WO2018041032A1 - 一种泡沫铜粉及其制备方法 - Google Patents

一种泡沫铜粉及其制备方法 Download PDF

Info

Publication number
WO2018041032A1
WO2018041032A1 PCT/CN2017/099008 CN2017099008W WO2018041032A1 WO 2018041032 A1 WO2018041032 A1 WO 2018041032A1 CN 2017099008 W CN2017099008 W CN 2017099008W WO 2018041032 A1 WO2018041032 A1 WO 2018041032A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
powder
copper oxide
oxide powder
reduction sintering
Prior art date
Application number
PCT/CN2017/099008
Other languages
English (en)
French (fr)
Inventor
朱胜利
陈文华
郭殿月
刘茹晶
朱金花
Original Assignee
昆山德泰新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山德泰新材料科技有限公司 filed Critical 昆山德泰新材料科技有限公司
Publication of WO2018041032A1 publication Critical patent/WO2018041032A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors

Definitions

  • the present disclosure relates to the field of copper powder technology, such as a copper foam powder and a method of preparing the same.
  • Foamed copper is a new type of multifunctional material with a large number of connected or non-connected pores evenly distributed in a copper matrix. It has high specific surface area and has the characteristics of sound absorption, permeation, filtration and energy absorption in catalysis, chemical, energy and thermal energy. The fields of environmental protection and machinery have great potential for market application.
  • the preparation methods of the foamed copper material mainly include an electrodeposition method, a powder metallurgy method, a solid-gas eutectic directional solidification method, and a seepage casting method.
  • electrodeposition method, solid-gas eutectic directional solidification method and seepage casting method all have the disadvantages of complicated process, many process parameters and difficult to control, and high preparation cost, while powder metallurgy has simple process, low cost and aperture. With many advantages such as controllable porosity and good mechanical properties.
  • pore-forming agents are usually used for pore-forming, and the main pore-forming agents are urea, sodium chloride and potassium carbonate.
  • the foamed copper is required to have a high porosity and a small pore diameter, and the foamed copper prepared in the prior art has a high porosity and a large pore diameter.
  • excess pore former will remain in the copper matrix, thereby affecting the properties and applications of the material. Therefore, it is necessary to study a new preparation method of copper foam.
  • One of the objects of the present disclosure is to provide a copper foam powder having a high porosity and a small pore size.
  • a foamed copper powder comprising copper oxide powder, the copper oxide powder being mixed by copper oxide powder of different particle diameters, the copper oxide powder being reduced in a reduction sintering furnace having a reducing atmosphere, and the internal oxygen atom thereof It is reduced to form gaseous H 2 O, and gaseous H 2 O is dispersed from the interior of the copper oxide powder, so that the sintered copper after reduction sintering has a high porosity and a small internal pore diameter, and the sintered copper is crushed and sieved.
  • the copper oxide powder has a particle size of 5 to 75 ⁇ m, and the copper oxide powder having the particle size range is selected to have a low pine ratio and a high shrinkage ratio, wherein the different particle diameters indicate that the particle size of the copper oxide powder may be Millimeter, micron, and nanoscale.
  • the preparation raw material further comprises a pore former
  • the mass ratio of the copper oxide powder to the pore former is (8:2) to (9:1)
  • the pore former is added too much
  • the pore forming agent is easy Residue, resulting in capillary fluency, too little pore-forming agent, poor porosity, and the amount of pore-forming agent added is adjusted according to the porosity requirement.
  • the mass ratio of the copper oxide powder to the pore-forming agent is 8:2, 8.5:1.5, 9:1.
  • the pore former is one or at least two of sodium chloride particles, urea particles and potassium carbonate particles.
