WO2023159896A1 - 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法 - Google Patents

一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
WO2023159896A1
WO2023159896A1 PCT/CN2022/114696 CN2022114696W WO2023159896A1 WO 2023159896 A1 WO2023159896 A1 WO 2023159896A1 CN 2022114696 W CN2022114696 W CN 2022114696W WO 2023159896 A1 WO2023159896 A1 WO 2023159896A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
ceramic
tio
hours
grinding
Prior art date
Application number
PCT/CN2022/114696
Other languages
English (en)
French (fr)
Inventor
童建喜
谭金刚
余祖高
陆建军
石珊
Original Assignee
嘉兴佳利电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴佳利电子有限公司 filed Critical 嘉兴佳利电子有限公司
Publication of WO2023159896A1 publication Critical patent/WO2023159896A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of electronic materials, and in particular relates to a silicate-based low-temperature sintered microwave dielectric ceramic material and a preparation method thereof.
  • Chip electronic components, substrates and multi-functional radio frequency module products made of Low Temperature Co-firing Ceramic have the characteristics of small and thin, high integration, high frequency performance and reliability.
  • LTCC Low Temperature Co-firing Ceramic
  • LTCC technology requires microwave dielectric ceramics and metals Ag and Cu with high conductivity and low melting point as internal electrodes, and generally requires the sintering and densification temperature to be below 900°C.
  • the sintering temperature is very high (generally 1200-1500 ° C), in order to achieve co-firing with Ag, Cu and other electrodes, it is usually necessary to add a large amount of glass additives or low
  • the melting point of the oxide is used to reduce the sintering temperature of the microwave dielectric ceramic material.
  • a large number of papers and patents on low-temperature sintered microwave dielectric ceramics have been published. In application-oriented, low-temperature sintered microwave dielectric ceramic materials need to meet many performance requirements.
  • the material has a suitable dielectric constant, low dielectric loss and frequency temperature coefficient, and should be compatible with metals such as Ag.
  • the electrode has good co-firing matching (such as no significant Ag diffusion, good interface bonding between ceramic and Ag electrode, sintering shrinkage matching to ensure smooth sintering of the product, etc.).
  • LTCC ceramics require a suitable thermal expansion coefficient, which matches the thermal expansion coefficient of the mounted chip or circuit board.
  • it should have sufficient mechanical strength and environmental reliability, be resistant to corrosion by electroplating or electroless plating solutions, and should meet the requirements of environmental protection regulations in the civilian field. Therefore, there are few low-temperature sintered microwave dielectric ceramic materials with good comprehensive properties that can be practically applied.
  • Patent application CN112759378A introduces a CaO-MgO-TiO 2 -SiO 2 ceramic material, which introduces manganese oxide for modification and sintering aid, and uses lithium oxide and bismuth oxide as sintering aids to compound and add to the ingredients, which are combined with TiO 2 Li 2 TiO 3 (900°C) is formed as a substance with eutectic melting point, and the sintering temperature is lowered to below 900°C.
  • the patent application also discloses the preparation method of the material: all raw materials are mixed at one time, after spray drying and calcination synthesis, the ceramic material powder is prepared by spray granulation method.
  • the phase composition of the ceramic material is not disclosed in the patent application. Due to the one-time mixing synthesis process of the base material and additives, the reaction between the components during pre-firing will be uncontrollable, and the resulting phase is complex and uncertain. sex. Therefore, the quality factor frequency product Qf of the prepared ceramics is relatively low (10000-12000GHz).
  • Patent CN 200410039848.1 reports the formula and preparation process of low-temperature sintered microwave dielectric ceramics with (Ca, Mg)SiO 3 system as the main component, CaTiO 3 is used to adjust the frequency temperature coefficient, and Li 2 CO 3 and V 2 O 5 are sintering aids.
  • the low-temperature sintered microwave dielectric ceramic material can achieve a good co-firing match with the silver electrode. Its material properties are: dielectric constant 8-10, Qf>25000GHz, and the material has been applied in batches.
  • V 2 O 5 has an excellent sintering effect, which can significantly reduce the sintering temperature of (Ca,Mg)SiO 3 ceramics, but it has strong toxicity, which is harmful to Harmful to the human body, it cannot meet the increasing environmental protection needs.
  • V 2 O 5 forms a liquid phase during the sintering process to promote ceramic sintering, it is also easy to promote the short-distance diffusion of silver electrodes, especially in circuits with a single-layer LTCC dielectric layer thickness below 30um, silver migration is prone to occur. The short-circuit risk of the interlayer circuit will cause a major hidden danger of poor product reliability.
  • an object of the present invention is to provide a silicate-based low-temperature sintered microwave dielectric ceramic material, which has the characteristics of environmental protection, high reliability, low cost, and good comprehensive performance.
