CN116375460B - 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法 - Google Patents

一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法 Download PDF

Info

Publication number
CN116375460B
CN116375460B CN202310012037.5A CN202310012037A CN116375460B CN 116375460 B CN116375460 B CN 116375460B CN 202310012037 A CN202310012037 A CN 202310012037A CN 116375460 B CN116375460 B CN 116375460B
Authority
CN
China
Prior art keywords
ceramic
aluminosilicate
quasi
temperature resistant
minerals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310012037.5A
Other languages
English (en)
Other versions
CN116375460A (zh
Inventor
林少敏
吴云影
余培旭
韩宇哲
肖军秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshan Normal University
Original Assignee
Hanshan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshan Normal University filed Critical Hanshan Normal University
Priority to CN202310012037.5A priority Critical patent/CN116375460B/zh
Publication of CN116375460A publication Critical patent/CN116375460A/zh
Application granted granted Critical
Publication of CN116375460B publication Critical patent/CN116375460B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷加工技术领域,具体涉及一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法。本发明采用非晶或低晶度的铝硅酸盐准矿物(KA)替代锂矿物作为陶瓷原料,KA与滑石和陶土组分通过固相反应直接合成具有耐高温抗热震性能的复合晶相体,烧制出具有抗热震性能的陶瓷。本发明的制备方法简单,重复性好,适合规模化生产,利用KA完全替代锂矿物,工艺烧制温度较低。本发明的耐高温陶瓷具有优异的耐热性能,在20~400℃热交换不裂,且在干烧情况下不炸裂,材料膨胀系数低,塑性好,适用于常规陶瓷生产工艺成型加工,应用日用陶瓷餐具无毒且烹煮不会与食材产生任何不良化学反应。