  • the second object of the present disclosure is to provide a method for preparing a copper foam powder, which has the advantages of simple process, low cost, no pollution to the environment, no need or only need to add a small amount of pore-forming agent, and does not affect the material properties of the copper matrix. And applications, including the following steps:
  • the mixed copper oxide powder obtained in the step 1) is placed in a reduction sintering furnace for reduction sintering to obtain sintered copper;
  • the sintered copper has a porosity of 60 to 85%.
  • the foamed copper powder obtained has a particle diameter of 106 to 250 ⁇ m.
  • the atmosphere in the reduction sintering furnace is a reducing atmosphere, and the temperature of the reduction sintering The degree is 750 to 900 ° C, and the time of the reduction sintering is 40 minutes or more.
  • the reducing atmosphere is an ammonia decomposition atmosphere
  • the preparation process of the ammonia decomposition atmosphere is simple and convenient to prepare.
  • the volume ratio of hydrogen to nitrogen in the ammonia decomposition atmosphere is 3:1.
  • the beneficial effects of the present disclosure are: the copper foam powder of the present disclosure, the preparation raw material comprises copper oxide powder, which is formed by mixing copper oxide powders of different particle diameters, the copper oxide The particle size of the powder is 5 to 75 ⁇ m, and the porosity is high, and the pore diameter is small.
  • the copper oxide powder is reduced in a reduction sintering furnace having a reducing atmosphere, and the internal oxygen atoms are reduced to form gaseous H 2 O, gaseous H 2 .
  • the foamed copper powder of the present disclosure does not require or need to add a small amount of pore-forming agent, and does not affect the material properties and applications of the copper matrix; in addition, the preparation method of the foamed copper powder of the present disclosure is simple in process, low in cost, and environmentally friendly. Non-polluting, the prepared foamed copper powder has high porosity and small pore size.
  • the mixed copper oxide powder obtained in the step 1) is placed in a reduction sintering furnace for reduction sintering, and the atmosphere in the reduction sintering furnace is a reducing atmosphere, and the reduction sintering temperature is set to 850 ° C, and the reduction sintering time is 40 minutes or more.
  • the mixed copper oxide powder obtained in the step 1) is placed in a reduction sintering furnace for reduction sintering, and the atmosphere in the reduction sintering furnace is a reducing atmosphere, and the reduction sintering temperature is set to 800 ° C, and the reduction sintering time is 50 minutes or more.
  • Sintered copper the porosity of the sintered copper is 83%
  • the reducing atmosphere uses an ammonia decomposition atmosphere, wherein the volume ratio of hydrogen to nitrogen is 3:1;
  • the mixed copper oxide powder obtained in the step 1) is placed in a reduction sintering furnace for reduction sintering, and the atmosphere in the reduction sintering furnace is a reducing atmosphere, and the reduction sintering temperature is set to 750 ° C, and the reduction sintering time is 60 min or more.
  • the sintered copper has a porosity of 65%, and the reducing atmosphere adopts an ammonia decomposition atmosphere, wherein a volume ratio of hydrogen to nitrogen is 3:1;
  • the foamed copper powder of the embodiment of the invention is used as a raw material, and the sintered body has high porosity and small pore diameter; and the porosity and the pore diameter can be adjusted according to the mixing of copper oxide powders with different particle size distributions, thereby satisfying different products. And customer needs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种泡沫铜粉,其制备原料包括氧化铜粉,所述氧化铜粉由不同粒径的氧化铜粉混合而成,所述氧化铜粉的粒径为5~75μm。还公开了一种泡沫铜粉的制备方法,包括将不同粒径的氧化铜粉混合均匀,制备得到混合氧化铜粉;将混合氧化铜粉放入还原烧结炉内进行还原烧结,制得烧结铜;将烧结铜破碎并筛分后得到泡沫铜粉。上述泡沫铜粉不需要或只需加入少量的造孔剂,不会影响铜基体的材料性能和应用,制备得到的泡沫铜粉孔隙率高,孔径小。上述泡沫铜粉的制备方法工艺简单,成本低廉,对环境无污染。

