WO2018043214A1 - 二相ステンレス鋼およびその製造方法 - Google Patents
二相ステンレス鋼およびその製造方法 Download PDFInfo
- Publication number
- WO2018043214A1 WO2018043214A1 PCT/JP2017/029963 JP2017029963W WO2018043214A1 WO 2018043214 A1 WO2018043214 A1 WO 2018043214A1 JP 2017029963 W JP2017029963 W JP 2017029963W WO 2018043214 A1 WO2018043214 A1 WO 2018043214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- stainless steel
- duplex stainless
- addition
- composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a duplex stainless steel suitable for use in crude oil or natural gas oil wells, gas wells, and the like, and a method for producing the same.
- the duplex stainless steel of the present invention has high strength, high toughness and corrosion resistance, in particular, carbon dioxide gas corrosion resistance in an extremely severe corrosive environment of high temperature containing carbon dioxide (CO 2 ) and chlorine ions (Cl ⁇ ), Oil well with excellent resistance to sulfide stress corrosion cracking at low temperatures (SCC resistance) and resistance to sulfide stress cracking at room temperature (SSC resistance) in an environment containing hydrogen sulfide (H 2 S) It can be applied to a stainless steel seamless steel pipe suitable for use.
- CO 2, and Cl -, etc. environment oilfield including, and in the gas field, is often used duplex stainless steel as an oil well pipe for use in mining.
- Patent Document 1 discloses that the composition of steel is, by mass%, C ⁇ 0.03%, Si ⁇ 1.0%, Mn ⁇ 1.5%, P ⁇ 0.03%, S ⁇ 0.0015. %, Cr: 24 to 26%, Ni: 9 to 13%, Mo: 4 to 5%, N: 0.03 to 0.20%, Al: 0.01 to 0.04%, O ⁇ 0.005 %, Ca: 0.001 to 0.005%, limiting the addition amount of S, O, and Ca, and greatly contributing to the phase balance that affects the hot workability of Cr, Ni, Mo, and N By limiting the amount added, while maintaining hot workability at the same level as conventional steel, the amount of Cr, Ni, Mo, and N is optimized within the limited range, and H 2 S corrosion resistance is improved. An improved duplex stainless steel is disclosed.
- Patent Document 1 has a problem that the yield strength can only be achieved at most about 80 ksi (551 MPa) class, and can be applied only to some steel pipes for oil well pipes.
- austenite-ferritic duplex stainless steel containing Cu is hot-worked by heating to 1000 ° C. or higher, and then rapidly cooled from a temperature of 800 ° C. or higher, followed by aging treatment.
- a method for producing a high-strength duplex stainless steel with improved corrosion resistance is disclosed.
- Patent Document 4 by weight, C: 0.03% or less, Si: 1% or less, Mn: 1.5% or less, P: 0.04% or less, S: 0.01% or less, Cr: 20 to 26%, Ni: 3 to 7%, Sol-Al: 0.03% or less, N: 0.25% or less, Cu: 1 to 4%, Mo: 2 to 6%, and W: 4 to 10% 1 or 2 types of the above, Ca: 0 to 0.005%, Mg: 0 to 0.05%, B: 0 to 0.03%, Zr: 0 to 0.3%, Y, La and Ce in total Precipitation strengthened duplex stainless steel for seawater resistance containing 0 to 0.03% as the content, seawater resistance index PT value PT ⁇ 35, and austenite fraction G value 70 ⁇ G ⁇ 30 Of precipitation-strengthened duplex stainless steel for seawater resistance obtained by solution treatment at 1000 ° C or higher followed by aging heat treatment at 450-600 ° C A manufacturing method is disclosed.
- Patent Document 5 a solution treatment material of austenite-ferritic duplex stainless steel containing Cu is subjected to cold working with a cross-section reduction rate of 35% or more, and then once heated to 50 ° C./sec or more. It is heated to a temperature range of 800 to 1150 ° C. at a speed and then rapidly cooled, and then subjected to warm processing at 300 to 700 ° C. and then cold processing again, or after this cold processing, 450 to A method for producing a high-strength duplex stainless steel material that can be used as an oil well logging for a deep oil well and a gas well by aging treatment at 700 ° C. is disclosed.
- Patent Document 6 C: 0.02 wt% or less, Si: 1.0 wt% or less, Mn: 1.5 wt% or less, Cr: 21 to 28 wt%, Ni: 3 to 8 wt%, Mo: 1 to 4 wt% N: 0.1 to 0.3 wt%, Cu: 2 wt% or less, W: 2 wt% or less, Al: 0.02 wt% or less, Ti, V, Nb, Ta: all 0.1 wt% or less, Zr, B: Steels containing 0.01 wt% or less, P: 0.02 wt% or less, S: 0.005 wt% or less in each case after solution heat treatment at 1000 to 1150 ° C., then at 450 to 500 ° C. for 30 to 120 minutes A method for producing a duplex stainless steel for sour gas well pipes that undergoes aging heat treatment is disclosed.
- Patent Document 7 in terms of% by weight, C: 0.0100% or less, Si: 0.40% or less, Mn: 0.50% or less, Ni: less than 0.20%, Cr: 11.0-18. 0%, N: 0.0120% or less, Nb: 0 to 0.10%, Ti: 0 to 0.10%, Al: 0 to 0.10%, Mo: 0 to 0.50%, Cu: 0 After heating steel consisting of ⁇ 0.50%, the balance Fe and unavoidable impurities to a temperature of 950 ° C. or lower and 700 ° C. or higher, the finish temperature is controlled to 850 ° C. or lower and 700 ° C. or higher.
- a method for producing a ferritic stainless steel for cold working that improves the toughness by reducing the initial grain size is disclosed.
- the corrosion resistance means excellent carbon dioxide gas corrosion resistance at a high temperature of 200 ° C. or higher and excellent low temperature of 80 ° C. or lower, particularly in a severe corrosive environment containing CO 2 , Cl ⁇ , and H 2 S. It means having both sulfide stress corrosion cracking resistance (SCC resistance) and excellent sulfide stress cracking resistance (SSC resistance) at room temperature of 20 to 30 ° C. There is also a tendency to improve economic efficiency (cost and efficiency).
- Patent Document 2 shows improvement in corrosion resistance, strength, and toughness, but is still insufficient.
- the manufacturing method that performs cold drawing has a problem that it takes a long time to manufacture because of its high cost and low efficiency.
- the technique described in Patent Document 3 has a problem that it is inferior in low-temperature toughness although a high strength of 655 MPa or more can be obtained without cold drawing.
- Patent Documents 4 to 6 although high strength with yield strength of 655 MPa or more can be obtained without cold drawing, sulfide stress corrosion cracking resistance and sulfide stress resistance at a low temperature of 80 ° C. or less There was a problem that crackability was inferior.
- the present invention is suitable for crude oil or natural gas oil wells, gas wells, etc., and has high strength, high toughness and corrosion resistance (particularly in the above severe corrosive environment, carbon dioxide gas resistance, It is an object of the present invention to provide a duplex stainless steel excellent in sulfide stress corrosion cracking resistance and sulfide stress cracking resistance) and a method for producing the same.
- “high strength” refers to a material having a yield strength of 95 ksi or more, that is, a yield strength of 95 ksi class (655 MPa) or more.
- “high toughness” means low temperature toughness, that is, an absorption energy vE ⁇ 10 in a Charpy impact test at ⁇ 10 ° C. of 40 J or more.
- excellent carbon dioxide corrosion resistance means that a test solution held in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., 30 atmospheres CO 2 gas atmosphere) This refers to a case where the corrosion rate is 0.125 mm / y or less when the piece is immersed and the immersion period is 336 hours.
- excellent resistance to sulfide stress corrosion cracking refers to a test solution retained in an autoclave: 10 mass% NaCl aqueous solution (liquid temperature: 80 ° C., 2 MPa CO 2 gas, 35 kPa H 2 The test piece is immersed in the S atmosphere), the immersion period is set to 720 hours, 100% of the yield stress is added as an additional stress, and the test piece after the test is not cracked.
