WO2018040749A1 - 一种低温共烧陶瓷材料及其制备方法 - Google Patents

一种低温共烧陶瓷材料及其制备方法 Download PDF

Info

Publication number
WO2018040749A1
WO2018040749A1 PCT/CN2017/092467 CN2017092467W WO2018040749A1 WO 2018040749 A1 WO2018040749 A1 WO 2018040749A1 CN 2017092467 W CN2017092467 W CN 2017092467W WO 2018040749 A1 WO2018040749 A1 WO 2018040749A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
nano
fired ceramic
ceramic material
preparation
Prior art date
Application number
PCT/CN2017/092467
Other languages
English (en)
French (fr)
Inventor
刘剑
聂敏
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to US15/693,448 priority Critical patent/US10179749B2/en
Publication of WO2018040749A1 publication Critical patent/WO2018040749A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition

Definitions

  • the invention relates to an electronic device and a material of an LTCC (low temperature co-fired ceramic) substrate, in particular to a CBS (CaO-B 2 O 3 -SiO 2 system) glass ceramic LTCC material and a preparation method thereof.
  • LTCC low temperature co-fired ceramic
  • LTCC Low Temperature Co-fired Ceramic
  • CBS-based crystallized glass has wollastonite ( ⁇ -CaSiO 3 ) as the main phase, which has excellent dielectric properties and thermal properties, and can be compared with noble metals Ag and Au. Sintering at low temperatures ( ⁇ 900 ° C).
  • the domestic doping is mainly based on the CBS system, but the doping research of the system is only in its infancy. Up to now, it has not been developed to have a low dielectric constant (within 6.0 ⁇ 0.3) and low loss (less than 0.001). ) A CBS-based LTCC material with good overall performance (bending strength > 170 MPa).
  • the present invention provides a low-temperature co-fired ceramic material having a low dielectric constant, low loss, and good overall performance, and a preparation method thereof.
  • the invention discloses a low temperature co-fired ceramic material, which is composed of CaO, B 2 O 3 , SiO 2 , nano Al 2 O 3 , MgO and nano ZrO 2 , wherein the mass percentage of each component is: CaO is 35% ⁇ 50%, B 2 O 3 is 5% to 15%, SiO 2 is 40% to 55%, nano Al 2 O 3 is 1% to 5%, MgO is 1% to 5%, and nano ZrO 2 is 1%. 5%.
  • the invention also discloses a preparation method of a low temperature co-fired ceramic material, comprising the following steps:
  • Raw materials CaCO 3 , B 2 O 3 , SiO 2 , Al 2 O 3 , MgO, and ZrO 2 are chemically pure CaO, B 2 O 3 , SiO 2 , nano Al 2 O 3 , MgO, according to the above formula.
  • Nano ZrO 2 the mixed powder is ball milled, the ball milling medium is zirconium ball, after mixing evenly, passing through a 60 mesh sieve;
  • step S2 the mixed powder obtained after sieving in step S1 is subjected to high-temperature sintering, and after being kept for a predetermined time, the mixed powder is completely melted and homogenized to obtain a melt;
  • the nano Al 2 O 3 has an average particle diameter of 60 to 100 nm
  • the nano ZrO 2 has an average particle diameter of 80 to 100 nm.
  • the ball milling mixing step in step S1 is dry mixing in a vibratory ball mill for 4-8 hours, and the weight ratio of the material in the ball milling mixing step is 1: (2-4).
  • the temperature is sintered at a high temperature of 1350 to 1500 ° C, and the holding time is 1 to 2.5 h.
  • the material in the wet ball milling step in step S5 has a weight ratio of ball:water of 1:4:1.5, a ball milling time of 6-10 hours, and a ball mill rotation speed of 200-250 rpm.
  • the drying step in the step S5 is carried out at 70 to 100 ° C, and the obtained glass powder has an average particle diameter of 0.5 to 2.0 ⁇ m.
  • the step S6 specifically comprises: adding a 10% by mass aqueous solution of polyvinyl alcohol to the glass powder for granulation, sequentially passing through a 60 mesh and 200 mesh sieve, and pressing the intermediate powder to form a green body, wherein the press molding is performed.
  • the pressure is 220 to 260 MPa, and the pressure holding time is 10 to 20 s.
  • the step S7 comprises: placing the green body into a muffle furnace, raising the temperature to 450-500 ° C at a rate of 0.5 to 1 ° C/min, and maintaining the organic matter for 4 to 8 hours; the step S8 specifically includes The blank after the debinding is placed in a muffle furnace, and is heated to a temperature of 840 to 880 ° C at a heating rate of 5 to 8 ° C / min, and after being kept for 15 to 30 minutes, it is naturally cooled to room temperature with the furnace.
  • the invention further discloses a low temperature co-fired ceramic material, which is a low temperature co-fired ceramic material prepared according to the above preparation method.
  • the invention has the beneficial effects that the invention is designed by the composition of low boron formula (B is introduced by B 2 O 3 ) and oxide doping (nano Al 2 O 3 , MgO and nano ZrO 2 ).
  • B low boron formula
  • oxide doping nano Al 2 O 3 , MgO and nano ZrO 2 .
  • Low-temperature dense sintering with process control dry mixing and glass grinding
  • a low-temperature co-fired ceramic material with low dielectric constant, low loss (multi-frequency point dielectric constant, stable loss) and good comprehensive performance Preparation.