  • LTCC ceramic materials for products such as chip LTCC filters, RF ceramic substrates and multi-functional ceramic RF modules in the fields of 5G communication, WiFi6 network communication and millimeter wave communication.
  • Another object of the present invention is to provide a method for preparing the above-mentioned low-temperature sintered microwave dielectric ceramic material.
  • a silicate-based low-temperature sintered microwave dielectric ceramic material the formula expression of which is: Ca 1-x- y Mg x Zn y SiO 3 +awt%Ca 1-z Sr z TiO 3 +bwt%R 2 O + cwt % Bi2O3 +dwt% B2O3 + ewt%MO; where:
  • a, b, c, d and e are respectively Ca 1-z Sr z TiO 3 , R 2 O, Bi 2 O 3 , B 2 O 3 and MO phase account for the mass fraction of Ca 1-xy Mg x Zn y SiO 3 ;
  • R 2 O is at least one of Li 2 O and K 2 O;
  • MO is one or more of ZnO, MgO, BaO, CuO, CoO, La 2 O 3 , SiO 2 , and MnO 2 .
  • R 2 O, B 2 O 3 and MO are replaced by their corresponding metal ion variable price oxides, carbonates or hydroxides in terms of equivalent molar amounts of metal ions.
  • a method for preparing a silicate-based low-temperature sintered microwave dielectric ceramic material comprising the following steps:
  • the sand grinding process uses ZrO2 grinding balls with a diameter of ⁇ 0.1-0.8mm, and the sand mill
  • the rotation speed of the rotating spindle is 1000-2000rpm, grinding for 4-12 hours, controlling the powder particle size D50 to 0.5-1.2um, D90 to 1.0-2.0um, then transferring the ceramic slurry and drying it at 80°C to obtain the powder of the present invention.
  • Low temperature sintered microwave dielectric ceramic material Low temperature sintered microwave dielectric ceramic material.
  • the coefficient ⁇ f is adjustable.
  • the preparation process is simple, the reproducibility is good, the cost is low, the comprehensive performance is good, and it can realize good co-firing with the silver electrode. It can meet the demand for LTCC ceramic materials for products such as chip LTCC filters, radio frequency ceramic substrates and multifunctional ceramic radio frequency modules in the fields of 5G communication, WiFi6 network communication and millimeter wave communication.
  • the present invention has the following characteristics:
  • the sintering temperature of the material is broadened, the Q value of the material is increased, the second phase Ca 1-z Sr z TiO 3 is introduced to adjust the frequency temperature coefficient TCF of the material, and the alkali metal oxide is introduced
  • Environmentally friendly and non-toxic composite oxide sintering aids such as Li 2 O, K 2 O, Bi 2 O 3 , B 2 O 3 to form Li 2 O(K 2 O)- Compounds such as Bi 2 O 3 -B 2 O 3 can reduce the ceramic sintering temperature to below 900°C.
  • the ceramic phase is easier to control, the cooling effect of the eutectic compound is better, and the obtained ceramic material has better dielectric properties.
  • Fig. 1 is a scanning electron microstructure and an EDS linear Ag elemental analysis diagram of the co-fired interface of the ceramic material and the silver electrode of the present invention.
  • Example 1-6 The formulation of the silicate-based low-temperature sintered microwave dielectric ceramic material in Example 1-6 is shown in Table 1. Its preparation method is as follows:
  • Example 1 7.1 21600 -35
  • Example 2 7.9 20450 -twenty one
  • Example 3 9.2 19360 -3.6
  • Example 4 9.9 17420 0.5
  • Example 5 10.5 16200 10.3
  • Example 6 11.2 14500 23.0
  • Example 7-12 The formulation of the silicate-based low-temperature sintered microwave dielectric ceramic material in Example 7-12 is shown in Table 3. Its preparation method is as follows:
  • Example 7 7.7 20380 -18
  • Example 8 9.6 17850 -9
  • Example 9 10.2 13620 3
  • Example 10 10.3 18980 -2
  • Example 11 10.3 19440 4
  • Example 12 9.7 20790 -5
  • Example 14 9.8 19260 -8
  • Example 14 10.0 20080 -2
  • Example 15 10.5 17530 3
  • Example 16 9.7 14440 -9
  • Example 17 9.0 13880 -12
  • Example 18 8.4 14350 -15
  • Example 14 The ceramic material in Example 14 is tape-casted to prepare a thin LTCC green ceramic tape (thickness of green ceramic is 30um), and the LTCC tapes such as punching, filling, screen printing, lamination, isostatic pressing, cutting and sintering, etc.
  • LTCC device samples were prepared by the component preparation process, and the device cross-section was analyzed by backscattering SEM and energy spectrum linear Ag element scanning. The results are shown in Figure 1.
