WO2019019657A1 - 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法 - Google Patents

硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法 Download PDF

Info

Publication number
WO2019019657A1
WO2019019657A1 PCT/CN2018/078781 CN2018078781W WO2019019657A1 WO 2019019657 A1 WO2019019657 A1 WO 2019019657A1 CN 2018078781 W CN2018078781 W CN 2018078781W WO 2019019657 A1 WO2019019657 A1 WO 2019019657A1
Authority
WO
WIPO (PCT)
Prior art keywords
boroaluminosilicate mineral
fired ceramic
mineral material
temperature
low temperature
Prior art date
Application number
PCT/CN2018/078781
Other languages
English (en)
French (fr)
Inventor
宋喆
刘芸
黄昆
付璐伟
付振晓
朱乔安娜
诺伦拉塞
Original Assignee
广东风华高新科技股份有限公司
风华研究院(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东风华高新科技股份有限公司, 风华研究院(广州)有限公司 filed Critical 广东风华高新科技股份有限公司
Priority to KR1020197035439A priority Critical patent/KR102104381B1/ko
Priority to US16/618,112 priority patent/US10899669B2/en
Priority to JP2019568109A priority patent/JP6852198B2/ja
Publication of WO2019019657A1 publication Critical patent/WO2019019657A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to a boroaluminosilicate mineral material, a low temperature co-fired ceramic composite material, a low temperature co-fired ceramic, a composite substrate and a preparation method thereof.
  • LTCC Low temperature co-fired ceramic
  • LTCC material properties and application technology The basis of LTCC technology is LTCC material properties and application technology. When applied to electronic package substrates, in order to ensure the transmission quality of high-frequency communication signals, LTCC materials should have low dielectric constant and low dielectric loss, but most of the LTCC materials on the market currently have poor dielectric properties and cannot meet electronic requirements. Manufacturing conditions of the package substrate.
  • a boroaluminosilicate mineral material for low temperature co-fired ceramics the boroaluminosilicate mineral material being expressed in terms of mass percent of the following oxides, including the following components:
  • the above-mentioned boroaluminosilicate mineral materials have reasonable distribution ratios and stable chemical properties; mixing the above boroaluminosilicate mineral materials with Al 2 O 3 can obtain low temperature stability, simple process, and suitable for mass production in large quantities.
  • Co-fired ceramic composites The low-temperature co-fired ceramic made of low-temperature co-fired ceramic composite material not only has excellent dielectric properties, but also has low sintering temperature, low thermal expansion coefficient and high insulation resistivity. At the same time, it can also be matched with the silver electrode to achieve co-firing, and the electrical properties are kept good.
  • the dielectric properties and sintering of the low-temperature co-fired ceramic can be achieved.
  • the composite substrate made of low temperature co-fired ceramic has no obvious warpage and deformation after sintering, and has a flexural strength of ⁇ 159 MPa, and has excellent mechanical properties and good LTCC process matching. Therefore, the boroaluminosilicate mineral material has excellent properties and is suitable for use as a low dielectric substrate material in the field of LTCC package substrates.
  • the boroaluminosilicate mineral material comprises the following components:
  • a low temperature co-fired ceramic composite material comprising 35% to 65% Al 2 O 3 and 35% to 65% boroaluminosilicate mineral material by mass percentage.
  • the low temperature cofired ceramic composite comprises 41.69% - 62.53% of Al 2 O 3 and 37.47% ⁇ 58.31% boron aluminosilicate mineral material.
  • a method for preparing a boroaluminosilicate mineral material comprising the steps of:
  • the ratio of each element in the boroaluminosilicate mineral material, the sodium source, the potassium source, the calcium source, the aluminum source, the boron source and the silicon source are weighed and mixed, and then ground to obtain a boroaluminosilicate mineral abrasive slurry;
  • the mixed powder is calcined at 700 ° C to 850 ° C to obtain a boroaluminosilicate mineral material.
  • the grinding process is ball milling and the ball milled medium is absolute ethanol.
  • the grinding treatment time is from 2 h to 8 h.
  • the drying treatment is performed by drying, and the drying treatment temperature is from 70 ° C to 100 ° C.
  • the binder is selected from at least one of polyvinyl alcohol and polyvinyl butyral.
  • the step of calcining the mixed powder at 700 ° C to 850 ° C is specifically: placing the mixed powder in a muffle furnace and calcining under air for 1 h to 5 h.
  • a preparation method of a low temperature co-fired ceramic composite material comprising the following steps:
  • the mixed abrasive slurry is dried to obtain a low temperature co-fired ceramic composite.
  • a low temperature co-fired ceramic made of a low temperature co-fired ceramic composite material.
  • a preparation method of a low temperature co-fired ceramic comprising the following steps:
  • the ceramic powder is heat-treated at 500 ° C to 600 ° C for debinding treatment
  • the ceramic powder after the debinding treatment is sintered at 850 ° C to 950 ° C to obtain a low temperature co-fired ceramic.
  • a composite substrate made of low temperature co-fired ceramic made of low temperature co-fired ceramic.
  • Example 1 is a typical XRD pattern of a boroaluminosilicate mineral material in Example 1;
  • Example 2 is a typical XRD pattern of the low temperature co-fired ceramic composite material of Example 1;
  • Example 3 is an SEM image of 5000 times magnification of the low temperature co-fired ceramic composite material of Example 1;
  • Example 4 is an SEM image at 3000X magnification of the cross section of the low temperature co-fired ceramic in Example 1.
  • boroaluminosilicate mineral material expressed as an oxide based mass percent, comprising the following components:
  • the above boroaluminosilicate mineral material can be used as an additive for low temperature co-fired ceramics.
  • Na 2 O mainly acts as a flux, and at the same time, can improve the light transmittance of the ceramic.
  • the mass percentage of Na 2 O is from 0.62% to 0.98%.
  • K 2 O mainly acts as a flux and can also improve the light transmission of ceramics. However, if the K 2 O content is too high, the firing temperature and thermal stability of the ceramic are drastically lowered.
  • the mass percentage of K 2 O is 14.96% to 22.80%.
  • CaO mainly acts as a fluxing aid, and at the same time, it can also improve the thermal stability, mechanical strength, whiteness and transparency of the ceramic.
  • the mass percentage of CaO is from 1.82% to 4.10%.
  • Al 2 O 3 can improve the physicochemical properties, mechanical strength, whiteness, and firing temperature of ceramics. However, an excessive amount of Al 2 O 3 may cause the ceramic to be hard to be cooked, and an excessively low Al 2 O 3 content may cause the ceramic article to tend to be deformed or collapsed.
  • the mass percentage of Al 2 O 3 is from 0% to 2.22%.
  • B 2 O 3 mainly acts as a fluxing agent, which can reduce the viscosity of the liquid phase during high-temperature sintering, promote the liquid phase flow during sintering, form a uniform and dense microstructure, and help to reduce the dielectric of boroaluminosilicate mineral materials. loss.
  • the mass percentage of B 2 O 3 is from 14.87% to 18.33%.
  • SiO 2 is the main component of ceramics and directly affects the strength and other properties of ceramics. However, if the content of SiO 2 is too high, the thermal stability of the ceramic article will be deteriorated, and the phenomenon of cracking is likely to occur.
  • boroaluminosilicate mineral materials have reasonable distribution ratios and are chemically stable, and can be used as raw materials for producing low-temperature co-fired ceramics having excellent dielectric properties.
  • the preparation method of the above boroaluminosilicate mineral material comprises the following steps:
  • Step S110 weighing a sodium source, a potassium source, a calcium source, an aluminum source, a boron source, and a silicon source according to a ratio of each element in the boroaluminosilicate mineral material, mixing and then grinding to obtain a boroaluminosilicate mineral grinding Slurry.
  • the so-called sodium source, potassium source, calcium source, aluminum source, boron source and silicon source are used as raw materials for preparing boroaluminosilicate mineral materials.
  • the sodium source is selected from at least one of sodium carbonate and sodium oxide.
  • the sodium source is not limited to sodium carbonate and sodium oxide as long as it can form sodium oxide after calcination without introducing other impurities.
  • the potassium source is selected from at least one of potassium carbonate and potassium oxide.
  • the potassium source is not limited to potassium carbonate and potassium oxide as long as it can form potassium oxide after calcination without introducing other impurities.
  • the calcium source is selected from at least one of calcium carbonate and calcium oxide.
  • the calcium source is not limited to calcium carbonate and calcium oxide as long as calcium oxide can be formed after calcination without introducing other impurities.
  • the aluminum source is alumina.
  • the aluminum source is not limited to alumina as long as alumina can be formed after calcination without introducing other impurities.
  • the boron source is selected from at least one of boric acid and boron oxide.
  • the boron source is not limited to boric acid and boron oxide as long as boron oxide can be formed after calcination without introducing other impurities.
  • the silicon source is silicon dioxide.
  • the silicon source is not limited to silica as long as it can form silica after calcination without introducing other impurities.
  • the sodium source, the potassium source, the calcium source, the aluminum source, the boron source, and the silicon source are used as raw materials according to the ratio of each element in the boroaluminosilicate mineral material, and the raw materials are included in mass percentage, including :
  • the mass percentage of Na 2 CO 3 is from 0.88% to 1.38%.
  • the mass percentage of K 2 CO 3 is from 18.24% to 26.28%.
  • the mass percentage of CaCO 3 is from 2.70% to 4.13%.
  • the mass percentage of Al 2 O 3 is from 0 to 1.74%.
  • the mass percentage of H 3 BO 3 is 21.94% to 25.58%.
  • a raw material such as a sodium source, a potassium source, a calcium source, an aluminum source, a boron source, and a silicon source is mixed using a mixing device.
  • the mixing device is a mixer.
  • the mixing time is from 4 h to 8 h.
  • the grinding process is ball milling and the ball milled medium is absolute ethanol.