- excellent sulfide stress cracking resistance means a test solution held in a test cell: 20% mass NaCl aqueous solution (liquid temperature: 25 ° C., CO 2 gas of 0.07 MPa, 0.03 MPa)
- the test piece is immersed in an aqueous solution adjusted to pH: 3.5 by adding acetic acid + Na acetate to the H 2 S atmosphere), so that the immersion period is 720 hours and 90% of the yield stress is added as an additional stress. In this case, the test piece after the test is not cracked.
- the duplex stainless steel has strength and toughness, particularly low temperature toughness, carbon dioxide corrosion resistance, sulfide stress corrosion cracking resistance, and sulfide stress cracking resistance.
- the various factors that affect it were investigated. As a result, the following knowledge was obtained.
- the structure of the steel contains 20 to 70% of the austenite phase, by a second phase a composite structure comprising a ferrite phase and a high temperature of up to 200 ° C. or higher, CO 2, Cl -, further H 2 S
- a high temperature corrosive environment containing CO 2 and in an atmosphere containing CO 2 , Cl ⁇ , and H 2 S, and under an environment where stress in the vicinity of the yield strength is applied, excellent carbon dioxide corrosion resistance and high temperature
- a duplex stainless steel having excellent sulfide stress corrosion cracking resistance can be obtained.
- a high strength of YS95 ksi (655 MPa) or more can be achieved without performing cold working by containing a certain amount or more of Cu.
- nitride becomes a hydrogen trap site and increases hydrogen storage capacity, thereby deteriorating hydrogen embrittlement resistance.
- N is reduced to less than 0.07% in order to suppress the formation of nitrides when aging heat treatment is performed. Found that it was effective.
- the present invention has been completed based on the above findings, and the gist thereof is as follows.
- the structure has 20 to 70% austenite phase and 30 to 80% ferrite phase by volume.
- Zr 0.50% or less
- B The duplex stainless steel according to any one of [1] to [3], which contains one or two selected from 0.0030% or less.
- REM 0.005% or less
- Ca 0.005% or less
- Sn 0.20% or less
- Mg 0.0002 to 0.01%
- Ta 0.01 to 0.1%
- Co 0.01 to 1.0%
- Sb 0.01 to 1.0%
- the GSI value defined as the number of ferrite-austenite grain boundaries existing per unit length (1 mm) of the line segment drawn in the thickness direction is 176 at the thickness center of the steel material.
- the duplex stainless steel according to any one of [1] to [6] as described above. [8] By mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 0.10 to 1.5%, P: 0.030% or less, S: 0.005% or less, Cr: 20.0-30.0%, Ni: 5.0-10.0%, Mo: 2.0-5.0%, Cu: 2.0 to 6.0%, N: Stainless steel containing less than 0.07% and having a composition consisting of the balance Fe and inevitable impurities, After heating to a heating temperature of 1000 ° C. or higher, a solution heat treatment for cooling to a temperature of 300 ° C. or lower at an average cooling rate of air cooling or higher, An aging heat treatment is performed by heating to 350 ° C.
- a method for producing a duplex stainless steel having a yield strength YS of 655 MPa or more and an absorption energy vE ⁇ 10 of 40 J or more in a Charpy impact test at a test temperature of ⁇ 10 ° C. [9] The method for producing a duplex stainless steel according to [8], further containing W: 0.02 to 1.5% by mass% in addition to the composition. [10] The method for producing a duplex stainless steel according to [8] or [9], further containing, in addition to the above composition, V: 0.02 to 0.20% by mass.
- the stainless steel is obtained by heating a steel material having the above composition and performing hot working to obtain a steel pipe material.
- the steel pipe material is heated, pipe-formed, formed, and subjected to cooling more than air cooling to produce a seamless steel pipe.
- the yield strength is as high as 95 ksi or more (655 MPa or more), the absorbed energy vE ⁇ 10 in the Charpy impact test at ⁇ 10 ° C. is 40 J or more, and hydrogen sulfide.
- stainless steel with excellent corrosion resistance that combines excellent carbon dioxide corrosion resistance, excellent sulfide stress corrosion cracking resistance, and excellent sulfide stress cracking resistance is obtained. It is done.
- the duplex stainless steel manufactured by this invention can be manufactured cheaply by applying to the stainless steel seamless steel pipe for oil wells, and there is a remarkable industrial effect.
- FIG. 1 is a graph showing a relationship between a Charpy impact test result and a GSI value in an example of the present invention.
- C 0.03% or less C is an element having an effect of stabilizing the austenite phase and improving strength and low-temperature toughness.
- the C content is preferably 0.002% or more.
- the upper limit of the C content is 0.03%.
- the C content is 0.02% or less. More preferably, the C content is 0.012% or less. More preferably, the C content is 0.005% or more.
- Si 1.0% or less
- Si is an element effective as a deoxidizer, and in order to obtain this effect, a content of 0.05% or more is preferable. More preferably, the Si content is 0.10% or more. However, if the Si content exceeds 1.0%, the precipitation of intermetallic compounds becomes excessive due to the heat treatment, which deteriorates the corrosion resistance of the steel. For this reason, Si content shall be 1.0% or less. Preferably, the Si content is 0.7% or less. More preferably, the Si content is 0.6% or less.
- Mn 0.10 to 1.5%
- Mn is an element that is effective as a deoxidizer, as is the case with the above-described Si, and fixes S inevitably contained in steel as a sulfide to improve hot workability. These effects are obtained when the Mn content is 0.10% or more. However, if the Mn content exceeds 1.5%, not only the hot workability is lowered, but also the corrosion resistance is adversely affected. Therefore, the Mn content is set to 0.10 to 1.5%. Preferably, the Mn content is 0.15 to 1.0%. More preferably, it is 0.2 to 0.5%.
- P 0.030% or less
- P is preferably reduced as much as possible in the present invention in order to reduce the corrosion resistance such as carbon dioxide corrosion resistance, pitting corrosion resistance and sulfide stress cracking resistance, but the P content is 0. 0.030% or less is acceptable.
- the P content is set to 0.030% or less.
- the P content is 0.020% or less. From the viewpoint of preventing an increase in manufacturing cost, the P content is preferably 0.005% or more.
- S 0.005% or less
- S is an element that significantly reduces the hot workability and hinders stable operation of the pipe manufacturing process, and is preferably reduced as much as possible, but the S content is 0.005% or less. If there is, pipe production in the normal process becomes possible. Therefore, the S content is set to 0.005% or less. Preferably, the S content is 0.002% or less. From the viewpoint of preventing an increase in manufacturing cost, the S content is preferably 0.0005% or more.
- Cr 20.0-30.0% Cr is a basic component effective for maintaining corrosion resistance and improving strength. In order to obtain these effects, the content needs to be 20.0% or more. However, if the Cr content exceeds 30.0%, the ⁇ phase tends to precipitate, and both corrosion resistance and toughness deteriorate. Therefore, the Cr content is 20.0 to 30.0%. In order to obtain higher strength, the Cr content is preferably 21.4% or more. More preferably, the Cr content is 23.0% or more. From the viewpoint of toughness, the Cr content is preferably 28.0% or less.
- Ni 5.0 to 10.0%
- Ni is an element contained for stabilizing the austenite phase and obtaining a two-phase structure.
- the Ni content is less than 5.0%, a ferrite phase is the main component and a two-phase structure cannot be obtained.
- the Ni content exceeds 10.0%, a two-phase structure cannot be obtained due to austenite.
- the Ni content is 5.0 to 10.0%.
- the Ni content is 8.0% or less.
- Mo 2.0-5.0%
- Mo is an element that improves pitting corrosion resistance due to Cl 2 - and low pH, and improves sulfide stress cracking resistance and sulfide stress corrosion cracking resistance.
- Mo needs to contain 2.0% or more.
- the Mo content is set to 2.0 to 5.0%.
- the Mo content is 2.5 to 4.5%.
- Cu 2.0 to 6.0%
- Cu precipitates fine ⁇ -Cu by aging heat treatment, greatly increases the strength, strengthens the protective film and suppresses hydrogen penetration into the steel, sulfide stress cracking resistance and sulfide resistance Increase stress corrosion cracking. Therefore, it is a very important element in the present invention.
- Cu needs to contain 2.0% or more.