  • Example 1 is an XRD pattern of a sample of a low temperature co-fired ceramic material prepared in Example 1-1 of the present invention
  • Example 2 is a microscopic top view of a cross section of a sample of a low temperature co-fired ceramic material prepared in Example 1-1 of the present invention
  • Example 3 is a dielectric constant and loss of a multi-frequency section of a low temperature co-fired ceramic material sample prepared in Example 1-1 of the present invention.
  • a low temperature co-fired ceramic material consisting of CaO, B 2 O 3 , SiO 2 , nano Al 2 O 3 , MgO, nano ZrO 2 , wherein the mass percentage of each component is: CaO is 35% to 50%, B 2 O 3 is 5% to 15%, SiO 2 is 40% to 55%, nano Al 2 O 3 is 1% to 5%, MgO is 1% to 5%, and nano ZrO 2 is 1% to 5%.
  • a method for preparing a low temperature co-fired ceramic material comprising the steps of:
  • the raw materials CaCO 3 , B 2 O 3 , SiO 2 , Al 2 O 3 , MgO, and ZrO 2 are chemically pure CaO, B 2 O 3 , SiO 2 , nano Al 2 O 3 , MgO, and nanometers.
  • ZrO 2 the mixed powder is ball milled, the ball milling medium is zirconium ball, after mixing evenly, passing through a 60 mesh sieve;
  • step S2 sintering the mixed powder obtained after sieving in step S1 at a high temperature for a predetermined time.
  • the molten powder is completely melted and homogenized to obtain a melt;
  • the preparation method of the low-temperature co-fired ceramic material of the present invention is further illustrated by the following specific examples and comparative examples.
  • the preparation method of the low-temperature co-fired ceramic material of the present invention specifically comprises the following steps:
  • Raw materials CaCO 3 , B 2 O 3 , SiO 2 , Al 2 O 3 , MgO, ZrO 2 were chemically pure CaO, B 2 O 3 , SiO 2 , and nano Al 2 O according to the formulation in Table 1. 3 , MgO, nano ZrO 2 , the mixed powder is ball milled, the ball milling medium is zirconium ball, after mixing evenly, passing 60 mesh sieve;
  • the fine glass body in the step (4) is subjected to wet ball milling, dried at 70 to 100 ° C, ground, and passed through a 120 mesh sieve to obtain a glass powder having an average particle diameter of 0.5 to 2.0 ⁇ m;
  • step (7) The blank after the debinding in step (7) is placed in a muffle furnace, and the temperature is raised to 840 to 880 ° C at a rate of 5 ° C / min, and the temperature is kept for 15 to 30 minutes, and naturally cooled to room temperature with the furnace.
  • the average particle diameter of the nano Al 2 O 3 in the step (1) is 60 to 100 nm, and the average particle diameter of the nano ZrO 2 is 80 to 100 nm;
  • the ball milling mixing step is dry mixing in a vibratory ball mill for 4-8 hours, and in the ball milling mixing step, the weight ratio of the ball: ball is 1: (2 to 4); further, dry mixing is 6 hours, : the weight ratio of the ball is 1:4;
  • the pressure in the press forming in step (6) is 220-260 MPa, the dwell time is 10-20 s, further, the pressure is 260 MPa, and the dwell time is 20 s;
  • the green body having a green diameter of 14 mm and a thickness of 6 to 7 mm is formed by press molding.
  • the loss tan ⁇ in the examples of the present invention is significantly smaller than that of the comparative examples, and the bending strength is significantly larger than the comparative example;
  • the low temperature is fast (850) Dense sintering at °C ⁇ 870 ° C, 15 min)
  • Example 1 is an XRD pattern of the low temperature co-fired ceramic material sample of Example 1-1 of the present invention, and it can be seen from the figure that the glass ceramic ceramic phase prepared by the low boron formula is relatively pure.
  • CaSiO 3 phase is a microscopic topography of the low temperature co-fired ceramic material sample of Example 1-1 of the present invention; as shown in FIG. 3, it is a low temperature co-fired ceramic of Example 1-1 of the present invention.
  • the dielectric constant and loss of the multi-frequency section of the material sample can be seen from the figure.
  • the low-temperature co-fired ceramic material prepared by the method of Example 1-1 has stable dielectric constant and loss, which are 5.9-6.3, 0.0004-0.0009, respectively. @10MHz ⁇ 100GHz.
  • the nano-Al 2 O 3 , MgO, and nano-ZrO 2 are doped on the basis of Ca-B-Si (if no doping, the target temperature cannot be sintered, and the performance is not characterized), Low-temperature co-fired ceramic material with excellent physical and mechanical properties and dielectric properties under low-temperature sintering, in which Mg acts as an alkaline earth metal oxide to prevent phase separation of glass-ceramics from CBS, introduction of nano-Al 2 O 3 and nano-ZrO 2 The dry mixing is made more uniform, while Al 2 O 3 also acts to prevent phase separation, and ZrO 2 acts as a nucleating agent.
  • High flexural strength >190MPa
  • low sintering temperature 840°C ⁇ 880°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种低温共烧陶瓷材料及其制备方法,其中低温共烧陶瓷材料由CaO、B 2O 3、SiO 2、纳米Al 2O 3、MgO、纳米ZrO 2组成,其中各个成分的质量百分比分别为:CaO为35%~50%、B 2O 3为5%~15%、SiO 2为40%~55%、纳米Al 2O 3为1%~5%、MgO为1%~5%、纳米ZrO 2为1%~5%;制备方法包括按照上述配方进行球磨混合后高温烧结,然后淬入去离子水后粉碎,再进行湿式球磨,烘干后研磨,最后造粒制成生坯,再排胶后烧结得到低温共烧陶瓷材料。该低温共烧陶瓷材料具有低介电常数、低损耗(100GHz内)和综合性能良好等优点。