  • the ratio of the amount of anhydrous ethanol added to the mass of the raw material is from 1:1 to 1.2:1.
  • the grinding treatment time is from 2 h to 8 h.
  • the ball milling process is a planetary ball milling process.
  • the ball milling device is a ball mill and the ball milling media is a zirconia ball.
  • the mass ratio of the zirconia balls to the raw materials is from 3:1 to 4:1, and the diameter of the zirconia balls is from 0.3 cm to 0.5 cm.
  • the ball mill has a rotational speed of from 160 r/min to 200 r/min.
  • step S120 the boroaluminosilicate mineral abrasive slurry is dried to obtain a dry powder.
  • the drying process is drying.
  • the drying treatment temperature is from 70 ° C to 100 ° C.
  • the drying treatment time is from 10 h to 16 h.
  • drying treatment method is not limited to drying, and may be naturally dried, as long as the boroaluminosilicate mineral abrasive slurry can be dried.
  • step S130 a binder is added to the dry powder to uniformly mix to obtain a mixed powder.
  • the binder is selected from at least one of polyvinyl alcohol and polyvinyl butyral.
  • Polyvinyl alcohol is generally used in the form of an aqueous solution
  • polyvinyl butyral is generally used in the form of an anhydrous ethanol solution.
  • the mass concentration of the aqueous solution of polyvinyl alcohol is 1.5% to 8.0%
  • the mass concentration of the anhydrous ethanol solution of polyvinyl butyral is 1.5% to 8.0%.
  • the mass ratio of polyvinyl alcohol to dry powder is from 0.012:1 to 0.03:1.
  • the mass ratio of polyvinyl butyral to dry powder is from 0.012:1 to 0.03:1.
  • the dry powder is mixed with a binder using a mixing device.
  • the mixing device is a mixer.
  • step S140 the mixed powder is granulated to obtain boroaluminosilicate mineral particles.
  • the boroaluminosilicate mineral particles have a particle size of from 5 ⁇ m to 20 ⁇ m.
  • the mixed powder is granulated using a granulation apparatus.
  • the granulation apparatus is a spray granulator.
  • the material processing capacity of the spray granulator is 10 kg/h.
  • the feed rate of the spray granulator is from 300 ° C to 350 ° C.
  • the outlet temperature of the spray granulator is from 80 ° C to 120 ° C.
  • the inlet blast temperature of the spray granulator is from 250 ° C to 300 ° C.
  • the hot air temperature at the outlet of the drying chamber of the spray granulator is from 100 ° C to 120 ° C.
  • the gas-liquid contact mode of the spray granulator is cocurrent.
  • the spray granulator is sprayed in the form of an atomizing disk.
  • the product recovery method of the spray granulator is three-point capture of the main bottom, the separator and the dust collector.
  • step S150 the boroaluminosilicate mineral particles are subjected to dry pressing to obtain a boroaluminosilicate mineral green body.
  • the dry press forming method is uniaxial dry pressing.
  • the boroaluminosilicate mineral blank is in the form of a disk.
  • the shape of the boroaluminosilicate mineral green body is not limited to a disk shape, and may be a square shape, a spherical shape or the like as long as it can be calcined.
  • step S160 the boroaluminosilicate mineral material blank is calcined at 700 ° C to 850 ° C, and cooled to obtain a boroaluminosilicate mineral body.
  • the boroaluminosilicate mineral blank is placed in a muffle furnace for calcination.
  • the calcination is carried out under air conditions.
  • the calcination time is from 1 h to 5 h.
  • cooling is performed in a manner that is cooled by the furnace.
  • a cooling device for cooling it is also possible to use a cooling device for cooling as long as the temperature of the calcined boroaluminosilicate mineral material can be lowered.
  • step S170 the boroaluminosilicate mineral body is pulverized and sieved to obtain a boroaluminosilicate mineral material.
  • the boroaluminosilicate mineral body is pulverized using a pulverizing apparatus.
  • the comminution apparatus is a pulverizer.
  • the pulverized boroaluminosilicate mineral body is sieved using a screening apparatus.
  • the screening device is a screening machine.
  • the boroaluminosilicate mineral material has a particle size of from 0.5 ⁇ m to 5 ⁇ m.
  • the boroaluminosilicate mineral slab is pulverized to obtain a powdery boroaluminosilicate mineral material.
  • the mixed powder may be directly calcined at 700 ° C to 850 ° C to obtain a boroaluminosilicate mineral material after cooling. It can be understood that step S140 and step S150 can be omitted. At this time, the mixed powder is directly calcined at 700 ° C to 850 ° C to obtain a boroaluminosilicate mineral material. If the particle size of the calcined boroaluminosilicate mineral powder meets the requirements, it is not necessary to carry out the screening. It can be understood that step S170 can also be omitted.
  • the preparation method of the above boroaluminosilicate mineral material is reasonable in design, and the step of calcining the green body after the dry pressing is performed to suppress the volatilization of boron and potassium elements in the boroaluminosilicate mineral material during the calcination process, so that the boron element And the volatilization rate of potassium is lowered.
  • the low-temperature co-fired ceramic composite material of one embodiment comprises, by mass%, 35% to 65% of Al 2 O 3 and 35% to 65% of the above-mentioned boroaluminosilicate mineral material.
  • the mass percentage of Al 2 O 3 is from 41.69% to 62.53%.
  • the mass percentage of the boroaluminosilicate mineral material is from 37.47% to 58.31%.
  • the ceramic composite has a particle size of from 0.5 ⁇ m to 5 ⁇ m.
  • the low-temperature co-fired ceramic composite material is prepared by mixing the above-mentioned boroaluminosilicate mineral material with Al 2 O 3 , has stable composition and simple process, and is suitable for mass production in large quantities.
  • the preparation method of the above low temperature co-fired ceramic composite material comprises the following steps:
  • step S210 35% to 65% of Al 2 O 3 and 35% to 65% of the above boroaluminosilicate mineral materials are mixed and ground to obtain a mixed abrasive slurry.
  • Al 2 O 3 and boroaluminosilicate mineral materials are raw materials for preparing low temperature co-fired ceramic composite materials.
  • the mass percentage of Al 2 O 3 is from 41.69% to 62.53%.
  • the mass percentage of the boroaluminosilicate mineral material is from 37.47% to 58.31%.
  • the grinding process is ball milling and the ball milled medium is absolute ethanol.
  • the mass ratio of anhydrous ethanol added to the raw material for preparing the low temperature co-fired ceramic composite is 1:1 to 1.2:1.
  • the grinding treatment time is from 2 h to 8 h.
  • the ball milling process is a planetary ball milling process.
  • the Al 2 O 3 and boroaluminosilicate mineral materials are mixed using a mixing device.
  • the mixing time is from 4 h to 8 h.
  • the mixing device is a mixer.
  • step S220 the mixed abrasive slurry is dried to obtain a low temperature co-fired ceramic composite material.
  • the drying treatment is performed by drying, and the drying treatment temperature is from 70 ° C to 100 ° C.
  • the drying treatment time is from 10 h to 16 h.
  • drying treatment method is not limited to drying, and may be naturally dried, as long as the boroaluminosilicate mineral abrasive slurry can be dried.
  • the low temperature co-fired ceramic of one embodiment is made of the above low temperature co-fired ceramic composite material.
  • the above low-temperature co-fired ceramic not only has excellent dielectric properties, but also has a low sintering temperature, a low coefficient of thermal expansion, and a high insulation resistivity. At the same time, it can also be matched with the silver electrode to achieve co-firing, and the electrical properties are kept good.
  • the dielectric properties and sintering of the low-temperature co-fired ceramic can be achieved. The series of regulation of temperature, thermal expansion coefficient and other properties, to produce low temperature co-fired ceramics suitable for production needs.
  • the preparation method of the above low temperature co-fired ceramic comprises the following steps:
  • step S310 a binder is added to the low temperature co-fired ceramic composite material to be mixed to obtain a ceramic powder.
  • the binder is selected from at least one of polyvinyl alcohol and polyvinyl butyral.
  • Polyvinyl alcohol is generally used in the form of an aqueous solution
  • polyvinyl butyral is generally used in the form of an anhydrous ethanol solution.
  • the mass concentration of the aqueous solution of polyvinyl alcohol is 1.5% to 8.0%
  • the mass concentration of the anhydrous ethanol solution of polyvinyl butyral is 1.5% to 8.0%.
  • the mass ratio of polyvinyl alcohol to low temperature co-fired ceramic composite is from 0.012:1 to 0.03:1.
  • the mass ratio of polyvinyl butyral to the low temperature co-fired ceramic composite is from 0.012:1 to 0.03:1.
  • the dry powder is mixed with a binder using a mixing device.
  • the mixing device is a mixer.
  • step S320 the ceramic powder is granulated to obtain ceramic granules.
  • the ceramic particles have a particle diameter of from 5 ⁇ m to 20 ⁇ m.
  • the ceramic powder is granulated using a granulation apparatus.
  • the granulation apparatus is a spray granulator.
  • the material processing capacity of the spray granulator is 10 kg/h.
  • the feed rate of the spray granulator is from 300 ° C to 350 ° C.
  • the outlet temperature of the spray granulator is from 80 ° C to 120 ° C.
  • the inlet blast temperature of the spray granulator is from 250 ° C to 300 ° C.
  • the hot air temperature at the outlet of the drying chamber of the spray granulator is from 100 ° C to 120 ° C.
  • the gas-liquid contact mode of the spray granulator is cocurrent.
  • the spray granulator is sprayed in the form of an atomizing disk.
  • the product recovery method of the spray granulator is three-point capture of the main bottom, the separator and the dust collector.
  • step S330 the ceramic particles are subjected to dry pressing to obtain a ceramic body.
  • the dry press forming method is uniaxial dry pressing.
  • the boroaluminosilicate mineral blank is in the form of a disk.
  • the boroaluminosilicate mineral material blank is made into a disk shape to facilitate the detection of the dielectric properties of the low temperature co-fired ceramic.
  • step S340 the ceramic body is heat-treated at 500 ° C to 600 ° C for debinding treatment.
  • the time of the debinding process is from 2 h to 3 h.
  • the muffle furnace is used for the debinding process.
  • step S350 the ceramic body after the debinding treatment is sintered at 850 ° C to 950 ° C and then cooled to obtain a low-temperature co-fired ceramic.
  • the sintering time is from 1 h to 2 h.
  • the ceramic body is sintered in a muffle furnace.