- the Cu content exceeds 6.0%, the low temperature toughness value decreases. For this reason, Cu content shall be 6.0% or less. Therefore, the Cu content is set to 2.0 to 6.0%.
- the Cu content is 2.5 to 5.5%.
- N Less than 0.07% In normal duplex stainless steel, N is known as an element that improves pitting corrosion resistance and contributes to solid solution strengthening, and 0.10% or more is actively added. . However, the present inventors, when performing an aging heat treatment, N rather forms various nitrides, lowering the low temperature toughness, resistance to sulfide stress corrosion cracking at low temperatures below 80 ° C., and resistance to sulfide. It is an element that reduces the stress cracking property, and it has been newly clarified that such an effect is remarkable when the N content is 0.07% or more. For this reason, the N content is less than 0.07%. Preferably, the N content is 0.03% or less, more preferably the N content is 0.015% or less. From the viewpoint of preventing an increase in manufacturing cost, the N content is preferably 0.005% or more.
- the balance is Fe and inevitable impurities.
- O oxygen
- the above components are basic components, and the duplex stainless steel of the present invention can achieve the desired characteristics.
- the following selective elements can be contained as required.
- W 0.02 to 1.5% W is useful as an element for improving the resistance to sulfide stress corrosion cracking and the resistance to sulfide stress cracking.
- the W content is desirably 0.02% or more.
- W is contained in a large amount exceeding 1.5%, the low temperature toughness may be lowered. Therefore, when W is contained, the content is made 0.02 to 1.5%.
- the W content is 0.8 to 1.2%.
- V 0.02 to 0.20%
- V is useful as an element for improving the strength of steel by precipitation strengthening.
- the V content is desirably 0.02% or more.
- V exceeds 0.20%, low temperature toughness may be lowered.
- the V content is desirably 0.20% or less. Therefore, when V is contained, the content is made 0.02 to 0.20%. More preferably, the V content is 0.04 to 0.08%.
- Zr 0.50% or less
- B One or two selected from 0.0030% or less Zr and B are both useful as elements contributing to strength increase, and are selected as necessary. Can be contained.
- the Zr contributes to the above-described increase in strength and further contributes to the improvement of resistance to sulfide stress corrosion cracking.
- the Zr content is desirably 0.02% or more.
- the Zr content exceeds 0.50%, the low temperature toughness may be lowered. For this reason, when it contains Zr, it is 0.50% or less.
- the Zr content is 0.05% or more. More preferably, the Zr content is 0.05% to 0.20%.
- B is useful as an element that contributes to the above-described increase in strength and also contributes to an improvement in hot workability.
- the B content is desirably 0.0005% or more.
- B when B contains more than 0.0030%, low temperature toughness and hot workability may be lowered. For this reason, when it contains B, it is made into 0.0030% or less. More preferably, the B content is 0.0010 to 0.0025%.
- REM 0.005% or less, Ca: 0.005% or less, Sn: 0.20% or less, Mg: one or more selected from 0.0002 to 0.01% REM, Ca, Both Sn and Mg are useful as elements contributing to the improvement of resistance to sulfide stress corrosion cracking, and can be selected and contained as necessary.
- Ta 0.01 to 0.1%, Co: 0.01 to 1.0%, Sb: 0.01 to 1.0% Ta, Co, and Sb are Any of them is useful as an element that contributes to the improvement of the CO 2 corrosion resistance, sulfide stress cracking resistance and sulfide stress corrosion cracking resistance, and can be selected and contained as necessary.
- the content exceeds Ta: 0.1%, Co: 1.0%, Sb: 1.0%, the effect is saturated, and an effect commensurate with the content may not be expected.
- Ta 0.01 to 0.1%
- Co 0.01 to 1.0%
- Sb 0.01 to 1.0%
- Co increases the Ms point and contributes to an increase in strength. More preferably, Ta: 0.02 to 0.05%, Co: 0.02 to 0.5%, and Sb: 0.02 to 0.5%, respectively.
- volume ratio be a volume ratio with respect to the whole steel plate structure.
- the duplex stainless steel of the present invention has the above-described composition, and further has a composite structure containing 20 to 70% austenite phase and 30 to 80% ferrite phase by volume. Further, in the composite structure, the GSI value defined as the number of ferrite-austenite grain boundaries existing per unit length (1 mm) of the line segment drawn in the thickness direction is 176 or more at the thickness center of the steel material. be able to.
- the austenite phase is set in the range of 20 to 70%.
- the austenite phase is 30-60%.
- the ferrite phase is in the range of 30 to 80%.
- the ferrite phase is 40-70%.
- the volume ratio of an austenite phase and a ferrite phase can be measured by the method as described in the Example mentioned later.
- precipitates such as intermetallic compounds, carbides, nitrides, sulfides and the like as phases other than the austenite phase and ferrite phase can be contained if the total is 1% or less. If these precipitates exceed 1% in total, the low-temperature toughness, sulfide stress corrosion cracking resistance, and sulfide stress cracking resistance are significantly deteriorated.
- the toughness can be further improved by setting the GSI value defined as the number of ferrite-austenite grain boundaries to 176 or more, that is, by narrowing the interval between the phases. If the chemical composition, structure, and production conditions are within the range of the present invention, even if the GSI value is less than 176, the toughness is 40 J or more, but by setting the GSI value to 176 or more, the toughness becomes 70 J or more and is further improved. GSI value rises due to the large deformation in the piercing-rolling process and the recrystallization is promoted, but there is a risk of cracking in the large deformation, and multiple deformations reduce the yield and increase the manufacturing cost due to the increase of the process. Invite.
- the result is shown in FIG. From the results shown in FIG. 1, the GSI value obtained by normal rolling without cracking was 300, so the upper limit of the GSI value is desirably 300.
- the GSI value defined as the number of ferrite-austenite grain boundaries can be measured by the method described in the examples described later.
- the duplex stainless steel having the above composition is used as a starting material (hereinafter also referred to as a steel pipe material).
- the production method of the duplex stainless steel as a starting material is not particularly limited, and a generally known production method can be applied.
- the present invention can be applied not only to seamless steel pipes but also to thin plates, thick plates, UOE, ERW, spiral steel pipes, forged pipes, and the like.
- molten steel having the above-described composition is melted by a conventional melting method such as a converter, continuous casting method, ingot-bundling rolling method, etc. It is preferable to use a steel pipe material such as billet by a generally known method. Subsequently, these steel pipe materials are heated, and a seam having the above-mentioned composition of a desired dimension is obtained by hot working such as an extrusion pipe manufacturing method such as the Eugene Sejurne method or a Mannesmann pipe manufacturing method, which is a generally known pipe forming method. Steel-free pipe.
- the total rolling amount at 1200 ° C. to 1000 ° C. to 30% or more by the above hot working.
- the GSI value defined as the number of ferrite-austenite grain boundaries existing per unit length (1 mm) of the line segment drawn in the thickness direction is 176 at the thickness center of the steel material. It can be set as the seamless steel pipe containing the above structure. If it is less than 1000 ° C., the processing temperature is too low, the deformation resistance becomes high, the burden on the rolling mill becomes excessive, and hot working becomes difficult.
- the temperature is 1100 ° C. to 1180 ° C.
- the total reduction amount in the temperature range is set to 30% or more.
- the total reduction amount in the above temperature range is 35% or more.
- the upper limit of the total reduction amount in the temperature range is not particularly required to be specified, but the total reduction amount in the temperature range is preferably 50% or less from the viewpoint of a burden on the rolling mill.
- the total reduction amount in the above temperature range is 45% or less.
- the total reduction amount means the thickness reduction amount of a steel pipe rolled by an elongator, a plug mill or the like that is carried out after piercing by a piercer.
- the seamless steel pipe is preferably cooled to room temperature at an average cooling rate equal to or higher than air cooling.
- solution heat treatment is performed to cool to a temperature of 300 ° C. or lower at an average cooling rate of air cooling or higher, preferably 1 ° C./s or higher.
- the heating temperature of the solution heat treatment is less than 1000 ° C., the desired high toughness cannot be ensured.