Description

一种泡沫铜粉及其制备方法 技术领域
本公开涉及铜粉技术领域,例如一种泡沫铜粉及其制备方法。
背景技术
泡沫铜是一种在铜基体中均匀分布有大量连通或不连通孔洞的新型多功能材料,其比表面积高,同时具有吸音、渗透、过滤及能量吸收等特性,在催化、化工、能源、热能、环保、机械等领域都具有巨大的市场应用潜力。
泡沫铜材料的制备方法主要有电沉积法、粉末冶金法、固-气共晶定向凝固法,以及渗流铸造法等。其中,电沉积法、固-气共晶定向凝固法以及渗流铸造法等都存在工艺复杂、工艺参数多且难以控制、制备成本较高等缺点,而粉末冶金法却有着工艺简单、成本低、孔径与孔隙率可控、力学性能好等诸多优点。目前国内外采用粉末冶金法制备泡沫铜的方法中,通常采用造孔剂进行造孔,主要选用的造孔剂有尿素、氯化钠、碳酸钾。针对制备热管内芯所需的泡沫铜,要求泡沫铜孔隙率高,孔径小,而现有技术中制备的泡沫铜,其孔隙率高的同时,孔径往往也较大。另外,通过往金属粉末中加入造孔剂烧结制成的泡沫铜,过多的造孔剂会残留在铜基体内,从而影响材料的性能及应用。因此,研究一种新型的泡沫铜粉的制备方法是十分必要的。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开的目的之一在于提供一种泡沫铜粉,其孔隙率高,孔径小。
为达此目的,本公开采用以下技术方案:
一种泡沫铜粉,其制备原料包括氧化铜粉,所述氧化铜粉由不同粒径的氧化铜粉混合而成,氧化铜粉在具有还原气氛的还原烧结炉内被还原,其内部氧原子被还原出去,形成气态H2O,气态H2O从氧化铜粉内部散出,使得还原烧结后的烧结铜孔隙率较高,且内部孔隙孔径较小,烧结铜再经破碎筛分后制得泡沫铜粉;所述氧化铜粉的粒径为5~75μm,选择此粒径范围的氧化铜粉松比低、收缩率高,其中,不同粒径是指氧化铜粉的粒径可以为毫米级、微米级、纳米级。
其中,所述制备原料还包括造孔剂,所述氧化铜粉与所述造孔剂的质量比为(8∶2)~(9∶1),造孔剂添加过多,造孔剂易残留,导致毛细不流畅,造孔剂添加太少,孔隙率效果不佳,加入造孔剂的量根据孔隙率的要求来调节,例如所述氧化铜粉与所述造孔剂的质量比为8∶2、8.5∶1.5、9∶1。
其中,所述造孔剂为氯化钠颗粒、尿素颗粒和碳酸钾颗粒的一种或至少两种。
本公开的目的之二在于提供一种泡沫铜粉的制备方法,该方法工艺简单,成本低廉,对环境无污染,不需要或只需加入少量的造孔剂,不会影响铜基体的材料性能和应用,包括以下步骤:
1)将不同粒径的氧化铜粉混合均匀,制备得到混合氧化铜粉;
2)将步骤1)制得的混合氧化铜粉放入还原烧结炉内进行还原烧结,制得烧结铜;
3)将步骤2)制得的烧结铜破碎并筛分后得到泡沫铜粉。
其中,所述烧结铜的孔隙率为60~85%。
其中,制得的所述泡沫铜粉的粒径为106~250μm。
步骤2)中,所述还原烧结炉内的气氛为还原性气氛,所述还原烧结的温 度为750~900℃,所述还原烧结的时间为40min以上。
其中,所述还原性气氛为氨分解气氛,氨分解气氛的制备工艺简单,制备方便,优选地,氨分解气氛中氢气与氮气的体积比为3∶1。
与现有技术相比,本公开的有益效果为:本公开的泡沫铜粉,其制备原料包括氧化铜粉,所述氧化铜粉由不同粒径的氧化铜粉混合而成,所述氧化铜粉的粒径为5~75μm,且其孔隙率高,孔径小;氧化铜粉在具有还原气氛的还原烧结炉内被还原,其内部氧原子被还原出去,形成气态H2O,气态H2O从氧化铜粉内部散出,使得还原烧结后的烧结铜孔隙率较高,且内部孔隙孔径较小,烧结铜再经破碎筛分后制得泡沫铜粉。本公开的泡沫铜粉,不需要或只需加入少量的造孔剂,不会影响铜基体的材料性能和应用;另外,本公开的泡沫铜粉的制备方法,工艺简单,成本低廉,对环境无污染,制备得到的泡沫铜粉孔隙率高,孔径小。
具体实施方式
下面通过具体实施方式来进一步说明本公开的技术方案。
如无具体说明,本公开的各种原料均可市售购得,或根据本领域的常规方法制备得到。
实施例1
1)将粒径为38μm~75μm氧化铜粉末混合后制备得到混合氧化铜粉;
2)将步骤1)制得的混合氧化铜粉放入还原烧结炉内进行还原烧结,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度为850℃、还原烧结时间为40min以上,制得烧结铜,烧结铜的孔隙率为75%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将烧结铜破碎并筛分出粒径在106~250μm分布的泡沫铜粉。
实施例2
1)将粒径为6.5μm~18μm氧化铜粉、粒径为18μm~75μm氧化铜粉、尿素颗粒按2∶7∶1的质量比混合后制得混合氧化铜粉;
2)将步骤1)制得的混合氧化铜粉放入还原烧结炉内进行还原烧结,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度为800℃、还原烧结时间为50min以上,制得烧结铜,烧结铜的孔隙率为83%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将烧结铜破碎并筛分出粒径在106~250μm分布的泡沫铜粉。
实施例3
1)将粒径为18μm~75μm氧化铜粉末和氯化钠颗粒按质量比为8∶2混合后制得混合氧化铜粉;
2)将步骤1)制得的混合氧化铜粉放入还原烧结炉内进行还原烧结,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度为750℃、还原烧结时间为60min以上,制得烧结铜,烧结铜的孔隙率为65%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将烧结铜破碎并筛分出粒径在106~250μm分布的泡沫铜粉。
对实施例1~3制备的泡沫铜粉的性能进行测试,实验结果如表1所示。
表1
Figure PCTCN2017099008-appb-000001
以本发明实施例的泡沫铜粉为原料烧结出的部件,其孔隙率高,且孔径较小;且其孔隙率和孔径可以根据不同粒径分布的氧化铜粉混合进行调节,从而满足不同产品和客户的需求。
申请人声明,本公开通过上述实施例来说明本公开的详细工艺设备和工艺流程,但本公开并不局限于上述详细工艺设备和工艺流程,即不意味着本公开必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本公开的任何改进,对本公开产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (8)

