WO2012081293A1 - 流体制御弁 - Google Patents

流体制御弁 Download PDF

Info

Publication number
WO2012081293A1
WO2012081293A1 PCT/JP2011/072503 JP2011072503W WO2012081293A1 WO 2012081293 A1 WO2012081293 A1 WO 2012081293A1 JP 2011072503 W JP2011072503 W JP 2011072503W WO 2012081293 A1 WO2012081293 A1 WO 2012081293A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve seat
resin
fluid control
flow path
Prior art date
Application number
PCT/JP2011/072503
Other languages
English (en)
French (fr)
Inventor
秀行 竹田
真二 池ノ谷
村瀬 広之
Original Assignee
シーケーディ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーケーディ株式会社 filed Critical シーケーディ株式会社
Priority to CN201180034294.4A priority Critical patent/CN102985734B/zh
Priority to KR1020137002035A priority patent/KR101880916B1/ko
Priority to US13/811,533 priority patent/US8840082B2/en
Publication of WO2012081293A1 publication Critical patent/WO2012081293A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0236Diaphragm cut-off apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/16Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam

Definitions

  • the present invention includes a resin valve main body having a first flow path and a second flow path, a resin valve upper body connected to an upper surface of the resin valve main body, a resin valve main body, and a resin valve upper body.
  • a resin-made diaphragm valve element sandwiched between the first port hole and the first valve hole having one end communicating with the first port and the first valve hole communicating with the valve hole at the other end.
  • a communication port, the first port communication channel and the first valve hole communication channel are orthogonal, and the resin valve body includes a valve chamber, a first port communication channel, and a first valve hole communication channel.
  • the present invention relates to a fluid control valve including a valve seat support portion that supports the valve seat between the two.
  • a resin valve upper body 102 is connected to an upper surface of a resin valve main body 101, and a diaphragm valve body is interposed between the resin valve main body 101 and the resin valve upper body 102. 103 is held.
  • the fluid control valve 100 brings the diaphragm valve body 103 into contact with the valve seat 106 by sliding the piston 105 downward by supplying air to the operation port 104 in the resin valve upper body 102.
  • the piston 105 slides upward by the return spring 107, and the diaphragm valve body 103 is separated from the valve seat 106.
  • the fluid flowing through the first flow path 108 passes through the valve chamber 109 and flows into the second flow path 110.
  • first port communication channel 108B that communicates with the first port
  • first valve hole communication channel 108A that communicates with the valve chamber 109.
  • first port communication channel 108 ⁇ / b> B and the first valve hole communication channel 108 ⁇ / b> A have shapes that are orthogonal to each other immediately below the valve hole 111.
  • a valve seat support 120 that supports the valve seat 106 is formed between the first port communication channel 108 ⁇ / b> B and the valve chamber 109.
  • the diaphragm valve body 103 presses against the valve seat 106 in order to close the fluid control valve 100.
  • the valve seat support 120 that supports the valve seat 106 is deflected.
  • the valve seat support portion 120 is bent, the valve seat end 106A on the upper surface of the valve seat support portion 120 of the valve seat 106 shown in FIG. 11 is inclined. Specifically, it is inclined by an angle ⁇ compared to a line connecting the valve seat one end 116A (shown by a broken line in FIG. 11) and the valve seat other end 106B before deflection.
  • the valve seat is tilted by a distance X from the valve seat end 116A before deflection to the valve seat end 106A after deflection.
  • valve seat support portion 120 When the valve seat support portion 120 is bent and the valve seat end 106A of the valve seat 106 is inclined, the diaphragm valve body 103 and the valve seat end 106A of the valve seat 106 are rubbed, and the seal surface of the valve seat 106 is damaged. In particular, when the valve seat support portion 120 has a large deflection and the valve seat end 106A of the valve seat 106 is largely inclined, the seal surface of the valve seat 106 is damaged. If the sealing surface of the valve seat 106 is scratched, it causes a problem that fluid leaks from the wound.
  • valve seat support part bends. Since the valve seat support portion bends, a sufficient sealing load cannot be obtained only at that location. If a sufficient seal load cannot be obtained, leakage occurs from that portion, which is a problem.
  • the resin fluid control valve is easily bent. Therefore, in a state where a high-temperature fluid flows, when a sealing load is applied to the valve seat, the valve seat support portion having a low strength is deflected and the repulsive force of the valve seat support portion is reduced, so that the sealing force of the valve seat is reduced. . Therefore, there is a problem that fluid leakage is likely to occur particularly in a state where a high-temperature fluid flows. Furthermore, when the fluid pressure of the fluid is high, there is a problem that leakage is more likely to occur.
  • the present invention has been made to solve the above-described problems, and the object thereof is to prevent the inclination of the valve seat due to the deflection of the valve seat support portion that occurs when the diaphragm valve body comes into contact with the valve seat.
  • An object is to provide a fluid control valve.
  • the fluid control valve includes a resin valve main body having a first flow path and a second flow path, and a resin valve connected to the upper surface of the resin valve main body.
  • the valve seat support portion has a valve seat reinforcement portion,
  • the reinforcing portion is characterized by being formed in a shape that partially closes the inside of the first flow path.
  • the fluid control valve having the above-described configuration can reduce the deflection width of the valve seat support portion generated when the diaphragm valve body abuts on the valve seat. That is, since the valve seat support portion can be reinforced by the valve seat reinforcement portion, the deflection of the valve seat support portion can be reduced and the inclination of the valve seat can be reduced.
  • the inclination of one end of the valve seat can be reduced.
  • the rubbing width between the diaphragm valve body and one end of the valve seat is reduced.
  • damage to the seal surface at one end of the valve seat is reduced.
  • the inclination of one end of the valve seat is reduced, so that it can be suppressed to scratches that do not exceed the seal surface of the valve seat, so that fluid leakage is prevented without causing fluid leakage. can do.
  • the strength of the valve seat support can be maintained uniformly in the circumferential direction by reinforcing the weak seat support. Since the strength of the valve seat support portion can be maintained, it is possible to prevent the valve seat support portion having a low strength from being bent when a seal load is applied to the valve seat. Since a uniform sealing force can be generated in the circumferential direction, a reduction in sealing performance can be reduced. This is particularly effective when a high-temperature fluid is flowed and when the fluid pressure of the fluid is high.
  • the valve seat reinforcement portion is a valve seat reinforcement upper portion that blocks a part of the first valve hole communication channel when the valve hole is viewed from the resin valve upper body direction. It is preferable that the valve seat reinforcement upper portion has an arcuate shape when the valve hole is viewed from the resin valve upper body direction.
  • valve seat support portion can be reinforced and the strength is increased, so that the deflection of the valve seat support portion can be reduced and the inclination of the valve seat can be reduced.
  • a valve seat reinforcement upper portion having an arcuate shape can be formed on the first port side of the valve hole when the valve hole is viewed from the resin valve upper body direction.
  • the valve seat on the second port side of the valve hole is strong because it has a vertical support portion that separates the first flow path and the second flow path.
  • the valve seat support portion on the first port side of the valve hole is weak in strength because there is no support in the vertical direction because the first flow path passes therethrough. Therefore, it is possible to prevent the valve seat support portion from being bent by forming the reinforcing upper portion in the weak portion. Thereby, the inclination of the valve seat can be reduced.
  • valve seat reinforcement upper portion so as to have an arcuate shape on the first port side with respect to the valve hole, the valve seat support portion can be strengthened in the circumferential direction with respect to the valve hole. That is, when the valve seat reinforcement upper part has an arcuate shape, the connection to the tubular valve hole having strength is strengthened.
  • the valve seat reinforcement upper part can increase the rigidity of the valve seat support part by utilizing the rigidity of the cylindrical valve hole having strength.
  • the upper part of the valve seat reinforcement is formed so as to partially block the first valve hole communication channel, but the flow obstruction of the flowing fluid can be minimized. That is, the fluid has a property of flowing straight. Therefore, the fluid flowing through the first valve hole communication channel flows outside the R portion of the channel. For this reason, even if an arcuate valve seat reinforcement upper part is formed in the inner portion of the R portion, the influence on the fluid flow rate is small. Therefore, since the influence on the flow rate of the fluid is small, the obstruction of the fluid flowing through the first valve hole communication channel can be minimized.
  • the valve seat reinforcing portion when the first port is viewed from the side surface direction of the resin valve body, the valve seat reinforcing portion becomes a valve seat reinforcing lower portion that closes a part of the first flow path.
  • the lower part preferably has an arcuate shape when the first port is viewed from the side of the resin valve body.
  • valve seat support can be reduced because the valve seat support can be reinforced and the strength is increased.
  • a valve seat reinforcing lower portion having an arcuate shape can be formed on the valve seat support portion side in the first flow path. Since the first flow path has a circular cross section, the valve seat reinforcing lower portion can be firmly fixed by connecting a part of the circular cross section as an arcuate shape. Since the strength of the valve seat support portion can be increased by firmly fixing the valve seat reinforcing lower portion, plastic deformation of the valve seat support portion can be prevented.
  • valve seat reinforcement lower portion having an arcuate shape on the valve seat support portion side in the first flow path, the deflection of the valve seat support portion is reduced. As a result, the inclination of the valve seat was reduced by 22% compared with the conventional fluid control valve.
  • valve seat reinforcement upper part and the valve seat reinforcement lower part have a substantially L-shaped cross section with respect to the valve seat support part.
  • valve seat reinforcement upper part and the valve seat reinforcement lower part can be used. Therefore, according to the result of this embodiment described in detail later, the deflection of the valve seat support portion can be reduced, and the inclination of the valve seat can be reduced by 92% compared to the conventional fluid control valve.
  • the fluid control valve it is possible to prevent the valve seat from being tilted due to the deflection of the valve seat support portion that occurs when the diaphragm valve body comes into contact with the valve seat.
