WO2018041031A1 - 一种高毛细速率低松装密度的热导铜粉及其制备方法 - Google Patents
一种高毛细速率低松装密度的热导铜粉及其制备方法 Download PDFInfo
- Publication number
- WO2018041031A1 WO2018041031A1 PCT/CN2017/099007 CN2017099007W WO2018041031A1 WO 2018041031 A1 WO2018041031 A1 WO 2018041031A1 CN 2017099007 W CN2017099007 W CN 2017099007W WO 2018041031 A1 WO2018041031 A1 WO 2018041031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper powder
- powder
- copper
- conductive copper
- thermal conductive
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
Definitions
- the present disclosure relates to the field of thermal copper powder technology, such as a high capillary rate low bulk density thermal conductive copper powder and a preparation method thereof.
- the internal capillary core is sintered by thermal conductive copper powder, and the high-performance capillary core should have the following basic characteristics: high capillary rate, high porosity (low flow resistance) High reliability and good thermal conductivity.
- the capillary rate and porosity of the capillary core play a decisive role. The higher the capillary rate, the smaller the effective capillary diameter and the larger the capillary pumping force; the higher the porosity, the smaller the flow resistance of the fluid in the tube. The better the fluidity, the better the permeability.
- capillary diameter too small a capillary diameter will cause a sharp drop in permeability, which will increase the flow resistance of the working fluid in the core, which in turn will reduce the output head of the evaporator.
- the capillary rate and porosity of the capillary core are required for the pore size. Contradictory, and the porosity of the core is generally inversely proportional to the bulk density of the thermally conductive copper powder.
- Patent CN201410015567.6 proposes that the evaporation section of the capillary core is directly sintered from copper powder, and the condensation section and the adiabatic section are reduced and sintered by pure copper oxide powder.
- the scheme fills different powders in different parts of the tube, and the process is cumbersome;
- the condensed section and the adiabatic section are reduced by the pure copper oxide powder.
- the porosity of the capillary core is high, the capillary rate is low, and the capillary core directly sintered with copper oxide does not easily adhere to the inner wall of the heat pipe.
- Each segment of the capillary core is sintered by pure copper powder or copper oxide powder, and the capillary rate and porosity of each segment are not easily controlled.
- One of the objects of the present disclosure is to provide a thermally conductive copper powder having a high capillary rate and a low bulk density, which has a high capillary rate and a low bulk density.
- a high capillary rate low bulk density thermal conductive copper powder wherein the preparation raw material comprises copper oxide powder and electrolytic copper powder, and the mass ratio of the copper oxide powder to the electrolytic copper powder is (2:8) to (8) 2); electrolytic copper powder is a dendritic cluster structure, after the copper oxide powder is reduced and sintered, the internal oxygen atoms are reduced, and the porosity is high. Now the electrolytic copper powder and the copper oxide powder are mixed and then reduced and sintered. The obtained sintered copper is crushed and sieved to obtain thermally conductive copper powder particles, which are particles which are connected and agglomerated by reduction and sintering of copper oxide powder and electrolytic copper powder, and the copper oxide is sintered in a reducing atmosphere.
- a redox reaction occurs, which is an exothermic reaction, which can greatly reduce the sintering energy of the system, so it must contain a certain amount of copper oxide, and the unique dendritic structure of the electrolytic copper powder can form a large number of non-sintered after sintering.
- the capillary gap of the rule has a high improvement on the capillary rate of the thermal conductive copper powder.
- the mass ratio of the copper oxide powder to the electrolytic copper powder is preferably (2:8) to (8:2), for example, the mass ratio of the copper oxide powder to the electrolytic copper powder is 2:8, 3:7, 4 : 6, 5: 5, 6: 4, 7: 3, 8: 2.
- the electrolytic copper powder has a particle diameter of less than 0.075 mm.
- the thermal conductive copper powder is composed of thermally conductive copper powder particles of different particle diameters, and the thermal conductive copper powder particles have a particle diameter of 106 to 250 ⁇ m.
- the thermally conductive copper powder particles comprise sintered copper particles which are connected and agglomerated by reduction and sintering of copper oxide powder and electrolytic copper powder.
- the sintered copper particles have a porosity of 57 to 80%.