  • the cooling is performed by cooling to room temperature with the furnace.
  • the ceramic powder is granulated and then dry-molded to obtain a ceramic body, and the ceramic body is subjected to a rubber discharge treatment and then sintered to obtain a low-temperature co-fired ceramic.
  • the ceramic powder obtained in step S310 can be directly subjected to a debinding treatment, and after sintering, a low-temperature co-fired ceramic is obtained. It can be understood that step S320 and step S330 can be omitted. At this time, the ceramic powder is directly subjected to debinding treatment, and after sintering, a powdery low-temperature co-fired ceramic is obtained.
  • the composite substrate of one embodiment is made of the above low temperature co-fired ceramic.
  • the above composite substrate has no obvious warpage and deformation after sintering, and has a flexural strength of ⁇ 159 MPa, and has excellent mechanical properties and good LTCC process matching.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the typical XRD pattern of the boroaluminosilicate mineral material was obtained by X-ray diffraction analysis, as shown in Fig. 1.
  • the boroaluminosilicate mineral material is a crystalline phase mineral powder having a uniform chemical composition and no component segregation.
  • the composition of the boroaluminosilicate mineral material was determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the boroaluminosilicate mineral material.
  • ICP-OES inductively coupled plasma optical emission spectroscopy
  • Table 1 The composition of the boroaluminosilicate mineral material is shown in Table 1 in terms of mass percent.
  • the typical XRD pattern of the low temperature co-fired ceramic composite was obtained by X-ray diffraction analysis, as shown in Fig. 2.
  • the low temperature co-fired ceramic material is a multiphase ceramic structure formed of alumina and boroaluminosilicate.
  • the low temperature co-fired ceramic composite was subjected to scanning electron microscopic analysis to obtain an SEM image magnified 5000 times, as shown in FIG.
  • the morphology of the low-temperature co-fired ceramic composite is composed of small-sized particles with uniform particle size and large-sized particles. Among them, the small-sized particles are mainly alumina, and the average particle diameter is about 0.5 ⁇ m; the large-sized particles are mainly broken boroaluminosilicate mineral materials, and the average particle diameter is about 2 ⁇ m.
  • the low-temperature co-fired ceramic has a compact cross-sectional structure, and the crystallized alumina grains are uniformly coated in the continuous phase material formed by the boroaluminosilicate mineral, and the average grain size of the alumina is about 1 ⁇ m.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 2 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 3 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 5 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 4 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 500 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 850 ° C for 1 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 850 ° C for 1 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 5 as a percentage by mass, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body is heat-treated at 600 ° C for 3 hours for debinding treatment, and the ceramic body after debinding treatment is sintered at 950 ° C for 2 h, and cooled with the furnace. Low temperature co-fired ceramics were obtained at room temperature.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 730 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 6 as a percentage by mass, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body is incubated at 520 ° C for 2.5 h for debinding treatment, and the ceramic body after debinding treatment is sintered at 870 ° C for 1.5 h.
  • the furnace was cooled to room temperature to obtain a low temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 3 h under air conditions, and after cooling with a furnace, it was ground and sieved to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 7 as a percentage by mass, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body is heat-treated at 540 ° C for 3 hours for debinding treatment, and the ceramic body after debinding treatment is sintered at 890 ° C for 2 h, and cooled with the furnace. Low temperature co-fired ceramics were obtained at room temperature.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 780 ° C for 4 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 8 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body is heat-treated at 550 ° C for 3 hours for debinding treatment, and the ceramic body after debinding treatment is sintered at 900 ° C for 2 h, and cooled with the furnace. Low temperature co-fired ceramics were obtained at room temperature.
  • the pulverized aluminum silicate mineral green body is obtained by granulating the mixed powder after uniaxial dry pressing.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 800 ° C for 3 h under air conditions, and after cooling with a furnace, it was ground and sieved to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 9 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body is heat-treated at 560 ° C for 3 hours for debinding treatment, and the ceramic body after debinding treatment is sintered at 920 ° C for 2 h, and cooled with the furnace. Low temperature co-fired ceramics were obtained at room temperature.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 10 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 11 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 12 in terms of mass percentage, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 13 as a percentage by mass, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 14 as a percentage by mass, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • boroaluminosilicate mineral green body Post-granular uniaxial dry compression molding to obtain a boroaluminosilicate mineral green body.
  • the boroaluminosilicate mineral blank was added to a muffle furnace, calcined at 750 ° C for 2 h under air conditions, and cooled with a furnace and ground to obtain a boroaluminosilicate mineral material.
  • the composition of the boroaluminosilicate mineral material is shown in Table 15 as a percentage by mass, and the composition of the boroaluminosilicate mineral material is the same as in Example 1.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • the ceramic body was incubated at 550 ° C for 2 h for debinding treatment, and the ceramic body after the debinding treatment was sintered at 900 ° C for 2 h, and the furnace was cooled to room temperature to obtain a low-temperature co-fired ceramic.
  • the low-temperature co-fired ceramics obtained in Examples 1 to 16 were polished by both sides into a cylindrical sample having a diameter of 10 mm and a thickness of 5 mm. After the cylindrical sample was ultrasonically cleaned and dried, the dielectric constant and dielectric loss of the cylindrical sample were tested at 15 GMz using a Hakki-Coleman separation dielectric resonator at room temperature.
  • the low-temperature co-fired ceramics obtained in Examples 1 to 16 were double-sided ground and polished into a cylindrical sample having a diameter of 10 mm and a thickness of 2 mm, and the silver electrode slurry was brushed on both sides, and then sintered at 750 ° C for 15 minutes, and cooled to room temperature with the furnace to obtain
  • the silver electrode has a thickness of 0.08 mm to be tested, and the silver electrode paste composition includes silver powder, a resin, and a diluent.
  • the dielectric constant and dielectric loss of the sample to be tested were tested at 1 MHz using an LCR bridge at room temperature.
  • the model of the LCR bridge is the Agilent HP4278A.
  • the insulation resistivity of the low-temperature co-fired ceramics obtained in Examples 1 to 16 was tested at room temperature using a DC insulation resistance tester.
  • the test voltage was DC 100V
  • the model of the DC insulation resistance tester was Tonghui TH2681A.
  • thermal expansion coefficients of the low-temperature co-fired ceramics obtained in Examples 1 to 16 were tested by a thermal dilatometer between room temperature and 300 ° C, and the reference standard was GJB332A-2004 solid material linear expansion coefficient test method.
  • the low-temperature co-fired ceramics obtained in Examples 1 to 16 were subjected to a sheet, screen printing, lamination, isostatic pressing, cutting, and co-firing process to form an LTCC substrate.
  • the flexural strength of the LTCC substrate was tested by a three-point bending test method, and the reference standard was JC/T676-1997 glass material bending strength test method.
  • the low temperature co-fired ceramics prepared in Examples 1 to 15 have a continuously adjustable dielectric constant of 6.8 to 9.5 at a low frequency of 1 MHz, and the dielectric loss is ⁇ 0.0096; at a microwave high frequency of 15 GHz. It has a continuously adjustable dielectric constant of 6.0 to 9.2 and a dielectric loss of ⁇ 0.01. It can be seen that the low-temperature co-fired ceramics prepared in Examples 1 to 15 have low dielectric constant and low dielectric loss at low frequency and high frequency, and are excellent in dielectric properties. At the same time, the low-temperature co-fired ceramic and the silver electrode can achieve matching co-firing, and the electrical properties are kept good.
  • the low-temperature co-fired ceramics obtained in Examples 1 to 15 had a sintering temperature of 900 ° C, a thermal expansion coefficient of ⁇ 9.89 ⁇ 10 -6 / ° C, and an insulating resistivity of ⁇ 10 10 ⁇ cm. It can be seen that the low temperature co-fired ceramic materials prepared in Examples 1 to 15 have low sintering temperature, low thermal expansion coefficient and high insulation resistivity, and meet the performance requirements of low dielectric LTCC materials.
  • the composite substrate made of low temperature co-fired ceramic has a flexural strength ⁇ 159 MPa, excellent mechanical properties and LTCC process matching, and has better practicability in the field of LTCC low dielectric substrate. .
  • Examples 1 to 16 It can be seen from Examples 1 to 16 that the low temperature co-fired ceramics obtained in Examples 1 to 15 have better dielectric properties, lower thermal expansion coefficient, higher insulation resistivity and smaller thermal expansion coefficient than those of Example 16. . Meanwhile, the composite substrate obtained from the low-temperature co-fired ceramics of Examples 1 to 15 had higher bending strength than that of Example 16.
  • the boroaluminosilicate mineral material has excellent properties and is suitable for use as a low dielectric substrate material in the field of LTCC package substrates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