  • Drawing 1 is a sectional view of fluid control valve 1 concerning a 1st embodiment, and shows a valve closed state.
  • FIG. 2 is a cross-sectional view of the fluid control valve 1 according to the first embodiment, showing a valve open state.
  • FIG. 3 shows a top view of the resin valve body 2.
  • the fluid control valve 1 of the first embodiment is assembled in a semiconductor manufacturing apparatus and controls the supply of a chemical solution, as in the prior art.
  • the fluid control valve 1 is a normally open type air-operated on-off valve.
  • a resin valve upper body 3 is connected to an upper surface of a resin valve main body 2, and a diaphragm valve body 4 is sandwiched between the resin valve main body 2 and the resin valve upper body 3. .
  • the fluid control valve 1 causes the diaphragm valve body 4 to contact or separate from the valve seat 15 by sliding the piston 25 in the resin valve upper body 3.
  • an attachment plate 5 for attachment to a semiconductor manufacturing apparatus is fixed to the lower surface of the resin valve body 2.
  • the resin valve body 2 is formed by molding a resin excellent in corrosion resistance and heat resistance, such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • a valve chamber 13 is formed in a cylindrical shape on the upper surface of the resin valve main body 2.
  • one end of the first flow path 21 communicating with the circular first port 23 and one end of the second flow path 22 communicating with the circular second port 24 are communicated.
  • a valve hole 16 is formed in a portion where the first flow path 21 opens into the valve chamber 13.
  • a valve seat 15 is integrally formed on the periphery of the valve hole 16.
  • the first flow path 21 has a first port communication flow path 21 a with one end communicating with the first port 23 and a first valve hole communication flow path 21 b with the other end communicating with the valve chamber 13.
  • the first port communication channel 21 a is formed in the axial direction with respect to the center of the first port 23.
  • the first valve hole communication channel 21 b is formed in the axial direction of the valve hole 16.
  • the first port communication channel 21a and the first valve hole communication channel 21b are vertically connected inside the resin valve body 2, and an R portion 21c is formed at the connection part.
  • valve seat support portion 17 that supports the valve seat 15 is formed between the valve chamber 13 and the first port communication channel 21 a.
  • the valve seat support portion 17 has a valve seat reinforcement upper portion 18.
  • the valve seat reinforcement upper portion 18 when viewed from the upper surface of the resin valve main body 2, the valve seat reinforcement upper portion 18 is formed in the flow path of the first valve hole communication flow path 21b. Further, the valve seat reinforcement upper portion 18 has an arcuate shape composed of a string 18a and an arc 18b.
  • the cross-sectional area of the valve seat reinforcement upper portion 18 shown in FIG. 3 can be obtained by an arcuate area formula.
  • the shape of the valve hole 16 is a flow path shape having a substantially D-shaped cross section because the valve seat reinforcement upper portion 18 is formed in the flow path. As shown in FIG. 1, 45 degrees chamfering is carried out in this embodiment from the valve seat 15 of the valve seat reinforcement upper part 18 to the 1st valve hole communication flow path 21b. By being chamfered, the flow rate of the fluid flowing into the valve hole 16 can be increased.
  • valve seat other end 15 a on the second flow path 22 side of the valve hole 16 is supported by a vertical support portion 20 that separates the first flow path 21 and the second flow path 22.
  • the valve seat 15 is supported in a cylindrical shape by the support portion 20 and the valve seat support portion 17. A portion of the valve seat 15 other than the valve seat support portion 17 is supported by the support portion 20.
  • the resin valve upper body 3 shown in FIG. 1 is made of a resin having corrosion resistance and rigidity, such as PPS (polyphenylene sulfide), PFA, PP, PVDF.
  • the resin valve upper body 3 includes a cylinder 32 and a cover 33 and forms a piston chamber 34.
  • the resin-made piston 35 is slidably loaded in the piston chamber 34 and is always urged upward in the figure by a return spring 31 that is contracted between the cylinder 32.
  • the piston 35 moves the piston chamber 34 in the vertical direction in the drawing in accordance with the balance between the pressure of the operation air supplied from the operation port 33 a and the repulsive force of the return spring 31.
  • a piston rod 36 is integrally formed with the piston 35.
  • the piston rod 36 is configured integrally with the piston 35 and configured to be slidable on the cylinder 32, and is connected to the diaphragm valve body 4.
  • the diaphragm valve body 4 is made of a resin having excellent corrosion resistance and heat resistance, such as PTFE (polytetrafluoroethylene), and is formed by cutting.
  • the diaphragm valve body 4 has a cylindrical valve body portion 4a that contacts or separates from the valve seat 15, a thin film portion 4b connected to the outer peripheral surface of the valve body portion 4a, and a thickness along the outer edge of the thin film portion 4b. It is comprised from the provided peripheral part 4c.
  • the diaphragm valve body 4 is fixed by the peripheral portion 4c being sandwiched between the resin valve main body 2 and the resin valve upper body 3 and sealing the inner wall of the annular groove 26.
  • the fluid control valve 1 controls the flow rate of the fluid by contacting and separating from the valve seat 15 of the diaphragm valve body 4.
  • the diaphragm valve body 4 pressurizes the valve seat 15 downward. Therefore, a load is generated in the valve seat support portion 17 that supports the valve seat 15.
  • the valve seat support 120 is bent by the load.
  • the valve seat one end 106A on the upper surface of the valve seat support portion 120 of the valve seat 106 is inclined as shown in FIG.
  • the valve seat is tilted by an angle ⁇ as compared to a line connecting the valve seat one end 116A (shown by a two-dot chain line in FIG. 11) before the deflection and the valve seat other end 106B after the deflection. Further, it is tilted by the deflection by a distance X from the valve seat one end 116A to the valve seat one end 106A.
  • the valve seat support part 120 is bent and the one end 106A of the valve seat is inclined, the diaphragm valve body 103 and the one end 106A of the valve seat are rubbed, and the seal surface of the one end 106A of the valve seat is damaged.
  • valve seat support portion 120 has a large deflection and the valve seat end 106A is greatly inclined, the seal surface of the valve seat end 106A is damaged. If the sealing surface of the valve seat one end 106A is damaged, a fluid leaks from the wound, which causes a problem.
  • the valve seat support portion 17 has the valve seat reinforcement upper portion 18. Therefore, the width of the deflection of the valve seat support portion 17 that occurs when the diaphragm valve body 4 presses the valve seat 15 can be reduced. That is, since the valve seat support portion 17 can be reinforced by the valve seat reinforcement upper portion 18, even if the diaphragm valve body 4 applies a downward pressure to the valve seat 15, the valve seat support portion 17 is not lowered. Since it is possible to counter the directional pressure, the occurrence of deflection can be suppressed with a small width.
  • the inclination width of the valve seat one end 15b can also be reduced.
  • the rubbing width between the diaphragm valve body 4 and the valve seat one end 15b is reduced.
  • the damage to the sealing surface of the valve seat one end 15b is reduced.
  • a scratch perpendicular to the circumferential direction of the seal surface of the valve seat one end 15b is attached, a scratch is formed in a range where the width of the scratch is narrow and does not exceed the seal surface of the valve seat one end 15b. The fluid will not leak from the wound.
  • valve seat support portion 17 since the deflection of the valve seat support portion 17 can be reduced, plastic deformation of the valve seat support portion 17 due to repeated fatigue can be prevented. Since the plastic deformation of the valve seat support portion 17 can be prevented, the uniformity of the sealing force over the entire circumference between the diaphragm valve body 4 and the valve seat 15 can be maintained. Since the uniformity of the sealing force can be maintained, fluid leakage can be prevented.
  • the deflection of the valve seat support portion 17 can be prevented, it is possible to prevent damage beyond the seal surface of the valve seat 15. Therefore, the replacement frequency for replacing the fluid control valve 1 can be reduced, and the usage cost can be reduced.
  • the plastic deformation of the valve seat support portion 17 can be prevented, the uniformity of the seal can be maintained. Therefore, the replacement frequency for replacing the fluid control valve 1 can be reduced, and the usage cost can be reduced.
  • FIG. 7 shows a bar graph showing the effect of the inclination of the valve seat of the present invention.
  • the vertical axis represents the ratio of the tilt angle ⁇ of the fluid control valve 100 and the ratio of the tilt angle of the present invention when the ratio of the tilt angle ⁇ of the valve seat end 106A of the conventional fluid control valve 100 is “1”. It is a comparison.
  • the horizontal axis shows the ratio of the inclination angle ⁇ of the valve seat 106 of the fluid control valve 100 in (A), and (C) shows the ratio of the inclination angle of the valve seat one end 15b of the fluid control valve 1 in this embodiment.
  • the inclination of the valve seat end 15b of the fluid control valve 1 of this embodiment (C) as compared to the ratio of the inclination angle ⁇ of the valve seat end 106A of the fluid control valve 100 of (A).
  • the angle ratio is 0.39. That is, since the valve seat support part 17 of the fluid control valve 1 has the valve seat reinforcement upper part 18, the inclination of the valve seat could be reduced by 61%.
  • valve seat reinforcement upper portion 18 has an arcuate shape when the valve hole 16 is viewed from the direction of the resin valve upper body 3, thereby reinforcing the valve seat support portion 17 and increasing the strength.
  • the deflection width of the support portion 17 can be reduced, and the inclination angle of the valve seat one end 15b can be reduced.
  • valve seat reinforcing upper portion 18 having an arcuate shape can be formed on the first port communication channel 21a side of the valve hole 16 when the valve hole 16 is viewed from the resin valve upper body 13 direction.
  • the valve seat other end 15 a on the second flow path 22 side of the valve hole 16 has a strong strength because it includes the vertical support portion 20 that separates the first flow path 21 and the second flow path 22.
  • the valve seat support portion 17 on the first port communication flow path 21a side of the valve hole 16 is not supported in the vertical direction because the first flow path 21 passes therethrough and has a low strength. Therefore, it is possible to prevent the valve seat support portion 17 from being bent by forming the valve seat reinforcement upper portion 18 in a weak portion. Thereby, the inclination of the valve seat 15 can be reduced.
  • valve seat reinforcement upper portion 18 By forming the valve seat reinforcement upper portion 18 so as to have an arcuate shape on the first port communication flow path 21a side with respect to the valve hole 16, the valve seat support portion 17 is formed in the valve hole 16 as shown in FIG. On the other hand, it can be strengthened in the circumferential direction S. That is, when the valve seat reinforcement upper portion 18 has an arcuate shape, the connection to the tubular valve hole 16 having strength is strengthened.