  1. 一种泡沫铜粉,其制备原料包括氧化铜粉,所述氧化铜粉由不同粒径的氧化铜粉混合而成,所述氧化铜粉的粒径为5~75μm。
  2. 根据权利要求1所述的泡沫铜粉,其中,所述制备原料还包括造孔剂,所述氧化铜粉与所述造孔剂的质量比为(8∶2)~(9∶1)。
  3. 根据权利要求2所述的泡沫铜粉,其中,所述造孔剂为氯化钠颗粒、尿素颗粒和碳酸钾颗粒的一种或至少两种。
  4. 一种如权利要求1所述的泡沫铜粉的制备方法,其包括以下步骤:
    1)将不同粒径的氧化铜粉混合均匀,制备得到混合氧化铜粉;
    2)将步骤1)制得的混合氧化铜粉放入还原烧结炉内进行还原烧结,制得烧结铜;
    3)将步骤2)制得的烧结铜破碎并筛分后得到泡沫铜粉。
  5. 根据权利要求4所述的制备方法,其中,所述烧结铜的孔隙率为60~85%。
  6. 根据权利要求4所述的制备方法,其中,制得的所述泡沫铜粉的粒径为106~250μm。
  7. 根据权利要求4所述的制备方法,其中,步骤2)中,所述还原烧结炉内的气氛为还原性气氛,所述还原烧结的温度为750~900℃,所述还原烧结的时间为40min以上。
  8. 根据权利要求7所述的制备方法,其特征在于,所述还原性气氛为氨分解气氛。
PCT/CN2017/099008 2016-08-31 2017-08-25 一种泡沫铜粉及其制备方法 WO2018041032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610776462.1 2016-08-31
CN201610776462.1A CN106180745B (zh) 2016-08-31 2016-08-31 一种泡沫铜粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2018041032A1 true WO2018041032A1 (zh) 2018-03-08

Family

ID=58089333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099008 WO2018041032A1 (zh) 2016-08-31 2017-08-25 一种泡沫铜粉及其制备方法

Country Status (2)