一种硼铝硅酸盐矿物材料、和基于该材料制造的低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法。该用于低温共烧陶瓷的硼铝硅酸盐矿物材料,以氧化物基准的质量百分含量表示,包括如下组分:0.41%~1.15%的Na 2O,14.15%~23.67%的K 2O,1.17%~4.10%的CaO,0~2.56%的Al 2O 3,13.19%~20.00%的B 2O 3及53.47%~67.17%的SiO 2。该硼铝硅酸盐矿物材料化学性质稳定,由其制成的低温共烧陶瓷不仅具有优良的介电性能,还具有低的烧结温度、低的热膨胀系数、良好的机械性能和LTCC工艺匹配性,用于LTCC封装基板领域。

Description

硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法 技术领域
本发明涉及一种硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法。
背景技术
低温共烧陶瓷(LTCC)技术是上世纪80年代中期出现的一种新型多层基板工艺技术。该技术采用了独特的材料体系,可与金属导体共烧,进而提高电子器件的性能;同时,采用独特的多层共烧工艺,极大地降低工艺复杂性,进而提升元件的可靠性。目前,LTCC技术已经广泛应用在无线通讯、半导体、光电子、微机电系统等领域。
LTCC技术的基础是LTCC材料特性及应用技术。当应用于电子封装基板时,为保证高频通信信号的传输质量,LTCC材料应具有低的介电常数和低的介电损耗,但目前市场上大多LTCC材料介电性能较差,不能满足电子封装基板的制造条件。
发明内容
基于此,有必要针对目前市场上大多LTCC材料介电性能较差的问题,提供一种硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法。
一种硼铝硅酸盐矿物材料,用于低温共烧陶瓷,硼铝硅酸盐矿物材料以下述氧化物基准的质量百分含量表示,包括如下组分:
Figure PCTCN2018078781-appb-000001
上述硼铝硅酸盐矿物材料各组分配比合理,从而化学性质稳定;将上述硼铝硅酸盐矿物材料与Al 2O 3混合可以得到成分稳定、工艺简单、适合大批量规模化生产的低温共烧陶瓷复合材料。由低温共烧陶瓷复合材料制成的低温共烧陶瓷,不仅具有优良的介电性能,还具有低的烧结温度、低的热膨胀系数及高的绝缘电阻率。同时,还可与银电极可实现匹配共烧,各电学性能保持良好。此外,通过调整硼铝硅酸盐矿物材料中各组分的相对含量,或者通过调整硼铝硅酸盐矿物材料与Al 2O 3的配比,能够实现低温共烧陶瓷的介电性能、烧结温度、热膨胀系数等性能的系列化调控,制得适于生产需求的低温共烧陶瓷。由低温共烧陶瓷制成的复合基板,烧结后平整无明显的翘曲和变形,抗折强度 ≥159MPa,具有优异的机械性能和良好LTCC工艺匹配性。因此,硼铝硅酸盐矿物材料性能优异,适合作为低介基板材料应用于LTCC封装基板领域。
在其中一个实施例中,硼铝硅酸盐矿物材料包括如下组分:
Figure PCTCN2018078781-appb-000002
一种低温共烧陶瓷复合材料,以质量百分含量计包括35%~65%的Al 2O 3和35%~65%的硼铝硅酸盐矿物材料。
在其中一个实施例中,低温共烧陶瓷复合材料包括41.69%~62.53%的Al 2O 3和37.47%~58.31%的硼铝硅酸盐矿物材料。
一种硼铝硅酸盐矿物材料的制备方法,包括以下步骤:
根据硼铝硅酸盐矿物材料中各元素的配比称取钠源、钾源、钙源、铝源、硼源及硅源,混合后进行研磨处理得到硼铝硅酸盐矿物研磨料浆;
将硼铝硅酸盐矿物研磨料浆进行干燥处理得到干燥粉料;
向干燥粉料中加入粘结剂混合均匀得到混合粉料;
将混合粉料于700℃~850℃进行煅烧得到硼铝硅酸盐矿物材料。
在其中一个实施例中,研磨处理为球磨,球磨的介质为无水乙醇。
在其中一个实施例中,研磨处理的时间为2h~8h。
在其中一个实施例中,干燥处理的方式为烘干,干燥处理的温度为70℃~100℃。
在其中一个实施例中,粘结剂选自聚乙烯醇及聚乙烯醇缩丁醛中的至少一种。
在其中一个实施例中,将混合粉料于700℃~850℃进行煅烧的步骤具体为:将混合粉料置于马弗炉中,在空气条件下煅烧1h~5h。
一种低温共烧陶瓷复合材料的制备方法,包括以下步骤:
以质量百分含量计,将35%~65%的Al 2O 3和35%~65%的硼铝硅酸盐矿物材料混合后进行研磨处理得到混合研磨料浆;
将混合研磨料浆进行干燥处理得到低温共烧陶瓷复合材料。
一种低温共烧陶瓷,由低温共烧陶瓷复合材料制成。
一种低温共烧陶瓷的制备方法,包括以下步骤:
向低温共烧陶瓷复合材料中加入粘结剂混匀后得到陶瓷粉料;
将陶瓷粉料于500℃~600℃保温进行排胶处理;
将排胶处理后的陶瓷粉料于850℃~950℃烧结得到低温共烧陶瓷。
一种复合基板,由低温共烧陶瓷制成。
附图说明
图1为实施例1中的硼铝硅酸盐矿物材料的典型XRD图谱;
图2为实施例1中的低温共烧陶瓷复合材料的典型XRD图谱;
图3为实施例1中的低温共烧陶瓷复合材料的放大5000倍的SEM图像;
图4为实施例1中的低温共烧陶瓷断面的放大3000倍的SEM图像。
具体实施方式
下面主要结合具体实施例及附图对硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法作进一步详细的说明。
一实施方式的硼铝硅酸盐矿物材料,以氧化物基准的质量百分含量表示,包括如下组分:
Figure PCTCN2018078781-appb-000003
上述硼铝硅酸盐矿物材料可以作为低温共烧陶瓷的添加剂使用。
其中,Na 2O主要起助熔的作用,同时还可以提高陶瓷的透光性。但Na 2O含量过高会急剧地降低陶瓷的烧成温度与热稳定性。优选的,Na 2O的质量百分含量为0.62%~0.98%。
K 2O主要起助熔的作用,同时也可以提高陶瓷的透光性。但K 2O含量过高会急剧地降低陶瓷的烧成温度与热稳定性。优选的,K 2O的质量百分含量为14.96%~22.80%。
CaO主要起助熔的作用,同时还可以相应的提高陶瓷的热稳定性、机械强度、白度及透光度。优选的,CaO的质量百分含量为1.82%~4.10%。
Al 2O 3能够提高陶瓷的物理化学性能、机械强度、白度以及烧成温度。但Al 2O 3过量会导致陶瓷不易烧熟,Al 2O 3含量过低又会导致陶瓷制品趋于变形或软塌。优选的,Al 2O 3的质量百分含量为0%~2.22%。
B 2O 3主要起助熔作用,可降低高温烧结时的液相粘度,促进烧结过程中的液相流动,形成均匀致密的显微结构,有利于降低硼铝硅酸盐矿物材料的介电损耗。优选的,B 2O 3的质量百分含量为14.87%~18.33%。
SiO 2是陶瓷的主要组成成分,直接影响陶瓷的强度和其他性能。但SiO 2含量过高会导致陶瓷制品的热稳定性变坏,易出现炸裂现象。
上述硼铝硅酸盐矿物材料各组分配比合理,从而化学性质稳定,可以作为生产介电性能优异的低温共烧陶瓷的原料。
上述硼铝硅酸盐矿物材料的制备方法,包括以下步骤:
步骤S110,根据硼铝硅酸盐矿物材料中各元素的配比称取钠源、钾源、钙源、铝源、硼源及硅源,混合后进行研磨处理得到硼铝硅酸盐矿物研磨料浆。
称取的钠源、钾源、钙源、铝源、硼源及硅源作为制备硼铝硅酸盐矿物材料的原料。
在其中一个实施例中,钠源选自碳酸钠及氧化钠中的至少一种。当然,钠源不限于碳酸钠及氧化钠,只要能够在煅烧后形成氧化钠而不引入其他杂质即可。
在其中一个实施例中,钾源选自碳酸钾及氧化钾中的至少一种。当然,钾源不限于碳酸钾及氧化钾,只要能够在煅烧后形成氧化钾而不引入其他杂质即可。
在其中一个实施例中,钙源选自碳酸钙及氧化钙中的至少一种。当然,钙源不限于碳酸钙及氧化钙,只要能够在煅烧后形成氧化钙而不引入其他杂质即可。
在其中一个实施例中,铝源为氧化铝。当然,铝源不限于氧化铝,只要能够在煅烧后形成氧化铝而不引入其他杂质即可。
在其中一个实施例中,硼源选自硼酸及氧化硼中的至少一种。当然,硼源不限于硼酸及氧化硼,只要能够在煅烧后形成氧化硼而不引入其他杂质即可。
在其中一个实施例中,硅源为二氧化硅。当然,硅源不限于二氧化硅,只要能够在煅烧后形成二氧化硅而不引入其他杂质即可。
在其中一个实施例中,根据硼铝硅酸盐矿物材料中各元素的配比称取钠源、钾源、钙源、铝源、硼源及硅源作为原料,原料以质量百分比计,包括:
Figure PCTCN2018078781-appb-000004
优选的,Na 2CO 3的质量百分含量为0.88%~1.38%。
优选的,K 2CO 3的质量百分含量为18.24%~26.28%。
优选的,CaCO 3的质量百分含量为2.70%~4.13%。
优选的,Al 2O 3的质量百分含量为0~1.74%。
优选的,H 3BO 3的质量百分含量为21.94%~25.58%。
在其中一个实施方式中,采用混合设备对钠源、钾源、钙源、铝源、硼源及硅源等原料进行混合。在其中一个实施例中,混合设备为混合机。
在其中一个实施例中,混合的时间为4h~8h。
在其中一个实施方式中,研磨处理为球磨,球磨的介质为无水乙醇。在其中一个实施例中,无水乙醇的加入量与原料的质量比为1:1~1.2:1。
在其中一个实施例中,研磨处理的时间为2h~8h。
在其中一个实施例中,球磨的工艺为行星球磨工艺。
在其中一个实施例中,球磨的设备为球磨机,球磨介球为氧化锆球。优选的,氧化锆球与原料的质量比为3:1~4:1,氧化锆球的直径为0.3cm~0.5cm。
在其中一个实施例中,球磨的转速为160r/min~200r/min。
步骤S120,将硼铝硅酸盐矿物研磨料浆进行干燥处理得到干燥粉料。
在其中一个实施例中,干燥处理为烘干。
在其中一个实施例中,干燥处理的温度为70℃~100℃。
在其中一个实施例中,干燥处理的时间为10h~16h。
当然,干燥处理的方式不限于烘干,也可以为自然晾干,只要能使硼铝硅酸盐矿物研磨料浆干燥即可。
步骤S130,向干燥粉料中加入粘结剂混合均匀得到混合粉料。
在其中一个实施例中,粘结剂选自聚乙烯醇及聚乙烯醇缩丁醛中的至少一种。聚乙烯醇一般以水溶液的形式来使用,聚乙烯醇缩丁醛一般以无水乙醇溶液的形式来使用。优选的,聚乙烯醇的水溶液的质量浓度为1.5%~8.0%;聚乙烯醇缩丁醛的无水乙醇溶液的质量浓度为1.5%~8.0%。
在其中一个实施例中,聚乙烯醇与干燥粉料的质量比为0.012:1~0.03:1。
在其中一个实施例中,聚乙烯醇缩丁醛与干燥粉料的质量比为0.012:1~0.03:1。
在其中一个实施例中,采用混合设备将干燥粉料与粘结剂进行混合。优选的,混合设备为混合机。
步骤S140,将混合粉料进行造粒得到硼铝硅酸盐矿物颗粒。
在其中一个实施例中,硼铝硅酸盐矿物颗粒的粒径为5μm~20μm。
在其中一个实施例中,采用造粒设备对混合粉料进行造粒。优选的,造粒设备为喷雾造粒机。进一步的,喷雾造粒机的料液处理能力10kg/h。进一步的,喷雾造粒机的料液供给温度为300℃~350℃。进一步的,喷雾造粒机的出口温度80℃~120℃。进一步的,喷雾造粒机的入口热风温度为250℃~300℃。进一步的,喷雾造粒机的干燥室出口热风温度为100℃~120℃。进一步的,喷雾造粒机的气液接触方式为并流。进一步的,喷雾造粒机的喷雾方式为雾化盘。进一步的,喷雾造粒机的产品回收方式为主塔底、分离器及除尘器三点捕集。
