WO2018043003A1 - 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ - Google Patents

改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ Download PDF

Info

Publication number
WO2018043003A1
WO2018043003A1 PCT/JP2017/027855 JP2017027855W WO2018043003A1 WO 2018043003 A1 WO2018043003 A1 WO 2018043003A1 JP 2017027855 W JP2017027855 W JP 2017027855W WO 2018043003 A1 WO2018043003 A1 WO 2018043003A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
diaphragm
molded product
molded article
tetrafluoroethylene
Prior art date
Application number
PCT/JP2017/027855
Other languages
English (en)
French (fr)
Inventor
今村 均
達也 舩岡
武司 下野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201780051212.4A priority Critical patent/CN109642038B/zh
Priority to US16/329,059 priority patent/US11072672B2/en
Publication of WO2018043003A1 publication Critical patent/WO2018043003A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0844Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using X-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0872Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using ion-radiation, e.g. alpha-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0883Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using neutron radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7506Valves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a method for producing a modified molded product, a molded product, a diaphragm, and a diaphragm valve.
  • diaphragm valves are used to supply highly corrosive chemicals used in semiconductor manufacturing.
  • Polytetrafluoroethylene (PTFE) and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) have excellent chemical resistance, non-adhesiveness, and the like, and are used as a constituent material for diaphragm valves.
  • particles are generated from the diaphragm valve, causing problems such as a reduction in semiconductor manufacturing yield.
  • the conventional diaphragm valve has a valve box made of PTFE, but since this valve box is made by cutting, foreign matters such as burrs are attached, and generation of particles is inevitable. Yes. In addition, by forming at least the valve box from a PFA molded product, there is no adhesion of foreign matters such as burrs due to cutting, and generation of particles is avoided.
  • JP-A-11-37329 JP 2012-26476 A Japanese Patent Laid-Open No. 01-33810 Japanese Patent Laid-Open No. 10-316761 JP 2000-159914 A JP 2013-27875 A JP 2014-44401 A JP 09-278907 A
  • An object of the present invention is to provide a manufacturing method for manufacturing a reformed molded product capable of realizing a diaphragm that hardly generates particles in view of the above-described present situation.
  • Another object of the present invention is to provide a molded article, a diaphragm, and a diaphragm valve that hardly generate particles.
  • the material of the diaphragm is modified polytetrafluoroethylene (modified PTFE), and the material of the valve seat is tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • modified PTFE polytetrafluoroethylene
  • the material of the valve seat is tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • PFA coalescence
  • modified molded products obtained by subjecting modified PTFE to radiation treatment under specific conditions are less likely to generate particles even when repeatedly contacted and separated from PFA molded products.
  • the headline and the present invention have been completed.
  • Patent Documents 3 to 8 a technique for modifying PTFE and PFA by irradiating them with radiation is known. However, it has also been found that it is necessary to irradiate radiation under conditions different from those in the past in order to obtain a modified molded product of modified PTFE that hardly generates particles.
  • the present invention provides a process for obtaining a molded product by molding a modified polytetrafluoroethylene containing a modified monomer unit based on a tetrafluoroethylene unit and a modified monomer copolymerizable with tetrafluoroethylene, and 270
  • a method for producing a modified molded product comprising a step of obtaining a modified molded product by irradiating a radiation of 30 kGy or more and less than 70 kGy at a temperature of ⁇ 310 ° C.
  • the modified monomer unit is preferably 0.001 to 1% by mass based on the total of the tetrafluoroethylene unit and the modified monomer unit.
  • the modified polytetrafluoroethylene preferably has a secondary melting point of 320 to 329 ° C.
  • the modified molded product After obtaining the modified molded product, it is preferable to further include a step of machining the modified molded product by machining.
  • the modified molded article is preferably a diaphragm.
  • the present invention is a molded article of modified polytetrafluoroethylene, wherein the modified polytetrafluoroethylene comprises a tetrafluoroethylene unit, a modified monomer unit based on a modified monomer copolymerizable with tetrafluoroethylene, and a tertiary
  • the molded article is characterized in that it contains carbon and the tertiary carbon is 0.035 to 0.100 mol% with respect to the total of the tetrafluoroethylene unit and the modified monomer unit.
  • the modified monomer unit is preferably 0.001 to 1% by mass based on the total of the tetrafluoroethylene unit and the modified monomer unit.
  • the present invention is also a diaphragm comprising the above-described molded product.
  • the present invention is also a diaphragm obtained by irradiating a modified polytetrafluoroethylene with radiation of 30 kGy or more and less than 70 kGy at 270 to 310 ° C.
  • the present invention is also a diaphragm valve comprising a valve seat and the above-described diaphragm.
  • the valve seat is preferably composed of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • the production method of the present invention can produce a modified molded product that can realize a diaphragm that hardly generates particles.
  • the molded product of the present invention hardly generates particles.
  • the diaphragm and the diaphragm valve of the present invention hardly generate particles.
  • 1 is a schematic cross-sectional view showing an embodiment of a diaphragm and a diaphragm valve of the present invention. It is a schematic diagram for demonstrating the method of a particle generation test.
  • 2 is a photograph of a PFA sheet after a particle generation test performed in Experimental Example 1. It can be seen that precipitates are attached on the PFA sheet.
  • the production method of the present invention includes a step of molding a modified polytetrafluoroethylene (modified PTFE) to obtain a molded product.
  • this process may be referred to as a molding process.
  • the molding method a known method for molding the modified PTFE can be employed, and examples thereof include compression molding, ram extrusion molding, and isostatic molding.
  • coating the aqueous dispersion of the said modified PTFE is also mentioned, since it is difficult to manufacture molded articles, such as a diaphragm which requires bending resistance, this method is not preferable in this invention. .
  • the compression molding method is preferred as the molding method. That is, in the molding step, the powder of the modified PTFE is filled in a mold and compressed to obtain a preform (preform), and the preform is made to have a melting point higher than the primary melting point of the modified PTFE. It is preferable to include the process of obtaining the said molded article by heating.
  • the shape of the molded product is not particularly limited, and examples thereof include a film, a sheet, a plate, a rod, a block, a cylinder, a container, a tube, a bellows, a packing, and a gasket.
  • the molded product may be a molded product (also referred to as a block) obtained by a compression molding method.
  • the molded product which has the shape of a diaphragm can also be obtained by shape
  • the manufacturing method preferably further includes a step of processing the molded product into a desired shape by machining after obtaining the molded product by the molding step.
  • the modified PTFE has a very high melt viscosity even when heated to the melting point or higher, and cannot be extruded or injection-molded for ordinary thermoplastic resins. Therefore, it is not easy to obtain a molded article having a complicated and fine shape such as a diaphragm directly from the modified PTFE powder. However, a molded product having a complicated and fine shape can be easily obtained by machining a molded product molded in advance.