- the heating temperature of solution heat treatment shall be 1150 degrees C or less from a viewpoint of preventing the coarsening of a structure
- the holding time at the heating temperature of the solution heat treatment is preferably 5 min or more from the viewpoint of making the temperature in the material uniform. The holding time at the heating temperature of the solution heat treatment is preferably 210 min or less.
- the average cooling rate of the solution heat treatment is less than 1 ° C./s, intermetallic compounds such as ⁇ phase and ⁇ phase are precipitated during cooling, and the low temperature toughness and corrosion resistance are remarkably lowered.
- the upper limit of the average cooling rate is not particularly limited.
- the average cooling rate refers to the average cooling rate in the range from the heating temperature to the cooling stop temperature.
- the cooling stop temperature of the solution heat treatment temperature is preferably 100 ° C. or lower.
- the seamless steel pipe subjected to the solution heat treatment is heated to a temperature of 350 to 600 ° C., held for 5 min to 210 min and cooled.
- the added Cu precipitates as ⁇ -Cu and contributes to the strength. Thereby, it becomes a high strength duplex stainless steel seamless steel pipe having desired high strength, high toughness and excellent corrosion resistance.
- the heating temperature of the aging heat treatment exceeds 600 ° C. and becomes a high temperature, ⁇ -Cu becomes coarse, and the desired high strength, further high toughness, and excellent corrosion resistance cannot be secured.
- the heating temperature of the aging heat treatment is less than 350 ° C., ⁇ -Cu is not sufficiently precipitated, and a desired high strength cannot be obtained.
- the heating temperature of the aging heat treatment is preferably in the range of 350 to 600 ° C. More preferably, the heating temperature of the aging heat treatment is in the range of 400 ° C to 550 ° C.
- the holding time in the aging heat treatment is preferably 5 min or more from the viewpoint of making the temperature in the material uniform.
- cooling refers to cooling from a temperature range of 350 to 600 ° C. to room temperature at an average cooling rate equal to or higher than air cooling. Preferably, it is 1 ° C./s or more.
- Molten steel with the composition shown in Table 1 is melted in a converter, cast into billets (steel pipe material) by a continuous casting method, and the steel pipe material is heated at 1150 to 1250 ° C and then hot-worked using a heating model seamless rolling mill. To produce a seamless steel pipe having an outer diameter of 83.8 mm and a wall thickness of 12.7 mm. In addition, it air-cooled after pipe making.
- the obtained seamless steel pipe was heated under the conditions shown in Table 2 and then subjected to solution heat treatment for cooling. Further, an aging heat treatment was performed by heating and air cooling under the conditions shown in Table 2.
- the specimens for structure observation are collected from the finally obtained seamless steel pipe after heat treatment in this way, measurement of GSI value, quantitative evaluation of structural structure, tensile test, Charpy impact test, corrosion test, sulfidation resistance
- a physical stress corrosion cracking test (an SCC test) and a sulfide stress cracking test (an SSC test) were performed.
- the test method was as follows.
- volume ratio (% by volume) of each phase in the entire structure of the steel sheet The volume fraction of the ferrite phase was determined by observing the surface perpendicular to the rolling direction and the surface at the center of the plate thickness with a scanning electron microscope.
- the above-mentioned specimen for observing the structure is corroded with Virella reagent, the structure is imaged with a scanning electron microscope (1000 times), and the average value of the area ratio of the ferrite phase is calculated using an image analyzer, and the volume is calculated. Rate (volume%).
- the volume fraction of the austenite phase was measured using an X-ray diffraction method.
- a test specimen for measurement with the surface near the center of the plate thickness as the measurement surface was taken from the test piece material subjected to the above heat treatment (solution heat treatment-aging heat treatment), and the austenite phase ( ⁇ ) ( 220) and the diffraction X-ray integrated intensity of the (211) plane of the ferrite phase ( ⁇ ) were measured.
- ⁇ (volume ratio) 100 / (1+ (I ⁇ R ⁇ / I ⁇ R ⁇ ))
- I ⁇ ⁇ integral strength
- I ⁇ ⁇ integral strength
- R ⁇ ⁇ crystallographic theoretical calculated value
- Tensile properties API arc-shaped tensile test pieces are collected from the above-mentioned heat-treated test piece materials, and subjected to a tensile test in accordance with the provisions of the API.
- V-notch test piece (10 mm thick) was sampled from the test piece material subjected to the above heat treatment in accordance with JIS Z 2242, and a Charpy impact test was conducted. Absorbed energy was determined and toughness was evaluated. In the present invention, vE ⁇ 10 : 40J or more was evaluated as acceptable. The obtained results are organized in relation to the GSI value and shown in FIG.
- Corrosion test A corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was produced by machining from the test piece material subjected to the heat treatment, and a corrosion test was performed.
- the test piece was immersed in a test solution: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere of 30 atm) held in the autoclave, and the immersion period was 14 days.
- the weight was measured and the corrosion rate calculated from the weight loss before and behind a corrosion test was calculated
- the presence or absence of pitting corrosion on the surface of the test piece was observed using a magnifier with a magnification of 10 times.
- pitting corrosion means the case where the diameter is 0.2 mm or more. In the present invention, the case where the corrosion rate was 0.125 mm / y or less was evaluated as acceptable.
- SSC resistance test Sulfide stress cracking resistance test
- NACE TM0177 Method A a round bar-shaped test piece (diameter: 6.4 mm ⁇ ) was produced by machining from the test piece material subjected to the above-described heat treatment, and an SSC resistance test was performed.
- the SSC resistance test was performed by adding acetic acid + Na acetate to a test solution: 20 mass% NaCl aqueous solution (liquid temperature: 25 ° C., atmosphere of H 2 S: 0.03 MPa, CO 2 : 0.07 MPa) to pH: 3.5.
- the test piece was immersed in the adjusted aqueous solution, the immersion period was set to 720 hours, and 90% of the yield stress was added as an additional stress.
- the test piece after the test was observed for cracks.
- produce in the test piece after a test was evaluated as the pass.
- Table 2 the case where no crack occurs is indicated by symbol ⁇ , and the case where crack occurs is indicated by symbol x.
- SCC test Sulfide stress corrosion cracking test
- the test piece was immersed in a test solution held in an autoclave: 10 mass% NaCl aqueous solution (liquid temperature: 80 ° C., H 2 S: 35 kPa, CO 2 : 2 MPa atmosphere), and the immersion period was 720. As time, 100% of the yield stress was added as an additional stress. About the test piece after a test, the presence or absence of a crack was observed. In this invention, the case where a crack did not generate
- Table 2 shows the results obtained as described above.
- the present invention both the yield strength: 655 MPa or more high strength, low temperature toughness of vE -10 ⁇ 40J, CO 2, Cl - corrosion resistance at high temperatures corrosive environment of 200 ° C. or higher containing ( ⁇ acid gas corrosion resistance High strength duplex stainless steel with excellent resistance to sulfide stress cracking and resistance to sulfide stress corrosion cracking in the environment containing H 2 S without cracking (SSC, SCC) It has become. It was found that when the GSI value was 176 or more, vE ⁇ 10 ⁇ 70 J, and the low temperature toughness was further improved.
- a comparative example that is out of the scope of the present invention does not achieve the high strength intended by the present invention, does not achieve high toughness, does not achieve carbon dioxide corrosion resistance, or H 2. Cracks (SSC, SCC) occur in an environment containing S.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
[1] 質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:0.10~1.5%、
P:0.030%以下、
S:0.005%以下、
Cr:20.0~30.0%、
Ni:5.0~10.0%、
Mo:2.0~5.0%、
Cu:2.0~6.0%、
N:0.07%未満
を含有し、残部Feおよび不可避的不純物からなる組成を有し、
組織は、体積率で20~70%のオーステナイト相と30~80%のフェライト相を有する、
降伏強さYSが655MPa以上、試験温度:-10℃におけるシャルピー衝撃試験の吸収エネルギーvE-10が40J以上である二相ステンレス鋼。
[2] 前記組成に加えてさらに、質量%で、W:0.02~1.5%を含有する[1]に記載の二相ステンレス鋼。
[3] 前記組成に加えてさらに、質量%で、V:0.02~0.20%を含有する[1]または[2]に記載の二相ステンレス鋼。
[4] 前記組成に加えてさらに、質量%で、
Zr:0.50%以下、
B:0.0030%以下
のうちから選ばれた1種または2種を含有する[1]~[3]のいずれかに記載の二相ステンレス鋼。
[5] 前記組成に加えてさらに、質量%で、
REM:0.005%以下、
Ca:0.005%以下、
Sn:0.20%以下、
Mg:0.0002~0.01%
のうちから選らばれた1種または2種以上を含有する[1]~[4]のいずれかに記載の二相ステンレス鋼。
[6] 前記組成に加えてさらに、質量%で、
Ta:0.01~0.1%、
Co:0.01~1.0%、
Sb:0.01~1.0%
のうちから選らばれた1種または2種以上を含有する[1]~[5]のいずれかに記載の二相ステンレス鋼。
[7] 前記組織は、さらに、肉厚方向に引いた線分の単位長さ(1mm)当たりに存在するフェライト‐オーステナイト粒界の数として定義されるGSI値が鋼材の肉厚中心部で176以上である[1]~[6]のいずれかに記載の二相ステンレス鋼。
[8] 質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:0.10~1.5%、
P:0.030%以下、
S:0.005%以下、
Cr:20.0~30.0%、
Ni:5.0~10.0%、
Mo:2.0~5.0%、
Cu:2.0~6.0%、
N:0.07%未満
を含有し、残部Feおよび不可避的不純物からなる組成を有するステンレス鋼を、
1000℃以上の加熱温度に加熱したのち、空冷以上の平均冷却速度で300℃以下の温度まで冷却する溶体化熱処理と、
350℃~600℃の温度に加熱し冷却する時効熱処理とを施す、
降伏強さYSが655MPa以上かつ、試験温度:-10℃におけるシャルピー衝撃試験の吸収エネルギーvE-10が40J以上である二相ステンレス鋼の製造方法。
[9] 前記組成に加えてさらに、質量%で、W:0.02~1.5%を含有する[8]に記載の二相ステンレス鋼の製造方法。
[10] 前記組成に加えてさらに、質量%で、V:0.02~0.20%を含有する[8]または[9]に記載の二相ステンレス鋼の製造方法。
[11] 前記組成に加えてさらに、質量%で、
Zr:0.50%以下、
B:0.0030%以下
のうちから選ばれた1種または2種を含有する[8]~[10]のいずれかに記載の二相ステンレス鋼の製造方法。
[12] 前記組成に加えてさらに、質量%で、
REM:0.005%以下、
Ca:0.005%以下、
Sn:0.20%以下、
Mg:0.0002~0.01%
のうちから選らばれた1種または2種以上を含有する[8]~[11]のいずれかに記載の二相ステンレス鋼の製造方法。
[13] 前記組成に加えてさらに、質量%で、
Ta:0.01~0.1%、
Co:0.01~1.0%、
Sb:0.01~1.0%
のうちから選らばれた1種または2種以上を含有する[8]~[12]のいずれかに記載の二相ステンレス鋼の製造方法。
[14] 前記ステンレス鋼は、前記組成を有する鋼素材を加熱し熱間加工を施して鋼管素材とし、該鋼管素材を加熱し、造管、成形し、空冷以上の冷却を施して継目無鋼管としたものであり、
前記熱間加工は、1200℃~1000℃の温度域における合計圧下量が30%以上50%以下、である[8]~[13]のいずれかに記載の二相ステンレス鋼の製造方法。
Cは、オーステナイト相を安定させて強度・低温靭性を向上させる効果を有する元素である。降伏強さが95ksi以上(655MPa以上)の高強度、vE-10が40J以上の低温靭性を実現するためには、C含有量は0.002%以上とすることが好ましい。しかし、C含有量が0.03%を超えると、熱処理より炭化物の析出が過剰となる。耐食性に悪影響を及ぼす場合もある。そのため、C含有量の上限は0.03%とする。好ましくはC含有量は0.02%以下である。より好ましくはC含有量は0.012%以下とする。より好ましくはC含有量は0.005%以上とする。
Siは、脱酸剤として有効な元素であり、この効果を得るためには、0.05%以上の含有量が好ましい。より好ましくは、Si含有量は0.10%以上とする。しかしながら、Si含有量が1.0%を超えると熱処理により金属間化合物の析出が過剰となり、鋼の耐食性を劣化させる。このため、Si含有量は1.0%以下とする。好ましくはSi含有量は0.7%以下である。より好ましくはSi含有量は0.6%以下である。
Mnは、上述のSiと同様に、脱酸剤として有効な元素であるとともに、鋼中に不可避的に含有されるSを硫化物として固定し熱間加工性を改善する。これらの効果はMn含有量が0.10%以上で得られる。しかし、Mn含有量が1.5%を超えると熱間加工性が低下するだけでなく、耐食性に悪影響を及ぼす。このため、Mn含有量は0.10~1.5%とする。好ましくはMn含有量は0.15~1.0%である。より好ましくは0.2~0.5%である。
Pは、耐炭酸ガス腐食性、耐孔食性および耐硫化物応力割れ性等の耐食性を低下させるため、本発明ではできるだけ低減することが好ましいが、P含有量は0.030%以下であれば許容できる。このようなことから、P含有量は0.030%以下とする。好ましくはP含有量は0.020%以下である。なお、製造コストの上昇を防止する観点より、好ましくはP含有量は0.005%以上とする。
Sは、熱間加工性を著しく低下させる、パイプ製造工程の安定操業を阻害する元素であり、できるだけ低減することが好ましいが、S含有量は0.005%以下であれば通常工程のパイプ製造が可能となる。このようなことから、S含有量は0.005%以下とする。好ましくは、S含有量は0.002%以下である。なお、製造コストの上昇を防止する観点より、好ましくはS含有量は0.0005%以上とする。
Crは、耐食性を維持し、強度を向上するために有効な基本成分である。これらの効果を得るためには、その含有量を20.0%以上とする必要がある。しかし、Crの含有量が30.0%を超えると、σ相が析出し易くなり耐食性と靭性がともに劣化する。従って、Crの含有量は20.0~30.0%とする。より高強度を得るためには、好ましくはCr含有量は21.4%以上とする。より好ましくはCr含有量は23.0%以上である。また、靱性の観点からは、好ましくはCr含有量は28.0%以下である。
Niは、オーステナイト相を安定させ、二相組織を得るために含有される元素である。Ni含有量が5.0%未満の場合、フェライト相が主体となって二相組織が得られない。一方、Ni含有量が10.0%を超えると、オーステナイト主体となり二相組織が得られない。また、Niが高価な元素であるために経済性も損なわれる。従って、Ni含有量は5.0~10.0%とする。好ましくは、Ni含有量は8.0%以下である。
Moは、Cl-や低pHによる耐孔食性を向上させ、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。本発明では、Moは2.0%以上の含有を必要とする。一方、Moが5.0%を超える多量の含有は、σ相が析出し、靭性、耐食性が低下する。従って、Mo含有量は2.0~5.0%とする。好ましくはMo含有量は2.5~4.5%である。
Cuは、時効熱処理にて微細なε-Cuを析出し、強度を大幅に上昇させるうえ、保護皮膜を強固にして鋼中への水素侵入を抑制し、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める。そのため、本発明において非常に重要な元素である。これらの効果を得るためには、Cuは2.0%以上の含有を必要とする。一方、Cuが6.0%を超える含有は、低温靭性値が低下する。このため、Cu含有量は6.0%以下とする。従って、Cu含有量は2.0~6.0%とする。好ましくはCu含有量は2.5~5.5%である。
Nは、通常の二相ステンレス鋼においては、耐孔食性を向上させ、また固溶強化に寄与する元素として知られ、0.10%以上が積極的に添加される。しかしながら、本発明者らは、時効熱処理を行う場合には、Nはむしろ種々の窒化物を形成し、低温靭性の低下、80℃以下の低温での耐硫化物応力腐食割れ性および耐硫化物応力割れ性を低下させる元素であり、このような作用はN含有量が0.07%以上で顕著であることを新たに明らかにした。このことから、N含有量は0.07%未満とする。好ましくはN含有量は0.03%以下、より好ましくはN含有量は0.015%以下である。製造コストの上昇を防止する観点より、好ましくはN含有量は0.005%以上とする。
Wは、耐硫化物応力腐食割れ性、耐硫化物応力割れ性を向上させる元素として有用である。このような効果を得るためには、W含有量は0.02%以上含有することが望ましい。一方、Wは1.5%を超えて多量に含有すると、低温靭性を低下させる場合がある。従って、Wを含有する場合には、0.02~1.5%とする。好ましくはW含有量は0.8~1.2%である。
Vは、析出強化により鋼の強度を向上させる元素として有用である。このような効果を得るためにはV含有量は0.02%以上含有することが望ましい。一方、Vは0.20%を超えて含有すると、低温靭性を低下させる場合がある。また、多量に含有すると、耐硫化物応力割れ性が低下する場合がある。このため、V含有量は0.20%以下が望ましい。従って、Vを含有する場合には、0.02~0.20%とする。より好ましくはV含有量は0.04~0.08%である。