Description

一种低温共烧陶瓷材料及其制备方法 技术领域
本发明涉及电子器件及LTCC(低温共烧陶瓷)基板的材料,尤其涉及一种CBS(CaO-B2O3-SiO2系)微晶玻璃陶瓷系LTCC材料及其制备方法。
背景技术
低温共烧陶瓷技术(Low Temperature Co-fired Ceramic,LTCC)是一种先进的无源集成及混合电路封装技术,已成为未来电子元件集成化的首选方式。在这种背景下,主要介质材料的低温共烧也成为一种重要的发展趋势。作为最有前途的LTCC材料之一,CBS系可析晶玻璃以硅灰石(β-CaSiO3)为主晶相,具备优异的介电性能与热性能,并同贵金属Ag、Au可在较低温度(<900℃)下烧结。
目前,国内主要在CBS体系基础上进行掺杂,但该体系的掺杂研究也仅处于起步阶段,到目前仍未研究出具有低介电常数(6.0±0.3范围内)、低损耗(小于0.001)且综合性能良好(抗弯强度>170MPa)的CBS系LTCC材料。
以上背景技术内容的公开仅用于辅助理解本发明的构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
为解决上述技术问题,本发明提出一种低介电常数、低损耗和综合性能良好的低温共烧陶瓷材料及其制备方法。
为达到上述目的,本发明采用以下技术方案:
本发明公开了一种低温共烧陶瓷材料,由CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2组成,其中各个成分的质量百分比分别为:CaO为35%~50%、B2O3为5%~15%、SiO2为40%~55%、纳米Al2O3为1%~5%、MgO为1%~5%、纳米ZrO2为1%~5%。
本发明还公开了一种低温共烧陶瓷材料的制备方法,包括以下步骤:
S1:将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照上述配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;
S2:将步骤S1中过筛后得到的混合粉料进行高温烧结,保温预定时间后,使混合粉料完全熔融和均匀化得到熔融物;
S3:将所述熔融物淬入去离子水,得到透明的碎玻璃体;
S4:将所述碎玻璃体进行粉碎,得到细玻璃体;
S5:将所述细玻璃体进行湿式球磨,再烘干后研磨,过120目筛,得到玻璃粉末;
S6:将所述玻璃粉末,外加造粒液进行造粒,过筛,取细粉压制成生坯;
S7:将所述生坯进行排胶;
S8:将排胶后的坯件进行烧结得到所述低温共烧陶瓷材料。
优选地,纳米Al2O3的平均粒径为60~100nm,纳米ZrO2的平均粒径为80~100nm。
优选地,步骤S1中球磨混合步骤是在振动球磨机中进行干式混合4~8h,且球磨混合步骤中料:球的重量比为1:(2~4)。
优选地,步骤S2中是在1350~1500℃的条件下高温烧结,保温时间为1~2.5h。
优选地,步骤S5中湿式球磨步骤中的料:球:水的重量比为1:4:1.5,球磨时间为6~10h,球磨机的转速为200~250rpm。
优选地,步骤S5中烘干步骤在70~100℃条件下进行,得到的玻璃粉末的平均粒径为0.5~2.0μm。
优选地,步骤S6具体包括:在所述玻璃粉末中加入质量百分比为10%的聚乙烯醇水溶液进行造粒,依次过60目和200目筛,取中间粉末压制成生坯,其中压制成型的压强为220~260MPa,保压时间为10~20s。
优选地,步骤S7具体包括:将所述生坯放入马弗炉中,以0.5~1℃/min的速率升温至450~500℃,保温4~8h,进行有机物的排除;步骤S8具体包括:将排胶后的坯件放入马弗炉中,以5~8℃/min的升温速率升温至840~880℃烧结,保温15~30min后,随炉自然冷却至室温。
本发明另外还公开了一种低温共烧陶瓷材料,是根据上述的制备方法制得的低温共烧陶瓷材料。
与现有技术相比,本发明的有益效果在于:本发明通过低硼配方(B以B2O3引入)和氧化物掺杂(纳米Al2O3、MgO和纳米ZrO2)的成分设计与工艺控制(干式混合和玻璃研磨)实现低温致密烧结,提出一种低介电常数、低损耗(多频率点介电常数、损耗均稳定)和综合性能良好的低温共烧陶瓷材料及其制备方法。通过本发明的制备方法烧结得到的低温共烧陶瓷材料由大量微细晶粒(CaSiO3)和少量玻璃组成,是一种典型的微晶玻璃陶瓷;该低温共烧陶瓷材料具有低的介电常数(ε=5.9~6.3@10MHz~100GHz)和超低损耗(tanδ=0.0004~0.0009@10MHz~100GHz),且多频率段的介电常数与损耗稳定,抗弯强度大于190MPa,综合性能良好,可广泛应用在滤波器和基板中。
附图说明
图1是本发明实施例1-1制备的低温共烧陶瓷材料样品的XRD图谱;
图2是本发明实施例1-1制备的低温共烧陶瓷材料样品截面的微观形貌图;
图3是本发明实施例1-1制备的低温共烧陶瓷材料样品多频率段的介电常数与损耗。
具体实施方式
下面对照附图并结合优选的实施方式对本发明作进一步说明。
