されている。
 エンジン11は、車両の走行用の主動力源であり、例えばガソリンエンジンやディーゼルエンジン等の内燃機関によって構成される。ここで、エンジン11は、該エンジン11の特性を変更可能な、オルタネータ、電子スロットル、可変バルブ機構及び可変圧縮比機構の少なくとも一つを備えて構成されている。
 自動変速機12の車軸121は、入力クラッチ122を介して選択的に、エンジン11の駆動軸に連結される。ここで、本発明に係る「係合手段」の一例としての、入力クラッチ122は、公知の車両用変速機においてよく用いられる係合要素である油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型係合装置である。
 本発明に係る「オイルポンプ」の一例としての、機械式オイルポンプ13は、例えば、エンジン11の駆動軸に接続されたトロコイド型の外歯を有するインナロータと、該外歯と係合する内歯を有するアウタロータとを備えるトロコイド式のオイルポンプである。そして、エンジン11の駆動軸の回転に伴ってインナロータが回転駆動されると、内歯と外歯とが係合しているので、アウタロータも回転し、両ロータの回転に起因して油圧が発生する。
 電動式オイルポンプ14は、例えば鉛蓄電池等の蓄電装置15から供給される電力により駆動され、主に車両1のフリーラン時に、自動変速機12に油圧を供給する。ここで、電動式オイルポンプ14は、補助的なオイルポンプであり、その容量は比較的小さい。尚、駆動力制御装置100は、電動式オイルポンプ14に代えて、自動変速機12における作動油の油圧を一定期間保持可能な畜圧装置を備えていてもよい。
 本発明に係る「制御手段」の一例としての、ECU20は、エンジン10が停止し、且つ入力クラッチ122によりエンジン10及び自動変速機12間の動力の伝達が切断された状態で車両1が走行するフリーラン状態において、自動変速機12の変速が行われる際に、自動変速機12の油圧である第1油圧が変速を実施するために必要とされる油圧である第2油圧に達しないことを条件に、第1油圧及び第2油圧の油圧差に応じて、入力クラッチ122の係合の度合いを制御する。
 尚、駆動力制御装置100は、車両1の車速等の自動変速機12の内部の回転状態、エンジン11の回転数、機械式オイルポンプの回転数を把握可能な一以上の回転センサ(図示せず)を更に備える。
 本実施形態では、車両1の各種電子制御用のECU20の機能の一部を駆動力制御装置100の一部として用いている。
 次に、以上のように構成された駆動力制御装置100が搭載される車両1の主に走行中に、ECU20が実行する入力クラッチ122の係合処理について、図2のフローチャートを参照して説明する。
 図2において、先ず、ECU20は、車両1がフリーラン状態であるか否かを判定する(ステップS101)。車両1がフリーラン状態でないと判定された場合(ステップS101:No)、ECU20は、再びステップS101の処理を実行する。
 他方、車両1がフリーラン状態であると判定された場合(ステップS101:Yes)、ECU20は、例えば、自動変速機12に係る変速線、車両1の現在の車速等に基づいて、自動変速機12の変速が必要であるか否かを判定する(ステップS102)。自動変速機12の変速は不要であると判定された場合(ステップS102:No)、ECU20は、ステップS101の処理を実行する。
 他方、自動変速機12の変速が必要であると判定された場合(ステップS102:Yes)、ECU20は、自動変速機12における現在の作動油の油圧又は供給流量が、自動変速機12の変速を実施するために必要な作動油の油圧又は供給流量未満であるか否か(即ち、油圧又は供給流量が不足しているか否か)を判定する(ステップS103)。
 自動変速機12における現在の作動油の油圧又は供給流量が、自動変速機12の変速を実施するために必要な作動油の油圧又は供給流量に達していると判定された場合(即ち、電動式オイルポンプ14のみで自動変速機12の変速に必要な油圧及び流量を賄えると判定された場合)(ステップS103:No)、ECU20は、後述するステップS108の処理を実行する。