Description

一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法
技术领域
本发明涉及陶瓷加工技术领域,具体涉及一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法。
背景技术
低膨胀耐热陶瓷具有吸水率低、抗弯强度高、抗热震性能好等特点,在日用陶瓷领域具有广阔应用前景。陶瓷制作是经过1000~1300℃高温烧成,但是因烧制后内应力作用而抗热震性差,容易脆裂。目前市面上的耐高温陶瓷锅(这类砂锅叫新一代陶瓷砂锅)主要是通过添加锂辉石改善抗热震性。其原理是在坯体中加入经锻烧后转变为β-锂辉石的原料,其晶格结构可吸纳高岭石相变游离出来的SiO2和外加的SiO2成为固溶体,使产品具有良好的抗热震性和助熔性,可降低制品的热膨胀系数及烧结温度,可缩短烧结时间,改善其高温流动性和粘度。
综上,锂辉石资源在制造低膨胀耐高温陶瓷领域是不可缺少的。目前市面上的耐高温陶瓷产品主要是通过使用添加锂辉石(10-20%添加)实现其抗热震性能。锂辉石是主要含锂矿物之一,是最主要的锂工业矿物来源。随着锂的应用领域扩大,特别是新能源车的发展,锂电池的应用急促增加且附加值高,且国内绝大多数锂辉石依赖进口,加剧了世界性锂资源的争夺和价格升高。日用陶瓷行业很难与高附加值的锂电池行业竞争锂资源。
为解决这一问题,低膨胀耐热瓷配方的研究仍是当今耐热瓷研发领域正在面临并需要攻克的主要问题,目前有研究表明添加稀土等微量组分可产生相变改善抗热震性,但如今这一技术只在单纯组分的工业陶瓷上使用,对于组成多样的日用陶瓷,其技术还存在诸多问题,另外,使用稀有物质同样存在供货不稳定和成本高问题。因此,需研发一种不使用锂辉石的低膨胀耐热瓷。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法,以铝硅酸盐准矿物完全替代价格高且短缺的锂辉石作为陶瓷原料,铝硅酸盐准矿物与其他矿石组分通过固相反应合成具有耐高温抗热震复合晶相体,制得低膨胀耐高温陶瓷。
为实现上述目的,本发明是通过以下技术方案来实现的:
本发明提供了一种基于铝硅酸盐准矿物的耐高温陶瓷的制备方法,包括以下步骤:
S1、按重量百分比配料:铝硅酸盐准矿物5%~40%,矿物原料95-60%;
S2、将配料与水和分散剂进行球磨制得浆料;
S3、球磨后的浆料经成型后进行固相反应,制得基于非晶铝硅酸盐的耐高温陶瓷。
优选地,所述矿物原料选自石英、粘土、陶土、滑石、云母粉、贝灰粉中的两种或多种组合。
优选地,按重量百分比配料:铝硅酸盐准矿物30%,滑石10%,陶土60%。
优选地,按重量百分比配料:铝硅酸盐准矿物20%,高岭土10%,滑石10%,陶土60%。
优选地,所述铝硅酸盐准矿物为非晶或低晶度铝硅酸盐物质。
优选地,所述配料、水和分散剂的质量比为(300~350):(250~300):(1.8~3),所述分散剂为水玻璃。
优选地,所述成型的方法有注浆成型和压制成型,所述注浆成型的工艺为将浆料注入石膏模具内,在脱水干燥过程中形成坯体;所述压制成型的工艺为除去部分水分后,揉捏至成具有塑性的泥条,再压制成型。
优选地,所述固相反应为以4℃/min的升温速率升温至1150~1260℃,并保温0.5h。
本发明还提供了基于铝硅酸盐准矿物的耐高温陶瓷应用于制备日用陶瓷制品。
优选地,基于铝硅酸盐准矿物的耐高温陶瓷应用于制备日用陶瓷餐具。
更优选地,基于铝硅酸盐准矿物的耐高温陶瓷应用于制备日用陶瓷锅。
与现有技术相比,本发明的有益效果是:
本发明采用非晶或低晶度的铝硅酸盐准矿物(KA)替代锂矿物作为陶瓷原料,KA与矿物原料通过固相反应直接合成具有耐高温抗热震性能的复合晶相体,得到具有抗热震性能的陶瓷。本发明的制备方法简单,重复性好,适合规模化生产,利用自然产物KA完全替代价格高且短缺的锂矿物,工艺烧制温度较低。本发明的耐高温陶瓷具有优异的耐热性能,在20~400℃热交换不裂,且在干烧情况下加热重复而不炸裂,材料膨胀系数低,塑性好,适用于常规陶瓷生产工艺成型加工。本发明的耐高温陶瓷无毒的重金属溶出量达到国家标准,高达400℃的抗热震性可应用在陶瓷锅或要求更严苛的环境下,因而可应用于日用陶瓷餐具,且铝硅氧化物在烹煮时不会与食材产生任何不良化学反应。
附图说明
图1为原料KA的X射线衍射分析图;
图2为原料陶土的X射线衍射分析图;
图3为实施例1的耐高温陶瓷锅的实物图,其中a为注浆成型的耐高温陶瓷,b为压制成型的耐高温陶瓷;
图4为实施例1的耐高温陶瓷锅的X射线衍射分析图;
图5为实施例2的耐高温陶瓷锅的实物图;
图6为实施例3的耐高温陶瓷锅的实物图,其中a为注浆成型的耐高温陶瓷,b为压制成型的耐高温陶瓷。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到的。
实施例1基于铝硅酸盐准矿物的耐高温陶瓷锅的制备以及性能表征
1、原料及设备