  • the valve seat reinforcement upper portion 18 can increase the rigidity of the valve seat support portion 17 by utilizing the rigidity of the cylindrical valve hole 16 having strength by the support portion 20. As a result, the deflection of the valve seat support portion 17 can be reduced, and the inclination of the valve seat 15 can be reduced by 61% compared to the conventional fluid control valve 1.
  • valve seat reinforcing upper portion 18 is formed so as to partially block the first valve hole communication channel 21b, the obstruction of the fluid flow can be minimized. That is, since the fluid has a property of flowing straight, a large amount of the fluid flowing through the first valve hole communication channel 21b flows through the outer portion of the R portion 21c of the channel. Therefore, even if the bow-shaped valve seat reinforcing upper portion 18 is formed in the inner portion of the R portion 21c, the influence on the fluid flow rate is small. As a result, the obstruction of the fluid flowing through the first valve hole communication channel 21b can be minimized.
  • the strength of the valve seat support portion 17 and the support portion 20 can be maintained uniformly in the circumferential direction. Since the strength of the valve seat support portion 17 can be maintained, it is possible to prevent the valve seat support portion 17 having a low strength from being bent when the valve seat 15 receives a sealing load. Since a uniform sealing force can be generated in the circumferential direction, a reduction in sealing performance can be reduced. This is particularly effective when a high temperature state or an excessive seal load is applied to the valve seat.
  • FIG. 4 shows a cross-sectional view of the resin valve body 50.
  • FIG. 5 shows a side view of the resin valve main body 50.
  • valve seat support portion 17 of the resin valve main body 2 in the fluid control valve 1 of the first embodiment is different, and the other structures are the same. Therefore, the valve seat support portion 57 of the resin valve main body 50 of the second embodiment which is changed from the valve seat support portion 17 of the resin valve main body 2 of the first embodiment will be described with reference to FIGS. 4 and 5. The description of other structures is omitted by using the same reference numerals as those in the first embodiment.
  • a valve seat support portion 57 that supports the valve seat 15 is formed between the valve chamber 13 and the first port communication channel 21a.
  • the valve seat support portion 57 has a valve seat reinforcement lower portion 59.
  • the valve seat reinforcing lower portion 59 is formed in the flow path of the first port communication flow path 21a.
  • the valve seat reinforcing lower portion 59 has an arcuate shape composed of a string 59a and an arc 59b.
  • the cross-sectional area of the valve seat reinforcing lower portion 59 shown in FIG. 5 can be obtained by an arcuate area formula.
  • the arcuate area of the valve seat reinforcing lower portion 59 occupies a ratio of about 10 percent of the area when the first port 23 is circular.
  • the shape of the first port communication channel 21a is a channel shape having a substantially D-shaped cross section because the valve seat reinforcing lower portion 59 is formed in the channel.
  • the valve seat support portion 57 has the valve seat reinforcement lower portion 59. Therefore, since the valve seat support part 57 can be reinforced and the strength is increased, the deflection width of the valve seat support part 57 can be reduced, and the inclination angle of the valve seat one end 15b can be reduced.
  • a valve seat reinforcing lower portion 59 having an arcuate shape can be formed on the valve seat support portion 57 side in the first port communication channel 21 a.
  • the valve seat reinforcement lower portion 59 can be firmly fixed by connecting a part of the circular cross section as an arcuate shape. Since the valve seat reinforcing lower portion 59 can be firmly fixed, the strength of the valve seat support portion 57 can be increased, so that the deflection width of the valve seat support portion 57 can be reduced. Therefore, the strength of the valve seat support portion 57 can be increased by forming the valve seat reinforcement lower portion 59 having an arcuate shape on the valve seat support portion 57 side in the first port communication channel 21a.
  • FIG. 7 shows a bar graph showing the effect of the inclination of the valve seat of the present invention.
  • the vertical axis represents the ratio of the inclination angle ⁇ of the valve seat end 106A of the fluid control valve 100 and the ratio of the inclination angle ⁇ of the valve seat end 106A of the conventional fluid control valve 100 to “1”. The ratio of the inclination angle is compared.
  • the horizontal axis shows the ratio of the inclination angle ⁇ of the valve seat end 106A of the fluid control valve 100 in (A), and (B) shows the ratio of the inclination angle of the valve seat end 15b of the fluid control valve in this embodiment.
  • the inclination angle of the valve seat end 15b of the fluid control valve according to the present embodiment shown in FIG. 7B is compared with the ratio of the inclination angle ⁇ of the valve seat end 106A of the fluid control valve 100 shown in FIG.
  • the ratio is 0.78. That is, since the valve seat support portion 57 of the fluid control valve has the valve seat reinforcement lower portion 59, the inclination of the valve seat support portion 57 can be reduced by 22%.
  • FIG. 6 shows a cross-sectional view of the resin valve body 60.
  • valve seat support portion 17 of the resin valve main body 2 in the fluid control valve 1 of the first embodiment is different, and the other structures are the same.
  • valve seat support part 67 of the resin valve main body 60 of the third embodiment which is changed from the valve seat support part 17 of the resin valve main body 2 of the first embodiment will be described with reference to FIG. The description of the structure is omitted by using the same reference numerals as those in the first embodiment.
  • valve seat support part 67 which supports the valve seat 15 is formed.
  • the valve seat support 67 has a valve seat reinforcement upper portion 68 and a valve seat reinforcement lower portion 69.
  • the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69 make the valve seat reinforcement portion substantially L-shaped in section with respect to the valve seat support portion 67.
  • the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69 are separated from the valve seat support portion 67 so that it can be easily understood that the valve seat reinforcement portion is substantially L-shaped in cross section with respect to the valve seat support portion 67.
  • the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69 may be integrally formed with the valve seat support portion 67 and the L shape may not be recognized.
  • valve seat reinforcement upper portion 68 is the same as the configuration of the valve seat reinforcement upper portion 18 of the first embodiment.
  • structure of the valve seat reinforcement lower part 69 is the same structure as the valve seat reinforcement lower part 59 of 2nd Embodiment. Therefore, a detailed description is omitted.
  • the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69 form a substantially L-shaped cross section with respect to the valve seat support portion 67, whereby the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69.
  • Strength can be used. Therefore, the strength of the valve seat support portion 67 can be increased as compared with the conventional fluid control valve 1. That is, since the valve seat support part 67 can maintain strength compared to the conventional art by forming the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69, the deflection width can be reduced. For this reason, it is possible to reduce the inclination of the valve seat one end 15b, and thus it is possible to prevent unevenness of the seal between the diaphragm valve body 4 and the valve seat 15.
  • FIG. 7 shows a bar graph showing the effect of preventing the tilt of the valve seat of the present invention.
  • the vertical axis is a comparison between the inclination of the fluid control valve 100 and the inclination of the present invention when the inclination of the fluid control valve 100 according to the prior art is “1”.
  • the horizontal axis shows (A) the inclination of the valve seat 106 of the fluid control valve 100, and (D) shows the inclination of the valve seat 15 of the fluid control valve in this embodiment.
  • the inclination of the valve seat one end 15b of the fluid control valve of this embodiment of (D) becomes 0.08. . That is, since the valve seat support portion 67 of the fluid control valve has the valve seat reinforcement upper portion 68 and the valve seat reinforcement lower portion 69, the inclination of the valve seat support portion 67 can be reduced by 92%.
  • FIG. 8 shows a cross-sectional view of the resin valve body 70.
  • FIG. 9 shows a side view of the resin valve body 70.
  • valve seat support portion 17 of the resin valve main body 2 in the fluid control valve 1 of the first embodiment is different, and the other structures are the same. Therefore, the valve seat support portion 77 of the resin valve main body 70 of the fourth embodiment, which is changed from the valve seat support portion 17 of the resin valve main body 2 of the first embodiment, will be described with reference to FIGS. 8 and 9. The description of other structures is omitted by using the same reference numerals as those in the first embodiment.
  • a valve seat support portion 77 that supports the valve seat 15 is formed between the valve chamber 13 and the first port communication channel 21a.
  • the valve seat support part 77 has a valve seat reinforcement part 78.
  • the valve seat reinforcing portion 78 is formed in the flow path of the first port communication flow path 21a.
  • the valve seat reinforcing portion 78 is formed in the axial direction with respect to the first port communication channel 21 a in order to reinforce the valve seat support portion 77.
  • the valve seat reinforcing portion 78 is rod-shaped and has a streamline shape with an elliptical cross section so that fluid can easily flow in the radial direction. Since it has a streamline shape with an elliptical cross section, even if a fluid flows from the first flow path 21 to the second flow path 22 or vice versa, the flow of the fluid is not significantly disturbed.
  • the valve seat support part 77 has the valve seat reinforcement part 78. Therefore, since the strength of the valve seat support portion 77 is increased, the valve seat one end 15b due to the deflection of the valve seat 15 can be prevented from sinking.
  • valve seat reinforcing portion 78 can directly support the valve seat supporting portion 77 with a role of a stick. Therefore, since the valve seat support portion 77 can be directly supported, the strength of the valve seat support portion 77 can be directly increased.
  • the shape of the upper part of the valve seat reinforcement for reinforcing the valve seat support part can be a crescent-shaped arcuate shape.
  • a crescent-shaped arcuate shape By adopting a crescent-shaped arcuate shape, the width of the first flow path can be increased, and the flow of fluid flowing through the first flow path can be further improved.
  • valve seat reinforcement upper part and the valve seat reinforcement lower part are integrally formed with the valve seat support part, but the valve seat reinforcement upper part and the valve seat reinforcement lower part can include metal or the like. By including metal or the like, the strength can be further increased as compared with the resin valve seat reinforcement upper portion and the valve seat reinforcement lower portion.
  • the valve seat reinforcement upper part and the valve seat reinforcement lower part when integrally molding with a valve seat support part, although a valve seat reinforcement upper part and a valve seat reinforcement lower part appear outside as a shape, they do not appear outside as a material.
  • the portion of the conventional fluid control valve that is shaped to close the flow path from the first flow path is the valve seat. Reinforcement upper part or valve seat reinforcement lower part.