  • the ceramic material is closely combined with the co-fired interface of the silver electrode at 880°C, and there is no obvious diffusion of silver element. It shows that the ceramic material can be applied to various miniaturized LTCC device applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法。该陶瓷材料配方组成为:Ca 1-x-yMg xZn ySiO 3+awt%Ca 1-zSr zTiO 3+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO;其中:0≤x≤0.5,0≤y≤0.3,0≤z≤1;0≤a≤18,1≤b≤5,0<c≤3,0<d≤6,0≤e≤10;R 2O为Li 2O、K 2O中的至少一种;MO为ZnO、MgO、BaO、CuO、CoO、La 2O 3、SiO 2、MnO 2中的一种或多种。该陶瓷材料与银电极在900℃以下良好共烧,可应用于5G通信和WiFi6网络通信等领域片式LTCC滤波器、射频陶瓷基板和多功能陶瓷射频模块等产品。

Description

一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法 技术领域
本发明属于电子材料技术领域,具体涉及一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法。
背景技术
近年来,随着以5G为代表的新一代移动通信、WiFi6网络通信以及毫米波通信等技术的迅猛发展,各类电子元器件、陶瓷基板和模组产品及技术取得了长足的进步。采用低温共烧陶瓷技术(Low Temperature Co-firing Ceramic,简称LTCC)制作的片式电子元器件、基板和多功能射频模块产品具有小型薄型化、集成度高、高频性能和可靠性好等特点,已广泛应用于移动基站、智能手机、便携式穿戴设备、无线路由器、军用射频通讯设备、雷达和导航终端等领域。
LTCC技术需要微波介质陶瓷与高电导率低熔点的金属Ag、Cu作为内电极,一般要求烧结致密化温度在900℃以下。大多数微波介质陶瓷材料虽然有着优异的微波介电性能,但烧结温度很高(一般在1200~1500℃),为实现与Ag、Cu等电极的共烧,通常需要添加大量玻璃助剂或低熔点的氧化物来降低微波介质陶瓷材料的烧结温度。目前已有大量的低温烧结微波介质陶瓷的论文和专利发表。在面向应用中,低温烧结微波介质陶瓷材料需要满足诸多性能要求,除了可在900℃以下烧结致密,材料具有适宜的介电常数、低的介电损耗和频率温度系数,还应与Ag等金属电极具有良好的共烧匹配性(如不发生显著的Ag扩散、陶瓷与Ag电极良好的界面结合、烧结收缩匹配保证产品烧结平整等)。另外,LTCC陶瓷需要适宜的热膨胀系数,与搭载芯片或线路板的热膨胀系数相匹配。除此之外,还应具有足够的机械强度以及环境可靠性等性能,具备抗电镀或化学镀镀液侵蚀性,在民用领域还应满足环保法规要求等等。因此,可实际应用的综合性能良好的低温烧结微波介质陶瓷材料较少。
(Ca,Mg)SiO 3系微波介质陶瓷具有良好的介电性能,材料成本低廉。专利申请CN112759378A中介绍了一种CaO-MgO-TiO 2-SiO 2陶瓷材料,引入氧化锰进行改性和助烧,采用氧化锂和氧化铋作为烧结助剂复合加入配料中,其和TiO 2组合形成低共熔点的物质Li 2TiO 3(900℃),降低烧结温度至900℃以下。该专利申请还披露了材料的制备方法:将所有原料一次性进行混料,经喷雾干燥和煅烧合成后,利用喷雾造粒方法制备陶瓷材料粉体。该专利申请中未披露陶瓷材料的物相组成,由于采用基料和助剂一次性混料合成工艺,会导致预烧时各成分之间的反应不可控,生成的物相复杂且具有不确定性。因此制得陶瓷的品质 因数频率乘积Qf相对较低(10000~12000GHz)。
专利CN 200410039848.1报道了以(Ca,Mg)SiO 3系统为主成分,采用CaTiO 3调整频率温度系数,Li 2CO 3和V 2O 5为烧结助剂的低温烧结微波介质陶瓷配方及制备工艺,该低温烧结微波介质陶瓷材料可与银电极实现良好共烧匹配,其材料性能:介电常数8-10,Qf>25000GHz,该材料取得了批量应用。但该材料存在以下问题:(1)低熔点氧化物V 2O 5具有极佳的助烧效果,可显著降低(Ca,Mg)SiO 3陶瓷的烧结温度,但其具有较强的毒性,对人体有害,不能满足日益重视的环保需要。(2)V 2O 5在烧结过程中形成液相促进陶瓷烧结的同时,也易促使银电极的短距离扩散,特别是在单层LTCC介质层厚度30um以下的电路中,易发生银迁移造成的层间电路短路风险,这将造成产品可靠性不良的重大隐患。
发明内容
针对现有技术存在的上述问题和需求,本发明的一个目的是提供一种硅酸盐系低温烧结微波介质陶瓷材料,该材料具有环保、可靠性高、成本低、综合性能良好的特点,可以满足5G通信、WiFi6网络通信以及毫米波通信等领域片式LTCC滤波器、射频陶瓷基板和多功能陶瓷射频模块等产品对LTCC陶瓷材料的需求。本发明的另外一个目的是提供上述低温烧结微波介质陶瓷材料的制备方法。
为了实现上述第一个发明的目的,本发明采用以下技术方案:
一种硅酸盐系低温烧结微波介质陶瓷材料,该材料的配方表达式为:Ca 1-x- yMg xZn ySiO 3+awt%Ca 1-zSr zTiO 3+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO;其中:
0≤x≤0.5,0≤y≤0.3,0≤z≤1;
0≤a≤18,1≤b≤5,0<c≤3,0<d≤6,0≤e≤10;a、b、c、d和e分别为Ca 1-zSr zTiO 3、R 2O、Bi 2O 3、B 2O 3和MO相占Ca 1-x-yMg xZn ySiO 3的质量分数;
R 2O为Li 2O、K 2O中的至少一种;
MO为ZnO、MgO、BaO、CuO、CoO、La 2O 3、SiO 2、MnO 2中的一种或多种。
进一步的,R 2O、B 2O 3和MO由其相应的金属离子变价氧化物、碳酸盐或氢氧化物按金属离子等摩尔量换算替代。
为了实现上述第二个发明的目的,本发明采用以下技术方案:
一种硅酸盐系低温烧结微波介质陶瓷材料的制备方法,包括以下几个步骤:
(1)按Ca 1-x-yMg xZn ySiO 3,其中0≤x≤0.5,0≤y≤0.3的化学计量配比称量主料CaCO 3、MgO、ZnO和SiO 2,按料与水的质量比1:1~2加入去离子水,采用湿法混料16-24h后于 120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1100-1260℃下煅烧2-4h,合成主晶相,研磨后作为陶瓷基料备用;
(2)按Ca 1-zSr zTiO 3,其中0≤z≤1的化学计量配比称量主料CaCO 3、SrCO 3和TiO 2,按料与水的质量比1:1~2加入去离子水,采用湿法混料16-24h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在950-1100℃下煅烧2-4h,合成主晶相,研磨后作为陶瓷基料备用;
(3)按bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的相对质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、B 2O 3或H 3BO 3、ZnO、MgO或Mg(OH) 2、BaCO 3、CuO、CoO或Co 2O 3、La 2O 3、SiO 2、MnO 2或MnCO 3等原料,按料与无水乙醇的质量比1:1~2加入无水乙醇,采用湿法混料16-24h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在500-700℃下煅烧2-4h,研磨后作为烧结助剂备用,其中1≤b≤5,0<c≤3,0<d≤6,0≤e≤10,b、c、d和e分别为R 2O、Bi 2O 3、B 2O 3和MO相占Ca 1-x-yMg xZn ySiO 3的质量分数;
(4)将制备好的Ca 1-x-yMg xZn ySiO 3、Ca 1-zSr zTiO 3陶瓷基料和烧结助剂按照Ca 1-x- yMg xZn ySiO 3+awt%Ca 1-zSr zTiO 3+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的质量配比进行配料,按料与无水乙醇的质量比1:1~2加入无水乙醇,采用湿法混料4-8h,然后将陶瓷浆料转入砂磨机进行砂磨,砂磨过程采用直径Φ0.1-0.8mm的ZrO 2磨球,砂磨机旋转主轴转速为1000~2000rpm,研磨4-12h,控制粉体粒度D50为0.5~1.2um,D90为1.0~2.0um,然后转移出陶瓷浆料并在80℃进行烘干,即得到本发明的低温烧结微波介质陶瓷材料。
本发明采用上述配方及工艺,获得陶瓷材料能在900℃以下与银电极共烧,并具有优良的微波介电性能:介电常数εr=7~12,品质因数频率乘积Qf达到20000GHz,频率温度系数τ f可调。其制备工艺简单、重现性好、成本低廉,综合性能佳,可与银电极实现良好共烧。可以满足5G通信、WiFi6网络通信以及毫米波通信等领域片式LTCC滤波器、射频陶瓷基板和多功能陶瓷射频模块等产品对LTCC陶瓷材料的需求。对比现有技术,本发明具有以下特点:
(1)通过对CaSiO 3陶瓷的Ca位进行离子取代,拓宽材料的烧结温度,提高材料Q值,引入第二相Ca 1-zSr zTiO 3调节材料的频率温度系数TCF,引入碱金属氧化物Li 2O、K 2O和Bi 2O 3、B 2O 3等环保无毒的复合氧化物烧结助剂,形成低共熔点(低于700℃)的Li 2O(K 2O)-Bi 2O 3-B 2O 3等化合物,降低陶瓷烧结温度至900℃以下。陶瓷物相更易可控,低共熔 点化合物的降温效果更好,且获得的陶瓷材料介电性能更好。
(2)在低温烧结微波介质陶瓷中,引入的碱金属氧化物和Bi 2O 3、V 2O 5等低熔点活泼的氧化物起到很好的降温烧结效果,但同时也易成为Ag等金属原子或离子的扩散通道。本发明通过引入其它复合氧化物进行协同降温,并控制碱金属氧化物和Bi 2O 3的添加量,显著规避了陶瓷材料与银电极共烧时极易发生的由于银迁移造成的层间电路短路风险。
(3)本发明提供的低温烧结微波介质陶瓷材料的制备方法中,通过对各种烧结助剂氧化物进行预先混料煅烧处理,并在最后的混料和砂磨工艺中采用无水乙醇作为球磨溶剂,解决了陶瓷流延浆料制备时B 2O 3等氧化物以及粉体中的自由羟基与PVB等粘合剂中的羟基交联反应导致浆料粘度偏大而无法得到高质量生瓷片的问题。
(4)通过砂磨工艺获得粒度更细、粒度分别更集中的陶瓷材料,有利于制备厚度30um以下厚度的生瓷片,减少生瓷片的微观缺陷,降低应用器件的层间短路以及电击穿等风险,提高产品的可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。
图1是本发明陶瓷材料与银电极共烧界面的扫描电子显微结构和EDS线性Ag元素分析图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例的,旨在用于解释本发明,而不能理解为对本发明的限制。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用以限定本发明。
实施例1-6
实施例1‐6的硅酸盐系低温烧结微波介质陶瓷材料的配方如表1所示。其制备方法如下:
(1)按Ca 1-x-yMg xZn ySiO 3(具体配方见表1)化学计量配比称量主料CaCO 3、MgO、ZnO和SiO 2,按料与水的质量比1:1.8加入去离子水,采用湿法混料18h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1200℃下煅烧4h,合成主晶相,研 磨后作为陶瓷基料备用。
(2)按Ca 1-zSr zTiO 3(具体配方见表1)化学计量配比称量主料CaCO 3、SrCO 3和TiO 2,按料与水的质量比1:1.5加入去离子水,采用湿法混料24h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1050℃下煅烧3h,合成主晶相,研磨后作为陶瓷基料备用。
(3)按bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO(具体配方见表2)的相对质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、B 2O 3或H 3BO 3、ZnO、MgO、BaCO 3、CuO、CoO或Co 2O 3、La 2O 3、SiO 2、MnO 2或MnCO 3等原料,按混合料与无水乙醇的质量比1:1.5加入乙醇,采用湿法混料18h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在600℃下煅烧3h,研磨后作为烧结助剂备用。
(4)将制备好的Ca 1-x-yMg xZn ySiO 3、Ca 1-zSr zTiO 3陶瓷基料和烧结助剂按照表1中的质量配比进行配料,按料与无水乙醇的质量比1:1.5加入无水乙醇,采用湿法混料5h。然后将陶瓷浆料转入砂磨机进行砂磨。砂磨过程采用直径Φ0.6mm的ZrO 2磨球,砂磨机旋转主轴转速为1200rpm,研磨4-8h,控制粉体粒度D50为0.8~1.0um,D90为1.2~1.8um,然后转移出陶瓷浆料并在80℃进行烘干,即得到本发明的低温烧结微波介质陶瓷材料。
表1
Figure PCTCN2022114696-appb-000001
表2
Figure PCTCN2022114696-appb-000002
在陶瓷材料中加入8wt%聚乙烯醇(PVA)粘合剂造粒,在100MPa压力下压制成直径为20mm,厚度为8~9mm的圆块,在900℃大气气氛中烧结3h,烧结后圆块样品的体积密度用阿基米德法测得。样品表面抛光后采用Agilent 8719ET(50MHz~13.5GHz)网络分析仪测其微波介电性能。样品的频率温度系数τ f在25~110℃温度范围内测得,并由公式τ f=(f 110-f 25)/(f 25×85)计算,其中f 110和f 25分别是110℃和25℃下的谐振中心频率。
实施例1-6材料的性能测试结果列于表3。
表3
编号 ε r Q×f(GHz) τ f(ppm/℃)
实施例1 7.1 21600 -35
实施例2 7.9 20450 -21
实施例3 9.2 19360 -3.6
实施例4 9.9 17420 0.5
实施例5 10.5 16200 10.3
实施例6 11.2 14500 23.0
实施例7-12
实施例7‐12的硅酸盐系低温烧结微波介质陶瓷材料的配方如表3所示。其制备方法如下:
(1)按Ca 1-x-yMg xZn ySiO 3(具体配方见表4)化学计量配比称量主料CaCO 3、MgO、 ZnO和SiO 2,按料与水的质量比1:1.5加入去离子水,采用湿法混料18h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1100℃下煅烧3h,合成主晶相,研磨后作为陶瓷基料备用。
(2)按Ca 1-zSr zTiO 3(具体配方见表4)化学计量配比称量主料CaCO 3、SrCO 3和TiO 2,按料与水的质量比1:1.5加入去离子水,采用湿法混料24h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1000℃下煅烧3h,合成主晶相,研磨后作为陶瓷基料备用。
(3)按bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO(具体配方见表5)的相对质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、B 2O 3或H 3BO 3、ZnO、MgO、BaCO 3、CuO、CoO或Co 2O 3、La 2O 3、SiO 2、MnO 2或MnCO 3等原料,按混合料与无水乙醇的质量比1:1.5加入乙醇,采用湿法混料16h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在650℃下煅烧3h,研磨后作为烧结助剂备用。
(4)将制备好的Ca 1-x-yMg xZn ySiO 3、Ca 1-zSr zTiO 3陶瓷基料和烧结助剂按照表3中的质量配比进行配料,按料与无水乙醇的质量比1:1.5加入无水乙醇,采用湿法混料5h。然后将陶瓷浆料转入砂磨机进行砂磨。砂磨过程采用直径Φ0.6mm的ZrO 2磨球,砂磨机旋转主轴转速为1200rpm,研磨4-8h,控制粉体粒度D50为0.9~1.1um,D90为1.5~1.9um,然后转移出陶瓷浆料并在80℃进行烘干,即得到本发明的低温烧结微波介质陶瓷材料。
表4
Figure PCTCN2022114696-appb-000003
表5
Figure PCTCN2022114696-appb-000004