Country Link
CN (1) CN106180745B (zh)
WO (1) WO2018041032A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981262A (zh) * 2021-10-13 2022-01-28 尹立赫 一种泡沫金属腔体成型材料及其成型方法
CN114131018A (zh) * 2021-12-10 2022-03-04 中国矿业大学 一种压网铜纳米堆积床散热材料的制备方法
CN114507510A (zh) * 2022-01-30 2022-05-17 内蒙古工业大学 一种泡沫铜-石墨烯-膨胀石墨-石墨复合散热材料及其制备方法
CN114682781A (zh) * 2022-04-01 2022-07-01 江苏库博德金属科技有限公司 一种短纤维状珊瑚形铜粉的制作方法
CN116618275A (zh) * 2023-06-08 2023-08-22 南昌航空大学 一种复合泡沫铜吸液芯、其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180745B (zh) * 2016-08-31 2018-07-27 昆山德泰新材料科技有限公司 一种泡沫铜粉及其制备方法
CN106994512B (zh) * 2017-04-18 2019-03-15 中南大学 一种复合孔径铜烧结多孔材料及其制备方法和应用
CN112846169B (zh) * 2020-12-31 2022-09-13 广东省科学院新材料研究所 一种多孔金属粉末注射成形喂料及其制备方法、多孔金属异形零部件
CN114406266B (zh) * 2022-02-08 2024-06-11 郭鹏杰 一种吸液芯、相变传热装置及制备方法
CN114619031A (zh) * 2022-03-14 2022-06-14 北京理工大学 一种微米孔径泡沫铜的制备方法
CN114888288A (zh) * 2022-05-11 2022-08-12 江苏科技大学 一种多孔金属铜的固相制备方法
CN115194153A (zh) * 2022-06-30 2022-10-18 瑞声科技(南京)有限公司 一种泡沫铜的制备方法
CN115156553B (zh) * 2022-08-05 2024-07-19 江苏亚威创科源激光装备有限公司 一种闭孔泡沫钢及其激光增材制造技术制备方法
CN115740431A (zh) * 2022-12-21 2023-03-07 北京有研粉末新材料研究院有限公司 复配铜粉及其制备方法与应用
CN115805306A (zh) * 2022-12-21 2023-03-17 北京有研粉末新材料研究院有限公司 多孔铜粉及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287027A (ja) * 1986-06-05 1987-12-12 Mitsubishi Metal Corp 多孔質Cu合金焼結体の製造方法
CN1294538A (zh) * 1999-03-03 2001-05-09 福田金属箔粉工业株式会社 多孔金属粉末及其制造方法
CN101704103A (zh) * 2009-12-22 2010-05-12 元磁新型材料(苏州)有限公司 一种用于制造热导管内壁毛细结构的复合铜粉
CN102554241A (zh) * 2012-01-12 2012-07-11 昆山德泰新材料科技有限公司 泡沫团化铜粉制备方法
CN104759627A (zh) * 2014-01-03 2015-07-08 江苏格业新材料科技有限公司 一种通过还原氧化铜粉制造微型热管的方法
KR20160101232A (ko) * 2015-02-13 2016-08-25 서울과학기술대학교 산학협력단 구리 산화물이 코팅된 구리 분말을 이용한 금속성 다공체의 제조 장치 및 방법
CN106180745A (zh) * 2016-08-31 2016-12-07 昆山德泰新材料科技有限公司 一种泡沫铜粉及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB982668A (en) * 1961-12-19 1965-02-10 Hoeganacs Sponge Iron Corp A process for producing alloyed metal powders for use in powder metallurgy
CN102441381A (zh) * 2011-10-28 2012-05-09 昆山德泰新材料科技有限公司 一种用氧化铜粉生产的催化剂及其制造方法
CN102601379A (zh) * 2012-03-29 2012-07-25 金川集团有限公司 一种多孔状球形镍粉的制备方法
CN103215470B (zh) * 2013-05-03 2016-02-24 中南大学 一种孔结构参数可控的开孔泡沫铜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287027A (ja) * 1986-06-05 1987-12-12 Mitsubishi Metal Corp 多孔質Cu合金焼結体の製造方法
CN1294538A (zh) * 1999-03-03 2001-05-09 福田金属箔粉工业株式会社 多孔金属粉末及其制造方法
CN101704103A (zh) * 2009-12-22 2010-05-12 元磁新型材料(苏州)有限公司 一种用于制造热导管内壁毛细结构的复合铜粉
CN102554241A (zh) * 2012-01-12 2012-07-11 昆山德泰新材料科技有限公司 泡沫团化铜粉制备方法
CN104759627A (zh) * 2014-01-03 2015-07-08 江苏格业新材料科技有限公司 一种通过还原氧化铜粉制造微型热管的方法
KR20160101232A (ko) * 2015-02-13 2016-08-25 서울과학기술대학교 산학협력단 구리 산화물이 코팅된 구리 분말을 이용한 금속성 다공체의 제조 장치 및 방법
CN106180745A (zh) * 2016-08-31 2016-12-07 昆山德泰新材料科技有限公司 一种泡沫铜粉及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981262A (zh) * 2021-10-13 2022-01-28 尹立赫 一种泡沫金属腔体成型材料及其成型方法
CN114131018A (zh) * 2021-12-10 2022-03-04 中国矿业大学 一种压网铜纳米堆积床散热材料的制备方法
CN114507510A (zh) * 2022-01-30 2022-05-17 内蒙古工业大学 一种泡沫铜-石墨烯-膨胀石墨-石墨复合散热材料及其制备方法
CN114507510B (zh) * 2022-01-30 2023-06-16 内蒙古工业大学 一种泡沫铜-石墨烯-膨胀石墨-石墨复合散热材料及其制备方法
CN114682781A (zh) * 2022-04-01 2022-07-01 江苏库博德金属科技有限公司 一种短纤维状珊瑚形铜粉的制作方法
CN114682781B (zh) * 2022-04-01 2023-10-13 江苏库博德金属科技有限公司 一种短纤维状珊瑚形铜粉的制作方法
CN116618275A (zh) * 2023-06-08 2023-08-22 南昌航空大学 一种复合泡沫铜吸液芯、其制备方法和应用
CN116618275B (zh) * 2023-06-08 2024-04-05 南昌航空大学 一种复合泡沫铜吸液芯、其制备方法和应用