Abstract

 本願は、ダイアフラム弁体が弁座に当接する際に発生する弁座支持部のたわみを防止できる流体制御弁を提供すること、を課題とする。そこで、流体制御弁は、第1流路と第2流路を備える樹脂製弁本体と、樹脂製弁本体の上面に連結される樹脂製弁上体と、樹脂製弁本体と樹脂製弁上体との間に狭持される樹脂製のダイアフラム弁体とを備える。また、第1流路は、一端が第1ポートに連通する第1ポート連通流路と他端が弁孔に連通する第1弁孔連通流路とを備え、第1ポート連通流路と第1弁孔連通流路が連通させる。さらに、樹脂製弁本体は、弁室と第1ポート連通流路と第1弁孔連通流路との間に弁座を支持する弁座支持部を備える。さらに、弁座支持部は弁座補強部を有し、弁座補強部は第1流路内を一部塞ぐ形状で形成する。

Description

流体制御弁
 本発明は、第1流路と第2流路を備える樹脂製弁本体と、樹脂製弁本体の上面に連結される樹脂製弁上体と、樹脂製弁本体と樹脂製弁上体との間に狭持される樹脂製のダイアフラム弁体とを備えること、第1流路は、一端が第1ポートに連通する第1ポート連通流路と他端が弁孔に連通する第1弁孔連通流路とを備え、第1ポート連通流路と第1弁孔連通流路は直交すること、樹脂製弁本体は、弁室と第1ポート連通流路と第1弁孔連通流路との間に弁座を支持する弁座支持部を備える流体制御弁に関する。
 従来、この種の技術として、下記の特許文献1に記載された流体制御弁100がある。
 図10に示すように、流体制御弁100は、樹脂製弁本体101の上面に樹脂製弁上体102が連結され、樹脂製弁本体101と樹脂製弁上体102との間にダイアフラム弁体103が狭持されている。流体制御弁100は、樹脂製弁上体102内の操作ポート104にエアを供給することでピストン105を下方向摺動させることにより、ダイアフラム弁体103を弁座106へ当接させる。他方、操作ポート104にエアが供給されないときには、復帰ばね107によりピストン105は上方向に摺動し、ダイアフラム弁体103は弁座106から離間する。ダイアフラム弁体103が弁座106から離間しているときに、第1流路108を流れる流体が弁室109を通過し第2流路110へ流入する。
 その他の特許文献に係る流体制御弁も同様の構成及び作用効果を有する。
特開2006-153132号公報 特開2008-8415号公報 特開2008-208977号公報 特開2009-2442号公報 特開2009-24812号公報
 しかしながら、従来技術には、以下の課題があった。
 図10に示す第1流路108は、第1ポートに連通する第1ポート連通流路108Bと、弁室109に連通する第1弁孔連通流路108Aにより構成されている。また、第1ポート連通流路108B及び第1弁孔連通流路108Aは、弁孔111の直下において直交する形状である。第1ポート連通流路108Bと弁室109の間には、弁座106を支える弁座支持部120が形成されている。
 すなわち、流体制御弁100を閉弁するためダイアフラム弁体103が弁座106に対して押圧する。流体制御弁100は樹脂製であるため、弁座106を支持する弁座支持部120にたわみが生じる。弁座支持部120がたわむと、図11に示す弁座106の弁座支持部120の上面にある弁座一端106Aが傾いた状態になる。具体的には、たわみ前の弁座一端116A(図11中破線で示す。)と弁座他端106Bを結んだ線と比較して角度θだけ傾く。また、たわみ前の弁座一端116Aからたわみ後の弁座一端106Aまでの距離Xだけ傾く。
 弁座支持部120がたわみ弁座106の弁座一端106Aが傾くことによりダイアフラム弁体103と弁座106の弁座一端106Aがこすれ、弁座106のシール面に対して傷がつく。特に弁座支持部120のたわみが大きく弁座106の弁座一端106Aが大きく傾くと弁座106のシール面に対して傷がつく。弁座106のシール面に傷がつくと、その傷口から流体が漏れる原因となるため問題となる。
 また、円筒状の弁座支持部において、円周方向に強度差があると、弁座にシール荷重が掛かったとき、強度が弱い弁座支持部がたわむ。弁座支持部がたわむことで、その箇所だけ充分なシール荷重が得られない。充分なシール荷重が得られないと、その部分から漏れが発生するため問題となる。
 例えば、高温の流体を流し流体制御弁が高温状態となる場合においては特に樹脂製の流体制御弁はたわみやすくなる。そのため、高温の流体を流す状態では、弁座に対してシール荷重をかけたとき、強度が弱い弁座支持部がたわみ弁座支持部の反発力が低下するため弁座のシール力が低下する。そのため、高温の流体を流す状態においては、特に流体の漏れが発生し易くなる問題がある。さらに、流体の流体圧が高い場合にはさらに漏れが発生し易くなる問題もある。
 そこで、本発明は、上記問題点を解決するためになされたものであり、その目的はダイアフラム弁体が弁座に当接する際に発生する弁座支持部のたわみによる弁座の傾きを防止した流体制御弁を提供することを目的とする。
 この課題の解決を目的としてなされた本発明の一態様における流体制御弁は、第1流路と第2流路を備える樹脂製弁本体と、樹脂製弁本体の上面に連結される樹脂製弁上体と、樹脂製弁本体と樹脂製弁上体との間に狭持される樹脂製のダイアフラム弁体とを備えること、第1流路は、一端が第1ポートに連通する第1ポート連通流路と他端が弁孔に連通する第1弁孔連通流路とを備え、第1ポート連通流路と第1弁孔連通流路が連通すること、樹脂製弁本体は、弁室と第1ポート連通流路と第1弁孔連通流路との間に弁座を支持する弁座支持部を備える流体制御弁において、弁座支持部は弁座補強部を有すること、弁座補強部は第1流路内を一部塞ぐ形状で形成されていること、を特徴とする。
 上記構成を有する流体制御弁は、ダイアフラム弁体が弁座に当接する際に発生する弁座支持部のたわみ幅を減少させることができる。すなわち、弁座支持部を弁座補強部により補強することができるため、弁座支持部のたわみを小さくし弁座の傾きを小さくすることができる。
 また、弁座支持部のたわみが小さくなることにより、弁座一端の傾きも小さくすることができる。弁座一端の傾きが小さくなることにより、ダイアフラム弁体と弁座一端とのこすれ幅が小さくなる。それにより弁座一端のシール面の傷が小さくなる。具体的には、シール面に対しての傷が付いたとしても、傷の幅が狭く弁座一端のシール面を超えない範囲での傷が形成されるのであれば、その傷口から流体が漏れることはない。そのため、本構成によれば、弁座一端の傾きが小さくなることにより、弁座のシール面を超えない範囲での傷に押さえることができるため流体の漏れが発生することなく流体の漏れを防止することができる。
 また、強度が弱い弁座支持部を補強することで、弁座支持部を円周方向に均一に強度を保つことができる。弁座支持部の強度を保つことができることにより、弁座でシール荷重を受けたときに強度が弱い弁座支持部がたわむことを防止することができる。円周方向に均一なシール力を発生できるためシール性能の低下を低減することができる。特に高温の流体を流した場合、及び流体の流体圧が高い場合に有効となる。
 上記に記載の流体制御弁において、弁座補強部は、弁孔を前記樹脂製弁上体方向から見たとき、第1弁孔連通流路の一部を塞ぐ弁座補強上部となること、弁座補強上部は、弁孔を樹脂製弁上体方向から見たとき、弓形となることが好ましい。
 弁座支持部を補強することができ強度が増すため、弁座支持部のたわみを小さくすることができ、弁座の傾きを低減することができるからである。
 具体的には、弁孔を樹脂製弁上体方向からみたときの弁孔の第1ポート側に弓形形状となる弁座補強上部を形成することができる。弁孔の第2ポート側の弁座は第1流路と第2流路を隔てる垂直方向の支持部を有するため強度が強い。他方、弁孔の第1ポート側の弁座支持部はその下方向に第1流路が通るため垂直方向の支持がなく強度が弱い。そのため、強度が弱い部分に補強上部を形成することにより弁座支持部のたわみを防止することができる。それにより、弁座の傾きを低減することができる。
 また、弁孔に対して第1ポート側に弓形形状となるように弁座補強上部を形成することで、弁座支持部を弁孔に対して円周方向に強くすることができる。すなわち、弁座補強上部が弓形形状であることにより、強度を持つ筒状の弁孔へのつながりが強くなる。弁座補強上部は弁孔へのつながりを強くすることで、強度を持つ筒状である弁孔の剛性を利用し、弁座支持部の剛性を増すことができる。その結果、後に詳細に説明する本実施例の一結果によれば、弁座支持部のたわみを低減し弁座の傾きを従来の流体制御弁と比較して61パーセント低減することができた。
 また、弁座補強上部は第1弁孔連通流路を一部塞ぐように形成されているが、流れる流体の流れ妨げを最小限にすることができる。すなわち、流体は真っすぐ流れる性質を有する。そのため、第1弁孔連通流路を流れる流体は流路のR部の外側を流れる。そのため、R部の内側となる部分に弓形の弁座補強上部が形成されていたとしても流体の流量に与える影響は少ない。したがって、流体の流量に与える影響は少ないため、第1弁孔連通流路を流れる流体の妨げを最小限とすることができる。
 上記に記載の流体制御弁において、弁座補強部は、第1ポートを樹脂製弁本体側面方向から見たとき、第1流路の一部を塞ぐ弁座補強下部となること、弁座補強下部は、第1ポートを樹脂製弁本体側面方向から見たとき、弓形となることが好ましい。
 弁座支持部を補強することができ強度が増すため、弁座支持部のたわみを小さくすることができるからである。
 具体的には、弁孔を樹脂製弁本体側面方向からみたとき第1流路内の弁座支持部側に弓形形状となる弁座補強下部を形成することができる。第1流路は断面円形状をなすため、その断面円形状の一部を弓形形状として繋ぐことにより弁座補強下部を強固に固定することができる。弁座補強下部を強固に固定することができることで、弁座支持部の強度を増すことができるため、弁座支持部の塑性変形を防止することができる。したがって、後に詳細に説明する本実施形態の一結果によれば、第1流路内の弁座支持部側に弓形形状となる弁座補強下部を形成することで、弁座支持部のたわみを低減し弁座の傾きを従来の流体制御弁と比較して22パーセント低減することができた。
 上記に記載の流体制御弁において、弁座補強上部と弁座補強下部が弁座支持部に対して断面略L形状となることが好ましい。
 弁座補強上部と弁座補強下部との強度を用いることができるからである。そのため、後に詳細に説明する本実施形態の一結果によれば、弁座支持部のたわみを低減し弁座の傾きを従来の流体制御弁と比較して92パーセント低減することができた。
 上記流体制御弁によれば、ダイアフラム弁体が弁座に当接する際に発生する弁座支持部のたわみによる弁座の傾きを防止することができる。