本实施例所使用的铝硅酸盐准矿物(KA,购于广东本科生物工程股份有限公司)为铝硅酸盐矿物风化矿物粉体经预处理后销售的产品,原矿产自于日本真冈、中国台湾瑞芳、中国江苏铜陵等地,原料KA的X射线衍射分析图如图1所示为非晶相,本实施例所使用的KA为非晶的铝硅酸盐物质。本实施例所使用的陶土为梅州大埔陶土,化学成分主要为SiO2(70%)、Al2O3(16%),其X射线衍射分析图如图2所示,陶土的主晶相为石英。
本实施例所使用的球磨机为快速球磨机CYA-88,购自潮州诚达陶瓷机械公司,球磨球为氧化铝球。
2、制备步骤
(1)将99gKA、33g滑石、198g陶土以及270g水和1.8g水玻璃置于球磨机中球磨25min,过120目筛制成浆料;
(2)本实施例成型方法选用湿法成型中的注浆成型和干法成型中的压制成型,这两种工艺简单且易于控制,具体步骤如下:
A、注浆成型:将浆料注入石膏模具内静置固化,利用石膏脱水干燥后形成具有锅形的坯体,置于烘箱以50℃干燥,再电炉氧化气氛烧制,以4℃/min的升温速率升温至1240℃,并保温30分钟,制得基于铝硅酸盐准矿物的耐高温陶瓷锅(实物如图3a所示,记作HS-1);
B、压制成型:经石膏模除去部分水分后,放置,揉捏至成具有塑性的泥条,再压制成锅型,置于烘箱以50℃干燥,再电炉氧化气氛烧制,以4℃/min的升温速率升温至1240℃,并保温30分钟,制得基于铝硅酸盐准矿物的耐高温陶瓷锅(实物如图3b所示)。
对耐高温陶瓷锅进行X射线衍射分析,结果如图4所示,KA与陶土、滑石通过固相反应直接形成了莫来石和堇青石的复合晶相,这样的晶相使制品具有良好的耐高温抗热震性和强度。
3、性能表征
(1)抗热震实验:参照《日用陶瓷器抗热震性测定方法GB/T 3298-2008》,将HS-1置于SQ006陶瓷抗热震性测定仪(湘潭华丰仪器制造有限公司)中,先将测定仪热箱的温度由室温加热至400℃,保温10分钟后,急速将HS-1置于测定仪的20℃冷水槽中,取出观察是否有裂纹,重复2次,以此判断抗热震性。
(2)干烧实验:明火(电炉)加热HS-1至纸张放入样品内能自燃烧状态,再向容器样品内注水(室温),观察是否炸裂,重复2次。
(3)吸水率:参照GB/T 3299-2011日用陶瓷器吸水率的试验方法,先将HS-1放在110℃±5℃的烘箱中干燥至恒重,再放入装有硅胶的干燥器内冷却至室温,称量原始质量。将水煮沸并使HS-1浸泡在水中冷却至室温,并称量其吸水后的质量,最后真空法(仲裁法)计算试样的吸水率。
(4)体积密度:参照ASTMD854-02陶瓷密度测试方法,使用陶瓷密度测试仪DX-300C测试HS-1的体积密度。
(5)线膨胀系数:参照国标GB/T3810.8-2016法,使用热膨胀仪PCY-1000(湘潭华丰仪器制造有限公司)测试HS-1的线膨胀系数。
(6)重金属溶出:参照陶瓷制品铅镉溶出检测标准GB8058-87,将HS-1放置超纯水+乙酸(4%)液中室温浸泡24小时,然后取浸泡液用原子吸收分光光度计AA4520B(火焰-石墨炉一体,上海奥析科学仪器有限公司)分析溶出铅镉。
各表征结果如表1所示:
表1实施例1的耐高温陶瓷锅的表征结果
由表1可知,陶瓷锅HS-1在20~400℃热交换下不裂,且在干烧情况下注水不炸裂,说明本实施例的陶瓷锅抗热震性好;吸水率低至0.43,符合日用陶瓷器吸水率标准;HS-1的膨胀系数低,塑性好,适用于常规陶瓷生产工艺成型加工;耐高温陶瓷HS-1的重金属溶出量达到国家标准,适用于日用陶瓷餐具。
实施例2基于铝硅酸盐准矿物的耐高温陶瓷锅的制备以及性能表征
制备方法同实施例1,原料配方改为66g KA、33g石英、33g滑石和198g陶土,注浆成型的耐高温陶瓷锅的实物如图5,记作HS-2。
表征方法同实施例1,各表征结果如表2所示:
表2实施例2的耐高温陶瓷锅的表征结果
由表2可知,陶瓷锅HS-2在20~400℃热交换下不裂,且在干烧情况下注水不炸裂,说明本实施例的陶瓷锅抗热震性好;吸水率低至0.4,符合日用陶瓷器吸水率标准;HS-2的膨胀系数低,塑性好,适用于常规陶瓷生产工艺成型加工;耐高温陶瓷HS-2的重金属溶出量达到国家标准,适用于日用陶瓷餐具。
实施例3基于铝硅酸盐准矿物的耐高温陶瓷锅的制备以及性能表征
制备方法同实施例1,原料配方改为66g KA、33g高岭土、33g滑石和198g陶土,注浆成型的耐高温陶瓷锅的实物如图6a,记作HS-3,压制成型的耐高温陶瓷锅的实物如图6b所示。
表征方法同实施例1,各表征结果如表3所示:
表3实施例3的耐高温陶瓷锅的表征结果
由表3可知,陶瓷锅HS-3在20~400℃热交换下不裂,且在干烧情况下注水不炸裂,说明本实施例的陶瓷锅抗热震性好;吸水率低至0.12,符合日用陶瓷器吸水率标准;HS-3的膨胀系数低,塑性好,适用于常规陶瓷生产工艺成型加工;耐高温陶瓷HS-3的重金属溶出量达到国家标准,适用于日用陶瓷餐具。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (5)