在陶瓷材料中加入5wt%聚乙烯醇(PVA)粘合剂造粒,在100MPa压力下压制成直径为20mm,厚度为8~9mm的圆块,在880℃大气气氛中烧结2h,烧结后圆块样品的体积密度用阿基米德法测得。样品表面抛光后采用Agilent 8719ET(50MHz~13.5GHz)网络分析仪测其微波介电性能。样品的频率温度系数τ f在25~110℃温度范围内测得,并由公式τ f=(f 110-f 25)/(f 25×85)计算,其中f 110和f 25分别是110℃和25℃下的谐振中心频率。
实施例7-12材料的性能测试结果列于表6。
表6
编号 ε r Q×f(GHz) τ f(ppm/℃)
实施例7 7.7 20380 -18
实施例8 9.6 17850 -9
实施例9 10.2 13620 3
实施例10 10.3 18980 -2
实施例11 10.3 19440 4
实施例12 9.7 20790 -5
实施例13-18
实施例13-18的硅酸盐系低温烧结微波介质陶瓷材料的配方如表7所示。其制备方法如下:
(1)按Ca 1-x-yMg xZn ySiO 3(具体配方见表7)化学计量配比称量主料CaCO 3、MgO、ZnO和SiO 2,按料与水的质量比1:1.5加入去离子水,采用湿法混料18h后于120℃烘 干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1050℃下煅烧3h,合成主晶相,研磨后作为陶瓷基料备用。
(2)按Ca 1-zSr zTiO 3(具体配方见表7)化学计量配比称量主料CaCO 3、SrCO 3和TiO 2,按料与水的质量比1:1.5加入去离子水,采用湿法混料24h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1000℃下煅烧3h,合成主晶相,研磨后作为陶瓷基料备用。
(3)将制备好的Ca 1-x-yMg xZn ySiO 3、Ca 1-zSr zTiO 3陶瓷基料和实施例1-12中制备的烧结助剂S4和S11按照表7中的质量配比进行配料,按料与无水乙醇的质量比1:1.5加入无水乙醇,采用湿法混料5h。然后将陶瓷浆料转入砂磨机进行砂磨。砂磨过程采用直径Φ0.6mm的ZrO 2磨球,砂磨机旋转主轴转速为1500rpm,研磨6-8h,控制粉体粒度D50为0.5~0.8um,D90为1.0~1.5um,然后转移出陶瓷浆料并在80℃进行烘干,即得到本发明的低温烧结微波介质陶瓷材料。
表7
Figure PCTCN2022114696-appb-000005
在陶瓷材料中加入8wt%聚乙烯醇(PVA)粘合剂造粒,在100MPa压力下压制成直径为20mm,厚度为8~9mm的圆块,在880℃大气气氛中烧结2h,烧结后圆块样品的体积密度用阿基米德法测得。样品表面抛光后采用Agilent 8719ET(50MHz~13.5GHz)网络分析仪测其微波介电性能。样品的频率温度系数τ f在25~110℃温度范围内测得,并由公式τ f=(f 110-f 25)/(f 25×85)计算,其中f 110和f 25分别是110℃和25℃下的谐振中心频率。
实施例13-18材料的性能测试结果列于表8。
表8
编号 ε r Q×f(GHz) τ f(ppm/℃)
实施例13 9.8 19260 -8
实施例14 10.0 20080 -2
实施例15 10.5 17530 3
实施例16 9.7 14440 -9
实施例17 9.0 13880 -12
实施例18 8.4 14350 -15
将实施例14中的陶瓷材料通过流延成型,制备出薄型LTCC生瓷带(生瓷厚度30um),通过打孔、填孔、丝网印刷、叠层、等静压、切割和烧结等LTCC元器件制备工艺制得LTCC器件样品,器件断面进行背散射SEM和能谱线性Ag元素扫描分析,结果见附图1所示。该陶瓷材料在880℃和银电极共烧界面结合紧密,无明显银元素扩散情况。表明该陶瓷材料可应用于各类小型化的LTCC器件应用中。
以上内容是结合具体的优选实施例对本发明所做的进一步详细说明,不能认定本发明的具体实施只限于这些说明。根据申请人大量的实验结果证明,在本发明的权利要求书所提出的范围,均可以达到本发明的目的。
还需要说明的是,在本发明的描述中,术语“包括”、“包含”等意在涵盖非排他性的包含,还包括一些没有明确列出的其他要素的过程、方法和原物料等。“实施例”或某个“具体实施例”等意指结合该实施例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例中。
因此,尽管上文已经应用了具体实施例对发明进行阐述,可以理解的是,上述实施例是用于理解本发明的方法及核心事项,不能理解为对本发明的限制。本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均应视为本发明的保护范围。

Claims (3)

  1. 一种硅酸盐系低温烧结微波介质陶瓷材料,其特征在于,该材料的配方表达式为:Ca 1-x-yMg xZn ySiO 3+awt%Ca 1-zSr zTiO 3+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO;其中:
    0≤x≤0.5,0≤y≤0.3,0≤z≤1;
    0≤a≤18,1≤b≤5,0<c≤3,0<d≤6,0≤e≤10;a、b、c、d和e分别为Ca 1-zSr zTiO 3、R 2O、Bi 2O 3、B 2O 3和MO相占Ca 1-x-yMg xZn ySiO 3的质量分数;
    R 2O为Li 2O、K 2O中的至少一种;
    MO为ZnO、MgO、BaO、CuO、CoO、La 2O 3、SiO 2、MnO 2中的一种或多种。
  2. 根据权利要求1所述的一种低介电硅灰石系低温共烧陶瓷材料,其特征在于,R 2O、B 2O 3和MO由其相应的金属离子变价氧化物、碳酸盐或氢氧化物按金属离子等摩尔量换算替代。