步骤S150,将硼铝硅酸盐矿物颗粒进行干压成型得到硼铝硅酸盐矿物素坯。
在其中一个实施例中,干压成型的方式为单轴干压成型。
在其中一个实施例中,硼铝硅酸盐矿物素坯的形状为圆片状。当然,硼铝硅酸盐矿物素坯的形状不限于圆片状,也可以为方块状、圆球状等,只要能够进行煅烧即可。
步骤S160,将硼铝硅酸盐矿物素坯于700℃~850℃进行煅烧,冷却后得到硼铝硅酸盐矿物坯体。
在其中一个实施例中,将硼铝硅酸盐矿物素坯置于马弗炉进行煅烧。
在其中一个实施例中,在空气条件下进行煅烧。
在其中一个实施例中,煅烧的时间为1h~5h。
在其中一个实施例中,采用随炉冷却的方式进行冷却。当然,也可以采用冷却设备进行冷却,只要能降低煅烧后的硼铝硅酸盐矿物材料的温度即可。
步骤S170,将硼铝硅酸盐矿物坯体粉碎后进行过筛得到硼铝硅酸盐矿物材料。
在其中一个实施例中,采用粉碎设备对硼铝硅酸盐矿物坯体进行粉碎。优选的,粉碎设备为粉碎机。
在其中一个实施例中,采用筛分设备对粉碎后的硼铝硅酸盐矿物坯体进行筛分。优选的,筛分设备为筛分机。
在其中一个实施例中,硼铝硅酸盐矿物材料的粒径为0.5μm~5μm。
需要说明的是,本实施方式中,将硼铝硅酸盐矿物素坯进行粉碎,得到粉状的硼铝硅酸盐矿物材料。当然在其他实施例中可以直接将混合粉料于700℃~850℃进行煅烧,冷却后得到硼铝硅酸盐矿物材料。那么可以理解,步骤S140和步骤S150可以省略,此时直接将混合粉料于700℃~850℃进行煅烧得到硼铝硅酸盐矿物材料即可。如果煅烧后的硼铝硅酸盐矿物粉料粒径满足要求,那么可以不用进行筛分。可以理解,步骤S170也可以省略。
上述硼铝硅酸盐矿物材料的制备方法设计合理,通过设置干压后进行坯体煅烧的步骤,抑制了煅烧过程中硼铝硅酸盐矿物材料中硼元素和钾元素的挥发,使硼元素和钾元素的挥发率降低。
一实施方式的低温共烧陶瓷复合材料,以质量百分含量计包括35%~65%的Al 2O 3和35%~65%的上述的硼铝硅酸盐矿物材料。
优选的,Al 2O 3的质量百分含量为41.69%~62.53%。
优选的,硼铝硅酸盐矿物材料的质量百分含量为37.47%~58.31%。
在其中一个实施例中,陶瓷复合材料的粒径为0.5μm~5μm。
上述低温共烧陶瓷复合材料由上述硼铝硅酸盐矿物材料与Al 2O 3混合制得,成分稳定,工艺简单,适合大批量规模化生产。
上述低温共烧陶瓷复合材料的制备方法,包括以下步骤:
步骤S210,以质量百分含量计,将35%~65%的Al 2O 3和35%~65%的上述硼铝硅酸盐矿物材料混合后进行研磨处理得到混合研磨料浆。
Al 2O 3和硼铝硅酸盐矿物材料为制备低温共烧陶瓷复合材料的原料。
优选的,Al 2O 3的质量百分含量为41.69%~62.53%。
优选的,硼铝硅酸盐矿物材料的质量百分含量为37.47%~58.31%。
在其中一个实施方式中,研磨处理为球磨,球磨的介质为无水乙醇。
在其中一个实施例中,无水乙醇的加入量与制备低温共烧陶瓷复合材料的原料的质量比为1:1~1.2:1。
在其中一个实施例中,研磨处理的时间为2h~8h。
在其中一个实施例中,球磨处理的工艺为行星球磨工艺。
在其中一个实施方式中,采用混合设备对Al 2O 3和硼铝硅酸盐矿物材料进行混合。在其中一个实施例中,混合的时间为4h~8h。优选的,混合设备为混合机。
步骤S220,将混合研磨料浆进行干燥处理得到低温共烧陶瓷复合材料。
在其中一个实施例中,干燥处理的方式为烘干,干燥处理的温度为70℃~100℃。
在其中一个实施例中,干燥处理的时间为10h~16h。
当然,干燥处理的方式不限于烘干,也可以为自然晾干,只要能使硼铝硅酸盐矿物研磨料浆干燥即可。
一实施方式的低温共烧陶瓷由上述低温共烧陶瓷复合材料制成。
上述低温共烧陶瓷不仅具有优良的介电性能,还具有低的烧结温度、低的热膨胀系数及高的绝缘电阻率。同时,还可与银电极可实现匹配共烧,各电学性能保持良好。此外,通过调整硼铝硅酸盐矿 物材料中各组分的相对含量,或者通过调整硼铝硅酸盐矿物材料与Al 2O 3的配比,能够实现低温共烧陶瓷的介电性能、烧结温度、热膨胀系数等性能的系列化调控,制得适于生产需求的低温共烧陶瓷。
上述低温共烧陶瓷的制备方法,包括以下步骤:
步骤S310,向上述低温共烧陶瓷复合材料中加入粘结剂进行混合得到陶瓷粉料。
在其中一个实施例中,粘结剂选自聚乙烯醇及聚乙烯醇缩丁醛中的至少一种。聚乙烯醇一般以水溶液的形式来使用,聚乙烯醇缩丁醛一般以无水乙醇溶液的形式来使用。优选的,聚乙烯醇的水溶液的质量浓度为1.5%~8.0%;聚乙烯醇缩丁醛的无水乙醇溶液的质量浓度为1.5%~8.0%。
在其中一个实施例中,聚乙烯醇与低温共烧陶瓷复合材料的质量比为0.012:1~0.03:1。
在其中一个实施例中,聚乙烯醇缩丁醛与低温共烧陶瓷复合材料的质量比为的0.012:1~0.03:1。
在其中一个实施例中,采用混合设备将干燥粉料与粘结剂进行混合。优选的,混合设备为混合机。
步骤S320,将陶瓷粉料进行造粒得到陶瓷颗粒。
在其中一个实施例中,陶瓷颗粒的粒径为5μm~20μm。
在其中一个实施例中,采用造粒设备对陶瓷粉料进行造粒。优选的,造粒设备为喷雾造粒机。进一步的,喷雾造粒机的料液处理能力10kg/h。进一步的,喷雾造粒机的料液供给温度为300℃~350℃。进一步的,喷雾造粒机的出口温度80℃~120℃。进一步的,喷雾造粒机的入口热风温度为250℃~300℃。进一步的,喷雾造粒机的干燥室出口热风温度为100℃~120℃。进一步的,喷雾造粒机的气液接触方式为并流。进一步的,喷雾造粒机的喷雾方式为雾化盘。进一步的,喷雾造粒机的产品回收方式为主塔底、分离器及除尘器三点捕集。
步骤S330,将陶瓷颗粒进行干压成型得到陶瓷坯体。
在其中一个实施例中,干压成型的方式为单轴干压成型。
在其中一个实施例中,硼铝硅酸盐矿物素坯的形状为圆片状。将硼铝硅酸盐矿物素坯制成圆片状更利于低温共烧陶瓷的介电性能的检测。
步骤S340,将陶瓷胚体于500℃~600℃保温进行排胶处理。
在其中一个实施例中,排胶处理的时间为2h~3h。
在其中一个实施例中,采用马弗炉进行排胶处理。
步骤S350,将排胶处理后的陶瓷胚体于850℃~950℃烧结后冷却得到低温共烧陶瓷。
在其中一个实施例中,烧结的时间为1h~2h。
在其中一个实施例中,将陶瓷坯体于马弗炉中进行烧结。
在其中一个实施例中,冷却的方式为随炉冷却至室温。
需要说明的是,本实施方式中,将陶瓷粉料造粒后干压成型得到陶瓷坯体,将陶瓷坯体排胶处理后烧结得到低温共烧陶瓷。当然,在其他实施例中,可以直接将步骤S310得到的陶瓷粉料直接进行排胶处理,烧结后得到低温共烧陶瓷。那么可以理解,步骤S320和步骤S330可以省略,此时直接将陶瓷粉料进行排胶处理,烧结后得到粉末状的低温共烧陶瓷。
一实施方式的复合基板,由上述低温共烧陶瓷制成。
上述复合基板,烧结后平整无明显的翘曲和变形,抗折强度≥159MPa,具有优异的机械性能和良好的LTCC工艺匹配性。
结合以下实施例,做进一步说明。
实施例1
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。
将硼铝硅酸盐矿物材料进行X射线衍射分析得到其典型的XRD图谱,如图1所示。从图1中可以看出,硼铝硅酸盐矿物材料为化学成分均匀、无成分偏析的结晶相矿物质粉体。
将硼铝硅酸盐矿物材料进行电感耦合等离子体发射光谱(ICP-OES)分析测定硼铝硅酸盐矿物材料的组成。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表1所示。
表1
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。
将低温共烧陶瓷复合材料进行X射线衍射分析得到其典型的XRD图谱,如图2所示。从图2中可以看出,低温共烧陶瓷材料为由氧化铝和硼铝硅酸盐形成的复相陶瓷结构。将低温共烧陶瓷复合材料进行扫描电子显微分析得到其放大5000倍的SEM图像,如图3所示。从图3中可以看出,低温共烧陶瓷复合材料的形貌规则,由粒度均匀的小粒径颗粒和大粒径颗粒组成。其中,小粒径颗粒主要为氧化铝,平均粒径约为0.5μm;大粒径颗粒主要为破碎后的硼铝硅酸盐矿物材料,平均粒径约为2μm。
向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料,将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。将低温共烧陶瓷进行扫描电子显微分析得到其断面的放大3000倍的SEM图像,如图4所示。从图4中可以看出,低温共烧陶瓷断面结构致密,结晶后的氧化铝晶粒均匀包覆于由硼铝硅酸盐矿物形成的连续相物质中,氧化铝的平均晶粒尺寸约为1μm。
实施例2
称取0.50g的Na 2CO 3、10.71g的K 2CO 3、2.93g的CaCO 3、0.34g的Al 2O 3、11.42g的H 3BO 3及24.09g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。 将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表2所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表2
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.73 18.20 4.10 0.86 16.04 60.07
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例3
称取0.52g的Na 2CO 3、10.96g的K 2CO 3、2.94g的CaCO 3、0.76g的Al 2O 3、11.05g的H 3BO 3及23.77g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表3所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表3
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.76 18.60 4.10 1.90 15.48 59.16
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例4
称取0.62g的Na 2CO 3、13.17g的K 2CO 3、2.34g的CaCO 3、0.17g的Al 2O 3、11.00g的H 3BO 3及22.69g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨2h得到硼铝硅酸盐矿物研磨料浆。将 硼铝硅酸盐矿物研磨料浆于70℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧5h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表4所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表4