本発明の第1実施形態に係る流体制御弁(閉弁状態)の断面図である。 本発明の第1実施形態に係る流体制御弁(開弁状態)の断面図である。 本発明の第1実施形態に係る樹脂製弁本体の上面図である。 本発明の第2実施形態に係る流体制御弁の一部拡大断面図である。 本発明の第2実施形態に係る流体制御弁の一部拡大側面図である。 本発明の第3実施形態に係る流体制御弁の一部拡大断面図である。 本発明の実施形態に係る従来技術に係る流体制御弁の弁座の傾きと実施形態の流体制御弁の弁座の傾きを比較した実験結果を示した図である。 本発明の第4実施形態に係る流体制御弁の一部拡大断面図である。 本発明の第4実施形態に係る流体制御弁の一部拡大側面図である。 従来技術に係る流体制御弁(閉弁状態)の断面図である。 従来技術に係る流体制御弁の弁座部分の一部拡大概念図である。
 次に、本発明に係る流体制御弁の実施形態について図面を参照して説明する。
(第1実施形態)
<流体制御弁の全体構成>
 図1は、第1実施形態に係る流体制御弁1の断面図であって、弁閉状態を示す。図2は、第1実施形態に係る流体制御弁1の断面図であって、弁開状態を示す。図3は、樹脂製弁本体2の上面図を示す。
 第1実施形態の流体制御弁1は、従来技術と同様、半導体製造装置に組み付けられ、薬液の供給を制御する。流体制御弁1は、ノーマルオープンタイプのエアオペレイト式開閉弁である。流体制御弁1は、樹脂製弁本体2の上面に樹脂製弁上体3を連結し、樹脂製弁本体2と樹脂製弁上体3との間にダイアフラム弁体4が狭持されている。流体制御弁1は、樹脂製弁上体3内のピストン25を摺動させることにより、ダイアフラム弁体4を弁座15に当接又は離間させる。流体制御弁1は、半導体製造装置に取り付けるための取付板5が樹脂製弁本体2の下面に固設されている。
<樹脂製弁本体の構成>
 樹脂製弁本体2は、PTFE(ポリテトラフルオロエチレン)やPFA(四フッ化エチレンパーフルオロアルキルビニルエーテル共重合体)等、耐腐食性や耐熱性に優れた樹脂を成形したものである。
 図1に示すように、樹脂製弁本体2の上面には、弁室13が円柱状に形成されている。弁室13は、円形状の第1ポート23と連通する第1流路21の一端と円形状の第2ポート24と連通する第2流路22の一端が連通している。第1流路21が弁室13に開口する部分には弁孔16が形成されている。弁孔16の周辺部には、弁座15が一体形成されている。
 第1流路21は、一端が第1ポート23に連通する第1ポート連通流路21aと他端が弁室13に連通する第1弁孔連通流路21bを有する。第1ポート連通流路21aは第1ポート23の中心に対して軸心方向に形成されている。他方、第1弁孔連通流路21bは、弁孔16の軸心方向に形成されている。第1ポート連通流路21aと第1弁孔連通流路21bは、樹脂製弁本体2内部で垂直に連結しており、連結部にはR部21cが形成されている。
 図1に示すように、弁室13と第1ポート連通流路21aの間には、弁座15を支持する弁座支持部17が形成されている。弁座支持部17は、弁座補強上部18を有する。図3に示すように樹脂製弁本体2の上面からみた時、弁座補強上部18は、第1弁孔連通流路21bの流路内に形成されている。また、弁座補強上部18は弦18aと円弧18bから構成される弓形形状である。図3に示す弁座補強上部18の断面積は、弓形の面積の公式により求めることができる。
 図3に示すように、弁孔16の形状は、弁座補強上部18が流路内に形成されていることから、断面略D形状の流路形状となっている。図1に示すように、弁座補強上部18の弁座15から第1弁孔連通流路21bにかけて本実施形態においては45度の面取りがされている。面取りがされていることにより、弁孔16に流れ込む流体の流量を増加することができる。
 弁孔16の第2流路22側の弁座他端15aは、第1流路21と第2流路22を隔てる垂直方向の支持部20により支持されている。弁座15は、支持部20及び弁座支持部17により円筒状に支持されている。弁座15は、弁座支持部17以外の部分は支持部20により支持されている。
<樹脂製弁上体の構成>
 図1に示す樹脂製弁上体3は、PPS(ポリフェニレンサルファイド)やPFA、PP、PVDF等、耐腐食性や剛性を有する樹脂を材質とする。樹脂製弁上体3は、シリンダ32とカバー33とで構成され、ピストン室34を形成する。樹脂製のピストン35は、ピストン室34に摺動可能に装填され、シリンダ32との間に縮設される復帰ばね31により図中上向きに常時付勢されている。ピストン35は、操作ポート33aからピストン室34供給される操作エアの圧力と復帰ばね31の反発力とのバランスに応じて、ピストン室34を図中上下方向に移動する。ピストン35には、ピストンロッド36が一体成形されている。ピストンロッド36は、ピストン35に一体的に構成されシリンダ32に摺動可能に構成され、ダイアフラム弁体4に連結されている。
<ダイアフラム弁体の構成>
 ダイアフラム弁体4は、PTFE(ポリテトラフルオロエチレン)等、耐腐食性及び耐熱性に優れた樹脂を材質とし、切削により形作られている。ダイアフラム弁体4は、弁座15に当接又は離間する円柱状の弁体部4aと、弁体部4aの外周面に接続する薄膜部4bと、薄膜部4bの外縁に沿って肉厚に設けられた周縁部4cとから構成されている。ダイアフラム弁体4は、周縁部4cが樹脂製弁本体2と樹脂製弁上体3との間で挟み込まれて環状溝26の内壁にシールすることにより固定されている。
<流体制御弁の作用効果>
 (流体の入力出力)
 図2に示すように、流体制御弁1は、第1流路21に第1ポート23と第2流路22に第2ポート24が接続される。流体制御弁1は、操作ポート33aに操作エアが供給されない場合には、ダイアフラム弁体4を弁座15から復帰ばね31の力により離間させている。そのため、第1ポート23から第1流路21に流入した流体は、弁孔16を介して弁室13、第2流路22へ供給され第2ポート24へ出力される。
 一方、図1に示すように、流体制御弁1は、操作ポート33aに操作エアが供給されると、ピストン35が下降してダイアフラム弁体4を弁座15に当接させる。そのため、第1ポート23から第1流路21を介して弁孔16に流入した薬液は、弁座15においてダイアフラム弁体4に遮断され、第2流路22から第2ポート24へ出力されない。
 (弁座補強部の効果)
 流体制御弁1は、上記ダイアフラム弁体4の弁座15に対し当接離間することにより流体の流量の制御を行う。しかし、ダイアフラム弁体4は、弁座15に対して下方向に加圧する。そのため、弁座15を支持する弁座支持部17には負荷が生じる。その結果、図10に示す従来の流体制御弁100においては、弁座支持部120が負荷によりたわんでいた。弁座支持部120がたわむと、図11に示すように弁座106の弁座支持部120の上面にある弁座一端106Aが傾く。具体的には、たわみ前の弁座一端116A(図11中二点鎖線で示す。)とたわみ後の弁座他端106Bを結んだ線と比較して角度θだけ傾く。また、弁座一端116Aから弁座一端106Aまでの距離Xだけたわみにより傾く。弁座支持部120がたわみ弁座一端106Aが傾くことによりダイアフラム弁体103と弁座一端106Aがこすれ、弁座一端106Aのシール面に対して傷がつく。特に弁座支持部120のたわみが大きく弁座一端106Aが大きく傾くと弁座一端106Aのシール面に傷が入る。弁座一端106Aのシール面に傷が入ると、その傷口から流体が漏れる原因となるため問題となる。
 しかし、本実施形態によれば、弁座支持部17は弁座補強上部18を有する。そのため、ダイアフラム弁体4が弁座15を押圧した場合に発生する弁座支持部17のたわみの幅を小さくすることができる。すなわち、弁座支持部17を弁座補強上部18により補強することができるため、ダイアフラム弁体4が弁座15に対して下方向の加圧力を掛けたとしても、弁座支持部17が下方向の加圧力に対抗することができるため、たわみが生じるのを小さい幅で押さえることができる。
 また、弁座支持部17のたわみ幅が小さくなることにより、弁座一端15bの傾き幅も小さくすることができる。弁座一端15bの傾き幅が小さくなることにより、ダイアフラム弁体4と弁座一端15bとのこすれ幅が小さくなる。それにより弁座一端15bのシール面に対しての傷が小さくなる。具体的には、弁座一端15bのシール面の円周方向に対して直角の傷が付いたとしても、傷の幅が狭く弁座一端15bのシール面を超えない範囲での傷が形成されるのであれば、その傷口から流体が漏れることはない。そのため、本実施形態によれば、弁座一端15bの傾きが小さくなることにより、弁座一端15bのシール面を超えない範囲での傷の大きさに押さえることができるため流体の漏れが発生することがなくなって漏れを防止することができる。
 また、弁座支持部17のたわみを小さくすることができることにより、繰り返し疲労による弁座支持部17の塑性変形を防止することができる。弁座支持部17の塑性変形を防止することができるため、ダイアフラム弁体4と弁座15との間の全周にわたるシール力の均一性を保つことができる。シール力の均一性を保つことができることにより流体の漏れを防止することができる。
 また、弁座支持部17のたわみを防止することができることにより、弁座15のシール面を超える傷を防止することができる。そのため、流体制御弁1を交換する交換頻度を減らすことができ、使用コストを下げることができる。また、弁座支持部17の塑性変形を防止することができることにより、シールの均一性を保つことができる。そのため、流体制御弁1を交換する交換頻度を減らすことができ、使用コストを下げることができる。
 図7に、本発明の弁座の傾きの効果を表した棒グラフを示す。縦軸は従来技術に係る流体制御弁100の弁座一端106Aの傾き角度θの割合を「1」とした場合に、流体制御弁100の傾き角度θの割合と本発明の傾き角度の割合を比較したものである。横軸は(A)に流体制御弁100の弁座106の傾き角度θの割合を示し、(C)に本実施形態における流体制御弁1の弁座一端15bの傾き角度の割合を示す。
 図7に示すように、(A)の流体制御弁100の弁座一端106Aの傾き角度θの割合と比較して、(C)の本実施形態の流体制御弁1の弁座一端15bの傾き角度の割合は0.39となる。すなわち、流体制御弁1の弁座支持部17は弁座補強上部18を有するため、弁座の傾きを61パーセント低減することができた。
 また、弁座補強上部18は、弁孔16を樹脂製弁上体3方向から見たとき、弓形形状となることにより、弁座支持部17を補強することができ強度が増すため、弁座支持部17のたわみ幅を小さくすることができ弁座一端15bの傾き角度を低減することができる。
 具体的には、弁孔16を樹脂製弁上体13方向からみたときの弁孔16の第1ポート連通流路21a側に弓形形状となる弁座補強上部18を形成することができる。弁孔16の第2流路22側の弁座他端15aは、第1流路21と第2流路22を隔てる垂直方向の支持部20を有するため強度が強い。他方、弁孔16の第1ポート連通流路21a側の弁座支持部17はその下方向に第1流路21が通るため垂直方向の支持がなく強度が弱い。そのため、強度が弱い部分に弁座補強上部18を形成することにより弁座支持部17のたわみを防止することができる。それにより、弁座15の傾きを低減することができる。