在一种实施例中,一种低温共烧陶瓷材料,由CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2组成,其中各个成分的质量百分比分别为:CaO为35%~50%、B2O3为5%~15%、SiO2为40%~55%、纳米Al2O3为1%~5%、MgO为1%~5%、纳米ZrO2为1%~5%。
一种低温共烧陶瓷材料的制备方法,包括以下步骤:
S1:将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;
S2:将步骤S1中过筛后得到的混合粉料进行高温烧结,保温预定时间后, 使混合粉料完全熔融和均匀化得到熔融物;
S3:将所述熔融物淬入去离子水,得到透明的碎玻璃体;
S4:将所述碎玻璃体进行粉碎,得到细玻璃体;
S5:将所述细玻璃体进行湿式球磨,再烘干后研磨,过120目筛,得到玻璃粉末;
S6:将所述玻璃粉末,外加造粒液进行造粒,过筛,取细粉压制成生坯;
S7:将所述生坯进行排胶;
S8:将排胶后的坯件进行烧结得到所述低温共烧陶瓷材料。
下列结合具体实施例和对比例对本发明的低温共烧陶瓷材料的制备方法进行进一步说明,本发明的低温共烧陶瓷材料的制备方法具体包括以下步骤:
(1)将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照表1中的配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;
(2)将步骤(1)中过筛的混合粉料倒入铂金坩埚中,然后在1350~1500℃下保温1~2.5h,使其完全熔融和均匀化;
(3)将步骤(2)坩埚中的熔融物淬入去离子水,得到透明的碎玻璃体;
(4)将碎玻璃体经过粉碎机进行破碎,得到较细的玻璃体;
(5)将步骤(4)中的较细的玻璃体进行湿式球磨,在70~100℃下烘干后研磨,过120目筛,得到平均粒径为0.5~2.0μm的玻璃粉末;
(6)在步骤(5)得到的玻璃粉末中加入质量百分比为10%的PVA溶液进行造粒,依次过60目和200目筛,取中间粉料(即过了60目筛,而没有过200目筛的粉料,也即小于60目筛孔径且大于200目筛孔径的粉料)压制成生坯;
(7)将步骤(6)中的生坯放入马弗炉中,以1℃/min的速率升温至450℃,保温4h,进行有机物的排除;
(8)将步骤(7)中排胶后的坯件放入马弗炉中,以5℃/min的速率升温至840~880℃,保温15~30min,随炉自然冷却至室温。
其中:
步骤(1)中的纳米Al2O3的平均粒径为60~100nm,纳米ZrO2的平均粒径为80~100nm;
步骤(1)中球磨混合步骤是在振动球磨机中进行干式混合4~8h,且球磨混合步骤中料:球的重量比为1:(2~4);进一步地,干式混合6h,料:球的重量比为1:4;
步骤(5)中湿式球磨步骤中的料:球:水的重量比为1:4:1.5,球磨时间为6~10h,球磨机的转速为200~250rpm,进一步地,球磨时间为8h,球磨机的转速为200rpm;
步骤(6)中压制成型的压强为220~260MPa,保压时间为10~20s,进一步地,压强为260MPa,保压时间为20s;
步骤(6)中压制成型的生坯直径为14mm,厚度为6~7mm的圆柱状坯件。
表1各个实施例和各个对比例的化学组成
Figure PCTCN2017092467-appb-000001
通过上述参数制备得到各个实施例以及各个对比例的低温共烧陶瓷材料,其中各个实施例以及各个对比例的低温共烧陶瓷材料的烧结性能如下表2所示。
表2各个实施例及各个对比例的低温共烧陶瓷材料的烧结性能
Figure PCTCN2017092467-appb-000002
通过将实施例与对比例制备得到的低温共烧陶瓷材料进行对比,本发明实施例中的损耗tanδ明显小于对比例,且抗弯强度明显大于对比例;通过上述实施例可实现低温快速(850℃~870℃,15min)致密烧结,制备的CBS微晶玻璃陶瓷系材料具有低的介电常数(ε=5.9~6.3@12GHz)、超低损耗(tanδ=0.0004~0.0009@12GHz)和高的抗弯强度(大于190MPa)。其中:如图1所示,是本发明实施例1-1的低温共烧陶瓷材料样品的XRD图谱,从图中可以看出通过低硼配方制备出来的微晶玻璃陶瓷品相为较纯的CaSiO3相;如图2所示,是本发明实施例1-1的低温共烧陶瓷材料样品的微观形貌图;如图3所示,是本发明实施例1-1的低温共烧陶瓷材料样品多频率段的介电常数与损耗,从图中可以看出通过实施例1-1制备得到的低温共烧陶瓷材料的介电常数与损耗均稳定,分别为5.9~6.3、0.0004~0.0009@10MHz~100GHz。
本发明优选实施例的制备方法中,以Ca-B-Si为基础,纳米Al2O3、MgO、纳米ZrO2为掺杂(无掺杂的话,无法目标温度烧结,性能更无法表征),低温烧结下制得优异的物理机械性能和介电性能的低温共烧陶瓷材料,其中Mg作为碱土金属氧化物,防止CBS配方的微晶玻璃分相,纳米Al2O3和纳米ZrO2的引入使得干式混合更均匀,同时Al2O3也起到防止分相的作用,ZrO2作为形核剂。通过本发明优选实施例的制备方法制得的低温共烧陶瓷材料具有低的介电常数(ε =5.9~6.3@10MHz~100GHz)、超低损耗(tanδ=0.0004~0.0009@10MHz~100GHz)、高抗弯强度(>190MPa),且烧结温度较低(840℃~880℃)。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种低温共烧陶瓷材料,其特征在于,由CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2组成,其中各个成分的质量百分比分别为:CaO为35%~50%、B2O3为5%~15%、SiO2为40%~55%、纳米Al2O3为1%~5%、MgO为1%~5%、纳米ZrO2为1%~5%。
  2. 一种低温共烧陶瓷材料的制备方法,其特征在于,包括以下步骤:
    S1:将原料CaCO3、B2O3、SiO2、Al2O3、MgO、ZrO2按照权利要求1中的配方称得化学纯的CaO、B2O3、SiO2、纳米Al2O3、MgO、纳米ZrO2,将混合粉料经球磨混合,球磨介质为锆球,混合均匀后,过60目筛;
    S2:将步骤S1中过筛后得到的混合粉料进行高温烧结,保温预定时间后,使混合粉料完全熔融和均匀化得到熔融物;
    S3:将所述熔融物淬入去离子水,得到透明的碎玻璃体;
    S4:将所述碎玻璃体进行粉碎,得到细玻璃体;
    S5:将所述细玻璃体进行湿式球磨,再烘干后研磨,过120目筛,得到玻璃粉末;
    S6:将所述玻璃粉末,外加造粒液进行造粒,过筛,取细粉压制成生坯;
    S7:将所述生坯进行排胶;
    S8:将排胶后的坯件进行烧结得到所述低温共烧陶瓷材料。
  3. 根据权利要求2所述的制备方法,其特征在于,纳米Al2O3的平均粒径为60~100nm,纳米ZrO2的平均粒径为80~100nm。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤S1中球磨混合步骤是在振动球磨机中进行干式混合4~8h,且球磨混合步骤中料:球的重量比为1:(2~4)。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤S2中是在1350~1500℃的条件下高温烧结,保温时间为1~2.5h。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤S5中湿式球磨步骤中的料:球:水的重量比为1:4:1.5,球磨时间为6~10h,球磨机的转速为200~250rpm。
  7. 根据权利要求2所述的制备方法,其特征在于,步骤S5中烘干步骤在 70~100℃条件下进行,得到的玻璃粉末的平均粒径为0.5~2.0μm。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤S6具体包括:在所述玻璃粉末中加入质量百分比为10%的聚乙烯醇水溶液进行造粒,依次过60目和200目筛,取中间粉末压制成生坯,其中压制成型的压强为220~260MPa,保压时间为10~20s。
  9. 根据权利要求2至8任一项所述的制备方法,其特征在于,步骤S7具体包括:将所述生坯放入马弗炉中,以0.5~1℃/min的速率升温至450~500℃,保温4~8h,进行有机物的排除;步骤S8具体包括:将排胶后的坯件放入马弗炉中,以5~8℃/min的升温速率升温至840~880℃烧结,保温15~30min后,随炉自然冷却至室温。
  10. 一种低温共烧陶瓷材料,其特征在于,是根据权利要求2至9任一项所述的制备方法制得的低温共烧陶瓷材料。
PCT/CN2017/092467 2016-08-30 2017-07-11 一种低温共烧陶瓷材料及其制备方法 WO2018040749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/693,448 US10179749B2 (en) 2016-08-30 2017-08-31 Low-temperature co-fired ceramic material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610777620.5A CN106396414B (zh) 2016-08-30 2016-08-30 一种低温共烧陶瓷材料及其制备方法
CN201610777620.5 2016-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/693,448 Continuation US10179749B2 (en) 2016-08-30 2017-08-31 Low-temperature co-fired ceramic material and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2018040749A1 true WO2018040749A1 (zh) 2018-03-08

Family

ID=58003157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092467 WO2018040749A1 (zh) 2016-08-30 2017-07-11 一种低温共烧陶瓷材料及其制备方法

Country Status (2)

Country Link
CN (1) CN106396414B (zh)
WO (1) WO2018040749A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979285A (zh) * 2019-12-17 2021-06-18 深圳市大富科技股份有限公司 陶瓷器件及其制备方法
CN113416502A (zh) * 2021-05-14 2021-09-21 杨智童 一种绝缘导热双面胶带及其制备方法
CN114225715A (zh) * 2021-11-17 2022-03-25 华南理工大学 一种高性能非对称陶瓷过滤膜及其制备方法
CN114349501A (zh) * 2022-01-28 2022-04-15 郑州轻工业大学 一种zyto体系复合陶瓷材料及其制备方法
CN114988873A (zh) * 2022-06-17 2022-09-02 清华大学 一种铋基焦绿石介电储能陶瓷及其制备方法
CN115974524A (zh) * 2022-12-19 2023-04-18 湖北中烟工业有限责任公司 一种低介电常数绝缘陶瓷的制备方法
CN116514523A (zh) * 2023-03-27 2023-08-01 湖南兴诚电瓷电器有限公司 一种用于真空断路器的陶瓷外壳及其制备工艺
CN116639973A (zh) * 2023-06-01 2023-08-25 太原师范学院 一种高韧性陶瓷介质材料及其制备方法
CN116675534A (zh) * 2023-02-23 2023-09-01 中国人民解放军国防科技大学 一种多孔Y-Si-O透波陶瓷及其制备方法
EP4108646A4 (en) * 2020-09-14 2024-01-24 Okamoto Glass Co., Ltd. SUBSTRATE COMPOSITION BURNED AT LOW TEMPERATURE