Also Published As

Publication number Publication date
CN106180745B (zh) 2018-07-27
CN106180745A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018041032A1 (zh) 一种泡沫铜粉及其制备方法
WO2017045273A1 (zh) 一种气凝胶-金属复合材料及其制备方法和应用
CN104004954B (zh) 一种泡沫钢的制备方法
JP7191390B2 (ja) 金属フォームの製造方法
CN103215470B (zh) 一种孔结构参数可控的开孔泡沫铜的制备方法
Ganesh et al. An aqueous gelcasting process for sintered silicon carbide ceramics
WO2018041031A1 (zh) 一种高毛细速率低松装密度的热导铜粉及其制备方法
CN105177339B (zh) 一种三维空间有序孔结构泡沫铝及其制备方法
JPS5939719B2 (ja) 核燃料体とその製法
CN104144760B (zh) 通过粉末冶金制造多孔体的方法
CN111020329B (zh) 一种基于W-Fe-C体系腐蚀法制备多孔钨材料的方法
CN101358304A (zh) NiAl金属间化合物多孔材料及其制备方法
CN103667762B (zh) 一种低密度多孔金属材料的制备方法
CN105382253A (zh) 一种预混合铜锡10青铜的生产方法
CN104671826A (zh) 一种多孔氧化铝陶瓷、制备方法及其应用
KR101367591B1 (ko) 발포세라믹의 제조방법
CN116890110B (zh) 一种可低温烧结的微米银粉及制备方法
CN102259189A (zh) 一种多孔阴极基底的制备方法
CN104451226A (zh) 一种微纳复合细晶钨材料的制备方法
WO2015066953A1 (zh) 一种高性能17-4ph不锈钢及其制备方法
CN100545218C (zh) 二氧化硅包裹氧化铁的方法
CN105803298A (zh) 一种用造孔剂制备泡沫钢的方法
CN106001545A (zh) 一种纳米碳化物-钨复合粉末的制备方法
CN110014164B (zh) 一种基于草酸镍和氯化钠共混还原法制备镍多孔材料的方法
CN109454231B (zh) 一种铁铝铜合金微孔过滤材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845334

Country of ref document: EP

Kind code of ref document: A1