  • Examples of the machining method include cutting.
  • the film can be cut out from the block by cutting, and the film can be processed into a desired shape by cutting.
  • this machining step it is also preferable to machine the diaphragm into the shape of the diaphragm by the machining, preferably the cutting.
  • the modified PTFE includes a modified monomer unit based on a tetrafluoroethylene (TFE) unit and a modified monomer copolymerizable with TFE.
  • TFE tetrafluoroethylene
  • the modified PTFE has an advantage of being excellent in creep resistance as compared with homo-PTFE consisting only of TFE units. Therefore, the production method can produce a modified molded article that can be suitably used for a diaphragm.
  • the content of the modified monomer unit is 0.001 to 1% by mass, more preferably 0.01 to 1% by mass, more preferably 0.02% by mass based on the total of the TFE unit and the modified monomer unit. More preferable is 0.20% by mass. If the amount is too small, the creep resistance will be lowered. If the amount is too large, the tensile strength and crack resistance will be lowered. In addition, the effect of improving the creep resistance is small for using a large amount of expensive perfluorovinyl ether. It is.
  • the modified monomer unit means a part derived from the modified monomer, which is a part of the molecular structure of the modified PTFE.
  • the content of the modified monomer unit can be determined by Fourier transform infrared spectroscopy (FT-IR) described in Japanese Patent No. 3177978.
  • the modified PTFE has non-melt processability.
  • the above-mentioned non-melt processability means the property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point in accordance with ASTM D-1238 and D-2116.
  • the modified PTFE preferably has a standard specific gravity [SSG] of 2.13 to 2.23, more preferably 2.13 to 2.19.
  • SSG is an SSG defined in ASTM D4895-89 as an index of the molecular weight of non-melt processable PTFE.
  • the modified PTFE preferably has a primary melting point of 332 to 348 ° C.
  • the primary melting point is a value measured with a differential scanning calorimetry (DSC) temperature increase rate of 10 ° C./min for the modified PTFE having no history of heating to a temperature of 300 ° C. or higher.
  • DSC differential scanning calorimetry
  • the modified PTFE preferably has a secondary melting point of 320 to 329 ° C.
  • the secondary melting point is a value obtained by measuring differential heating calorimetry (DSC) at a heating rate of 10 ° C./min for modified PTFE heated to a temperature equal to or higher than the primary melting point (eg, 360 ° C.).
  • the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropylene [HFP]; chlorofluoroolefin such as chlorotrifluoroethylene [CTFE];
  • HFP hexafluoropropylene
  • CTFE chlorofluoroolefin
  • VDF vinylidene fluoride
  • denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
  • Rf represents a perfluoro organic group
  • perfluoro organic group means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (1).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in the PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • Purpleo (propyl vinyl ether) [PPVE] in which the group is a perfluoropropyl group is preferred.
  • Rf is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf is represented by the following formula:
  • Rf is the following formula:
  • n an integer of 1 to 4.
  • the perfluoroalkylethylene is not particularly limited, and examples thereof include (perfluorobutyl) ethylene (PFBE) and (perfluorohexyl) ethylene.
  • the modified monomer in the modified PTFE is preferably at least one selected from the group consisting of HFP, CTFE, VDF, PAVE, PFBE, and ethylene.
  • PAVE is more preferable, and PPVE is still more preferable.
  • the production method of the present invention further includes a step of obtaining a modified molded product by irradiating the molded product with radiation of 30 kGy or more and less than 70 kGy at 270 to 310 ° C.
  • the irradiation temperature is preferably 280 ° C. or higher, and preferably 300 ° C. or lower.
  • the adjustment of the irradiation temperature is not particularly limited, and can be performed by a known method. Specifically, the modified PTFE is held in a heating furnace maintained at a predetermined temperature, or placed on a hot plate and energized by a heater built in the hot plate, or by an external heating means. The method of heating is mentioned.
  • the radiation dose is preferably 60 kGy or less, more preferably 40 kGy or more.
  • the production method of the present invention is also characterized in that it employs irradiation conditions of a relatively low temperature and a relatively low dose. Therefore, even if it irradiates with radiation, the said molded article is hardly damaged and there is almost no change in the dimension of the said molded article. Therefore, even if the molded product is a molded product having a complicated and fine shape such as a diaphragm, the shape is not destroyed and the mechanical properties are not impaired.
  • the manufacturing method of the present invention can use a molded product having a small thickness or a molded product having a complicated and fine shape due to the above characteristics.
  • the main chain of the polymer is broken or the polymers are cross-linked.
  • the irradiation temperature is high, and crosslinking between polymers proceeds preferentially. Therefore, even when irradiated with a high dose of radiation, the influence of cutting of the polymer main chain is small.
  • the high irradiation temperature tends to change the dimensions of the molded product, and it is difficult to adopt it especially for molded products having a small thickness and complicated and fine shapes.
  • the molded article may have a thickness of 3.0 mm or less, 2.5 mm or less, 2.0 mm or less, 1.5 mm or less, and 1.0 mm or less. Good.
  • the lower limit of the thickness is not particularly limited, but may be 0.1 mm in consideration of bending resistance.
  • Examples of the radiation include electron beams, ultraviolet rays, gamma rays, X-rays, neutron rays, high energy ions, and the like.
  • an electron beam is preferable because it has excellent transmission power, a high dose rate, and is suitable for industrial production.
  • the method for irradiating radiation is not particularly limited, and examples thereof include a method performed using a conventionally known radiation irradiator.
  • the irradiation environment is not particularly limited, but the oxygen concentration is preferably 1000 ppm or less, more preferably in the absence of oxygen, and in an inert gas atmosphere such as nitrogen, helium or argon More preferably, it is in the middle.
  • the modified PTFE used as the raw material of the modified molded product preferably has an MIT value of 7 million times or more, more preferably 10 million times or more.
  • the MIT value can be measured according to ASTM D2176. Specifically, a test piece having a width of 12.5 mm, a length of 130 mm, and a thickness of 0.25 mm was prepared and mounted on an MIT testing machine (model No. 12176, manufactured by Yasuda Seiki Seisakusho Co., Ltd.). This is the number of times from when the test piece is bent under the condition that the bending angle is 135 degrees and the number of bending times is 175 times / minute, and the test piece is cut.
  • the production method of the present invention can further include a step of processing the modified molded product into a desired shape by machining after obtaining the modified molded product.
  • the machining is as described above.
  • the irradiation condition in the production method of the present invention can be applied to a molded product having a small thickness or a molded product having a complicated and fine shape. Therefore, before irradiation with radiation, the molded product is processed into a desired shape by machining. It is more convenient to process.
  • a modified molded product can be obtained by the manufacturing method described above.
  • the modified molded product obtained from the above-described manufacturing method is useful because it hardly generates particles.
  • the modified molded product may be a diaphragm.
  • the present invention is a molded product of modified PTFE, wherein the modified PTFE includes a TFE unit, a modified monomer unit based on a modified monomer copolymerizable with TFE, and a tertiary carbon, wherein the tertiary carbon is It is also a molded product characterized by being 0.035 to 0.100 mol% with respect to the total of the TFE unit and the modified monomer unit. Since the molded article is composed of the modified PTFE containing a specific amount of the tertiary carbon, it is difficult for particles to be generated and has good mechanical properties.
  • the content of the tertiary carbon can be calculated according to the following calculation formula by performing 19 F-NMR measurement on the molded product to obtain the following peak intensities (integrated values of AC) of AC.
  • 19 F-NMR measurement condition measurement apparatus solid 19 F-NMR measurement apparatus, manufactured by BRUKER Measurement condition: 282 MHz (CF 2 of modified PTFE is set to ⁇ 120 ppm) Rotation speed 30kHz
  • Peak intensity A Chemical shift This peak is observed at ⁇ 80 ( ⁇ 74 to ⁇ 85) ppm, and is a modified monomer of perfluoroalkyl vinyl ether (PAVE) —O—CF * 2— and —CF * 3 of C—F * 3 .
  • PAVE perfluoroalkyl vinyl ether
  • Peak intensity B A peak observed in the chemical shift -120 (-84 ⁇ -150) ppm, of PAVE C-F * 5 or tetrafluoroethylene (TFE) from C-F * 4 pieces are overlapping peaks are of Strength
  • Peak intensity C A peak observed in the chemical shift -183 (-178 ⁇ -191) ppm, tertiary carbon -CF 2 CF * (-CF 2 - ) CF 2 - intensity of F * of peak derived from
  • the modified PTFE containing the tertiary carbon can have the same configuration as the modified PTFE used in the method for producing a modified molded product described above, except that the tertiary carbon is contained.
  • the modified PTFE containing the tertiary carbon can be produced by irradiating the modified PTFE with radiation of 30 kGy or more and less than 70 kGy at 270 to 310 ° C. That is, it is also a preferable aspect of the present invention that the molded product of the modified PTFE containing the tertiary carbon is the above-described modified molded product.
  • the irradiation temperature is preferably 280 ° C. or higher, and preferably 300 ° C. or lower.
  • the radiation dose is preferably 60 kGy or less, more preferably 40 kGy or more.
  • the molded article composed of the modified PTFE containing the tertiary carbon may have a thickness of 3.0 mm or less, 2.5 mm or less, or 2.0 mm or less. It may be 5 mm or less and may be 1.0 mm or less. The lower limit of the thickness is not particularly limited, but may be 0.1 mm in consideration of bending resistance.
  • the present invention is also a diaphragm comprising the above-described molded product. Since the diaphragm is composed of the modified PTFE containing a specific amount of the tertiary carbon, it is not easily deteriorated even when it comes into contact with highly corrosive chemicals used in a semiconductor factory, and repeatedly contacts the valve seat. Even if it touches, it is hard to generate particles.
  • the present invention is also a diaphragm obtained by irradiating the modified PTFE with radiation of 30 kGy or more and less than 70 kGy at 270 to 310 ° C.
  • the modified PTFE before irradiation has the same configuration as the modified PTFE used in the above-described method for producing a modified molded product.
  • the diaphragm is composed of the modified PTFE irradiated with radiation of 30 kGy or more and less than 70 kGy at 270 to 310 ° C., and thus has good mechanical properties and highly corrosive chemicals used in semiconductor factories. It is difficult to deteriorate even if it comes into contact with the like, and even if it repeatedly comes into contact with the valve seat, it is difficult to generate particles.
  • the diaphragm need only be a part of which the radiation is irradiated, and is not limited to the one obtained by irradiating the radiation to the whole.
  • the irradiation temperature is preferably 280 ° C. or higher, and preferably 300 ° C. or lower.
  • the radiation dose is preferably 60 kGy or less, more preferably 40 kGy or more.
  • the diaphragm may have a thickness of 3.0 mm or less, may be 2.5 mm or less, may be 2.0 mm or less, may be 1.5 mm or less, and may be 1.0 mm or less. .
  • the lower limit of the thickness is not particularly limited, but may be 0.1 mm in consideration of bending resistance.
  • the thickness of the diaphragm may be the thickness of the thinnest part of the diaphragm.
  • the diaphragm preferably has a melting point of 320 to 329 ° C.
  • fusing point is the value which measured the temperature increase rate of the differential scanning calorimetry (DSC) about 10 degree-C / min about the said diaphragm.
  • the present invention is also a diaphragm valve comprising a valve seat and the above-described diaphragm. Since the diaphragm valve has the characteristics described above, it can be used for supplying highly corrosive chemicals used in semiconductor manufacturing, and hardly generates particles even when used for a long time.
  • the diaphragm valve preferably includes a valve seat provided in the valve main body and the diaphragm described above that contacts or separates from the valve seat.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the diaphragm and diaphragm valve of the present invention.
  • the diaphragm valve 10 shown in FIG. 1 is in a closed state.
  • a cylinder 14 is connected to the body (valve body) 13.
  • the diaphragm valve 10 includes a diaphragm 11, and the diaphragm 11 is fixed by sandwiching the peripheral edge between the body 13 and the cylinder 14.
  • a piston rod 15 is connected to the diaphragm 11, and when the piston rod 15 moves up and down, the diaphragm 11 also moves up and down.
  • the body 13 is provided with a valve seat 16.
  • the diaphragm 11 comes into contact with the valve seat 16, the fluid flowing in is shielded, and when the diaphragm 11 is separated from the valve seat 16, the fluid is supplied.
  • the diaphragm valve 10 controls the flow rate of the fluid when the diaphragm 11 contacts and separates from the valve seat 16.
  • the diaphragm 11 is a diaphragm provided with the structure mentioned above, even if contact
  • the body 13 in which the valve seat 16 is integrally formed can be made of metal, resin, or the like.
  • the resin include PTFE, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyphenylene sulfide (PPS), and the like.
  • PFA is preferable because it is easy to mold and has excellent chemical resistance.
  • the diaphragm of the present invention is less likely to generate particles even if it repeatedly contacts and separates from a valve seat made of PFA.
  • the PFA preferably has melt processability.
  • MIT value Measured according to ASTM D2176. Specifically, a test piece not irradiated with an electron beam having a width of 12.5 mm, a length of 130 mm, and a thickness of 0.25 mm is mounted on an MIT testing machine (model No. 12176, manufactured by Yasuda Seiki Seisakusho Co., Ltd.) and a load of 1.25 kg. The test piece was bent under the conditions of the bending angle of 135 degrees on each of the left and right sides and 175 times / minute, and the number of times until the test piece was cut (MIT value) was measured.
  • a 0.5 mm thick sheet was cut into a length of 30 mm and a length of 220 mm to obtain a test piece.
  • the obtained test piece was accommodated in an electron beam irradiation container of an electron beam irradiation apparatus (manufactured by NHV Corporation), and then nitrogen gas was added to make the inside of the container a nitrogen atmosphere. After the temperature in the container was raised to 280 ° C. and the temperature was stabilized, the test piece was irradiated with a 40 kGy electron beam under the conditions of an electron beam acceleration voltage of 3000 kV and an irradiation dose intensity of 20 kGy / 5 min. The dimensional change of the test piece before and after electron beam irradiation was 1% or less, and no wrinkle was generated.
  • the component of the deposit adhering to the PFA sheet obtained in Experimental Example 2 was specified by the following method.
  • the PFA sheet with the deposited deposit was placed on a hot stage, heated to 305 ° C. or higher, which is the melting point of PFA, and less than 323 ° C., which is the melting point of modified PTFE, and observed with a polarizing microscope (OLYMPUS BX51).
  • the PFA sheet started to melt, but the precipitate did not melt. Furthermore, when heated above the melting point of the modified PTFE, the precipitate melted. Therefore, it was found that the deposit adhered to the PFA sheet was a modified PTFE deposit.
  • Diaphragm valve 11 Diaphragm 13 Body 14 Cylinder 15 Piston rod 16 Valve seat 21 Seat (sample) 22 Friction element 23 PFA sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

パーティクルを発生させにくいダイヤフラムを実現することができる改質成形品を製造するための製造方法を提供する。テトラフルオロエチレン単位及びテトラフルオロエチレンと共重合可能な変性モノマーに基づく変性モノマー単位を含む変性ポリテトラフルオロエチレンを成形して成形品を得る工程、及び、上記成形品に270~310℃で、30kGy以上70kGy未満の放射線を照射して改質成形品を得る工程を含むことを特徴とする改質成形品の製造方法である。

Description

改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ
本発明は、改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブに関する。
半導体製造工場では、半導体製造に使用する腐食性の高い薬品等の供給にダイヤフラムバルブが使用されている。ポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)は、優れた耐薬品性、非粘着性等を有することから、ダイヤフラムバルブの構成材料として利用されている。しかし、ダイヤフラムバルブからパーティクルが発生し、半導体製造の歩留まりを低下させる等の問題が生じていた。
特許文献1では、従来のダイヤフラム弁は、弁箱がPTFE製であるが、この弁箱は切削加工にて作られるため、バリ等の異物が付着していて、パーティクルの発生が避けられないとしている。そして、少なくとも弁箱をPFA成形品により構成することで、切削加工によるバリ等の異物の付着が無く、パーティクルの発生が避けられるとしている。
特許文献2では、ダイヤフラムの硬度と弁座の硬度とが異なる場合には、ダイヤフラムが弁座に押し付けられるときに、硬度の低い方の部材が削り取られ易いとしている。そして、ダイヤフラムの硬度と弁座の硬度とを概ね等しくすることにより、ダイヤフラムバルブ内でのパーティクルの発生を抑制できるとしている。また、その一例として、ダイヤフラムの材質を変性PTFEとし、弁座の材質をPFAとすることが記載されている。
特開平11-37329号公報 特開2012-26476号公報 特開平01-33810号公報 特開平10-316761号公報 特開2000-159914号公報 特開2013-27875号公報 特開2014-44401号公報 特開平09-278907号公報
しかしながら、半導体回路の微細化に伴い、更にパーティクルを低減する技術が求められている。
本発明は、上記現状に鑑み、パーティクルを発生させにくいダイヤフラムを実現することができる改質成形品を製造するための製造方法を提供することを目的とする。
本発明は、また、パーティクルを発生させにくい成形品、ダイヤフラム及びダイヤフラムバルブを提供することを目的とする。
本発明者らは、上記課題を解決するための手段を鋭意検討した結果、ダイヤフラムの材質を変性ポリテトラフルオロエチレン(変性PTFE)とし、弁座の材質をテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)とした場合、両者が同等の硬度を有するにも関わらず、弁座よりもダイヤフラムの摩耗が大きく、パーティクルを発生させることを突き止めた。更に検討を進めた結果、変性PTFEを特定の条件で放射線処理して得られる改質成形品が、PFA成形品と当接及び離間を繰り返した場合であっても、パーティクルを発生させにくいことを見出し、本発明を完成させるに至った。
また、特許文献3~8に記載されているように、PTFEやPFAに放射線を照射してこれらを改質する技術が知られている。しかし、パーティクルを発生させにくい変性PTFEの改質成形品を得るためには、従来とは異なる条件で放射線を照射する必要があることもあわせて見出された。
すなわち、本発明は、テトラフルオロエチレン単位及びテトラフルオロエチレンと共重合可能な変性モノマーに基づく変性モノマー単位を含む変性ポリテトラフルオロエチレンを成形して成形品を得る工程、及び、上記成形品に270~310℃で、30kGy以上70kGy未満の放射線を照射して改質成形品を得る工程を含むことを特徴とする改質成形品の製造方法である。
上記変性ポリテトラフルオロエチレンは、上記変性モノマー単位がテトラフルオロエチレン単位及び上記変性モノマー単位の合計に対して0.001~1質量%であることが好ましい。
上記変性ポリテトラフルオロエチレンは、二次融点が320~329℃であることが好ましい。
上記成形品を得た後、更に、上記成形品を機械加工により加工する工程を含むことが好ましい。
上記改質成形品を得た後、更に、上記改質成形品を機械加工により加工する工程を含むことが好ましい。
上記改質成形品は、ダイヤフラムであることが好ましい。
本発明は、変性ポリテトラフルオロエチレンの成形品であって、上記変性ポリテトラフルオロエチレンは、テトラフルオロエチレン単位、テトラフルオロエチレンと共重合可能な変性モノマーに基づく変性モノマー単位、及び、第三級炭素を含み、上記第三級炭素がテトラフルオロエチレン単位及び上記変性モノマー単位の合計に対して0.035~0.100モル%であることを特徴とする成形品でもある。
上記変性ポリテトラフルオロエチレンは、上記変性モノマー単位がテトラフルオロエチレン単位及び上記変性モノマー単位の合計に対して0.001~1質量%であることが好ましい。
本発明は、上述の成形品からなることを特徴とするダイヤフラムでもある。
本発明は、変性ポリテトラフルオロエチレンに、270~310℃で、30kGy以上70kGy未満の放射線を照射して得られることを特徴とするダイヤフラムでもある。
本発明は、弁座と上述のダイヤフラムとを備えることを特徴とするダイヤフラムバルブでもある。上記弁座は、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体から構成されることが好ましい。
本発明の製造方法は、パーティクルを発生させにくいダイヤフラムを実現することができる改質成形品を製造することができる。
本発明の成形品は、パーティクルを発生させにくい。
本発明のダイヤフラム及びダイヤフラムバルブは、パーティクルを発生させにくい。
本発明のダイヤフラム及びダイヤフラムバルブの一実施形態を示す断面概略図である。 パーティクル発生試験の方法を説明するための模式図である。 実験例1で実施したパーティクル発生試験後のPFAシートの写真である。PFAシート上に析出物が付着していることが分かる。
以下、本発明を具体的に説明する。
本発明の製造方法は、変性ポリテトラフルオロエチレン(変性PTFE)を成形して成形品を得る工程を含む。本明細書において、この工程を成形工程ということがある。
上記成形の方法としては、上記変性PTFEを成形するための公知の方法を採用することができ、例えば、圧縮成形法、ラム押出成形法、アイソスタティック成形等が挙げられる。上記変性PTFEの水性分散液を塗布した後、乾燥及び焼成する方法も挙げられるが、耐屈曲性が要求されるダイヤフラム等の成形品を製造しにくいことから、本発明において、この方法は好ましくない。
上記成形の方法としては、なかでも、上記圧縮成形法が好ましい。すなわち、上記成形工程は、上記変性PTFEの粉末を金型に充填して圧縮することにより、予備成形品(プレフォーム)を得る工程、及び、上記予備成形品を上記変性PTFEの一次融点以上に加熱して上記成形品を得る工程を含むことが好ましい。
上記成形品の形状は、特に限定されず、例えば、フィルム、シート、板、ロッド、ブロック、円筒、容器、チューブ、ベローズ、パッキン、ガスケット等が挙げられる。また、上記成形品は、圧縮成形法により得られた成形品(ブロックとも呼ばれる)であってもよい。また、ダイヤフラムの形状に成形することにより、ダイヤフラムの形状を有する成形品を得ることもできる。
上記製造方法は、上記成形工程により上記成形品を得た後、更に、上記成形品を機械加工により所望の形状に加工する工程を含むことも好ましい。上記変性PTFEは、融点以上に加熱しても溶融粘度が非常に高く、通常の熱可塑性樹脂に用いられる押出成形、射出成形が不可能である。従って、ダイヤフラム等の複雑で微細な形状を有する成形品を上記変性PTFEの粉末から直接得ることが容易でない。しかし、あらかじめ成形した成形品を機械加工することによって、複雑で微細な形状を有する成形品をも容易に得ることができる。
上記機械加工の方法としては、切削加工が挙げられる。例えば、上記変性PTFEのブロックを得た後、上記ブロックから切削加工によりフィルムを削り出し、上記フィルムを切削加工により所望の形状に加工することができる。
この加工工程では、上記機械加工、好ましくは上記切削加工により、ダイヤフラムの形状に加工することも好ましい。
上記変性PTFEは、テトラフルオロエチレン(TFE)単位及びTFEと共重合可能な変性モノマーに基づく変性モノマー単位を含む。上記変性PTFEは、TFE単位のみからなるホモPTFEと比べて、耐クリープ性に優れる利点があり、従って、上記製造方法は、ダイヤフラムに好適に利用可能な改質成形品を製造できる。
上記変性PTFEにおいて、上記変性モノマー単位の含有量は、TFE単位及び上記変性モノマー単位の合計に対して0.001~1質量%であり、0.01~1質量%がより好ましく、0.02~0.20質量%が更に好ましい。少なすぎると耐クリープ性が低下し、多すぎると引っ張り強度、耐クラック性が低下し、また高価なパーフルオロビニルエーテルを多量に使用する割には耐クリープ性の改善効果が少なく、経済的に不利である。本明細書において、上記変性モノマー単位とは、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味する。上記変性モノマー単位の含有量は特許第3177983号公報に記載のあるフーリエ変換型赤外分光法(FT-IR)により求めることができる。
上記変性PTFEは、非溶融加工性を有する。上記非溶融加工性とは、ASTM D-1238及びD-2116に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質を意味する。 
上記変性PTFEは、標準比重〔SSG〕が2.13~2.23であることが好ましく、2.13~2.19であることがより好ましい。上記SSGは、非溶融加工性のPTFEの分子量の指標としてASTM D4895-89に規定されるSSGである。
上記変性PTFEは、一次融点が332~348℃であることが好ましい。上記一次融点は、300℃以上の温度に加熱した履歴がない上記変性PTFEについて、示差走査熱量測定(DSC)の昇温速度を10℃/分として測定した値である。
上記変性PTFEは、二次融点が320~329℃であることが好ましい。上記二次融点は、一次融点以上の温度(例えば、360℃)に加熱した変性PTFEについて、示差走査熱量測定(DSC)の昇温速度を10℃/分として測定した値である。
上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン:エチレン等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(1)
CF=CF-ORf   (1)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(1)において、Rfが炭素数1~10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロアルキル基がパーフルオロプロピル基であるパープルオロ(プロピルビニルエーテル)〔PPVE〕が好ましい。
上記パーフルオロビニルエーテルとしては、更に、上記一般式(1)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
パーフルオロアルキルエチレンとしては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン等が挙げられる。
上記変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PAVE、PFBE及びエチレンからなる群より選択される少なくとも1種であることが好ましい。より好ましくは、PAVEであり、更に好ましくはPPVEである。
本発明の製造方法は、更に、上記成形品に270~310℃で、30kGy以上70kGy未満の放射線を照射して改質成形品を得る工程を含む。
上記放射線の照射温度が上記変性PTFEの二次融点未満であっても、改質効果が得られることが、本発明者らによって見出された。270℃未満では、上記成形品の劣化が進み、脆くなり、機械的強度が不十分となる。また310℃超では、融点が近づき、上記成形品が変形してしまう問題がある。上記照射温度は、280℃以上が好ましく、300℃以下が好ましい。
上記照射温度の調整は、特に限定されず、公知の方法で行うことができる。具体的には、上記変性PTFEを所定の温度に維持した加熱炉内で保持する方法や、ホットプレート上に載せて、ホットプレートに内蔵した加熱ヒータに通電するか、外部の加熱手段によってホットプレートを加熱する等の方法が挙げられる。
上記放射線の照射線量は、60kGy以下が好ましく、40kGy以上が好ましい。
本発明の製造方法は、比較的低温かつ比較的低線量の照射条件を採用している点にも特徴がある。従って、放射線を照射しても、上記成形品にほとんど損害を与えず、上記成形品の寸法にもほとんど変化がない。従って、上記成形品がダイヤフラム等の複雑で微細な形状を有する成形品であっても、その形状を破壊しないし、機械物性を損なうこともない。
また、本発明の製造方法は、上記の特徴により、厚みが小さい成形品や複雑で微細な形状を有する成形品も使用可能である。放射線を照射すると、ポリマーの主鎖が切断されたり、ポリマー同士が架橋したりする。従来の照射条件は、照射温度が高く、ポリマー同士の架橋が優先して進行することから、高線量の放射線を照射しても、ポリマー主鎖の切断による影響が小さい。しかし、高い照射温度は、成形品の寸法を変化させやすく、特に厚みが小さい成形品や複雑で微細な形状を有する成形品には採用が難しい。他方、低い照射温度を採用すると、照射による改質効果が得られにくいばかりか、ポリマー主鎖の切断による影響が大きく、得られる成形品が脆くなることがある。本発明者らは鋭意検討した結果、上述のとおり、照射温度及び照射線量を極めて限定された範囲とすることによって、成形品が小さい厚みを有する場合であっても、複雑で微細な形状を有する場合であっても、パーティクルを発生させにくい改質成形品を製造できることを見出した。
上記成形品は、厚みが3.0mm以下であってよく、2.5mm以下であってよく、2.0mm以下であってよく、1.5mm以下であってよく、1.0mm以下であってよい。厚みの下限は特に限定されないが、耐屈曲性を考慮して、0.1mmであってよい。
上記成形品の一部分のみに上記放射線を照射することもできる。上記成形品がダイヤフラムの形状を有している場合は、弁座との接触部分のみに放射線を照射することができる。
放射線としては、電子線、紫外線、ガンマ線、X線、中性子線、あるいは高エネルギーイオン等が挙げられる。なかでも、透過力が優れており、線量率が高く、工業的生産に好適である点で電子線が好ましい。
放射線を照射する方法としては、特に限定されず、従来公知の放射線照射装置を用いて行う方法等が挙げられる。
放射線の照射環境としては、特に制限されないが、酸素濃度が1000ppm以下であることが好ましく、酸素不存在下であることがより好ましく、真空中、又は、窒素、ヘリウム若しくはアルゴン等の不活性ガス雰囲気中であることが更に好ましい。
上記改質成形品の原料となる変性PTFEは、MIT値が700万回以上、より好ましくは1000万回以上であることが好ましい。
上記MIT値は、ASTM D2176に準じて測定することができる。具体的には、幅12.5mm、長さ130mm、厚さ0.25mmの試験片を準備し、MIT試験機(型番12176、安田精機製作所社製)に装着し、荷重1.25kg、左右の折り曲げ角度各135度、折り曲げ回数175回/分の条件下で試験片を屈曲させ、試験片が切断するまでの回数である。
本発明の製造方法は、上記改質成形品を得た後、更に、上記改質成形品を機械加工により所望の形状に加工する工程を含むこともできる。上記機械加工については、上述したとおりである。しかし、本発明の製造方法における照射条件は、厚みが小さい成形品や複雑で微細な形状を有する成形品も適用できるので、放射線を照射する前に、上記成形品に機械加工により所望の形状に加工するほうが至便である。
上述の製造方法により、改質成形品を得ることができる。上述の製造方法から得られる改質成形品は、パーティクルを発生させにくいことから、有用である。上記改質成形品はダイヤフラムであってよい。
本発明は、変性PTFEの成形品であって、上記変性PTFEは、TFE単位、TFEと共重合可能な変性モノマーに基づく変性モノマー単位、及び、第三級炭素を含み、上記第三級炭素がTFE単位及び上記変性モノマー単位の合計に対して0.035~0.100モル%であることを特徴とする成形品でもある。上記成形品は、特定量の上記第三級炭素を含む上記変性PTFEから構成されることから、パーティクルが発生しにくく、良好な機械物性を有している。
上記第三級炭素の含有量は、上記成形品について、19F-NMR測定を行い、次のA~Cのピーク強度(ピークの積分値)を求め、次の計算式に従い算出できる。
19F-NMR測定条件
測定装置:固体19F-NMR測定装置、BRUKER社製
測定条件:282MHz(変性PTFEのCFを-120ppmとする)
     回転数30kHz
ピーク強度A
ケミカルシフト-80(-74~-85)ppmに観測されるピークであって、変性モノマーであるパーフルオロアルキルビニルエーテル(PAVE)の-O-CF -と-CF のC-F5個に由来するピークの強度
ピーク強度B
ケミカルシフト-120(-84~-150)ppmに観測されるピークであって、PAVEのC-F5個とテトラフルオロエチレン(TFE)由来のC-F4個が重なっているピークの強度
ピーク強度C
ケミカルシフト-183(-178~-191)ppmに観測されるピークであって、第三級炭素-CFCF(-CF-)CF-に由来するFのピークの強度
計算式
第三級炭素の含有量(モル%)=100×(ピーク強度C)÷{(ピーク強度A÷5)+[ピーク強度B-ピーク強度A]÷4+(ピーク強度C)}
変性モノマーがPAVE以外のモノマーである場合も、19F-NMR測定により、第三級炭素の含有量を求めることができる。
上記第三級炭素を含む上記変性PTFEは、上記第三級炭素を含むこと以外は、上述した改質成形品の製造方法に使用する上記変性PTFEと同じ構成を有することができる。
上記第三級炭素を含む上記変性PTFEは、上記変性PTFEに、270~310℃で、30kGy以上70kGy未満の放射線を照射することにより、製造することができる。すなわち、上記第三級炭素を含む上記変性PTFEの上記成形品が、上述した改質成形品であることも、本発明の好適な態様の一つである。上記照射温度は、280℃以上が好ましく、300℃以下が好ましい。上記放射線の照射線量は、60kGy以下が好ましく、40kGy以上が好ましい。
上記第三級炭素を含む上記変性PTFEから構成される上記成形品は、厚みが3.0mm以下であってよく、2.5mm以下であってよく、2.0mm以下であってよく、1.5mm以下であってよく、1.0mm以下であってよい。厚みの下限は特に限定されないが、耐屈曲性を考慮して、0.1mmであってよい。
本発明は、上述の成形品からなることを特徴とするダイヤフラムでもある。上記ダイヤフラムは、特定量の上記第三級炭素を含む上記変性PTFEから構成されることから、半導体工場で使用される腐食性の高い薬品等と接触しても劣化しにくく、弁座と繰り返し当接しても、パーティクルを発生させにくい。
本発明は、また、上記変性PTFEに、270~310℃で、30kGy以上70kGy未満の放射線を照射して得られることを特徴とするダイヤフラムでもある。放射線照射前の上記変性PTFEは、上述した改質成形品の製造方法に使用する上記変性PTFEと同じ構成を有している。上記ダイヤフラムは、270~310℃で、30kGy以上70kGy未満の放射線を照射した上記変性PTFEから構成されることから、良好な機械物性を有しており、半導体工場で使用される腐食性の高い薬品等と接触しても劣化しにくく、弁座と繰り返し当接しても、パーティクルを発生させにくい。
上記ダイヤフラムは、一部分のみに上記放射線が照射されたものであればよく、全部に上記放射線が照射されて得られたものに限られない。
上記照射温度は、280℃以上が好ましく、300℃以下が好ましい。
上記放射線の照射線量は、60kGy以下が好ましく、40kGy以上が好ましい。
上記ダイヤフラムは、厚みが3.0mm以下であってよく、2.5mm以下であってよく、2.0mm以下であってよく、1.5mm以下であってよく、1.0mm以下であってよい。厚みの下限は特に限定されないが、耐屈曲性を考慮して、0.1mmであってよい。上記ダイヤフラムの厚みは、上記ダイヤフラムの最も薄い部分の厚みであってよい。
上記ダイヤフラムは、融点が320~329℃であることが好ましい。上記融点は、上記ダイヤフラムについて、示差走査熱量測定(DSC)の昇温速度を10℃/分として測定した値である。
本発明は、弁座と上述のダイヤフラムとを備えることを特徴とするダイヤフラムバルブでもある。上記ダイヤフラムバルブは、上記特徴を有することから、半導体製造に使用する腐食性の高い薬品等の供給に使用することができ、長期間使用しても、パーティクルを発生させにくい。上記ダイヤフラムバルブは、バルブ本体に設けられた弁座と、上記弁座に当接又は離間する上述のダイヤフラムとを備えることが好ましい。
図1は、本発明のダイヤフラム及びダイヤフラムバルブの一実施形態の断面概略図である。図1に示すダイヤフラムバルブ10は、閉弁状態にある。図1に示すように、ボディー(バルブ本体)13には、シリンダ14が接続されている。また、ダイヤフラムバルブ10は、ダイヤフラム11を備えており、ダイヤフラム11は、周縁部がボディー13とシリンダ14との間に挟み込まれることにより固定されている。また、ダイヤフラム11には、ピストンロッド15が接続されており、ピストンロッド15が上下動することにより、ダイヤフラム11も上下動する。
ボディー13には、弁座16が設けられており、弁座16にダイヤフラム11が当接することにより、流れ込む流体が遮蔽され、弁座16からダイヤフラム11が離間することにより、流体が供給される。このように、ダイヤフラムバルブ10は、ダイヤフラム11が弁座16に対し当接離間することによって流体の流量の制御を行う。そして、ダイヤフラム11が上述した構成を備えるダイヤフラムであることから、当接及び離間を繰り返しても、パーティクルが発生しにくい。
弁座16が一体形成されているボディー13は、金属、樹脂等により構成することができる。上記樹脂としては、PTFE、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリフェニレンサルファイド(PPS)等が挙げられる。これらのなかでも、成形が容易であり、耐薬品性にも優れることから、PFAが好ましい。本発明のダイヤフラムは、PFAから構成された弁座と当接及び離間を繰り返しても、パーティクルが発生しにくい。上記PFAは、溶融加工性を有することが好ましい。
つぎに本発明を実験例をあげて説明するが、本発明はかかる実験例のみに限定されるものではない。
実験例の各数値は以下の方法により測定した。
(変性PTFEの二次融点)
示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めた。
(変性モノマー単位の含有量)
赤外分光分析法により特性吸収(パーフルオロ(プロピルビニルエーテル)(PPVE)の場合は1040cm-1~890cm-1の間)から求める。
(MIT値)
ASTM D2176に準じて測定した。具体的には、幅12.5mm、長さ130mm、厚さ0.25mmの電子線未照射の試験片を、MIT試験機(型番12176、安田精機製作所社製)に装着し、荷重1.25kg、左右の折り曲げ角度各135度、折り曲げ回数175回/分の条件下で試験片を屈曲させ、試験片が切断するまでの回数(MIT値)を測定した。
実験例1
特許第3177983号公報に記載の実施例1と同様にして得られた変性PTFEパウダー(TFE単位及びPPVE単位の合計に対して0.06質量%のPPVE単位を含み、二次融点が323℃である)を用いた。50mmφ、高さ50mmの金型に200gの上記パウダーを充填し、15MPaの圧力で両押し、圧力保持30分行って、予備成形品を得た。この予備成形品を昇温速度90℃/時で昇温後、360℃で4時間保持し、40℃/時で降温し成形品ブロックを得た。このブロックを切削加工し、0.5mm厚のシートと0.25mm厚さのシートを作成した。また、0.25mm厚さのシートで測定したMIT値の結果は1500万回であった。
0.5mm厚のシートを30mm幅で長さ220mmにカットして試験片を得た。
得られた試験片を、電子線照射装置(NHVコーポレーション社製)の電子線照射容器に収容し、その後窒素ガスを加えて容器内を窒素雰囲気にした。容器内の温度を280℃まで昇温し温度が安定した後、電子線加速電圧が3000kV、照射線量の強度が20kGy/5minの条件で、試験片に40kGyの電子線を照射した。電子線照射前後での試験片の寸法変化は1%以下でシワの発生は無かった。
その他の実験例
表1及び2に示す照射温度及び照射量を採用した他は、実験例1と同様にして、0.5mm厚のシートを得た。
(パーティクル発生試験)
0.5mm厚のシートを用いて、試験を実施した。染色摩擦堅ろう度試験機(安田精機製作所社製)を使用し、図2に示すように、シート21上に、摩擦子22の先端に固定したPFAシート23を設置し、両者をお互いに往復摩擦した。荷重は500g、回数は2000回(30回/分)とした。PFAシートを摩擦子から取り外し、PFAシートに付着した析出物(粉)の量を測定した。結果を表1及び2に示す。
なお、実験例5及び8では、試験中にサンプルが割れたことから、試験を中断した。実験例5及び8の結果から、放射線の照射量が大きすぎると、ダイヤフラムに通常必要とされる機械物性が得られないことが分かった。
(析出物の分析)
実験例2で得られたPFAシートに付着した析出物の成分を次の方法により特定した。析出物が付着したPFAシートをホットステージ上に載置し、PFAの融点である305℃以上かつ変性PTFEの融点である323℃未満に加熱し、偏光顕微鏡(オリンパス社製BX51)により観察したところ、PFAシートの溶融が始まったが、析出物は溶融しなかった。更に変性PTFEの融点以上に加熱すると、析出物が溶融した。従って、PFAシートに付着した析出物は変性PTFEの析出物であることが分かった。
(第三級炭素の含有量)
0.5mm厚のシートの19F-NMR測定を行うことにより求めた。算出方法は上述のとおりである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
10 ダイヤフラムバルブ
11 ダイヤフラム
13 ボディー
14 シリンダ
15 ピストンロッド
16 弁座
21 シート(サンプル)
22 摩擦子
23 PFAシート

Claims (12)

  1. テトラフルオロエチレン単位及びテトラフルオロエチレンと共重合可能な変性モノマーに基づく変性モノマー単位を含む変性ポリテトラフルオロエチレンを成形して成形品を得る工程、及び、
    前記成形品に270~310℃で、30kGy以上70kGy未満の放射線を照射して改質成形品を得る工程
    を含むことを特徴とする改質成形品の製造方法。
  2. 前記変性ポリテトラフルオロエチレンは、前記変性モノマー単位がテトラフルオロエチレン単位及び前記変性モノマー単位の合計に対して0.001~1質量%である請求項1記載の製造方法。
  3. 前記変性ポリテトラフルオロエチレンは、二次融点が320~329℃である請求項1又は2記載の製造方法。
  4. 前記成形品を得た後、更に、前記成形品を機械加工により加工する工程を含む請求項1、2又は3記載の製造方法。
  5. 前記改質成形品を得た後、更に、前記改質成形品を機械加工により加工する工程を含む請求項1、2又は3記載の製造方法。
  6. 前記改質成形品は、ダイヤフラムである請求項1、2、3、4又は5記載の製造方法。
  7. 変性ポリテトラフルオロエチレンの成形品であって、
    前記変性ポリテトラフルオロエチレンは、テトラフルオロエチレン単位、テトラフルオロエチレンと共重合可能な変性モノマーに基づく変性モノマー単位、及び、第三級炭素を含み、
    前記第三級炭素がテトラフルオロエチレン単位及び前記変性モノマー単位の合計に対して0.035~0.100モル%である
    ことを特徴とする成形品。
  8. 前記変性ポリテトラフルオロエチレンは、前記変性モノマー単位がテトラフルオロエチレン単位及び前記変性モノマー単位の合計に対して0.001~1質量%である請求項7記載の成形品。
  9. 請求項7又は8記載の成形品からなることを特徴とするダイヤフラム。
  10. 変性ポリテトラフルオロエチレンに、270~310℃で、30kGy以上70kGy未満の放射線を照射して得られることを特徴とするダイヤフラム。
  11. 弁座と請求項9又は10記載のダイヤフラムとを備えることを特徴とするダイヤフラムバルブ。
  12. 前記弁座は、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体から構成される請求項11記載のダイヤフラムバルブ。
     