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396414B (zh) * 2016-08-30 2019-03-08 深圳顺络电子股份有限公司 一种低温共烧陶瓷材料及其制备方法
US10179749B2 (en) 2016-08-30 2019-01-15 Shenzhen Sunlord Electronics Co., Ltd. Low-temperature co-fired ceramic material and preparation method thereof
CN108314327B (zh) * 2018-01-17 2020-12-11 贵研铂业股份有限公司 Ce掺杂低温共烧陶瓷材料及其制备方法
CN108298979B (zh) * 2018-01-30 2020-12-25 北京元六鸿远电子科技股份有限公司 中介低温共烧陶瓷材料及其制备方法
CN109467426A (zh) * 2018-10-29 2019-03-15 中国电子科技集团公司第四十三研究所 一种低温共烧陶瓷基板材料及其制备方法
CN109721340B (zh) * 2019-01-28 2021-04-23 深圳顺络电子股份有限公司 一种高强度低损耗ltcc材料及其制备方法
CN109836141B (zh) * 2019-03-29 2021-07-27 电子科技大学 一种高热导率低温共烧陶瓷材料及其制备方法
CN110304911B (zh) * 2019-05-06 2022-09-06 北京元六鸿远电子科技股份有限公司 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
CN110357597A (zh) * 2019-08-01 2019-10-22 电子科技大学 一种钙硼硅系高热膨胀陶瓷基板材料及其制备方法
CN110451937A (zh) * 2019-09-05 2019-11-15 广东国华新材料科技股份有限公司 一种ltcc陶瓷材料及其制备方法
CN110683769B (zh) * 2019-10-25 2022-05-13 赣州中傲新瓷科技有限公司 一种增强的钙硼硅微晶玻璃复合材料及其制备方法
CN110981440A (zh) * 2019-12-20 2020-04-10 贵阳顺络迅达电子有限公司 一种低介高q温度稳定型钙钛矿结构ltcc微波介质材料及其制备方法
CN112321164B (zh) * 2020-11-06 2022-09-16 柳州历历陶瓷有限公司 一种钙硼硅玻璃粉基复合瓷粉及其制备工艺
CN115806390A (zh) * 2021-09-15 2023-03-17 浙江矽瓷科技有限公司 一种低温共烧陶瓷粉体及其制备方法和应用
CN113979737B (zh) * 2021-10-13 2023-02-03 清华大学深圳国际研究生院 一种低温共烧玻璃陶瓷材料及其制备方法和应用
CN114315334B (zh) * 2021-12-30 2023-05-23 西安宏星电子浆料科技股份有限公司 一种ltcc材料及其制备方法
CN114988865B (zh) * 2022-06-10 2023-03-21 深圳顺络电子股份有限公司 一种低温共烧的陶瓷材料及制备方法
CN115124329B (zh) * 2022-06-27 2023-08-08 清华大学深圳国际研究生院 一种ltcc基板及其制备方法
CN115057690B (zh) * 2022-06-29 2023-06-27 清华大学深圳国际研究生院 一种ltcc生料带材料、ltcc基板及其制备方法和应用
CN115417663B (zh) * 2022-08-19 2023-06-06 广西夏阳环保科技有限公司 一种ltcc电子陶瓷的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013538A1 (ja) * 2005-07-25 2007-02-01 Ohara Inc. 無機組成物
CN102173587A (zh) * 2011-03-03 2011-09-07 电子科技大学 电子基板用微晶玻璃材料及制备方法
CN103373813A (zh) * 2012-04-17 2013-10-30 肖特公开股份有限公司 不含钡和锶的玻璃质或玻璃陶瓷接合材料及其用途
CN103395994A (zh) * 2013-07-29 2013-11-20 云南云天化股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN103553559A (zh) * 2013-10-17 2014-02-05 天津大学 CaO-B2O3-SiO2玻璃+氮化铝陶瓷的复合材料及制备方法
CN106396414A (zh) * 2016-08-30 2017-02-15 深圳顺络电子股份有限公司 一种低温共烧陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013538A1 (ja) * 2005-07-25 2007-02-01 Ohara Inc. 無機組成物
CN102173587A (zh) * 2011-03-03 2011-09-07 电子科技大学 电子基板用微晶玻璃材料及制备方法
CN103373813A (zh) * 2012-04-17 2013-10-30 肖特公开股份有限公司 不含钡和锶的玻璃质或玻璃陶瓷接合材料及其用途
CN103395994A (zh) * 2013-07-29 2013-11-20 云南云天化股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN103553559A (zh) * 2013-10-17 2014-02-05 天津大学 CaO-B2O3-SiO2玻璃+氮化铝陶瓷的复合材料及制备方法
CN106396414A (zh) * 2016-08-30 2017-02-15 深圳顺络电子股份有限公司 一种低温共烧陶瓷材料及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979285A (zh) * 2019-12-17 2021-06-18 深圳市大富科技股份有限公司 陶瓷器件及其制备方法
EP4108646A4 (en) * 2020-09-14 2024-01-24 Okamoto Glass Co., Ltd. SUBSTRATE COMPOSITION BURNED AT LOW TEMPERATURE
CN113416502A (zh) * 2021-05-14 2021-09-21 杨智童 一种绝缘导热双面胶带及其制备方法
CN113416502B (zh) * 2021-05-14 2023-08-29 安徽富印新材料股份有限公司 一种绝缘导热双面胶带及其制备方法
CN114225715A (zh) * 2021-11-17 2022-03-25 华南理工大学 一种高性能非对称陶瓷过滤膜及其制备方法
CN114225715B (zh) * 2021-11-17 2022-09-20 华南理工大学 一种高性能非对称陶瓷过滤膜及其制备方法
CN114349501B (zh) * 2022-01-28 2023-03-24 郑州轻工业大学 一种zyto体系复合陶瓷材料及其制备方法
CN114349501A (zh) * 2022-01-28 2022-04-15 郑州轻工业大学 一种zyto体系复合陶瓷材料及其制备方法
CN114988873A (zh) * 2022-06-17 2022-09-02 清华大学 一种铋基焦绿石介电储能陶瓷及其制备方法
CN114988873B (zh) * 2022-06-17 2023-09-26 清华大学 一种铋基焦绿石介电储能陶瓷及其制备方法
CN115974524A (zh) * 2022-12-19 2023-04-18 湖北中烟工业有限责任公司 一种低介电常数绝缘陶瓷的制备方法
CN116675534A (zh) * 2023-02-23 2023-09-01 中国人民解放军国防科技大学 一种多孔Y-Si-O透波陶瓷及其制备方法
CN116514523A (zh) * 2023-03-27 2023-08-01 湖南兴诚电瓷电器有限公司 一种用于真空断路器的陶瓷外壳及其制备工艺
CN116514523B (zh) * 2023-03-27 2024-04-12 湖南兴诚电瓷电器有限公司 一种用于真空断路器的陶瓷外壳及其制备工艺
CN116639973A (zh) * 2023-06-01 2023-08-25 太原师范学院 一种高韧性陶瓷介质材料及其制备方法