Zr、Bは、いずれも、強度増加に寄与する元素として有用であり、必要に応じて選択して含有できる。
REM、Ca、Sn、Mgはいずれも、耐硫化物応力腐食割れ性の改善に寄与する元素として有用であり、必要に応じて選択して含有できる。このような効果を確保するためには、それぞれREM:0.001%以上、Ca:0.001%以上、Sn:0.05%以上、Mg:0.0002%以上を含有することが望ましい。より好ましくは、それぞれREM:0.0015%以上、Ca:0.0015%以上、Sn:0.09%以上、Mg:0.0005%以上とする。一方、REM:0.005%、Ca:0.005%、Sn:0.20%、Mg:0.01%をそれぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる場合がある。このため、含有する場合には、それぞれREM:0.005%以下、Ca:0.005%以下、Sn:0.20%以下、Mg:0.01%以下とする。より好ましくは、それぞれREM:0.004%以下、Ca:0.004%以下、Sn:0.15%以下、Mg:0.005%以下とする。
Ta、Co、Sbはいずれも耐CO2腐食性、耐硫化物応力割れ性および耐硫化物応力腐食割れ性の改善に寄与する元素として有用であり、必要に応じて選択して含有できる。このような効果を確保するためには、それぞれTa:0.01%以上、Co:0.01%以上、Sb:0.01%以上含有することが望ましい。一方、Ta:0.1%、Co:1.0%、Sb:1.0%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなる場合がある。このため、含有する場合には、それぞれTa:0.01~0.1%、Co:0.01~1.0%、Sb:0.01~1.0%とする。なお、Coは、上述の効果に加えて、Ms点を高め、強度増加にも寄与する。より好ましくは、それぞれTa:0.02~0.05%、Co:0.02~0.5%、Sb:0.02~0.5%とする。
得られた鋼管の圧延方向に垂直な面かつ板厚中央位置の面より組織観察用試験片を採取した。この組織観察用試験片を、研磨、ビレラ液(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10ml、および100mlの割合で混合した試薬)で腐食して、光学顕微鏡(倍率:400倍)で組織を観察した。得られた組織写真を用いて肉厚方向に単位長さ当たり(試験片における1mm相当)のフェライト-オーステナイト粒界の数(本/mm)を測定する事により求めた。
フェライト相の体積率は、圧延方向に垂直な面かつ板厚中央位置の面を走査型電子顕微鏡で観察することにより求めた。上述の組織観察用試験片をビレラ試薬で腐食して走査型電子顕微鏡(1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の面積率の平均値を算出し、これを体積率(体積%)とした。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度
Rα:αの結晶額的理論計算値
Iγ:γの積分強度
Rγ:γの結晶額的理論計算値
を用いて換算した。
上述の熱処理を施された試験片素材から、API弧状引張試験片を採取し、APIの規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。本発明では、降伏強度は、655MPa以上を合格と評価した。
上述の熱処理を施された試験片素材から、JIS Z 2242の規定に準拠して、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施し、-10℃における吸収エネルギーを求め、靭性を評価した。本発明では、vE-10:40J以上を合格と評価した。また得られた結果をGSI値との関係で整理し、図1に示す。
上述の熱処理処理を施された試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施した。
上述の熱処理を施された試験片素材から、NACE TM0177 Method Aに準拠して、丸棒状の試験片(直径:6.4mmφ)を機械加工によって作製し、耐SSC試験を実施した。
また、上述の熱処理された試験片素材から、機械加工により、厚さ3mm×幅15mm×長さ115mmの4点曲げ試験片を採取し、耐SCC試験を実施した。
Claims (14)
- 質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:0.10~1.5%、
P:0.030%以下、
S:0.005%以下、
Cr:20.0~30.0%、
Ni:5.0~10.0%、
Mo:2.0~5.0%、
Cu:2.0~6.0%、
N:0.07%未満
を含有し、残部Feおよび不可避的不純物からなる組成を有し、
組織は、体積率で20~70%のオーステナイト相と30~80%のフェライト相を有する、
降伏強さYSが655MPa以上、試験温度:-10℃におけるシャルピー衝撃試験の吸収エネルギーvE-10が40J以上である二相ステンレス鋼。 - 前記組成に加えてさらに、質量%で、W:0.02~1.5%を含有する請求項1に記載の二相ステンレス鋼。
- 前記組成に加えてさらに、質量%で、V:0.02~0.20%を含有する請求項1または2に記載の二相ステンレス鋼。
- 前記組成に加えてさらに、質量%で、
Zr:0.50%以下、
B:0.0030%以下
のうちから選ばれた1種または2種を含有する請求項1~3のいずれか1項に記載の二相ステンレス鋼。 - 前記組成に加えてさらに、質量%で、
REM:0.005%以下、
Ca:0.005%以下、
Sn:0.20%以下、
Mg:0.0002~0.01%
のうちから選らばれた1種または2種以上を含有する請求項1~4のいずれか1項に記載の二相ステンレス鋼。 - 前記組成に加えてさらに、質量%で、
Ta:0.01~0.1%、
Co:0.01~1.0%、
Sb:0.01~1.0%
のうちから選らばれた1種または2種以上を含有する請求項1~5のいずれか1項に記載の二相ステンレス鋼。 - 前記組織は、さらに、肉厚方向に引いた線分の単位長さ(1mm)当たりに存在するフェライト‐オーステナイト粒界の数として定義されるGSI値が鋼材の肉厚中心部で176以上である請求項1~6のいずれか1項に記載の二相ステンレス鋼。
- 質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:0.10~1.5%、
P:0.030%以下、
S:0.005%以下、
Cr:20.0~30.0%、
Ni:5.0~10.0%、
Mo:2.0~5.0%、
Cu:2.0~6.0%、
N:0.07%未満
を含有し、残部Feおよび不可避的不純物からなる組成を有するステンレス鋼を、
1000℃以上の加熱温度に加熱したのち、空冷以上の平均冷却速度で300℃以下の温度まで冷却する溶体化熱処理と、
350℃~600℃の温度に加熱し冷却する時効熱処理とを施す、
降伏強さYSが655MPa以上かつ、試験温度:-10℃におけるシャルピー衝撃試験の吸収エネルギーvE-10が40J以上である二相ステンレス鋼の製造方法。 - 前記組成に加えてさらに、質量%で、W:0.02~1.5%を含有する請求項8に記載の二相ステンレス鋼の製造方法。
- 前記組成に加えてさらに、質量%で、V:0.02~0.20%を含有する請求項8または9に記載の二相ステンレス鋼の製造方法。
- 前記組成に加えてさらに、質量%で、
Zr:0.50%以下、
B:0.0030%以下
のうちから選ばれた1種または2種を含有する請求項8~10のいずれか1項に記載の二相ステンレス鋼の製造方法。 - 前記組成に加えてさらに、質量%で、
REM:0.005%以下、
Ca:0.005%以下、
Sn:0.20%以下、
Mg:0.0002~0.01%
のうちから選らばれた1種または2種以上を含有する請求項8~11のいずれか1項に記載の二相ステンレス鋼の製造方法。 - 前記組成に加えてさらに、質量%で、
Ta:0.01~0.1%、
Co:0.01~1.0%、
Sb:0.01~1.0%
のうちから選らばれた1種または2種以上を含有する請求項8~12のいずれか1項に記載の二相ステンレス鋼の製造方法。 - 前記ステンレス鋼は、前記組成を有する鋼素材を加熱し熱間加工を施して鋼管素材とし、該鋼管素材を加熱し、造管、成形し、空冷以上の冷却を施して継目無鋼管としたものであり、
前記熱間加工は、1200℃~1000℃の温度域における合計圧下量が30%以上50%以下、である請求項8~13のいずれか1項に記載の二相ステンレス鋼の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112019002999-0A BR112019002999B1 (pt) | 2016-09-02 | 2017-08-22 | Tubo de aço inoxidável sem costura de fase dupla e método para a produção do mesmo |
RU2019104171A RU2698235C1 (ru) | 2016-09-02 | 2017-08-22 | Двухфазная нержавеющая сталь и способ её изготовления |
US16/325,572 US11566301B2 (en) | 2016-09-02 | 2017-08-22 | Dual-phase stainless steel, and method of production thereof |
MX2019001830A MX2019001830A (es) | 2016-09-02 | 2017-08-22 | Acero inoxidable de fase doble y metodo de produccion del mismo. |
CN201780050078.6A CN109642282B (zh) | 2016-09-02 | 2017-08-22 | 双相不锈钢及其制造方法 |
EP17846219.8A EP3508596B1 (en) | 2016-09-02 | 2017-08-22 | Dual-phase stainless seamless steel pipe and method of production thereof |
JP2017563365A JP6358411B1 (ja) | 2016-09-02 | 2017-08-22 | 二相ステンレス鋼およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-171583 | 2016-09-02 | ||
JP2016171583 | 2016-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043214A1 true WO2018043214A1 (ja) | 2018-03-08 |
Family