- the second object of the present disclosure is to provide a method for preparing a high-capacity rate low bulk density thermal conductive copper powder, which has the advantages of simple process, low cost and no pollution to the environment, and includes the following steps:
- the mixed copper powder obtained in the step 1) is placed in a reduction sintering furnace, and sintered to obtain sintered copper;
- the atmosphere in the reduction sintering furnace is a reducing atmosphere
- the temperature of the reduction sintering is 750 to 900 ° C
- the time of the reduction sintering is 40 minutes or more.
- the reducing atmosphere is an ammonia decomposition atmosphere
- the preparation process of the ammonia decomposition atmosphere is simple and convenient to prepare, wherein the volume ratio of hydrogen to nitrogen is 3:1.
- the beneficial effects of the present disclosure are: a high capillary rate low bulk density thermal conductive copper powder of the present disclosure, the preparation raw material comprising copper oxide powder and electrolytic copper powder, the copper oxide powder and the The mass ratio of the electrolytic copper powder is (2:8) to (8:2); since the copper oxide is sintered in a reducing atmosphere, a redox reaction occurs at the same time, and the reaction is an exothermic reaction, which can greatly reduce system sintering. Energy, it must contain a certain amount of copper oxide, and the unique dendritic structure of electrolytic copper powder can form a large number of irregular capillary voids after sintering, which has a high increase in the capillary rate of the thermal conductive copper powder.
- the prepared thermal conductive copper powder has a higher capillary rate and a lower bulk density.
- the copper oxide powder and the electrolytic copper powder are uniformly mixed according to a mass ratio of 2:8 to obtain a mixed copper powder, and the electrolytic copper powder has a particle diameter of less than 0.075 mm;
- the mixed copper powder prepared in the step 1) is placed in a reduction sintering furnace, and the atmosphere in the reduction sintering furnace is a reducing atmosphere, and a reduction sintering temperature of 750 ° C and a reduction sintering time of 60 min are set to obtain sintered copper, and the porosity thereof is obtained.
- the reducing atmosphere adopts an ammonia decomposition atmosphere, wherein the volume ratio of hydrogen to nitrogen is 3:1;
- the sintered copper obtained in the step 2) is crushed and sieved to obtain a thermally conductive copper powder having a particle diameter ranging from 106 to 250 ⁇ m.
- the prepared thermal conductive copper powder had a capillary rate of 14 s/100 mm and a bulk density of 1.6 g/cm 3 .
- the test method of bulk density is a funnel method test method according to GBT 1479.1-2011 determination of the bulk density of metal powder.
- the test method of the capillary rate is as follows: the copper powder is filled into an oxygen-free copper tube having a diameter of 8 mm and a wall thickness of 0.3 mm, and the sintering temperature is 950 ° C ⁇ 10 ° C.
- the sintering atmosphere is an ammonia decomposition atmosphere, and the sintering time is It is 30min.
- the copper oxide powder and the electrolytic copper powder are uniformly mixed according to a mass ratio of 4:6 to obtain a mixed copper powder, and the particle size of the electrolytic copper powder is less than 0.075 mm;
- the mixed copper powder prepared in the step 1) is placed in a reduction sintering furnace, and the atmosphere in the reduction sintering furnace is a reducing atmosphere, and a reduction sintering temperature of 800 ° C and a reduction sintering time of 50 min are set to obtain sintered copper, and the porosity thereof is obtained. 78%, the reducing atmosphere adopts an ammonia decomposition atmosphere, wherein the volume ratio of hydrogen to nitrogen is 3:1;
- the sintered copper obtained in the step 2) is crushed and sieved to obtain a thermally conductive copper powder having a particle diameter ranging from 106 to 250 ⁇ m.
- the prepared thermal conductive copper powder had a capillary rate of 13 s/100 mm and a bulk density of 1.6 g/cm 3 .
- the copper oxide powder and the electrolytic copper powder are uniformly mixed according to a mass ratio of 4:6 to obtain a mixed copper powder, and the particle size of the electrolytic copper powder is less than 0.075 mm;
- the mixed copper powder prepared in the step 1) is placed in a reduction sintering furnace, the atmosphere in the reduction sintering furnace is a reducing atmosphere, and a reduction sintering temperature of 850 ° C and a reduction sintering time of 40 min are set to obtain sintered copper, and the porosity thereof is obtained.
- the reducing atmosphere adopts an ammonia decomposition atmosphere, wherein the volume ratio of hydrogen to nitrogen is 3:1;
- the sintered copper obtained in the step 2) is crushed and sieved to obtain a thermally conductive copper powder having a particle diameter ranging from 106 to 250 ⁇ m.
- the prepared thermal conductive copper powder had a capillary rate of 15 s/100 mm and a bulk density of 1.7 g/cm 3 .
- the copper oxide powder and the electrolytic copper powder are uniformly mixed according to a mass ratio of 8:2 to obtain a mixed copper powder, and the particle size of the electrolytic copper powder is less than 0.075 mm;
- the mixed copper powder prepared in the step 1) is placed in a reduction sintering furnace, and the atmosphere in the reduction sintering furnace is a reducing atmosphere, and a reduction sintering temperature of 900 ° C and a reduction sintering time of 40 minutes or more are provided to obtain sintered copper.
- the rate is 75%
- the reducing atmosphere adopts an ammonia decomposition atmosphere, wherein the volume ratio of hydrogen to nitrogen is 3:1;
- the sintered copper obtained in the step 2) is crushed and sieved to obtain a thermally conductive copper powder having a particle diameter ranging from 106 to 250 ⁇ m.
- the prepared thermal conductive copper powder had a capillary rate of 15 s/100 mm and a bulk density of 1.7 g/cm 3 .
- the thermal conductive copper powder prepared by the embodiment of the invention can ensure the low bulk density while ensuring a high capillary rate of the heat pipe capillary core sintered by the thermal conductive copper powder; and the capillary rate of the thermal conductive copper powder
- the bulk density can be adjusted according to the mass ratio of the mixed copper oxide powder and the electrolytic copper powder to meet the needs of different products and customers.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
Abstract
一种高毛细速率低松装密度的热导铜粉及其制备方法,制备原料包括氧化铜粉和电解铜粉,所述氧化铜粉和所述电解铜粉的质量比为(2:8)~(8:2);通过调节氧化铜粉和电解铜粉的配比将氧化铜粉和电解铜粉混合后进行还原烧结,制得的烧结铜经破筛分得到热导铜粉颗粒,是由氧化铜粉和电解铜粉经还原烧结后相互连接、团化后的颗粒。该热导铜粉毛细速率高、松装密度低,且热导铜粉的毛细速率和松装密度可以根据氧化铜粉和电解铜粉混合的质量比进行调节,从而满足不同产品和客户的需求。
Description
本公开涉及热导铜粉技术领域,例如一种高毛细速率低松装密度的热导铜粉及其制备方法。
对一般烧结式热管来说,其内部毛细芯体是由热导铜粉烧结而成的,而高性能毛细芯体应具备以下几个基本特征:高毛细速率、高孔隙率(低流动阻力)、高可靠性、良好的导热性能。其中,毛细芯体的毛细速率和孔隙率起着决定性的作用,毛细速率越高,有效毛细孔径越小,毛细抽力越大;孔隙率越高,管内流体在芯体内的流动阻力越小,流动性越好,渗透性越好。但过小的毛细孔径会引起渗透率剧烈下降,导致工质在芯内流动阻力增加,反过来又会降低蒸发器的输出压头,毛细芯的毛细速率和孔隙率对孔隙尺寸的要求是相互矛盾的,而芯体的孔隙率一般又与热导铜粉的松装密度成反比。
专利CN201410015567.6中提出毛细芯体的蒸发段由铜粉直接烧结而成,冷凝段和绝热段由纯氧化铜粉还原烧结而成,该方案在管内不同部位装填不同粉末,工艺繁琐;而且在冷凝段和绝热段部位用纯氧化铜粉还原烧结后的毛细芯体其孔隙率虽然较高,但毛细速率较低,而且直接用氧化铜烧结后的毛细芯体不容易粘附在热管内壁上;毛细芯体各段分别采用纯铜粉或氧化铜粉烧结而成,各段的毛细速率和孔隙率也不容易控制。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开的目的之一在于提供一种高毛细速率低松装密度的热导铜粉,其毛细速率高、松装密度低。
为达此目的,本公开采用以下技术方案:
一种高毛细速率低松装密度的热导铜粉,其制备原料包括氧化铜粉和电解铜粉,所述氧化铜粉和所述电解铜粉的质量比为(2∶8)~(8∶2);电解铜粉为树枝状簇状结构,氧化铜粉经还原烧结后其内部氧原子被还原出去,孔隙率较高,现将电解铜粉和氧化铜粉混合后进行还原烧结,制得的烧结铜经破碎筛分得到热导铜粉颗粒,其是由氧化铜粉和电解铜粉经还原烧结后相互连接、团化后的颗粒,由于氧化铜在还原性气氛中进行烧结,其同时会发生氧化还原反应,该反应为放热反应,可大大降低系统烧结能,故必须含有一定量的氧化铜,而电解铜粉所独特的树枝状结构,在烧结后,可形成大量的不规则的毛细空隙,对热导铜粉的毛细速率具有很高的提升,通过调节氧化铜粉和电解铜粉的配比,使制备得到的热导铜粉具有较高的毛细速率和较低的松装密度,所述氧化铜粉和所述电解铜粉的质量比为(2∶8)~(8∶2)较合适,例如,氧化铜粉与电解铜粉的质量比为2∶8、3∶7、4∶6、5∶5、6∶4、7∶3、8∶2。
其中,所述电解铜粉的粒径小于0.075mm。
其中,所述热导铜粉由不同粒径的热导铜粉颗粒组成,所述热导铜粉颗粒的粒径为106~250μm。
其中,所述热导铜粉颗粒包括氧化铜粉和电解铜粉经还原烧结后相互连接、团化的烧结铜颗粒。
其中,所述烧结铜颗粒的孔隙率为57~80%。
本公开的目的之二在于提供一种高毛细速率低松装密度的热导铜粉的制备方法,该方法工艺简单,成本低廉,对环境无污染,包括以下步骤:
1)将氧化铜粉和电解铜粉按照(2∶8)~(8∶2)的质量比均匀混合,制得混合铜粉;
2)将步骤1)制得的混合铜粉放入还原烧结炉内,还原烧结制得烧结铜;
3)将由步骤2)制得的烧结铜破碎并筛分后得到热导铜粉。
步骤2)中,所述还原烧结炉内的气氛为还原性气氛,所述还原烧结的温度750~900℃,所述还原烧结的时间为40min以上。
其中,所述还原性气氛为氨分解气氛,氨分解气氛的制备工艺简单,制备方便,其中氢气与氮气的体积比为3∶1。
与现有技术相比,本公开的有益效果为:本公开的高毛细速率低松装密度的热导铜粉,其制备原料包括氧化铜粉和电解铜粉,所述氧化铜粉和所述电解铜粉的质量比为(2∶8)~(8∶2);由于氧化铜在还原性气氛中进行烧结,其同时会发生氧化还原反应,该反应为放热反应,可大大降低系统烧结能,故必须含有一定量的氧化铜,而电解铜粉所独特的树枝状结构,在烧结后,可形成大量的不规则的毛细空隙,对热导铜粉的毛细速率具有很高的提升,通过调节氧化铜粉和电解铜粉的配比,使制备得到的热导铜粉具有较高的毛细速率和较低的松装密度。
下面通过具体实施方式来进一步说明本公开的技术方案。
如无具体说明,本公开的各种原料均可市售购得,或根据本领域的常规方法制备得到。
实施例1
1)将氧化铜粉和电解铜粉按照2∶8的质量比均匀混合,制得混合铜粉,电解铜粉粒径小于0.075mm;
2)将步骤1)制得的混合铜粉放入还原烧结炉内,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度750℃、还原烧结时间60min,制得烧结铜,其孔隙率为60%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将步骤2)制得的烧结铜破碎并筛分后得到粒径范围为106-250μm的热导铜粉。
测试制备得到的热导铜粉的毛细速率为14s/100mm,松装密度为1.6g/cm3。
其中,松装密度的测试方法为依据GBT 1479.1-2011金属粉末松装密度的测定中的漏斗法测试方法。毛细速率的测试方法为:将铜粉填入直径为8mm、壁厚为0.3mm的无氧铜管中进行松装烧结,烧结温度为950℃±10℃,烧结气氛为氨分解气氛,烧结时间为30min。烧结后,冷却取出,取100mm长含有铜粉的烧结铜管,将一头放入水中5mm,利用秒表进行计时,当另一端表面有水渍出现时,停止计时。测试三次,误差不大于2s,取平均值,此值为铜管的毛细速率。
实施例2
1)将氧化铜粉和电解铜粉按照4∶6的质量比均匀混合,制得混合铜粉,电解铜粉粒径小于0.075mm;
2)将步骤1)制得的混合铜粉放入还原烧结炉内,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度800℃、还原烧结时间50min,制得烧结铜,其孔隙率为78%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将步骤2)制得的烧结铜破碎并筛分后得到粒径范围为106-250μm的热导铜粉。
测试制备得到的热导铜粉的毛细速率为13s/100mm,松装密度为1.6g/cm3。
实施例3
1)将氧化铜粉和电解铜粉按照4∶6的质量比均匀混合,制得混合铜粉,电解铜粉粒径小于0.075mm;
2)将步骤1)制得的混合铜粉放入还原烧结炉内,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度850℃、还原烧结时间40min,制得烧结铜,其孔隙率为70%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将步骤2)制得的烧结铜破碎并筛分后得到粒径范围为106-250μm的热导铜粉。
测试制备得到的热导铜粉的毛细速率为15s/100mm、松装密度为1.7g/cm3。
实施例4
1)将氧化铜粉和电解铜粉按照8∶2的质量比均匀混合,制得混合铜粉,电解铜粉粒径小于0.075mm;
2)将步骤1)制得的混合铜粉放入还原烧结炉内,还原烧结炉内的气氛为还原性气氛,设置还原烧结温度900℃、还原烧结时间40min以上,制得烧结铜,其孔隙率为75%,还原性气氛采用氨分解气氛,其中的氢气、氮气的体积比为3∶1;
3)将步骤2)制得的烧结铜破碎并筛分后得到粒径范围为106-250μm的热导铜粉。
测试制备得到的热导铜粉的毛细速率为15s/100mm、松装密度为1.7g/cm3。
本发明实施例制备的热导铜粉在保证其低松装密度的同时又能保证用该热导铜粉烧结后的热管毛细芯体具有较高的毛细速率;且热导铜粉的毛细速率和松装密度可以根据氧化铜粉和电解铜粉混合的质量比进行调节,从而满足不同产品和客户的需求。
申请人声明,本公开通过上述实施例来说明本公开的详细工艺设备和工艺
流程,但本公开并不局限于上述详细工艺设备和工艺流程,即不意味着本公开必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本公开的任何改进,对本公开产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
Claims (8)
- 一种高毛细速率低松装密度的热导铜粉,其制备原料包括氧化铜粉和电解铜粉,所述氧化铜粉和所述电解铜粉的质量比为(2∶8)~(8∶2)。
- 根据权利要求1所述的热导铜粉,其中,所述电解铜粉的粒径小于0.075mm。
- 根据权利要求1所述的热导铜粉,其中,所述热导铜粉由不同粒径的热导铜粉颗粒组成,所述热导铜粉颗粒的粒径为106~250μm。
- 根据权利要求3所述的热导铜粉,其中,所述热导铜粉颗粒包括氧化铜粉和电解铜粉经还原烧结后相互连接、团化的烧结铜颗粒。
- 根据权利要求4所述的热导铜粉,其中,所述烧结铜颗粒的孔隙率为57~80%。
- 一种如权利要求1所述的热导铜粉的制备方法,其包括以下步骤:1)将氧化铜粉和电解铜粉按照(2∶8)~(8∶2)的质量比均匀混合,制得混合铜粉;2)将步骤1)制得的混合铜粉放入还原烧结炉内,还原烧结制得烧结铜;3)将由步骤2)制得的烧结铜破碎并筛分后得到热导铜粉。
- 根据权利要求6所述的制备方法,其中,步骤2)中,所述还原烧结炉内的气氛为还原性气氛,所述还原烧结的温度750~900℃,所述还原烧结的时间为40min以上。
- 根据权利要求7所述的制备方法,其中,所述还原性气氛为氨分解气氛。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610781175.X | 2016-08-31 | ||
CN201610781175.XA CN106238725B (zh) | 2016-08-31 | 2016-08-31 | 一种高毛细速率低松装密度的热导铜粉及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018041031A1 true WO2018041031A1 (zh) | 2018-03-08 |
Family
ID=58080388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/099007 WO2018041031A1 (zh) | 2016-08-31 | 2017-08-25 | 一种高毛细速率低松装密度的热导铜粉及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106238725B (zh) |
WO (1) | WO2018041031A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110394457A (zh) * | 2019-07-04 | 2019-11-01 | 铜陵鑫佳粉体新材料科技有限公司 | 一种高性能热导铜粉的制备方法 |
CN110665504A (zh) * | 2019-10-22 | 2020-01-10 | 合盛硅业股份有限公司 | 一种复合三元铜粉的制备方法 |
CN112091208A (zh) * | 2020-09-10 | 2020-12-18 | 安徽德诠新材料科技有限公司 | 一种具有双峰分布特征的导热铜粉及其制备方法和应用 |
CN115338406A (zh) * | 2022-07-11 | 2022-11-15 | 瑞泰精密科技(沭阳)有限公司 | 用于制备毛细结构的浆料及制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106238725B (zh) * | 2016-08-31 | 2018-10-16 | 昆山德泰新材料科技有限公司 | 一种高毛细速率低松装密度的热导铜粉及其制备方法 |
CN108436073A (zh) * | 2018-03-07 | 2018-08-24 | 金川集团股份有限公司 | 一种低松装密度黄铜粉的生产方法 |
CN110303298B (zh) * | 2019-07-02 | 2020-08-04 | 广东水利电力职业技术学院(广东省水利电力技工学校) | 一种复合毛细芯热柱成形方法 |
CN113245543B (zh) * | 2021-07-15 | 2021-10-01 | 江苏集萃先进金属材料研究所有限公司 | 一种铜粉及其制备方法和用该铜粉制得的毛细芯 |
CN114192771B (zh) * | 2021-12-07 | 2024-05-31 | 北京有研粉末新材料研究院有限公司 | 一种具有超低松装密度的海石花状电解铜粉及其制备方法 |
CN115740431A (zh) * | 2022-12-21 | 2023-03-07 | 北京有研粉末新材料研究院有限公司 | 复配铜粉及其制备方法与应用 |
CN115889766A (zh) * | 2022-12-21 | 2023-04-04 | 北京有研粉末新材料研究院有限公司 | 包覆型的铜复合粉及其制备方法与应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003155503A (ja) * | 2001-11-15 | 2003-05-30 | Mitsubishi Materials Corp | 多孔質金属体の製造方法 |
US20060198753A1 (en) * | 2005-03-04 | 2006-09-07 | Chu-Wan Hong | Method of manufacturing wick structure for heat pipe |
CN101419035A (zh) * | 2008-12-08 | 2009-04-29 | 中明(湛江)化机工程有限公司 | 一种重力式热管及其制造方法 |
CN101474677A (zh) * | 2009-02-17 | 2009-07-08 | 漯河市华通冶金粉末有限责任公司 | 一种低松比铜粉直接还原发生器及工艺 |
CN101966587A (zh) * | 2010-10-27 | 2011-02-09 | 戴煜 | 一种制备高性能热导管铜粉的方法 |
CN102441381A (zh) * | 2011-10-28 | 2012-05-09 | 昆山德泰新材料科技有限公司 | 一种用氧化铜粉生产的催化剂及其制造方法 |
CN104776740A (zh) * | 2014-01-14 | 2015-07-15 | 江苏格业新材料科技有限公司 | 一种铜粉和氧化铜粉复合制备高效微型热管的方法 |
CN106238725A (zh) * | 2016-08-31 | 2016-12-21 | 昆山德泰新材料科技有限公司 | 一种高毛细速率低松装密度的热导铜粉及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101704103B (zh) * | 2009-12-22 | 2012-12-05 | 元磁新型材料(苏州)有限公司 | 一种用于制造热导管内壁毛细结构的复合铜粉 |
CN103182509A (zh) * | 2011-12-29 | 2013-07-03 | 北京有色金属研究总院 | 环路热管用多孔毛细芯的制备方法 |
-
2016
- 2016-08-31 CN CN201610781175.XA patent/CN106238725B/zh active Active
-
2017
- 2017-08-25 WO PCT/CN2017/099007 patent/WO2018041031A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003155503A (ja) * | 2001-11-15 | 2003-05-30 | Mitsubishi Materials Corp | 多孔質金属体の製造方法 |
US20060198753A1 (en) * | 2005-03-04 | 2006-09-07 | Chu-Wan Hong | Method of manufacturing wick structure for heat pipe |
CN101419035A (zh) * | 2008-12-08 | 2009-04-29 | 中明(湛江)化机工程有限公司 | 一种重力式热管及其制造方法 |
CN101474677A (zh) * | 2009-02-17 | 2009-07-08 | 漯河市华通冶金粉末有限责任公司 | 一种低松比铜粉直接还原发生器及工艺 |
CN101966587A (zh) * | 2010-10-27 | 2011-02-09 | 戴煜 | 一种制备高性能热导管铜粉的方法 |
CN102441381A (zh) * | 2011-10-28 | 2012-05-09 | 昆山德泰新材料科技有限公司 | 一种用氧化铜粉生产的催化剂及其制造方法 |
CN104776740A (zh) * | 2014-01-14 | 2015-07-15 | 江苏格业新材料科技有限公司 | 一种铜粉和氧化铜粉复合制备高效微型热管的方法 |
CN106238725A (zh) * | 2016-08-31 | 2016-12-21 | 昆山德泰新材料科技有限公司 | 一种高毛细速率低松装密度的热导铜粉及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110394457A (zh) * | 2019-07-04 | 2019-11-01 | 铜陵鑫佳粉体新材料科技有限公司 | 一种高性能热导铜粉的制备方法 |
CN110394457B (zh) * | 2019-07-04 | 2023-05-26 | 铜陵鑫佳粉体新材料科技有限公司 | 一种高性能热导铜粉的制备方法 |
CN110665504A (zh) * | 2019-10-22 | 2020-01-10 | 合盛硅业股份有限公司 | 一种复合三元铜粉的制备方法 |
CN112091208A (zh) * | 2020-09-10 | 2020-12-18 | 安徽德诠新材料科技有限公司 | 一种具有双峰分布特征的导热铜粉及其制备方法和应用 |
CN112091208B (zh) * | 2020-09-10 | 2024-04-26 | 安徽德诠新材料科技有限公司 | 一种具有双峰分布特征的导热铜粉及其制备方法和应用 |
CN115338406A (zh) * | 2022-07-11 | 2022-11-15 | 瑞泰精密科技(沭阳)有限公司 | 用于制备毛细结构的浆料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106238725A (zh) | 2016-12-21 |
CN106238725B (zh) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018041031A1 (zh) | 一种高毛细速率低松装密度的热导铜粉及其制备方法 | |
WO2017050284A1 (zh) | 一种锡基银石墨烯无铅复合钎料的制备方法 | |
WO2018041032A1 (zh) | 一种泡沫铜粉及其制备方法 | |
CN107626929B (zh) | 一种制备合金粉末的方法 | |
CN107557609B (zh) | 一种单相纳米氧化铝颗粒弥散强化的铜合金及其制备方法 | |
CN108913927B (zh) | 热沉用钼铜合金的原料混合方法、制备工艺及产品 | |
CN106676307B (zh) | 一种铜烧结多孔材料的制备方法 | |
TW201131869A (en) | Sintered LiCoO2 manufacturing method and sputtering target | |
CN104388725A (zh) | 一种性能高的电子封装用SiC/Al复合材料的制备方法 | |
CN106216705A (zh) | 一种3d打印用细颗粒单质球形金属粉末的制备方法 | |
JP2019065386A (ja) | 銀粉およびその製造方法 | |
CN103386492A (zh) | 一种微细球形不锈钢粉末的制备方法 | |
WO2017107247A1 (zh) | 一种提高烧结钕铁硼薄片磁体磁性能的方法 | |
JP2019183268A (ja) | 銀粉およびその製造方法 | |
CN109692971A (zh) | 一种纳米银粉及其制备与在低温固化导电银浆中的应用 | |
CN104001929B (zh) | 一种用机械合金化制造铜钨合金粉末的方法 | |
CN105798319B (zh) | 银钨电触头材料的制备方法及电触头材料、电触头 | |
CN110125433A (zh) | 一种室温下制备纳米铜粉的方法 | |
WO2015096048A1 (zh) | 一种改善了电性能的电容器级高比容钽粉及其制备方法 | |
CN103789592A (zh) | 一种钨合金材料及其制备方法和在制备铝液过滤盘中的应用 | |
CN106756906B (zh) | 一种双镀层金刚石粉末的制备方法 | |
CN104944375A (zh) | 一种无裂纹氢化钛电极源片的制备工艺 | |
CN108165791A (zh) | 一种无粘结相超细碳化钨硬质合金的制备方法 | |
JP2017172043A (ja) | Ag−Cu合金粉末およびその製造方法 | |
CN108046323B (zh) | 一种铌氧化物的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17845333 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17845333 Country of ref document: EP Kind code of ref document: A1 |