 自動変速機12における現在の作動油の油圧又は供給流量が、自動変速機12の変速を実施するために必要な作動油の油圧又は供給流量未満であると判定された場合(ステップS103:Yes)、ECU20は、油圧及び供給流量の不足分を補うために必要な、機械式オイルポンプ13の回転数を算出する(ステップS104)。
 具体的には例えば、先ず、電動式オイルポンプ14の最大吐出流量をQ1、自動変速機12の変速に必要な油圧を発生させるために必要な必要流量をQ2として、機械式オイルポンプ13の必要吐出流量Q3を、Q2-Q1として求める。次に、例えば図3に示すような機械式オイルポンプ13の回転数と吐出流量との関係から、機械式オイルポンプ13の必要回転数を求める。尚、図3は、機械式オイルポンプの回転数と吐出流量との関係の一例を示す特性図である。
 ステップS104において、ECU20は、更に、算出された機械式オイルポンプ13の回転数と、車両1の現在の車速とから、入力クラッチ122の係合力を決定する。実際には、機械式オイルポンプ13の回転数とエンジン11の回転数とが等しくなるため、算出された機械式オイルポンプ13の回転数を達成するために必要な入力クラッチ122の係合力は、例えば機械損失やポンプ損失等のエンジン11に係る様々な損失を考慮する必要がある。従って、入力クラッチ122の最終的な係合力は、エンジン11の目標回転数(即ち、算出された機械式オイルポンプ13の回転数)に対する損失トルクを算出することによって、決定される。
 尚、損失トルクは、主に、エンジン11の回転による機械損失と、吸入、圧縮、膨張、排気の4工程にて発生するポンプ損失、エンジン11に直結される機械式オイルポンプ13の機械損失、及び回転変化によるイナーシャトルクが考えられる。従って、これらの損失を制御モデル又はマップにて、入力クラッチ122の係合力を求める処理に織り込めば、正確な(即ち、最終的な)入力クラッチ122の係合力を求めることができる。
 ステップS104の処理の後、ECU20は、入力クラッチ122を係合する際の負トルクが大きいか否かを判定する(ステップS105)。負トルクは大きくないと判定された場合(ステップS105:No)、ECU20は、後述するステップS107の処理を実行する。
 他方、負トルクが大きいと判定された場合(ステップS105:Yes)、ECU20は、例えば、オルタネータ、電子スロットル、可変バルブ機構及び可変圧縮比機構の少なくとも一つを制御することによって、エンジン11の特性を変更する。具体的には例えば、入力クラッチ122の係合時に、圧縮比を低減したり、吸排気バルブのリフト量若しくは開閉タイミングを変更したり、スロットル開度を大きくしたりすることにより、ポンピングロスを低減する。尚、ECU20は、変更されたエンジン11の特性に応じて、入力クラッチ122の係合力を再び決定する。
 次に、ECU20は、決定された入力クラッチ122の係合力に基づいて、入力クラッチ122を係合させ(ステップS107)、続いて、自動変速機12の変速を開始する(ステップS108)。
 ここで、例えば製品のばらつき、径時劣化等により算術上の入力クラッチ122の係合力と、実際に必要な係合力とが異なる可能性がある。そこで、本実施形態では、エンジン11の現在の回転数と、エンジン11の制御目標の回転数との差を偏差としてフィードバック制御を行い、入力クラッチ122の係合力を補正している。
 尚、フィードバック制御で得られた補正された係合力を、次回の制御に反映させる学習制御を取り入れてもよい。これにより、制御開始初期より適正な入力クラッチ122の制御が可能となる。
 次に、ECU20は、自動変速機12の変速が終了したか否かを判定する(ステップS109)。自動変速機12の変速が終了していないと判定された場合(ステップS109:No)、ECU20は、再びステップS109の処理を実行する。
 他方、自動変速機12の変速が終了したと判定された場合(ステップS109:Yes)、ECU20は、入力クラッチ122を解放する(ステップS110)。尚、ステップS106の処理において、エンジン11の特性を変更した場合のみ、ECU20は、エンジン11の特性を元に戻す。