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.41 14.15 1.17 0 20.00 64.27
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨2h得到混合研磨料浆,将混合研磨料浆于70℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于500℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于850℃烧结1h,随炉冷却至室温得到低温共烧陶瓷。
实施例5
称取0.79g的Na 2CO 3、13.95g的K 2CO 3、2.19g的CaCO 3、1.03g的Al 2O 3、9.41g的H 3BO 3及22.64g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨8h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于75℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于850℃煅烧1h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表5所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表5
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 1.15 23.67 3.05 2.56 13.19 56.38
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨8h得到混合研磨料浆,将混合研磨料浆于75℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体,将陶瓷坯体于600℃保温3h进行排胶处理,将排胶处理后的陶瓷坯体于950℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例6
称取0.38g的Na 2CO 3、9.79g的K 2CO 3、1.30g的CaCO 3、0.09g的Al 2O 3、12.35g的H 3BO 3及26.08g 的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨3h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于80℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于730℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表6所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表6
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.55 16.37 1.79 0.23 17.06 64.00
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨3h得到混合研磨料浆,将混合研磨料浆于80℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体,将陶瓷坯体于520℃保温2.5h进行排胶处理,将排胶处理后的陶瓷坯体于870℃烧结1.5h,随炉冷却至室温得到低温共烧陶瓷。
实施例7
称取0.69g的Na 2CO 3、12.55g的K 2CO 3、1.73g的CaCO 3、0.80g的Al 2O 3、11.65g的H 3BO 3及22.58g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨5h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于85℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧3h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表7所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表7
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 1.01 21.45 2.43 2.01 16.46 56.64
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨5h得到混合研磨料浆,将混合研磨料浆于85℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体,将陶瓷坯体于540℃保温3h进行排胶处理,将排胶处理后的陶瓷坯体于890℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例8
称取0.66g的Na 2CO 3、13.14g的K 2CO 3、1.54g的CaCO 3、0.87g的Al 2O 3、12.79g的H 3BO 3及 21.00g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨6h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于90℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于780℃煅烧4h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表8所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表8
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.98 22.80 2.20 2.22 18.33 53.47
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨6h得到混合研磨料浆,将混合研磨料浆于90℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体,将陶瓷坯体于550℃保温3h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例9
称取0.44g的Na 2CO 3、9.12g的K 2CO 3、1.35g的CaCO 3、0.23g的Al 2O 3、10.97g的H 3BO 3及27.89g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨7h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于95℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇缩丁醛无水乙醇溶液2mL,混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于800℃煅烧3h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表9所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表9
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.62 14.96 1.82 0.56 14.87 67.17
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨7h得到混合研磨料浆,将混合研磨料浆于95℃烘干12h得到低温共烧陶瓷复合材料,向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇缩丁醛无水乙醇溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体,将陶瓷坯体于560℃保温3h进行排胶处理,将排胶处理后的陶瓷坯体于920℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例10
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原 料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表10所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表10
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取62.53g的Al 2O 3和37.47g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例11
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表11所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表11
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取52.66g的Al 2O 3和47.34g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例12
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表12所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表12
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取44.67g的Al 2O 3和55.33g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例13
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表13所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表13
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取41.69g的Al 2O 3和58.31g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理 后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例14
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表14所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表14
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取35.00g的Al 2O 3和65.00g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例15
称取0.52g的Na 2CO 3、10.92g的K 2CO 3、1.51g的CaCO 3、12.43g的H 3BO 3及24.63g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到硼铝硅酸盐矿物研磨料浆。将硼铝硅酸盐矿物研磨料浆于100℃烘干12h得到干燥粉料,向干燥粉料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL混合均匀得到混合粉料,将混合粉料造粒后单轴干压成型得到硼铝硅酸盐矿物素坯。将硼铝硅酸盐矿物素坯加入马弗炉中,在空气条件下于750℃煅烧2h,随炉冷却后磨碎过筛得到硼铝硅酸盐矿物材料。以质量百分含量计,硼铝硅酸盐矿物材料的组成如表15所示,硼铝硅酸盐矿物材料组成的测定方法同实施例1。
表15
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0.75 18.50 2.10 0 17.40 61.25
称取65.00g的Al 2O 3和35.00g的硼铝硅酸盐矿物材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低 温共烧陶瓷复合材料中加入质量浓度为8.0%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
实施例16
称取11.38g的K 2CO 3、12.95g的H 3BO 3及25.67g的SiO 2原料,混合后与60mL的无水乙醇加入行星球磨机球磨4h得到研磨料浆。将研磨料浆于100℃烘干12h得到干燥粉料,将干燥粉料直接装置于坩埚内,加入马弗炉中,利用高温熔融工艺在1500℃熔炼30min,然后高温下取出在去离子水中水淬,经磨细过筛后得到硼铝硅酸盐玻璃粉。以质量百分含量计,硼铝硅酸盐玻璃粉的组成如表16所示,硼铝硅酸盐玻璃粉组成的测定方法同实施例1。
表16
氧化物 Na 2O K 2O CaO Al 2O 3 B 2O 3 SiO 2
wt% 0 17.89 0 0 16.27 65.84
称取50.03g的Al 2O 3和49.97g的硼铝硅酸盐玻璃材料,混合后与120mL的无水乙醇加入行星球磨机球磨4h得到混合研磨料浆,将混合研磨料浆于100℃烘干12h得到低温共烧陶瓷复合材料。向低温共烧陶瓷复合材料中加入质量浓度为8%的聚乙烯醇水溶液2mL,混匀后得到陶瓷粉料。将低温共烧陶瓷粉料进行造粒后单轴干压成型得到陶瓷坯体。将陶瓷坯体于550℃保温2h进行排胶处理,将排胶处理后的陶瓷坯体于900℃烧结2h,随炉冷却至室温得到低温共烧陶瓷。
将实施例1~16得到的低温共烧陶瓷双面研磨抛光为直径10mm,厚度5mm的圆柱样品。将圆柱样品超声清洗并烘干后,在室温条件下采用Hakki-Coleman分离介质谐振器于15GMz测试圆柱样品的介电常数和介电损耗。
将实施例1~16得到的低温共烧陶瓷双面研磨抛光为直径10mm,厚度2mm的圆柱样品,双面刷银电极浆料后,于750℃下保温15min烧结,随炉冷却至室温,得到银电极厚度为0.08mm的待测样品,银电极浆料组成包括银粉、树脂及稀释剂。在室温下采用LCR电桥于1MHz测试待测样品的介电常数和介电损耗,LCR电桥的型号为安捷伦HP4278A。
在室温下采用直流绝缘电阻测试仪测试实施例1~16得到的低温共烧陶瓷的绝缘电阻率,测试电压为DC 100V,直流绝缘电阻测试仪的型号为同惠TH2681A。
在室温至300℃之间采用热膨胀仪测试实施例1~16得到的低温共烧陶瓷的热膨胀系数,参照标准为GJB332A-2004固体材料线膨胀系数测试方法。
将实施例1~16得到的低温共烧陶瓷经裁片、丝网印刷、叠层、等静压、切割及共烧工序制成LTCC基板。采用三点弯曲试验方法测试LTCC基板的抗折强度,参照标准为JC/T676-1997玻璃材料弯曲强度试验方法。
实施例1~16低温共烧陶瓷和复合基板的性能参数见表17。
表17
Figure PCTCN2018078781-appb-000005
从表17可以看出,实施例1~15制得的低温共烧陶瓷在1MHz的低频下,具有6.8~9.5连续可调的介电常数,介电损耗≤0.0096;在15GHz的微波高频下,具有6.0~9.2的连续可调介电常数,介电损耗≤0.01。可见,实施例1~15制得的低温共烧陶瓷在低频和高频下都具有低的介电常数和低的介电损耗,介电性能优异。同时,低温共烧陶瓷与银电极可实现匹配共烧,各电学性能保持良好。
此外,实施例1~15制得的低温共烧陶瓷的烧结温度为900℃,热膨胀系数≤9.89×10 -6/℃,绝缘电阻率≥10 10Ω·cm。可见,实施例1~15制得的低温共烧陶瓷材料具有低的烧结温度、低的热膨胀系数及高的绝缘电阻率,满足低介LTCC材料的性能要求。
从实施例1~9可以看出,通过调整硼铝硅酸盐矿物材料中各组分的相对含量可实现低温共烧陶瓷的介电性能、烧结温度、热膨胀系数等性能的系列化调控;从实施例10~15可以看出,通过调整硼铝 硅酸盐矿物材料与Al 2O 3的配比也可实现低温共烧陶瓷的介电性能、烧结温度、热膨胀系数等性能的系列化调控,最终制得适于生产需求的低温共烧陶瓷。
从实施例1~15可以看出,由低温共烧陶瓷制成的复合基板,抗折强度≥159MPa,具有优良的机械性能和LTCC工艺匹配性,在LTCC低介基板领域具有更好的实用性。
从实施例1~16可以看出,与实施例16相比,实施例1~15制得的低温共烧陶瓷介电性能更佳,热膨胀系数更低,绝缘电阻率更高及热膨胀系数更小。同时,与实施例16相比,由实施例1~15的低温共烧陶瓷制得的复合基板抗折强度更高。
综上所述,硼铝硅酸盐矿物材料性能优异,适合作为低介基板材料应用于LTCC封装基板领域。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种硼铝硅酸盐矿物材料,用于低温共烧陶瓷,其特征在于,所述硼铝硅酸盐矿物材料以下述氧化物基准的质量百分含量表示,包括如下组分:
    Figure PCTCN2018078781-appb-100001
  2. 根据权利要求1所述的硼铝硅酸盐矿物材料,其特征在于,包括如下组分:
    Figure PCTCN2018078781-appb-100002
  3. 一种低温共烧陶瓷复合材料,其特征在于,所述低温共烧陶瓷复合材料以质量百分含量计包括35%~65%的Al 2O 3和35%~65%的权利要求1~2任一项所述的硼铝硅酸盐矿物材料。
  4. 根据权利要求3所述的低温共烧陶瓷复合材料,其特征在于,所述低温共烧陶瓷复合材料包括41.69%~62.53%的Al 2O 3和37.47%~58.31%的权利要求1~2任一项所述的硼铝硅酸盐矿物材料。
  5. 一种硼铝硅酸盐矿物材料的制备方法,其特征在于,包括以下步骤:
    根据权利要求1~2任一项所述硼铝硅酸盐矿物材料中各元素的配比称取钠源、钾源、钙源、铝源、硼源及硅源,混合后进行研磨处理得到硼铝硅酸盐矿物研磨料浆;
    将所述硼铝硅酸盐矿物研磨料浆进行干燥处理得到干燥粉料;
    向所述干燥粉料中加入粘结剂混合均匀得到混合粉料;
    将所述混合粉料于700℃~850℃进行煅烧得到硼铝硅酸盐矿物材料。
  6. 根据权利要求5所述的硼铝硅酸盐矿物材料的制备方法,其特征在于,所述研磨处理为球磨,所述球磨的介质为无水乙醇。
  7. 根据权利要求5所述的硼铝硅酸盐矿物材料的制备方法,其特征在于,所述研磨处理的时间为2h~8h。
  8. 根据权利要求5所述的硼铝硅酸盐矿物材料的制备方法,其特征在于,所述干燥处理的方式为烘干,所述干燥处理的温度为70℃~100℃。
  9. 根据权利要求5所述的硼铝硅酸盐矿物材料的制备方法,其特征在于,所述粘结剂选自聚乙烯醇及聚乙烯醇缩丁醛中的至少一种。
  10. 根据权利要求5所述的硼铝硅酸盐矿物材料的制备方法,其特征在于,将所述混合粉料于700℃~850℃进行煅烧的步骤具体为:将所述混合粉料置于马弗炉中,在空气条件下煅烧1h~5h。
  11. 一种低温共烧陶瓷复合材料的制备方法,其特征在于,包括以下步骤:
    以质量百分含量计,将35%~65%的Al 2O 3和35%~65%的权利要求1~2任一项所述的硼铝硅酸盐矿物材料混合后进行研磨处理得到混合研磨料浆;
    将所述混合研磨料浆进行干燥处理得到低温共烧陶瓷复合材料。
  12. 一种低温共烧陶瓷,其特征在于,所述低温共烧陶瓷由权利要求3~4任一项所述的低温共烧陶瓷复合材料制成。
  13. 一种低温共烧陶瓷的制备方法,其特征在于,包括以下步骤:
    向权利要求3~4任一项所述的低温共烧陶瓷复合材料中加入粘结剂混匀后得到陶瓷粉料;
    将所述陶瓷粉料于500℃~600℃保温2h~3h进行排胶处理;
    将排胶处理后的所述陶瓷粉料于850℃~950℃烧结得到低温共烧陶瓷。
  14. 一种复合基板,由权利要求12所述的低温共烧陶瓷制成。
PCT/CN2018/078781 2017-07-26 2018-03-13 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法 WO2019019657A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197035439A KR102104381B1 (ko) 2017-07-26 2018-03-13 알루미노보로실리케이트 미네랄 소재, 저온 동시 소성 세라믹 복합 재료, 저온 동시 소성 세라믹, 복합 기판 및 그의 제조 방법
US16/618,112 US10899669B2 (en) 2017-07-26 2018-03-13 Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
JP2019568109A JP6852198B2 (ja) 2017-07-26 2018-03-13 ボロアルミノシリケート鉱物材料、低温同時焼成セラミック複合材料、低温同時焼成セラミック、複合基板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710620547.5 2017-07-26
CN201710620547.5A CN107473717B (zh) 2017-07-26 2017-07-26 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法