1.一种基于铝硅酸盐准矿物的耐高温陶瓷的制备方法,其特征在于,包括以下步骤:
S1、按重量百分比配料:铝硅酸盐准矿物5%~40%,矿物原料95-60%;所述铝硅酸盐准矿物为KA,其购于广东本科生物工程股份有限公司,为铝硅酸盐矿物风化矿物粉体经预处理后的产品,为非晶的铝硅酸盐物质;所述矿物原料为滑石、陶土,或石英、滑石、陶土,或高岭土、滑石、陶土,所述陶土为梅州大埔陶土,化学成分主要为70%SiO2、16%Al2O3
S2、将配料与水和分散剂进行球磨制得浆料;
S3、球磨后的浆料经成型后进行固相反应,所述固相反应为以4℃/min的升温速率升温至1150~1260℃,并保温0.5h,制得基于非晶铝硅酸盐的耐高温陶瓷;
该制备方法制备得到的耐高温陶瓷的主要晶相为堇青石和莫来石的复合晶相。
2.根据权利要求1所述的基于铝硅酸盐准矿物的耐高温陶瓷的制备方法,其特征在于,所述配料、水和分散剂的质量比为(300~350):(250~300):(1.8~3)。
3.根据权利要求1所述的基于铝硅酸盐准矿物的耐高温陶瓷的制备方法,其特征在于,所述成型的方法有注浆成型和压制成型,所述注浆成型的工艺为将浆料注入石膏模具内,在脱水干燥过程中形成坯体;所述压制成型的工艺为除去部分水分后,揉捏至成具有塑性的泥条,再压制成型。
4.权利要求1~3所述的制备方法制得的基于铝硅酸盐准矿物的耐高温陶瓷。
5.权利要求4所述的基于铝硅酸盐准矿物的耐高温陶瓷应用于制备日用陶瓷制品。
CN202310012037.5A 2023-01-05 2023-01-05 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法 Active CN116375460B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310012037.5A CN116375460B (zh) 2023-01-05 2023-01-05 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310012037.5A CN116375460B (zh) 2023-01-05 2023-01-05 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN116375460A CN116375460A (zh) 2023-07-04
CN116375460B true CN116375460B (zh) 2024-02-02