 また、弁孔16に対して第1ポート連通流路21a側に弓形形状となるように弁座補強上部18を形成することで、図3に示すように弁座支持部17を弁孔16に対して円周方向Sに強くすることができる。すなわち、弁座補強上部18が弓形形状であることにより、強度を持つ筒状の弁孔16へのつながりが強くなる。弁座補強上部18は弁孔16へのつながりを強くすることで、支持部20により強度を持つ筒状の弁孔16の剛性を利用し、弁座支持部17の剛性を増すことができる。その結果、弁座支持部17のたわみを低減し弁座15の傾きを従来の流体制御弁1と比較して61パーセント低減することができる。
 また、弁座補強上部18は第1弁孔連通流路21bを一部塞ぐように形成されているが、流体の流れの妨げを最小限にすることができる。すなわち、流体は真っすぐ流れる性質を有するため、第1弁孔連通流路21bを流れる流体は流路のR部21cの外側部分を多く流れる。そのため、R部21cの内側部分に弓形の弁座補強上部18が形成されていたとしても流体の流量に与える影響は少ない。その結果、第1弁孔連通流路21bを流れる流体の妨げを最小限とすることができる。
 また、強度が弱い弁座支持部17を補強することで、弁座支持部17及び支持部20を円周方向に均一に強度を保つことができる。弁座支持部17の強度を保つことができることにより、弁座15でシール荷重を受けたときに強度が弱い弁座支持部17がたわむことを防止することができる。円周方向に均一なシール力を発生できるためシール性能の低下を低減することができる。特に高温状態や過大なシール荷重が弁座に係る場合に有効となる。
(第2実施形態)
<樹脂製弁本体の構成>
 図4に、樹脂製弁本体50の断面図を示す。図5に、樹脂製弁本体50の側面図を示す。
 第2実施形態においては、第1実施形態の流体制御弁1のうち、樹脂製弁本体2の弁座支持部17の形状が異なるのみであり、他の構造は同一である。そこで、第1実施形態の樹脂製弁本体2の弁座支持部17と変更される第2実施形態の樹脂製弁本体50の弁座支持部57について図4及び図5を用いて説明することで、他の構造については、第1実施形態と同様の符号を用いることで説明を割愛する。
 図4に示すように、弁室13と第1ポート連通流路21aの間には、弁座15を支持する弁座支持部57が形成されている。弁座支持部57は、弁座補強下部59を有する。図5に示すように樹脂製弁本体50の右側面からみた時、弁座補強下部59は、第1ポート連通流路21aの流路内に形成されている。また、弁座補強下部59は弦59aと円弧59bから構成される弓形形状である。図5に示す弁座補強下部59の断面積は、弓形の面積の公式により求めることができる。弁座補強下部59の弓形の面積は、第1ポート23が円形状であった場合の面積の約10パーセント程度の割合を占めている。
 図5に示すように、第1ポート連通流路21aの形状は、弁座補強下部59が流路内に形成されていることから、断面略D形状の流路形状となっている。
<流体制御弁の作用効果>
 流体の入力出力の作用効果については、第1実施形態の流体制御弁1と同様であるため説明を割愛する。
 (弁座補強部の効果)
 本実施形態によれば、弁座支持部57は弁座補強下部59を有する。そのため、弁座支持部57を補強することができ強度が増すため、弁座支持部57のたわみ幅を小さくすることができ弁座一端15bの傾き角度を低減することができる。
 具体的には、弁孔16を樹脂製弁本体2側面方向からみたとき第1ポート連通流路21a内の弁座支持部57側に弓形形状となる弁座補強下部59を形成することができる。第1流路21は断面円形状をなすため、その断面円形状の一部を弓形形状として繋ぐことにより弁座補強下部59を強固に固定することができる。弁座補強下部59を強固に固定することができることで、弁座支持部57の強度を増すことができるため、弁座支持部57のたわみ幅を小さくすることができる。したがって、第1ポート連通流路21a内の弁座支持部57側に弓形形状となる弁座補強下部59を形成することで、弁座支持部57の強度を強くすることができる。
 図7に、本発明の弁座の傾きの効果を表した棒グラフを示す。縦軸は従来技術に係る流体制御弁100の弁座一端106Aの傾き角度θの割合を「1」とした場合に、流体制御弁100の弁座一端106Aの傾き角度θの割合と本発明の傾き角度の割合を比較したものである。横軸は(A)に流体制御弁100の弁座一端106Aの傾き角度θの割合を示し、(B)に本実施形態における流体制御弁の弁座一端15bの傾き角度の割合を示す。
 図7に示すように、(A)の流体制御弁100の弁座一端106Aの傾き角度θの割合と比較して、(B)の本実施形態の流体制御弁の弁座一端15bの傾き角度の割合は0.78となる。すなわち、流体制御弁の弁座支持部57は弁座補強下部59を有するため、弁座支持部57の傾きを22パーセント低減することができた。
(第3実施形態)
<樹脂製弁本体の構成>
 図6に、樹脂製弁本体60の断面図を示す。
 第3実施形態においては、第1実施形態の流体制御弁1のうち、樹脂製弁本体2の弁座支持部17の形状が異なるのみであり、他の構造は同一である。そこで、第1実施形態の樹脂製弁本体2の弁座支持部17と変更される第3実施形態の樹脂製弁本体60の弁座支持部67について図6を用いて説明することで、他の構造については、第1実施形態と同様の符号を用いることで説明を割愛する。
 図6に示すように、弁室13と第1ポート連通流路21aの間には、弁座15を支持する弁座支持部67が形成されている。弁座支持部67は、弁座補強上部68、及び弁座補強下部69を有する。図6に示すように、弁座補強上部68と弁座補強下部69とにより弁座補強部は弁座支持部67に対して断面略L形状となる。図6においては弁座補強上部68及び弁座補強下部69により弁座補強部が弁座支持部67に対して断面略L形状であることが理解し易いように、弁座支持部67と分けて明確に記載する。なお、弁座補強上部68と弁座補強下部69は弁座支持部67と一体成型されL形状が認識できない場合もある。
 弁座補強上部68の構成は、第1実施形態の弁座補強上部18の構成と同様である。また、弁座補強下部69の構成は、第2実施形態の弁座補強下部59と同様の構成である。したがって、詳細な説明を割愛する。
<流体制御弁の作用効果>
 流体の入力出力の作用効果については、第1実施形態の流体制御弁1と同様であるため説明を割愛する。
 (弁座補強部の効果)
 本実施形態によれば、弁座補強上部68と弁座補強下部69とにより弁座支持部67に対して断面略L形状となることにより、弁座補強上部68と弁座補強下部69との強度を用いることができる。そのため、弁座支持部67の強度を従来の流体制御弁1と比較して強くすることができる。すなわち、弁座補強上部68と弁座補強下部69とが形成されることにより弁座支持部67が従来よりも強度を保つことができるため、たわみ幅を小さくすることができる。そのため、弁座一端15bが傾くことを低減させることができるため、ダイアフラム弁体4と弁座15との間のシールの不均一を防止することができる。
 図7に、本発明の弁座の傾き防止の効果を表した棒グラフを示す。縦軸は従来技術に係る流体制御弁100の傾きを「1」とした場合に、流体制御弁100の傾きと本発明の傾きを比較したものである。横軸は(A)に流体制御弁100の弁座106の傾きを示し、(D)に本実施形態における流体制御弁の弁座15の傾きを示す。
 図7に示すように、(A)の流体制御弁100の弁座106の傾きと比較して、(D)の本実施形態の流体制御弁の弁座一端15bの傾きは0.08となる。すなわち、流体制御弁の弁座支持部67は、弁座補強上部68及び弁座補強下部69を有するため、弁座支持部67の傾きを92パーセント低減することができた。
(第4実施形態)
<樹脂製弁本体の構成>
 図8に、樹脂製弁本体70の断面図を示す。図9に、樹脂製弁本体70の側面図を示す。
 第4実施形態においては、第1実施形態の流体制御弁1のうち、樹脂製弁本体2の弁座支持部17の形状が異なるのみであり、他の構造は同一である。そこで、第1実施形態の樹脂製弁本体2の弁座支持部17と変更される第4実施形態の樹脂製弁本体70の弁座支持部77について図8及び図9を用いて説明することで、他の構造については、第1実施形態と同様の符号を用いることで説明を割愛する。
 図8示すように、弁室13と第1ポート連通流路21aの間には、弁座15を支持する弁座支持部77が形成されている。弁座支持部77は、弁座補強部78を有する。図9に示すように樹脂製弁本体70の右側面からみた時、弁座補強部78は、第1ポート連通流路21aの流路内に形成されている。具体的には、弁座補強部78は、弁座支持部77を補強するため、第1ポート連通流路21aに対して軸心方向に形成されている。弁座補強部78は、棒状であり、かつ径方向には流体が流れやすいように断面楕円形状の流線形状とする。断面楕円形状の流線形状であるため、第1流路21から第2流路22に流体が流れる場合、または反対に流れる場合であっても流体の流れを大きく邪魔することはない。
<流体制御弁の作用効果>
 流体の入力出力の作用効果については、第1実施形態の流体制御弁1と同様であるため説明を割愛する。
 (弁座補強部の効果)
 本実施形態によれば、弁座支持部77は、弁座補強部78を有する。そのため、弁座支持部77の強度が上がるため、弁座15のたわみによる弁座一端15bが沈むことを防止することができる。
 また、弁座補強部78は弁座支持部77を直接つっかえ棒の役割をもって支持することができる。そのため、弁座支持部77を直接支持することができるため弁座支持部77の強度を直接強くすることができる。
 尚、本発明は、上記実施の形態に限定されることなく、発明の趣旨を逸脱することのない範囲で色々な応用が可能である。
 例えば、弁座支持部を補強するための弁座補強上部の形状を三日月型の弓形形状とすることができる。三日月形の弓形形状とすることにより、第1流路の幅を広くすることができ、第1流路を流れる流体の流れをさらに良くすることができる。
 例えば、本実施形態においては、弁座補強上部及び弁座補強下部は弁座支持部と一体成型するが、弁座補強上部及び弁座補強下部内に金属等を包含することができる。金属等を包含させることにより、樹脂製の弁座補強上部及び弁座補強下部と比較して強度をさらに強くすることができる。なお、弁座支持部と一体成型する場合には、弁座補強上部及び弁座補強下部は形状として外部に表れるが、材質として外部に表れることはない。弁座支持部と弁座補強上部及び弁座補強下部が一体成型されている場合には、従来技術の流体制御弁における第1流路からはみ出し流路を塞ぐ形とされている部分が弁座補強上部または弁座補強下部とされる。
1   流体制御弁
13  弁室
15  弁座
16  弁孔
17  弁座支持部
18、68  弁座補強上部
59、69  弁座補強下部
2   樹脂製弁本体
21  第1流路
21a 第1ポート連通流路
21b 第1弁孔連通流路
23  第1ポート
24  第2ポート
3   樹脂製弁上体
4   ダイアフラム弁体