Publications (1)

Publication Number Publication Date
WO2019019657A1 true WO2019019657A1 (zh) 2019-01-31

Family

ID=60597192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078781 WO2019019657A1 (zh) 2017-07-26 2018-03-13 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法

Country Status (5)

Country Link
US (1) US10899669B2 (zh)
JP (1) JP6852198B2 (zh)
KR (1) KR102104381B1 (zh)
CN (1) CN107473717B (zh)
WO (1) WO2019019657A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848145A (zh) * 2020-07-09 2020-10-30 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN114180939A (zh) * 2021-12-28 2022-03-15 南京工程学院 一种低介、低损耗硼化物ltcc材料及其制备方法
CN115504814A (zh) * 2022-10-10 2022-12-23 华东理工大学 一种电子逸出冷却热防护材料及其制备方法
CN115557784A (zh) * 2022-07-20 2023-01-03 中国科学院上海硅酸盐研究所 一种mzta陶瓷材料及其制备方法和应用
CN116375460A (zh) * 2023-01-05 2023-07-04 韩山师范学院 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473717B (zh) * 2017-07-26 2019-12-20 广东风华高新科技股份有限公司 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法
CN108358615B (zh) * 2018-03-06 2020-08-11 临沂金成电子有限公司 一种低介电常数的陶瓷材料及其制备方法
CN108863324B (zh) * 2018-05-16 2021-06-11 西南交通大学 一种可降解低温共烧陶瓷及其制备方法
CN108996902B (zh) * 2018-09-19 2021-10-26 深圳市晶特智造科技有限公司 一种低温共烧陶瓷材料及其制备方法
CN110128114B (zh) * 2019-05-09 2021-12-21 深圳市信维通信股份有限公司 一种低温共烧陶瓷介质材料及其制备方法
US20230096796A1 (en) * 2020-09-14 2023-03-30 Okamoto Glass Co., Ltd. Low temperature co-fired substrate composition
CN112979169A (zh) * 2020-10-14 2021-06-18 温州大学 一种Ce:YAGG复合玻璃材料及其制备和应用
CN113372103B (zh) * 2021-07-13 2023-01-20 中国振华集团云科电子有限公司 一种低介电低高频损耗ltcc陶瓷材料及其制备方法
CN115010489B (zh) * 2022-05-18 2023-03-31 中国地质大学(武汉) 一种矿物基微波介质陶瓷材料及其制备方法和应用
CN115124329B (zh) * 2022-06-27 2023-08-08 清华大学深圳国际研究生院 一种ltcc基板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016096A1 (en) * 1991-02-27 1992-09-17 David Sarnoff Research Center, Inc. Low temperature co-fired multilayer ceramic circuit boards with silver conductors
EP1369397A1 (en) * 2002-06-04 2003-12-10 E.I. Dupont De Nemours And Company High thermal expansion glass and tape composition
CN1693286A (zh) * 2005-06-20 2005-11-09 清华大学 一种低温共烧陶瓷及其制备方法
JP2007031177A (ja) * 2005-07-22 2007-02-08 Ngk Spark Plug Co Ltd 積層セラミック部品及びその製造方法
CN103145336A (zh) * 2013-04-23 2013-06-12 蚌埠玻璃工业设计研究院 一种硼硅酸盐玻璃及球形氧化铝低温共烧陶瓷生瓷带及其制备方法
CN107473717A (zh) * 2017-07-26 2017-12-15 广东风华高新科技股份有限公司 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130052A (ja) * 1990-06-13 1992-05-01 Mitsui Mining Co Ltd セラミック基板用原料組成物およびそれを用いた基板の製造方法
JP2002025762A (ja) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd 無機elディスプレイガラス基板
US20030047849A1 (en) * 2001-09-11 2003-03-13 Motorola, Inc. Method of modifying the temperature stability of a low temperature cofired ceramics (LTCC)
CN100482606C (zh) * 2002-11-07 2009-04-29 Hoya株式会社 信息记录介质用基板和信息记录介质及其制备方法
WO2005037721A1 (ja) * 2003-10-20 2005-04-28 Nippon Electric Glass Co., Ltd. ガラス組成物及びガラス物品の製造方法
US7937969B2 (en) * 2004-08-26 2011-05-10 Carty William M Selective batching for boron-containing glasses
JP5354445B2 (ja) * 2008-06-25 2013-11-27 日本電気硝子株式会社 金属被覆用ガラス及び半導体封止材料
WO2011116359A2 (en) * 2010-03-19 2011-09-22 The Regents Of The University Of Colorado Organic porous materials comprising shape-persistent three-dimensional molecular cage building blocks
JP5655375B2 (ja) * 2010-05-31 2015-01-21 旭硝子株式会社 ガラスセラミックス組成物、発光ダイオード素子用基板および発光装置。
CN102503137A (zh) * 2011-10-13 2012-06-20 天津大学 一种钙铝硼硅系玻璃+熔融石英体系低温共烧陶瓷材料及其制备方法
JP2014036118A (ja) * 2012-08-09 2014-02-24 Asahi Glass Co Ltd 発光装置および照明光学系

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016096A1 (en) * 1991-02-27 1992-09-17 David Sarnoff Research Center, Inc. Low temperature co-fired multilayer ceramic circuit boards with silver conductors
EP1369397A1 (en) * 2002-06-04 2003-12-10 E.I. Dupont De Nemours And Company High thermal expansion glass and tape composition
CN1693286A (zh) * 2005-06-20 2005-11-09 清华大学 一种低温共烧陶瓷及其制备方法
JP2007031177A (ja) * 2005-07-22 2007-02-08 Ngk Spark Plug Co Ltd 積層セラミック部品及びその製造方法
CN103145336A (zh) * 2013-04-23 2013-06-12 蚌埠玻璃工业设计研究院 一种硼硅酸盐玻璃及球形氧化铝低温共烧陶瓷生瓷带及其制备方法
CN107473717A (zh) * 2017-07-26 2017-12-15 广东风华高新科技股份有限公司 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848145A (zh) * 2020-07-09 2020-10-30 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN114180939A (zh) * 2021-12-28 2022-03-15 南京工程学院 一种低介、低损耗硼化物ltcc材料及其制备方法
CN115557784A (zh) * 2022-07-20 2023-01-03 中国科学院上海硅酸盐研究所 一种mzta陶瓷材料及其制备方法和应用
CN115557784B (zh) * 2022-07-20 2023-07-11 中国科学院上海硅酸盐研究所 一种mzta陶瓷材料及其制备方法和应用
CN115504814A (zh) * 2022-10-10 2022-12-23 华东理工大学 一种电子逸出冷却热防护材料及其制备方法
CN115504814B (zh) * 2022-10-10 2023-06-06 华东理工大学 一种电子逸出冷却热防护材料及其制备方法
CN116375460A (zh) * 2023-01-05 2023-07-04 韩山师范学院 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法
CN116375460B (zh) * 2023-01-05 2024-02-02 韩山师范学院 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法

Also Published As

Publication number Publication date
CN107473717B (zh) 2019-12-20
JP6852198B2 (ja) 2021-03-31
KR20190138698A (ko) 2019-12-13
US20200123059A1 (en) 2020-04-23
JP2020526467A (ja) 2020-08-31
CN107473717A (zh) 2017-12-15
US10899669B2 (en) 2021-01-26
KR102104381B1 (ko) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2019019657A1 (zh) 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法
CN112624617B (zh) 介电常数系列可调的低介电常数ltcc材料用玻璃粉体及其制备方法
KR20020001908A (ko) 저온소결 저손실 고주파유전체 세라믹스 조성물 및 그제조방법
CN109415266B (zh) 一种介质陶瓷材料及其制备方法
CN113024122A (zh) 一种SiO2系高频低介低温共烧陶瓷材料及其制备方法
CN109650871B (zh) 一种ZnAl2O4陶瓷体系材料及其制备方法
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN113354399A (zh) 低温共烧复合陶瓷材料及制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
WO2023159896A1 (zh) 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN102276151B (zh) 微波等离子炬制备ltcc非晶玻璃瓷粉的工艺方法
CN112321164B (zh) 一种钙硼硅玻璃粉基复合瓷粉及其制备工艺
CN111470776B (zh) 一种高频低损耗玻璃陶瓷材料及其制备方法
KR101124580B1 (ko) Lcd 폐유리를 이용한 세라믹 글라스 조성물
CN114656155B (zh) 一种低介低损耗低膨胀玻璃材料及其制备方法和应用
CN112608144B (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN111574213B (zh) 一种低介电常数ltcc材料及其制备方法
CN111470778B (zh) 一种钙钡硅铝玻璃基低介低温共烧陶瓷材料及其制备方法
CN113004026A (zh) Ltcc微波介质陶瓷材料及其制造方法
CN112079631A (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN107586123A (zh) 一种高品质因数微波介质陶瓷材料及其制备方法
WO2023040035A1 (zh) 一种低温共烧陶瓷粉体及其制备方法和应用
CN107586122A (zh) 一种低介电常数微波介质陶瓷材料及其制备方法
CN112624754B (zh) 高频电容器用ltcc瓷粉及其制备工艺
CN114573235B (zh) 一种高强度低损耗温度稳定型ltcc介质材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197035439

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019568109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838141

Country of ref document: EP

Kind code of ref document: A1