 このように、自動変速機12の変速が終了したと判定された場合に、即座に入力クラッチ122を解放することによって、機械式オイルポンプ13を必要最低限だけの作動とすることができる。この結果、入力クラッチ122の負荷を低減することができると共に、違和感の低減を図ることができる。
 <第2実施形態>
 本発明の駆動力制御装置に係る第2実施形態を、図4及び図5を参照して説明する。第2実施形態では、エンジンと自動変速機との間にロックアップを有するトルクコンバータが配置されている以外は、第1実施形態の構成と同様である。よって、第2実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図4及び図5を参照して説明する。
 先ず、本実施形態に係る駆動力制御装置の構成について、図4を参照して説明する。図4は、本実施形態に係る駆動力制御装置の一部を構成するトルクコンバータの構成を示す概念図である。
 図4において、トルクコンバータ16は、ロックアップクラッチ、ポンプインペラ162、タービンライナ163及びステータ165を備えて構成されている。ロックアップクラッチは、トルクコンバータカバー161及びロックアップピストン164により構成されている。
 トルクコンバータ16の入力軸は、一端がエンジン11の駆動軸に連結されていると共に、他端がトルクコンバータカバー161を介してポンプインペラ162に接続されている。他方、トルクコンバータ16の出力軸は、一端が入力クラッチ122に連結されていると共に、他端がタービンライナ163及びロックアップピストン164に接続されている。
 ステータ165は、例えばワンウェイクラッチ(図示せず)を有し、トルク増幅機能を有する。ロックアップクラッチの係合及び解放は、トルクコンバータ16に供給されるオイルの油圧により制御される。尚、トルクコンバータ16の出力軸の回転数は、タービン回転数と一致する。
 本実施形態では、機械式オイルポンプ13は、連結部材を介して、トルクコンバータ16のポンプインペラ162に接続されている。トルクコンバータ16のポンプインペラ162の回転に伴ってインナロータが回転駆動されると、内歯と外歯とが係合しているので、アウタロータも回転し、両ロータの回転に起因して油圧が発生される。
 次に、以上のように構成された駆動力制御装置100が搭載される車両1の主に走行中に、ECU20が実行する入力クラッチ122の係合処理について説明する。ここでは特に、入力クラッチ122の係合開始(図2のステップS107参照)前に、ECUが実行するロックアップクラッチの係合処理について、図5のフローチャートを参照して説明する。
 図5において、先ず、ECU20は、車両1がフリーラン状態であるか否かを判定する(ステップS201)。車両1がフリーラン状態でないと判定された場合(ステップS201:No)、ECU20は、再びステップS201の処理を実行する。
 他方、車両1がフリーラン状態であると判定された場合(ステップS201:Yes)、ECU20は、ロックアップクラッチが係合されているか否かを判定する(ステップS202)。ロックアップクラッチが係合されていないと判定された場合(ステップS202:No)、ECU20は、入力クラッチ122が完全に解放されているか否かを判定する(ステップS203)。
 入力クラッチ122が完全に解放されていないと判定された場合(ステップS203:No)、ECU20は、ステップS201の処理を実行する。他方、入力クラッチ122が完全に解放されていると判定された場合(ステップS203:Yes)、ECU20は、エンジン11の回転数がゼロであるか否かを判定する(ステップS204)。
 エンジン11の回転数がゼロでないと判定された場合(ステップS204:No)、ECU20は、再びステップS204の処理を実行する。他方、エンジン11の回転数がゼロであると判定された場合(ステップS204:Yes)、ECU20は、ロックアップクラッチを係合する(ステップS205)。