Claims (5)

  1.  第1流路と第2流路を備える樹脂製弁本体と、前記樹脂製弁本体の上面に連結される樹脂製弁上体と、前記樹脂製弁本体と前記樹脂製弁上体との間に狭持される樹脂製のダイアフラム弁体とを備えること、
     前記第1流路は、一端が第1ポートに連通する第1ポート連通流路と他端が弁孔に連通する第1弁孔連通流路とを備え、前記第1ポート連通流路と前記第1弁孔連通流路が連通すること、
     前記樹脂製弁本体は、弁室と前記第1ポート連通流路と前記第1弁孔連通流路との間に弁座を支持する弁座支持部を備える流体制御弁において、
     前記弁座支持部は弁座補強部を有すること、
     前記弁座補強部は前記第1流路内を一部塞ぐ形状で形成されていること、
    を特徴とする流体制御弁。
  2.  請求項1に記載する流体制御弁において、
     前記弁座補強部は、前記弁孔を前記樹脂製弁上体方向から見たとき、前記第1弁孔連通流路の一部を塞ぐ弁座補強上部となること、
     前記弁座補強上部は、前記弁孔を前記樹脂製弁上体方向から見たとき、弓形となること、
    を特徴とする流体制御弁。
  3.  請求項1に記載する流体制御弁において、
     前記弁座補強部は、前記第1ポートを前記樹脂製弁本体側面方向から見たとき、前記第1流路の一部を塞ぐ弁座補強下部となること、
     前記弁座補強下部は、前記第1ポートを前記樹脂製弁本体側面方向から見たとき、弓形となること、
    を特徴とする流体制御弁。
  4.  請求項2に記載する流体制御弁において、
     前記弁座補強上部と前記弁座補強下部が前記弁座支持部に対して断面略L形状となること、
    を特徴とする流体制御弁。
  5.  請求項3に記載する流体制御弁において、
     前記弁座補強上部と前記弁座補強下部が前記弁座支持部に対して断面略L形状となること、
    を特徴とする流体制御弁。
     
PCT/JP2011/072503 2010-12-17 2011-09-30 流体制御弁 WO2012081293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180034294.4A CN102985734B (zh) 2010-12-17 2011-09-30 流体控制阀
KR1020137002035A KR101880916B1 (ko) 2010-12-17 2011-09-30 유체제어밸브
US13/811,533 US8840082B2 (en) 2010-12-17 2011-09-30 Fluid control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-282149 2010-12-17
JP2010282149A JP5249310B2 (ja) 2010-12-17 2010-12-17 流体制御弁

Publications (1)

Publication Number Publication Date
WO2012081293A1 true WO2012081293A1 (ja) 2012-06-21

Family

ID=46244408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072503 WO2012081293A1 (ja) 2010-12-17 2011-09-30 流体制御弁

Country Status (6)

Country Link
US (1) US8840082B2 (ja)
JP (1) JP5249310B2 (ja)
KR (1) KR101880916B1 (ja)
CN (1) CN102985734B (ja)
TW (1) TWI541461B (ja)
WO (1) WO2012081293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035234A (ja) * 2016-08-30 2018-03-08 ダイキン工業株式会社 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316323B2 (en) * 2012-06-14 2016-04-19 Fisher Controls International Llc Hydraulic mechanism for valves
JP5986450B2 (ja) * 2012-08-06 2016-09-06 サーパス工業株式会社 空気圧操作弁及びその組立方法
US9829112B2 (en) * 2013-02-26 2017-11-28 Parker-Hannifin Corporation Diaphragm valve with dual point seal and floating diaphragm web
EP3033556A1 (de) * 2013-08-16 2016-06-22 Cci Ag Betätigungseinrichtung und verfahren zum betätigen eines ventils
CN103470828B (zh) * 2013-08-22 2016-08-10 河南航天液压气动技术有限公司 膜片及使用该膜片的膜片密封式安全阀
JP6622724B2 (ja) 2014-06-13 2019-12-18 株式会社堀場エステック 流体および蒸気用高コンダクタンスバルブ
CN204664492U (zh) * 2015-04-15 2015-09-23 厦门建霖工业有限公司 水过滤器安全阀
FR3038687B1 (fr) * 2015-07-10 2018-03-23 Valery Gineste Economiseur d'eau
US10088075B2 (en) * 2015-08-20 2018-10-02 Ok International Inc. Disposable diaphragm valve
JP6837290B2 (ja) * 2016-04-28 2021-03-03 旭有機材株式会社 エアアクチュエータ
KR20190016035A (ko) * 2016-06-21 2019-02-15 시케이디 가부시키가이샤 유체 제어 밸브, 및 유체 제어 밸브 제조 방법
JP6914474B2 (ja) * 2016-08-01 2021-08-04 Smc株式会社 バルブ
DE202016104363U1 (de) * 2016-08-08 2017-11-10 Woco Industrietechnik Gmbh Ventil
WO2018047907A1 (ja) * 2016-09-12 2018-03-15 株式会社フジキン 流体制御装置、これに用いるベースブロックおよび流体制御装置の製造方法
JP6914044B2 (ja) * 2017-01-31 2021-08-04 株式会社キッツエスシーティー ダイヤフラムバルブ
JP6929098B2 (ja) 2017-03-30 2021-09-01 株式会社キッツエスシーティー メタルダイヤフラムバルブ
US10364897B2 (en) 2017-06-05 2019-07-30 Vistadeltek, Llc Control plate for a high conductance valve
US11248708B2 (en) 2017-06-05 2022-02-15 Illinois Tool Works Inc. Control plate for a high conductance valve
WO2018226596A1 (en) 2017-06-05 2018-12-13 Vistadeltek, Llc Control plate for a high conductance valve
US10458553B1 (en) 2017-06-05 2019-10-29 Vistadeltek, Llc Control plate for a high conductive valve
CN109707875B (zh) * 2017-10-26 2024-02-06 厦门三登塑胶工业有限公司 翻板式逆止阀
US10774938B2 (en) * 2017-11-09 2020-09-15 Swagelok Company Diaphragm valve with metal seat
CN114341534A (zh) * 2019-08-30 2022-04-12 旭有机材株式会社 阀装置
US11835142B2 (en) * 2022-04-27 2023-12-05 Bueno Technology Co., Ltd. Buffer valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374565U (ja) * 1986-11-04 1988-05-18
JP2001280518A (ja) * 2000-03-31 2001-10-10 Toyo Stainless Kogyo Kk ダイアフラム弁
JP2005344915A (ja) * 2004-06-07 2005-12-15 Ckd Corp 流体制御弁
JP2007321958A (ja) * 2006-06-05 2007-12-13 Ckd Corp 薬液弁
JP2008088999A (ja) * 2006-09-29 2008-04-17 Ckd Corp 樹脂製流体用バルブ、及びバルブ用ブラケット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1385058A (en) * 1920-05-29 1921-07-19 Frank A Warter Valve
US3134570A (en) * 1960-05-16 1964-05-26 Saunders Valve Co Ltd Diaphragm valve
JPH0665463B2 (ja) 1986-09-16 1994-08-24 日本電信電話株式会社 超精密研磨用ガイドロ−ラ
JP3701367B2 (ja) * 1996-02-22 2005-09-28 Smc株式会社 ポペット弁
US6508266B2 (en) 2000-03-31 2003-01-21 Toyo Stainless Steel Industries Co., Ltd. Diaphragm valve
JP3392813B2 (ja) * 2000-07-07 2003-03-31 エスエムシー株式会社 二方弁
JP2002139161A (ja) * 2000-11-06 2002-05-17 Smc Corp 二方弁
JP2005155895A (ja) * 2003-11-07 2005-06-16 Ckd Corp ダイアフラム弁
JP4813047B2 (ja) 2004-11-29 2011-11-09 シーケーディ株式会社 ダイアフラム弁
JP5138863B2 (ja) * 2004-12-10 2013-02-06 Ckd株式会社 ダイアフラム弁
JP4237781B2 (ja) 2006-06-29 2009-03-11 シーケーディ株式会社 流量制御弁
JP4860506B2 (ja) 2007-02-28 2012-01-25 シーケーディ株式会社 制御弁
JP5064903B2 (ja) 2007-06-21 2012-10-31 Ckd株式会社 流体制御弁
JP4355738B2 (ja) 2007-07-20 2009-11-04 シーケーディ株式会社 流体制御弁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374565U (ja) * 1986-11-04 1988-05-18
JP2001280518A (ja) * 2000-03-31 2001-10-10 Toyo Stainless Kogyo Kk ダイアフラム弁
JP2005344915A (ja) * 2004-06-07 2005-12-15 Ckd Corp 流体制御弁
JP2007321958A (ja) * 2006-06-05 2007-12-13 Ckd Corp 薬液弁
JP2008088999A (ja) * 2006-09-29 2008-04-17 Ckd Corp 樹脂製流体用バルブ、及びバルブ用ブラケット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035234A (ja) * 2016-08-30 2018-03-08 ダイキン工業株式会社 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ
WO2018043003A1 (ja) * 2016-08-30 2018-03-08 ダイキン工業株式会社 改質成形品の製造方法、成形品、ダイヤフラム及びダイヤフラムバルブ
US11072672B2 (en) 2016-08-30 2021-07-27 Daikin Industries, Ltd. Process for producing modified molded article, molded article, diaphragm, and diaphragm valve

Also Published As

Publication number Publication date
TWI541461B (zh) 2016-07-11
KR20130140607A (ko) 2013-12-24
US8840082B2 (en) 2014-09-23
CN102985734B (zh) 2015-04-22
JP2012127487A (ja) 2012-07-05
JP5249310B2 (ja) 2013-07-31
CN102985734A (zh) 2013-03-20
TW201239224A (en) 2012-10-01
US20130119290A1 (en) 2013-05-16
KR101880916B1 (ko) 2018-07-23

Similar Documents

Publication Publication Date Title
JP5249310B2 (ja) 流体制御弁
KR100673399B1 (ko) 진공배기계용 다이어프램 밸브
CN102472398B (zh) 弹簧弹性的轴向密封件
JP6784721B2 (ja) ボール逆止弁及びダイヤフラムポンプ
JP2009522528A (ja) 環状シールおよび環状シールを含むポンプ
WO2017221877A1 (ja) 流体制御弁、及び流体制御弁製造方法
JP2008164079A (ja) ゴム/樹脂複合シール材
US20100232999A1 (en) Seal
CN107269882A (zh) 用于压力控制阀的交换膜
CN108443520B (zh) 密封结构和包括该密封结构的阀组件
EA022733B1 (ru) Уплотнительная гильза для запорного вентиля (варианты)
TWI558842B (zh) 用於對可撓基材密封腔室入口或腔室出口的裝置;基材處理設備及用於組裝此裝置的方法
US6575431B2 (en) Weir-type diaphragm valve with raised arcuate bead
KR20190001577U (ko) 배관 연결부에 사용되는 센터링 유닛
CN108180297B (zh) 防颤振单向阀
KR101837729B1 (ko) 이중관 벨로우즈
US10477970B2 (en) Gas cylinder
US20230107265A1 (en) Seal and method of making and using the same
JP6738741B2 (ja) ライニング型バタフライバルブ
JP7128864B2 (ja) ボール逆止弁及びダイヤフラムポンプ
JP7281175B2 (ja) バルブ
JP2019105339A (ja) 密封装置、弁箱および弁装置
KR20140082388A (ko) Pfa수지 피복층이 구성된 스템 플러그
JP2017180797A (ja) ダイヤフラム弁
US20230109363A1 (en) Seals and methods of making and using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034294.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13811533

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137002035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848874

Country of ref document: EP

Kind code of ref document: A1