ID=61300921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029963 WO2018043214A1 (ja) | 2016-09-02 | 2017-08-22 | 二相ステンレス鋼およびその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11566301B2 (ja) |
EP (1) | EP3508596B1 (ja) |
JP (1) | JP6358411B1 (ja) |
CN (1) | CN109642282B (ja) |
AR (1) | AR109563A1 (ja) |
BR (1) | BR112019002999B1 (ja) |
MX (1) | MX2019001830A (ja) |
RU (1) | RU2698235C1 (ja) |
WO (1) | WO2018043214A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020044988A1 (ja) * | 2018-08-31 | 2020-03-05 | Jfeスチール株式会社 | 二相ステンレス継目無鋼管およびその製造方法 |
WO2020158111A1 (ja) * | 2019-01-30 | 2020-08-06 | Jfeスチール株式会社 | 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法 |
WO2020241084A1 (ja) * | 2019-05-29 | 2020-12-03 | Jfeスチール株式会社 | 二相ステンレス鋼およびその製造方法、並びに二相ステンレス鋼管 |
WO2021157251A1 (ja) * | 2020-02-05 | 2021-08-12 | Jfeスチール株式会社 | ステンレス継目無鋼管およびその製造方法 |
JP7323858B1 (ja) * | 2022-02-25 | 2023-08-09 | 日本製鉄株式会社 | 二相ステンレス鋼材 |
WO2023162817A1 (ja) * | 2022-02-25 | 2023-08-31 | 日本製鉄株式会社 | 二相ステンレス鋼材 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3631031B1 (en) * | 2017-05-22 | 2022-12-14 | Alleima Tube AB | New duplex stainless steel |
CN115485406B (zh) * | 2020-05-07 | 2023-12-19 | 日本制铁株式会社 | 双相不锈钢无缝钢管 |
CN115552049B (zh) * | 2020-06-02 | 2023-10-20 | 杰富意钢铁株式会社 | 双相不锈钢和双相不锈钢无缝钢管 |
EP4174205A1 (en) * | 2020-06-30 | 2023-05-03 | Nippon Steel Corporation | Two-phase stainless steel pipe and welded fitting |
CN112899575A (zh) * | 2021-01-20 | 2021-06-04 | 钢铁研究总院 | 基于冷金属过渡电弧增材制造的奥氏体不锈钢丝材及工艺 |
CN115637389B (zh) * | 2022-11-07 | 2024-02-06 | 东营嘉扬精密金属有限公司 | 一种a995 6a铸造高强度双相不锈钢及其制造工艺 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581062A (ja) * | 1981-06-26 | 1983-01-06 | Mitsubishi Heavy Ind Ltd | 耐食耐摩耗鋳鋼 |
JPS6123713A (ja) | 1984-07-11 | 1986-02-01 | Sumitomo Metal Ind Ltd | 高強度2相ステンレス鋼の製造方法 |
JPS61157626A (ja) | 1984-12-29 | 1986-07-17 | Nippon Kokan Kk <Nkk> | フエライト・オ−ステナイト2相ステンレス鋼の製造方法 |
JPH05302150A (ja) | 1991-04-16 | 1993-11-16 | Nippon Steel Corp | 耐硫化水素腐食性に優れた2相ステンレス鋼 |
JPH07150244A (ja) | 1993-11-25 | 1995-06-13 | Sumitomo Metal Ind Ltd | 冷間加工用フェライトステンレス鋼の製造方法 |
JPH07207337A (ja) | 1994-01-21 | 1995-08-08 | Sumitomo Metal Ind Ltd | 高強度2相ステンレス鋼材の製造方法 |
JPH08176742A (ja) * | 1994-12-27 | 1996-07-09 | Sumitomo Metal Ind Ltd | 硫化水素環境での耐食性に優れた2相ステンレス鋼 |
JPH1060526A (ja) | 1996-08-19 | 1998-03-03 | Nkk Corp | 耐海水性用析出強化型二相ステンレス鋼の製造方法 |
JP2006519313A (ja) * | 2003-03-02 | 2006-08-24 | サンドビック インテレクチュアル プロパティー ハンデルスボラーグ | 海水装置に使用する2相ステンレス鋼 |
JP2009046759A (ja) | 2007-07-20 | 2009-03-05 | Sumitomo Metal Ind Ltd | 二相ステンレス鋼管の製造方法 |
WO2012111537A1 (ja) * | 2011-02-14 | 2012-08-23 | 住友金属工業株式会社 | 二相ステンレス鋼 |
CN104694830A (zh) * | 2013-12-09 | 2015-06-10 | 青岛平度市旧店金矿 | 一种多元合金化双相铸造不锈钢 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1158614A (en) * | 1967-03-16 | 1969-07-16 | Langley Alloys Ltd | Improvement in Stainless Steels |
US3574002A (en) | 1968-08-01 | 1971-04-06 | Int Nickel Co The | Stainless steel having improved corrosion and fatigue resistance |
JPS581062B2 (ja) | 1975-04-24 | 1983-01-10 | 松下電工株式会社 | コケイソセイブツ |
CA1242095A (en) * | 1984-02-07 | 1988-09-20 | Akira Yoshitake | Ferritic-austenitic duplex stainless steel |
JPS60165363A (ja) * | 1984-02-07 | 1985-08-28 | Kubota Ltd | 高耐食性高耐力二相ステンレス鋼 |
SU1447924A1 (ru) * | 1987-06-01 | 1988-12-30 | Центральный Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардине | Коррозионно-стойка сталь |
US4816085A (en) | 1987-08-14 | 1989-03-28 | Haynes International, Inc. | Tough weldable duplex stainless steel wire |
JPS6460526A (en) | 1987-08-31 | 1989-03-07 | Fujitsu Ltd | Printing device |
JPH06123713A (ja) | 1992-10-09 | 1994-05-06 | Sumitomo Metal Mining Co Ltd | フィルム状物体の2次元画像取り込み装置 |
SE9902346L (sv) * | 1999-06-21 | 2000-08-07 | Sandvik Ab | Användning av en rostfri stållegering såsom umbilicalrör i havsmiljö |
RU2203343C2 (ru) * | 2001-03-27 | 2003-04-27 | Федеральное государственное унитарное предприятие Центральный научно-исследовательский институт конструкционных материалов "Прометей" | Двухфазная нержавеющая сталь с высокой коррозионной стойкостью в агрессивных средах |
SE527175C2 (sv) * | 2003-03-02 | 2006-01-17 | Sandvik Intellectual Property | Duplex rostfri ställegering och dess användning |
FI121340B (fi) * | 2008-12-19 | 2010-10-15 | Outokumpu Oy | Dupleksinen ruostumaton teräs |
CN102471916B (zh) * | 2009-07-23 | 2013-04-24 | 杰富意钢铁株式会社 | 耐腐蚀性优良的燃料电池用不锈钢及其制造方法 |
CN104919072B (zh) | 2013-01-15 | 2017-07-14 | 株式会社神户制钢所 | 双相不锈钢钢材和双相不锈钢钢管 |
JP6129140B2 (ja) | 2014-11-05 | 2017-05-17 | 日新製鋼株式会社 | 拡散接合用ステンレス鋼材 |
JP6197850B2 (ja) | 2014-12-18 | 2017-09-20 | Jfeスチール株式会社 | 二相ステンレス継目無鋼管の製造方法 |
-
2017
- 2017-08-22 JP JP2017563365A patent/JP6358411B1/ja active Active
- 2017-08-22 BR BR112019002999-0A patent/BR112019002999B1/pt active IP Right Grant
- 2017-08-22 CN CN201780050078.6A patent/CN109642282B/zh active Active
- 2017-08-22 US US16/325,572 patent/US11566301B2/en active Active