  3. 根据权利要求1或2所述的一种硅酸盐系低温烧结微波介质陶瓷材料的制备方法,其特征在于,包括以下几个步骤:
    (1)按Ca 1-x-yMg xZn ySiO 3,其中0≤x≤0.5,0≤y≤0.3的化学计量配比称量主料CaCO 3、MgO、ZnO和SiO 2,按料与水的质量比1:1~2加入去离子水,采用湿法混料16-24h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在1100-1260℃下煅烧2-4h,合成主晶相,研磨后作为陶瓷基料备用;
    (2)按Ca 1-zSr zTiO 3,其中0≤z≤1的化学计量配比称量主料CaCO 3、SrCO 3和TiO 2,按料与水的质量比1:1~2加入去离子水,采用湿法混料16-24h后于120℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在950-1100℃下煅烧2-4h,合成主晶相,研磨后作为陶瓷基料备用;
    (3)按bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的相对质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、B 2O 3或H 3BO 3、ZnO、MgO或Mg(OH) 2、BaCO 3、CuO、CoO或Co 2O 3、La 2O 3、SiO 2、MnO 2或MnCO 3等原料,按料与无水乙醇的质量比1:1~2加入无水乙醇,采用湿法混料16-24h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在500-700℃下煅烧2-4h,研磨后作为烧结助剂备用,其中1≤b≤5,0<c≤3,0<d≤6,0≤e≤10,b、c、d和e分别为R 2O、Bi 2O 3、B 2O 3和MO相占Ca 1-x-yMg xZn ySiO 3的质量分数;
    (4)将制备好的Ca 1-x-yMg xZn ySiO 3、Ca 1-zSr zTiO 3陶瓷基料和烧结助剂按照Ca 1-x- yMg xZn ySiO 3+awt%Ca 1-zSr zTiO 3+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的质量配比进行 配料,按料与无水乙醇的质量比1:1~2加入无水乙醇,采用湿法混料4-8h,然后将陶瓷浆料转入砂磨机进行砂磨,砂磨过程采用直径Φ0.1-0.8mm的ZrO 2磨球,砂磨机旋转主轴转速为1000~2000rpm,研磨4-12h,控制粉体粒度D50为0.5~1.2um,D90为1.0~2.0um,然后转移出陶瓷浆料并在80℃进行烘干,即得到本发明的低温烧结微波介质陶瓷材料。
PCT/CN2022/114696 2022-02-28 2022-08-25 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法 WO2023159896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210190447.4 2022-02-28
CN202210190447.4A CN114716238A (zh) 2022-02-28 2022-02-28 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023159896A1 true WO2023159896A1 (zh) 2023-08-31

Family

ID=82235853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114696 WO2023159896A1 (zh) 2022-02-28 2022-08-25 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114716238A (zh)
WO (1) WO2023159896A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716238A (zh) * 2022-02-28 2022-07-08 嘉兴佳利电子有限公司 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN115947587B (zh) * 2022-09-30 2024-02-02 郴州功田电子陶瓷技术有限公司 一种微波介质陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673174A (zh) * 2004-03-23 2005-09-28 浙江大学 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN103613369A (zh) * 2013-10-22 2014-03-05 山东科技大学 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN104692808A (zh) * 2015-02-06 2015-06-10 佛山市三水新华雄陶瓷有限公司 一种降低陶瓷烧成温度的添加剂及方法
US20170334785A1 (en) * 2016-05-17 2017-11-23 Walsin Technology Corporation Low-temperature co-fired microwave dielectric ceramic material and preparation method thereof