Also Published As

Publication number Publication date
CN106396414B (zh) 2019-03-08
CN106396414A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018040749A1 (zh) 一种低温共烧陶瓷材料及其制备方法
WO2018010633A1 (zh) 一种cbs系ltcc材料及其制备方法
US10179749B2 (en) Low-temperature co-fired ceramic material and preparation method thereof
CN107602088B (zh) 一种与高温导电银浆高匹配的低温共烧陶瓷材料及其制备方法
CN109608050B (zh) 一种高频低介低损耗微晶玻璃/陶瓷系ltcc基板材料及其制备方法
CN110790568A (zh) 一种低介ltcc生瓷带及其制备方法和用途
WO2019019657A1 (zh) 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法
CN106927792B (zh) 低介电常数低损耗近零温度系数的ltcc陶瓷材料及制备方法
CN109721340A (zh) 一种高强度低损耗ltcc材料及其制备方法
Mohammadi et al. Effect of frit size on sintering, crystallization and electrical properties of wollastonite glass-ceramics
CN108947257A (zh) 一种堇青石基微晶玻璃材料及其制备方法
CN112552032B (zh) 一种合成β-锂辉石固溶体、含该合成β-锂辉石固溶体制造的微晶玻璃及其制造方法
CN110436894A (zh) 一种低介电常数ltcc材料及其制备方法
KR101228694B1 (ko) 소결 조제용 나노 사이즈 글라스 분말 및 그 제조 방법
CN105347781B (zh) 一种陶瓷材料及其制备方法
Ebrahimi et al. Fabrication and microwave dielectric characterization of cordierite/BZBS (Bi2O3-ZnO-B2O3-SiO2) glass composites for LTCC applications
CN113372103B (zh) 一种低介电低高频损耗ltcc陶瓷材料及其制备方法
CN113735449B (zh) 一种单斜相钡长石玻璃陶瓷的超疏水基体材料及制备方法
CN112321164B (zh) 一种钙硼硅玻璃粉基复合瓷粉及其制备工艺
WO2011016816A1 (en) Sintering aid coated yag powders and agglomerates and method for making
CN109180006A (zh) 一种低温共烧陶瓷材料及其制备方法
CN105731809A (zh) 一种加热丝用绝缘材料及其制备与应用方法
US20180016192A1 (en) Cbs-based ltcc material and preparation method thereof
CN111548128B (zh) 一种低温共烧陶瓷及其制备方法
CN111470778B (zh) 一种钙钡硅铝玻璃基低介低温共烧陶瓷材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845052

Country of ref document: EP

Kind code of ref document: A1