PCT/JP2017/027855 2016-08-30 2017-08-01 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ WO2018043003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780051212.4A CN109642038B (zh) 2016-08-30 2017-08-01 改性成型品的制造方法、成型品、隔膜和隔膜阀
US16/329,059 US11072672B2 (en) 2016-08-30 2017-08-01 Process for producing modified molded article, molded article, diaphragm, and diaphragm valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-168249 2016-08-30
JP2016168249A JP6369511B2 (ja) 2016-08-30 2016-08-30 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ

Publications (1)

Publication Number Publication Date
WO2018043003A1 true WO2018043003A1 (ja) 2018-03-08

Family

ID=61309443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027855 WO2018043003A1 (ja) 2016-08-30 2017-08-01 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ

Country Status (5)

Country Link
US (1) US11072672B2 (ja)
JP (1) JP6369511B2 (ja)
CN (1) CN109642038B (ja)
TW (1) TW201827495A (ja)
WO (1) WO2018043003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172903A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753477C1 (ru) * 2020-10-05 2021-08-17 Общество с ограниченной ответственностью "КВАНТ Р" Способ получения полимерных композиционных материалов
CN116323767A (zh) * 2020-10-08 2023-06-23 大金工业株式会社 成型品及其制造方法、隔膜和隔膜阀
JP2023068789A (ja) * 2021-11-04 2023-05-18 株式会社Screenホールディングス 成形品、および、成形方法
JP2024065101A (ja) * 2022-10-28 2024-05-14 ダイキン工業株式会社 ダイヤフラムおよびダイヤフラムバルブ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215050A (ja) * 1985-03-22 1986-09-24 日本バルカ−工業株式会社 ダイヤフラム弁膜の製造方法
JPH1180392A (ja) * 1997-09-09 1999-03-26 Hitachi Cable Ltd 耐熱性成形品
JP2004043736A (ja) * 2002-07-15 2004-02-12 Asahi Glass Co Ltd ふっ素ゴム成形体及びその製造方法
JP2008069280A (ja) * 2006-09-14 2008-03-27 Raytech Corp 架橋ポリテトラフルオロエチレン樹脂とその製造方法
WO2012081293A1 (ja) * 2010-12-17 2012-06-21 シーケーディ株式会社 流体制御弁
JP2014028951A (ja) * 2012-07-05 2014-02-13 Daikin Ind Ltd 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142665A (en) * 1960-07-26 1964-07-28 Du Pont Novel tetrafluoroethylene resins and their preparation
US3819594A (en) * 1972-05-17 1974-06-25 Du Pont Tetrafluoroethylene fine powder resin of a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether)
DE3852977T2 (de) 1987-07-29 1995-07-06 Sumitomo Electric Industries Formkörper auf Basis einer Harzzusammensetzung.
JPS6433810A (en) 1987-07-29 1989-02-03 Sumitomo Electric Industries Anti-abrasive insulated electrical wire
WO1993016126A1 (en) * 1992-02-05 1993-08-19 Daikin Industries, Ltd. Polytetrafluoroethylene powder for molding
US5709944A (en) 1992-02-05 1998-01-20 Daikin Industries, Ltd. Polytetrafluoroethylene molding powder
JP3566805B2 (ja) 1996-04-11 2004-09-15 日本原子力研究所 摺動部材
JP3672428B2 (ja) 1997-03-17 2005-07-20 日立電線株式会社 改質ふっ素樹脂成形体
JPH1137329A (ja) 1997-07-23 1999-02-12 Benkan Corp 樹脂製ダイヤフラム弁
JP3608406B2 (ja) 1998-11-25 2005-01-12 日立電線株式会社 改質ふっ素樹脂成形体の製造方法
WO2010113951A1 (ja) * 2009-03-31 2010-10-07 ダイキン工業株式会社 含フッ素エラストマー混合物、その製造方法、パーオキサイド加硫用組成物、及び、成形品
JP5753352B2 (ja) 2010-07-20 2015-07-22 株式会社Screenホールディングス ダイヤフラムバルブおよびこれを備えた基板処理装置
JP5828283B2 (ja) * 2011-01-17 2015-12-02 ダイキン工業株式会社 変性ポリテトラフルオロエチレン粒子、その製造方法、及び、変性ポリテトラフルオロエチレン成形体
JP6425371B2 (ja) 2012-08-02 2018-11-21 キヤノン株式会社 定着部材及びその製造方法、定着装置、画像形成装置
JP5303769B2 (ja) 2012-10-25 2013-10-02 住友電工ファインポリマー株式会社 架橋フッ素樹脂複合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215050A (ja) * 1985-03-22 1986-09-24 日本バルカ−工業株式会社 ダイヤフラム弁膜の製造方法
JPH1180392A (ja) * 1997-09-09 1999-03-26 Hitachi Cable Ltd 耐熱性成形品
JP2004043736A (ja) * 2002-07-15 2004-02-12 Asahi Glass Co Ltd ふっ素ゴム成形体及びその製造方法
JP2008069280A (ja) * 2006-09-14 2008-03-27 Raytech Corp 架橋ポリテトラフルオロエチレン樹脂とその製造方法
WO2012081293A1 (ja) * 2010-12-17 2012-06-21 シーケーディ株式会社 流体制御弁
JP2014028951A (ja) * 2012-07-05 2014-02-13 Daikin Ind Ltd 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172903A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
JP2022123855A (ja) * 2021-02-12 2022-08-24 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法
JP7269518B2 (ja) 2021-02-12 2023-05-09 ダイキン工業株式会社 改質フッ素樹脂材料、回路基板用材料、回路基板用積層体、回路基板、及び、改質フッ素樹脂材料の製造方法

Also Published As

Publication number Publication date
US20190218320A1 (en) 2019-07-18
JP2018035234A (ja) 2018-03-08
CN109642038B (zh) 2020-05-22
CN109642038A (zh) 2019-04-16
TW201827495A (zh) 2018-08-01
US11072672B2 (en) 2021-07-27
JP6369511B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
WO2018043003A1 (ja) 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ
JP5598579B2 (ja) 改質フッ素樹脂混合物、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法
JP5967181B2 (ja) 改質含フッ素共重合体及びフッ素樹脂成形品
TWI504645B (zh) A modified fluorocarbon copolymer, a fluororesin molded article, and a fluororesin molded article
JP5962873B2 (ja) フッ素樹脂の改質成形品の製造方法
JP5392433B1 (ja) 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法
JP7060832B2 (ja) 成形品およびその製造方法、ダイヤフラムおよびダイヤフラムバルブ
KR20170101250A (ko) 우수한 내블리스터성을 갖는 pfa 성형체 및 pfa 성형체에서의 블리스터의 발생을 제어하는 방법
JP6358379B2 (ja) 成形品及び成形品の製造方法
WO2024090578A1 (ja) ダイヤフラムおよびダイヤフラムバルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846012

Country of ref document: EP

Kind code of ref document: A1