CN114716238A (zh) * 2022-02-28 2022-07-08 嘉兴佳利电子有限公司 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115295A (ja) * 2002-09-25 2004-04-15 Nikko Co 高周波用低温焼結磁器組成物及びその製造方法
JP4752340B2 (ja) * 2005-06-13 2011-08-17 株式会社村田製作所 誘電体セラミック組成物、および積層セラミックコンデンサ
CN100393666C (zh) * 2006-08-01 2008-06-11 浙江大学 环保低温烧结微波介质陶瓷材料及其制备方法
CN107522481B (zh) * 2016-06-22 2020-02-14 华新科技股份有限公司 低温共烧微波介电陶瓷材料及其制法
CN110171962B (zh) * 2019-01-04 2021-09-28 南京汇聚新材料科技有限公司 一种低温共烧陶瓷微波与毫米波材料
FR3112431B1 (fr) * 2020-07-09 2024-04-19 Saint Gobain Ct Recherches Membrane en un produit polycristallin de llzo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673174A (zh) * 2004-03-23 2005-09-28 浙江大学 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN103613369A (zh) * 2013-10-22 2014-03-05 山东科技大学 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN104692808A (zh) * 2015-02-06 2015-06-10 佛山市三水新华雄陶瓷有限公司 一种降低陶瓷烧成温度的添加剂及方法
US20170334785A1 (en) * 2016-05-17 2017-11-23 Walsin Technology Corporation Low-temperature co-fired microwave dielectric ceramic material and preparation method thereof
CN114716238A (zh) * 2022-02-28 2022-07-08 嘉兴佳利电子有限公司 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114716238A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023159896A1 (zh) 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN101318815B (zh) 铋基钼基超低温烧结微波介质陶瓷材料及其制备
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN103011810B (zh) 可低温烧结含锂石榴石结构微波介电陶瓷Li2Ca2BiV3O12及其制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
WO2023159895A1 (zh) 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN107176834B (zh) 中高介电常数的ltcc陶瓷材料及其制备方法
CN104003720A (zh) 可低温烧结微波介电陶瓷Li2Zn2W2O9及其制备方法
CN103232243A (zh) 钒酸盐微波介电陶瓷Ca1.5M3V3O12及其制备方法
CN104016664A (zh) 一种低介电常数微波陶瓷材料的制备方法
CN104003722A (zh) 可低温烧结的超低介电常数微波介电陶瓷Li3AlV2O8及其制备方法
CN109650871A (zh) 一种ZnAl2O4陶瓷体系材料及其制备方法
CN113354399A (zh) 低温共烧复合陶瓷材料及制备方法
US11897815B2 (en) Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor and low-temperature preparation method thereof
CN103113103B (zh) 可低温烧结微波介电陶瓷BiZn2VO6及其制备方法
CN102584208A (zh) 可低温烧结微波介电陶瓷BiZn2VO4及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN1273408C (zh) 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN102603292A (zh) 一种用于可低温烧结微波介电陶瓷的复合氧化物
CN104387057B (zh) 一种温度稳定型钛基尖晶石微波介质陶瓷及其低温制备方法
CN105130418A (zh) 一种Li-Nb-Ti系微波介质陶瓷材料
CN103319177B (zh) 可低温烧结微波介电陶瓷Ba3WTiO8及其制备方法
CN104193336A (zh) 一种低烧微波介质陶瓷材料及其制备方法
CN104045344A (zh) 可低温烧结微波介电陶瓷Li2Zn3WO7及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928162

Country of ref document: EP

Kind code of ref document: A1