 本実施形態では、図2のステップS107の入力クラッチ122の係合開始より前に、ロックアップクラッチの係合を実行するので、入力クラッチ122が係合される際に、ロックアップクラッチを係合する場合に比べて、自動変速機12の変速が終了するまでの期間を短縮することができる。加えて、ロックアップクラッチを係合することにより、トルクコンバータ16内のオイルの流れも遮断することができるので、消費流量を削減する効果を期待することができる。
 ステップS202の処理において、ロックアップクラッチが係合されていると判定された場合(ステップS202:Yes)、ECU20は、入力クラッチ122が解放されたか否かを判定する(ステップS206)。入力クラッチ122が解放されたと判定された場合(ステップS206:Yes)、ECU20は、ロックアップクラッチを解放する(ステップS207)。
 他方、入力クラッチ122が解放されていないと判定された場合(ステップS206:No)、ECU20は、車両1がフリーラン状態に復帰したか否かを判定する(ステップS208)。車両1がフリーラン状態に復帰したと判定された場合(ステップS208:Yes)、ECU20は、ステップS207の処理を実行する。車両1がフリーラン状態に復帰していないと判定された場合(ステップS208:No)、ECU20は、ステップS201の処理を実行する。
 入力クラッチ122を係合して機械式オイルポンプ13を作動させて自動変速機12の変速を行った後、入力クラッチ122を解放する場合、ロックアップクラッチを解放することにより、エンジン11の回転数が低下し、入力クラッチ122の解放による加速度変化を抑制することができる。この結果、違和感を低減することができ、実用上非常に有利である。
 <第3実施形態>
 本発明の駆動力制御装置に係る第3実施形態を、図6を参照して説明する。第3実施形態では、自動変速機の変速に係る基準が異なる以外は、第1実施形態の構成と同様である。よって、第3実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図6を参照して説明する。
 本願発明者の研究によれば、以下の事項が判明している。即ち、車両1のフリーラン状態において、自動変速機12の変速を、通常時と同様に実施してしまうと変速頻度が増加し、作動油流量の消費が比較的多くなる。また、上述の如く、フリーラン状態では、油圧等の不足分を補うために入力クラッチ122を用いてエンジン11を回転させる必要が発生する場合がある。この場合、油圧等の不足分が比較的小さい(即ち、エンジン11の目標回転数が比較的小さい)と、制御性が悪化する可能性がある。
 そこで、本実施形態では、図6に示すように、車両1のフリーラン状態における変速線を、通常時(即ち、非フリーラン状態時)と異ならしめている。これにより、制御性の悪化を防止することができる。加えて、通常時に対して高車速でアップシフト及びダウンシフトが行われるので、入力クラッチ122を完全係合しても油圧等の不足分を補えない場合が生じることを回避することができる。
 尚、図6は、変速車速と、入力クラッチ係合時のエンジンの回転数との関係の一例である。
 <第1変形例>
 本実施形態の駆動力制御装置に係る第1変形例について、図7を参照して説明する。
 図7は、自動変速機が、有段自動変速機である場合のコーストダウン変速パターンの一例である。
 自動変速機12が有段自動変速機である場合、図7に示すように、フリーラン状態では、違和感が生じない範囲で変速段を飛ばして変速を行うことにより、変速回数を低減している。これにより、作動油流量の消費を抑制することができる。
 <第2変形例>
 本実施形態の駆動力制御装置に係る第2変形例について、図8を参照して説明する。
 図8は、自動変速機が無段変速機である場合のコーストダウン変速パターンの一例である。
 自動変速機12が無段変速機である場合、図8に示すように、変速比を、ある車速範囲で固定することにより、変速回数を低減している。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う駆動力制御装置もまた本発明の技術的範囲に含まれるものである。
 1…車両、11…エンジン、12…自動変速機、13…機械式オイルポンプ、14…電動式オイルポンプ、15…蓄電装置、16…トルクコンバータ、20…ECU、100…駆動力制御装置、122…入力クラッチ

Claims (4)

  1.  車両に搭載され、
     エンジンと、
     自動変速機と、
     係合の度合いに応じて、前記エンジン及び前記自動変速機間の動力の伝達の程度を調整可能な係合手段と、
     前記エンジンの駆動軸の回転により油圧を発生させるオイルポンプと、
     前記エンジンが停止し、且つ前記係合手段により前記エンジン及び前記自動変速機間の動力の伝達が切断された状態で前記車両が走行するフリーラン状態において、前記自動変速機の変速が行われる際に、前記自動変速機の油圧である第1油圧が前記変速を実施するために必要とされる油圧である第2油圧に達しないことを条件に、前記第1油圧及び前記第2油圧の油圧差に応じて前記係合の度合いを制御する制御手段と
     を備えることを特徴とする駆動力制御装置。
  2.  前記制御手段は、前記油圧差に応じて前記係合の度合いを制御する際に、更に、前記エンジンの回転数に応じて前記係合の度合いを補正することを特徴とする請求項1に記載の駆動力制御装置。
  3.  前記エンジンと前記係合手段との間に配置され、ロックアップクラッチを有するトルクコンバータを更に備え、
     前記制御手段は、更に、前記車両が前記フリーラン状態へ移行する際に、前記エンジンの回転数がゼロとなったことを条件に、前記ロックアップクラッチを係合させる
     ことを特徴とする請求項1に記載の駆動力制御装置。
  4.  前記制御手段は、更に、前記車両が前記フリーラン状態であることを条件に、変速頻度が低下するように前記自動変速機を制御することを特徴とする請求項1に記載の駆動力制御装置。
PCT/JP2010/053888 2010-03-09 2010-03-09 駆動力制御装置 WO2011111169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/053888 WO2011111169A1 (ja) 2010-03-09 2010-03-09 駆動力制御装置
DE112010005368T DE112010005368T5 (de) 2010-03-09 2010-03-09 Antriebskraftsteuerungsgerät
JP2010541642A JP5177234B2 (ja) 2010-03-09 2010-03-09 駆動力制御装置
CN201080002017.0A CN102257297B (zh) 2010-03-09 2010-03-09 驱动力控制装置
US13/001,889 US8522644B2 (en) 2010-03-09 2010-03-09 Driving force control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053888 WO2011111169A1 (ja) 2010-03-09 2010-03-09 駆動力制御装置

Publications (1)

Publication Number Publication Date
WO2011111169A1 true WO2011111169A1 (ja) 2011-09-15

Family

ID=44558668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053888 WO2011111169A1 (ja) 2010-03-09 2010-03-09 駆動力制御装置

Country Status (5)

Country Link
US (1) US8522644B2 (ja)
JP (1) JP5177234B2 (ja)
CN (1) CN102257297B (ja)
DE (1) DE112010005368T5 (ja)
WO (1) WO2011111169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051678A1 (ja) * 2015-09-24 2017-03-30 ジヤトコ株式会社 車両のセーリングストップ制御方法及び制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834217B2 (en) * 2015-10-28 2017-12-05 Ford Global Technologies, Llc System and method for performing an engine stop and start for a rolling vehicle
DE102017206375A1 (de) * 2016-05-13 2017-11-16 Robert Bosch Gmbh Getriebeanordnung für einen Fahrantrieb, Fahrantrieb mit der Getriebeanordnung und Verfahren zur Steuerung der Getriebeanordnung
JP6922173B2 (ja) * 2016-08-29 2021-08-18 日産自動車株式会社 無段変速機の制御方法及び制御装置
JP6805657B2 (ja) * 2016-09-08 2020-12-23 日産自動車株式会社 無段変速機及び無段変速機の制御方法
US11131351B2 (en) * 2017-10-31 2021-09-28 Honda Motor Co., Ltd. Clutch control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320581A (ja) * 1999-05-10 2000-11-24 Toyota Motor Corp 駆動制御装置
JP2003214210A (ja) * 2001-11-14 2003-07-30 Toyota Motor Corp 内燃機関の停止・始動制御装置
JP2004003425A (ja) * 2002-04-23 2004-01-08 Nissan Motor Co Ltd 車両の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162125A (ja) * 1988-12-15 1990-06-21 Diesel Kiki Co Ltd 自動変速制御装置
JP2696595B2 (ja) * 1990-08-31 1998-01-14 株式会社ゼクセル 車輌用クラッチ制御装置
JP4576713B2 (ja) * 2000-12-28 2010-11-10 アイシン・エィ・ダブリュ株式会社 オイルポンプの駆動制御装置
JP3685149B2 (ja) * 2002-04-25 2005-08-17 トヨタ自動車株式会社 車両用駆動制御装置
JP4296887B2 (ja) * 2003-09-18 2009-07-15 株式会社デンソー 駆動力伝達システム
DE102005013137A1 (de) * 2005-03-22 2006-09-28 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Steuerung einer Ölversorgung für ein Automatgetriebe und ein Anfahrelement
US7524266B2 (en) * 2005-09-30 2009-04-28 Mazda Motor Corporation Engine starting system for power train
JP5051007B2 (ja) * 2008-06-03 2012-10-17 日産自動車株式会社 車両駆動系のアイドルストップ解除時制御装置
JP5229572B2 (ja) * 2009-03-25 2013-07-03 アイシン・エィ・ダブリュ株式会社 車両用制御装置及び車両駆動システム
US8266986B2 (en) * 2010-01-19 2012-09-18 GM Global Technology Operations LLC Transmission hydraulic control system having a dual element pump
JP5610193B2 (ja) * 2010-03-31 2014-10-22 アイシン・エィ・ダブリュ株式会社 車両用変速装置
JP5177578B2 (ja) * 2010-03-31 2013-04-03 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320581A (ja) * 1999-05-10 2000-11-24 Toyota Motor Corp 駆動制御装置
JP2003214210A (ja) * 2001-11-14 2003-07-30 Toyota Motor Corp 内燃機関の停止・始動制御装置
JP2004003425A (ja) * 2002-04-23 2004-01-08 Nissan Motor Co Ltd 車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051678A1 (ja) * 2015-09-24 2017-03-30 ジヤトコ株式会社 車両のセーリングストップ制御方法及び制御装置
JP2017061952A (ja) * 2015-09-24 2017-03-30 ジヤトコ株式会社 車両のセーリングストップ制御方法及び制御装置
US10663058B2 (en) 2015-09-24 2020-05-26 Jatco Ltd. Vehicle sailing stop control method and control device

Also Published As

Publication number Publication date
CN102257297B (zh) 2015-09-09
US20110219903A1 (en) 2011-09-15
JPWO2011111169A1 (ja) 2013-06-27
JP5177234B2 (ja) 2013-04-03
CN102257297A (zh) 2011-11-23
DE112010005368T5 (de) 2012-12-20
US8522644B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
US6441506B2 (en) Parallel hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor generator for propulsion
US8337362B2 (en) Control device
US7713163B2 (en) Control system for hybrid vehicles
JP5501937B2 (ja) ハイブリッド車両の制御装置
US8506449B2 (en) Control system
US7563195B2 (en) Speed change control device and speed change control method for automatic transmission for vehicle
JP5177234B2 (ja) 駆動力制御装置
US10253708B2 (en) Shift control system for vehicle
JP6003592B2 (ja) 車両の制御装置
JP5884894B2 (ja) 車両の制御装置
WO2014091588A1 (ja) ハイブリッド車両の制御装置
JP6004007B2 (ja) 車両の制御装置
JP4360406B2 (ja) パワートレーンの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
WO2015092518A1 (en) Control device for vehicle
JP2013103537A (ja) 車両用駆動制御装置
JP5691386B2 (ja) ハイブリッド車両の制御装置
JP2004019812A (ja) 車両用駆動制御装置
JP5235288B2 (ja) 車両用油圧制御装置
JP2022089685A (ja) 車両の制御装置
JP2004068858A (ja) 自動変速機のクラッチ制御装置
CN114379377B (zh) 车辆的控制装置
JP2011037330A (ja) 車両のパワートレーン
JP6372537B2 (ja) 車両用駆動装置
US20150266464A1 (en) Slow torque modulation performed by fast actuator
JP2004166386A (ja) 車輛用駆動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002017.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010541642

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13001889

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010005368

Country of ref document: DE

Ref document number: 1120100053685

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847401

Country of ref document: EP

Kind code of ref document: A1