- 2017-08-22 EP EP17846219.8A patent/EP3508596B1/en active Active
- 2017-08-22 WO PCT/JP2017/029963 patent/WO2018043214A1/ja active Application Filing
- 2017-08-22 MX MX2019001830A patent/MX2019001830A/es unknown
- 2017-08-22 RU RU2019104171A patent/RU2698235C1/ru active
- 2017-09-01 AR ARP170102439A patent/AR109563A1/es active IP Right Grant
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581062A (ja) * | 1981-06-26 | 1983-01-06 | Mitsubishi Heavy Ind Ltd | 耐食耐摩耗鋳鋼 |
JPS6123713A (ja) | 1984-07-11 | 1986-02-01 | Sumitomo Metal Ind Ltd | 高強度2相ステンレス鋼の製造方法 |
JPS61157626A (ja) | 1984-12-29 | 1986-07-17 | Nippon Kokan Kk <Nkk> | フエライト・オ−ステナイト2相ステンレス鋼の製造方法 |
JPH05302150A (ja) | 1991-04-16 | 1993-11-16 | Nippon Steel Corp | 耐硫化水素腐食性に優れた2相ステンレス鋼 |
JPH07150244A (ja) | 1993-11-25 | 1995-06-13 | Sumitomo Metal Ind Ltd | 冷間加工用フェライトステンレス鋼の製造方法 |
JPH07207337A (ja) | 1994-01-21 | 1995-08-08 | Sumitomo Metal Ind Ltd | 高強度2相ステンレス鋼材の製造方法 |
JPH08176742A (ja) * | 1994-12-27 | 1996-07-09 | Sumitomo Metal Ind Ltd | 硫化水素環境での耐食性に優れた2相ステンレス鋼 |
JPH1060526A (ja) | 1996-08-19 | 1998-03-03 | Nkk Corp | 耐海水性用析出強化型二相ステンレス鋼の製造方法 |
JP2006519313A (ja) * | 2003-03-02 | 2006-08-24 | サンドビック インテレクチュアル プロパティー ハンデルスボラーグ | 海水装置に使用する2相ステンレス鋼 |
JP2009046759A (ja) | 2007-07-20 | 2009-03-05 | Sumitomo Metal Ind Ltd | 二相ステンレス鋼管の製造方法 |
WO2012111537A1 (ja) * | 2011-02-14 | 2012-08-23 | 住友金属工業株式会社 | 二相ステンレス鋼 |
CN104694830A (zh) * | 2013-12-09 | 2015-06-10 | 青岛平度市旧店金矿 | 一种多元合金化双相铸造不锈钢 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3508596A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020044988A1 (ja) * | 2018-08-31 | 2020-03-05 | Jfeスチール株式会社 | 二相ステンレス継目無鋼管およびその製造方法 |
JPWO2020044988A1 (ja) * | 2018-08-31 | 2020-09-03 | Jfeスチール株式会社 | 二相ステンレス継目無鋼管およびその製造方法 |
WO2020158111A1 (ja) * | 2019-01-30 | 2020-08-06 | Jfeスチール株式会社 | 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法 |
JP6747628B1 (ja) * | 2019-01-30 | 2020-08-26 | Jfeスチール株式会社 | 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法 |
WO2020241084A1 (ja) * | 2019-05-29 | 2020-12-03 | Jfeスチール株式会社 | 二相ステンレス鋼およびその製造方法、並びに二相ステンレス鋼管 |
JP6863529B1 (ja) * | 2019-05-29 | 2021-04-21 | Jfeスチール株式会社 | 二相ステンレス鋼およびその製造方法、並びに二相ステンレス鋼管 |
US20220228231A1 (en) * | 2019-05-29 | 2022-07-21 | Jfe Steel Corporation | Duplex stainless steel and method for manufacturing same, and duplex stainless steel pipe |
EP3978641A4 (en) * | 2019-05-29 | 2022-10-26 | JFE Steel Corporation | DUPLEX STAINLESS STEEL AND METHOD OF MANUFACTURING THEREOF, AND DUPLEX STAINLESS STEEL PIPE |
WO2021157251A1 (ja) * | 2020-02-05 | 2021-08-12 | Jfeスチール株式会社 | ステンレス継目無鋼管およびその製造方法 |
JP6954492B1 (ja) * | 2020-02-05 | 2021-10-27 | Jfeスチール株式会社 | ステンレス継目無鋼管およびその製造方法 |
JP7323858B1 (ja) * | 2022-02-25 | 2023-08-09 | 日本製鉄株式会社 | 二相ステンレス鋼材 |
WO2023162817A1 (ja) * | 2022-02-25 | 2023-08-31 | 日本製鉄株式会社 | 二相ステンレス鋼材 |
Also Published As
Publication number | Publication date |
---|---|
US11566301B2 (en) | 2023-01-31 |
JP6358411B1 (ja) | 2018-07-18 |
BR112019002999B1 (pt) | 2022-09-06 |
EP3508596A1 (en) | 2019-07-10 |
US20190211416A1 (en) | 2019-07-11 |
AR109563A1 (es) | 2018-12-26 |
EP3508596B1 (en) | 2022-03-30 |
BR112019002999A2 (pt) | 2019-05-14 |
MX2019001830A (es) | 2019-06-06 |
JPWO2018043214A1 (ja) | 2018-08-30 |
RU2698235C1 (ru) | 2019-08-23 |
CN109642282A (zh) | 2019-04-16 |
CN109642282B (zh) | 2021-10-01 |
EP3508596A4 (en) | 2019-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6358411B1 (ja) | 二相ステンレス鋼およびその製造方法 | |
JP6766887B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6399259B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6369662B1 (ja) | 二相ステンレス鋼およびその製造方法 | |
JP6226081B2 (ja) | 高強度ステンレス継目無鋼管およびその製造方法 | |
JP6460229B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP5861786B2 (ja) | 油井用ステンレス継目無鋼管およびその製造方法 | |
WO2017138050A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6156609B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
WO2018020886A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
WO2014097628A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6237873B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP6229794B2 (ja) | 油井用継目無ステンレス鋼管およびその製造方法 | |
JP6409827B2 (ja) | 油井用継目無ステンレス鋼管の製造方法 | |
JP7201094B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7226571B2 (ja) | ステンレス継目無鋼管およびその製造方法 | |
JP6863529B1 (ja) | 二相ステンレス鋼およびその製造方法、並びに二相ステンレス鋼管 | |
JP7347714B1 (ja) | 油井用高強度ステンレス継目無鋼管 | |
CN117120653A (zh) | 不锈钢管及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017563365 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846219 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019002999 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017846219 Country of ref document: EP Effective date: 20190402 |
|
ENP | Entry into the national phase |
Ref document number: 112019002999 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190213 |