Family

ID=86964484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310012037.5A Active CN116375460B (zh) 2023-01-05 2023-01-05 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116375460B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724460A (zh) * 2005-06-02 2006-01-25 江西永华瓷业有限公司 堇青石、莫来石质耐热陶瓷材料
KR20070082089A (ko) * 2006-02-15 2007-08-21 (주)거화이에스알 폐기 점토를 활용한 점토투수블록 및 그 제조방법
CN101370748A (zh) * 2005-05-09 2009-02-18 康宁股份有限公司 矿物聚合物复合材料及由其形成的结构物
KR20150129415A (ko) * 2014-05-12 2015-11-20 목포대학교산학협력단 저열팽창성 내열자기
CN105152626A (zh) * 2015-10-12 2015-12-16 昊青薪材(北京)技术有限公司 长石-石英尾矿微波养护生产免烧陶瓷的工艺
CN105859269A (zh) * 2016-03-30 2016-08-17 安徽青花坊瓷业股份有限公司 一种简易日用陶瓷器皿干压成型坯料
WO2019019657A1 (zh) * 2017-07-26 2019-01-31 广东风华高新科技股份有限公司 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法
CN112299833A (zh) * 2020-09-30 2021-02-02 蒙娜丽莎集团股份有限公司 一种高强高韧莫来石陶瓷薄板及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497018B2 (en) * 2010-01-27 2013-07-30 Applied Thin Films, Inc. High temperature stable amorphous silica-rich aluminosilicates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370748A (zh) * 2005-05-09 2009-02-18 康宁股份有限公司 矿物聚合物复合材料及由其形成的结构物
CN1724460A (zh) * 2005-06-02 2006-01-25 江西永华瓷业有限公司 堇青石、莫来石质耐热陶瓷材料
KR20070082089A (ko) * 2006-02-15 2007-08-21 (주)거화이에스알 폐기 점토를 활용한 점토투수블록 및 그 제조방법
KR20150129415A (ko) * 2014-05-12 2015-11-20 목포대학교산학협력단 저열팽창성 내열자기
CN105152626A (zh) * 2015-10-12 2015-12-16 昊青薪材(北京)技术有限公司 长石-石英尾矿微波养护生产免烧陶瓷的工艺
CN105859269A (zh) * 2016-03-30 2016-08-17 安徽青花坊瓷业股份有限公司 一种简易日用陶瓷器皿干压成型坯料
WO2019019657A1 (zh) * 2017-07-26 2019-01-31 广东风华高新科技股份有限公司 硼铝硅酸盐矿物材料、低温共烧陶瓷复合材料、低温共烧陶瓷、复合基板及其制备方法
CN112299833A (zh) * 2020-09-30 2021-02-02 蒙娜丽莎集团股份有限公司 一种高强高韧莫来石陶瓷薄板及其制备方法

Also Published As

Publication number Publication date
CN116375460A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN113336534B (zh) 一种不含锂矿物的低热膨胀日用陶瓷及其制备方法
CN107188530B (zh) 一种低成本高性能低膨胀陶瓷坯料及其陶瓷产品的制备方法
CN101647673B (zh) 一种超耐热陶瓷炒锅及其制造方法
Abyzov Lightweight refractory concrete based on aluminum-magnesium-phosphate binder
CN101475396A (zh) 一种低膨胀耐热多孔陶瓷及其制备方法
CN110028303B (zh) 一种利用普通日用陶瓷坯料制备的强化瓷及其制备方法
CN113321487B (zh) 一种无锂耐热日用陶瓷及其制备方法
CN103641447A (zh) 一种工程陶瓷耐酸耐碱容器的制备方法
CN106083082A (zh) 一种莫来石‑刚玉复合匣钵的制备方法
CN106800404B (zh) 一种电饭锅用高导热陶瓷内胆
KR101196032B1 (ko) 내열 도자기용 소지 조성물 및 이를 이용한 내열 도자기의 제조방법
CN109293379B (zh) 氧化铬砖及其制备方法
CN116375460B (zh) 一种基于铝硅酸盐准矿物的耐高温陶瓷及其制备方法
CN88100211A (zh) 低膨胀陶瓷及其制造方法
CN104860647A (zh) 一种高强薄胎瓷器的制造方法
CN107540346B (zh) 一种耐高温的陶瓷烘焙碗及其制作工艺
CN116514524A (zh) 一种耐热高强度低膨胀陶瓷及其制备方法
CN110451994A (zh) 一种镁铝尖晶石晶须增强的镁质烧成浇注料预制件
CN103693939A (zh) 增韧/导热低膨胀紫砂煲材料的制备工艺
CN102115305A (zh) 多晶硅铸锭用石英坩埚的制造方法
CN1253125A (zh) 无膨胀锂质陶瓷材料及其坩埚的制法
Bragança et al. Use of mineral coal ashes in insulating refractory brick
Wu et al. Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage
JP7432206B2 (ja) 陶磁器の製造方法、陶磁器製造用顆粒およびその製造方法
CN115784614B (zh) 一种低膨胀陶瓷釉料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant