WO2023159895A1 - 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法 - Google Patents

一种低介电硅灰石系低温共烧陶瓷材料及其制备方法 Download PDF

Info

Publication number
WO2023159895A1
WO2023159895A1 PCT/CN2022/114695 CN2022114695W WO2023159895A1 WO 2023159895 A1 WO2023159895 A1 WO 2023159895A1 CN 2022114695 W CN2022114695 W CN 2022114695W WO 2023159895 A1 WO2023159895 A1 WO 2023159895A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
low
temperature
ceramic material
dielectric
Prior art date
Application number
PCT/CN2022/114695
Other languages
English (en)
French (fr)
Inventor
李进
余祖高
谭金刚
石珊
陆建军
童建喜
Original Assignee
嘉兴佳利电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴佳利电子有限公司 filed Critical 嘉兴佳利电子有限公司
Priority to JP2023574632A priority Critical patent/JP2024520706A/ja
Publication of WO2023159895A1 publication Critical patent/WO2023159895A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the invention belongs to the technical field of electronic materials, and in particular relates to a low-dielectric wollastonite-based low-temperature co-fired ceramic material and a preparation method thereof.
  • Low-temperature co-fired ceramics technology (Low-temperature co-fired ceramics, LTCC) is a kind of electronic packaging technology, which includes low-temperature co-fired ceramic materials, device design and other technologies, of which low-temperature co-fired ceramics are the foundation and key.
  • microwave technology is moving towards higher frequencies, that is, towards millimeter waves and submillimeter waves, and also puts forward higher and higher requirements for low-temperature co-fired ceramic materials, including: Low dielectric constant, to reduce the delay time of the signal during transmission; high Q value (1/tan ⁇ ), that is, low dielectric loss, to reduce the insertion loss of the device and ensure good frequency selection characteristics; able to operate at 900 ° C Co-firing with metal conductive materials such as Ag and Cu; in addition, it should have sufficient mechanical strength and environmental reliability, and be resistant to corrosion by electroplating or electroless plating solutions.
  • the high-frequency low-dielectric constant low-temperature co-fired ceramic materials mainly include three major systems: glass-ceramic, glass-ceramic and ceramic-auxiliary.
  • the glass-ceramic system needs to strictly control the crystallization of the material during the sintering process, and has relatively strict requirements on the process.
  • the A6M material of the US FEERO company is widely used.
  • the glass-ceramic system requires more glass to achieve low-temperature sintering of ceramics, but the problem it brings is a sharp increase in material loss. It is generally difficult to achieve a lower dielectric constant for materials in the ceramic-additive system, unlike the glass with a lower dielectric constant that can be introduced into the glass-ceramic system.
  • (Ca,Mg)SiO 3 series microwave dielectric ceramics have good dielectric properties and low material cost.
  • at least two kinds of magnesium oxide, calcium oxide or silicon oxide are mixed to form a glass state at 1500-1800 ° C, and the total amount of magnesium oxide, calcium oxide and silicon oxide is 100 mole percent, and then CaTiO 3 , MgTiO 3 , Materials such as ZrTiO 4 and TiO 2 are melted at 1500-1800°C and then sintered at 900°C.
  • the process of this method is complicated, and the dielectric constant is high, and the process of melting to the glass state twice results in a low Q ⁇ f value.
  • a CaO-MgO-TiO 2 -SiO 2 ceramic material is introduced in the patent application CN112759378A, which is directly calcined after mixing calcium carbonate, magnesium oxide, titanium dioxide, silicon dioxide, manganese oxide, lithium oxide and bismuth oxide and then Low temperature co-fired ceramics sintered at 860-880°C. Lithium oxide and bismuth oxide are compounded into the ingredients as sintering aids, and combined with TiO 2 to form Li 2 TiO 3 (900°C) with a low eutectic point. In this method, all raw materials are added during pre-calcination, which will lead to uncontrollable reactions between components during pre-calcination, and the generated phases are complex and uncertain.
  • the dielectric constant of the material is 9.5 ⁇ 0.1, and the Q ⁇ f value is relatively low.
  • the dielectric constants of the materials described in the above patents are all over 9, which limits their application in low dielectric and high frequency scenarios.
  • Patent CN 200410039848.1 reports the formula and preparation process of low-temperature sintered microwave dielectric ceramics with (Ca, Mg)SiO 3 system as the main component, CaTiO 3 is used to adjust the frequency temperature coefficient, and Li 2 CO 3 and V 2 O 5 are sintering aids.
  • the low-temperature sintered microwave dielectric ceramic material can achieve good co-firing matching with silver electrodes. Its material properties are: dielectric constant 8-10, quality factor Qf>25000GHz, and the material has been applied in batches.
  • V 2 O 5 has an excellent sintering effect, which can significantly reduce the sintering temperature of (Ca,Mg)SiO 3 ceramics, but it has strong toxicity, which is harmful to Harmful to the human body, it cannot meet the increasing environmental protection needs.
  • V 2 O 5 forms a liquid phase during the sintering process to promote ceramic sintering, it also tends to promote the short-distance diffusion of silver electrodes, which is prone to short-circuit risks between layers caused by silver migration, which will lead to poor product reliability. Major hidden danger.
  • the first object of the present invention is to provide a low-dielectric wollastonite-based low-temperature co-fired ceramic material, which has a lower dielectric constant, a higher Q ⁇ f value, and a lower Frequency temperature coefficient, and can achieve low temperature sintering.
  • the second object of the present invention is to provide a low-dielectric wollastonite-based low-temperature co-fired ceramic material and its preparation method, which adopts the synthesis route of first synthesizing the main phase ceramics, then preparing oxide sintering aids, and finally performing low-temperature sintering .
  • the preparation method has simple sintering process and good repeatability.
  • a low-dielectric wollastonite-based low-temperature co-fired ceramic material the formula expression of which is: Ca x SiO 3 +awt%SiO 2 +bwt%R 2 O+cwt%Bi 2 O 3 + dwt% B 2 O 3 +ewt% MO; where:
  • a, b, c, d and e are SiO 2 , RO, Bi 2 O 3 respectively , B 2 O 3 and MO phase account for the mass fraction of Ca x SiO 3 ;
  • R 2 O is at least one of Li 2 O and K 2 O;
  • MO is one or more of ZnO, MgO, BaO, CoO, CuO, La2O3 , MnO2 ;
  • SiO 2 is at least one of quartz and fused silica.
  • the composition of the main phase ceramic material is: Ca x SiO 3 , and 0.9 ⁇ x ⁇ 1.0.
  • the SiO 2 is fused silica.
  • a method for preparing a low-dielectric wollastonite-based low-temperature co-fired ceramic material characterized in that it comprises the following steps:
  • the material of the present invention has the following advantages:
  • the present invention provides a simple, reliable and low-cost preparation method.
  • the main phase ceramics and sintering aids are used to synthesize separately, and then the route of preparing low temperature co-fired ceramics.
  • This method ensures that the composition of the main ceramic phase is controllable, and also ensures that the sintering aid synthesizes compounds such as Li 2 O(K 2 O)-Bi 2 O 3 -B 2 O 3 with a lower eutectic point (less than 700°C) .
  • the phase of the main phase ceramic synthesized by this method is easier to control, the cooling effect of the eutectic compound is better, and the dielectric property is better.
  • fused silica and Ca x SiO 3 ceramics for compounding.
  • the dielectric constant of fused silica is small, which can effectively reduce the dielectric constant of the material;
  • fused silica is easy to form a liquid phase during the sintering process, so it can It has the effect of moistening powder particles and promoting sintering.
  • the present invention performs synergistic cooling by introducing composite oxides, and controls the addition of alkali metal oxides and Bi2O3 , avoiding the interlayer circuit caused by silver migration, which is very easy to occur when ceramic materials and silver electrodes are co - fired Risk of short circuit.
  • the introduction of various sintering aid oxides is pre-mixed and calcined to solve the problem of B 2 O 3 in the preparation of ceramic casting slurry.
  • the cross-linking reaction between free hydroxyl groups in oxides and powders and hydroxyl groups in binders such as PVB leads to the problem that the viscosity of the slurry is too high and high-quality green ceramic sheets cannot be obtained.
  • the present invention provides a low-dielectric wollastonite-based low-temperature co-fired ceramic material, the dielectric constant of which is less than 7.5, the Q ⁇ f value is greater than 20000 GHz, and the absolute value of the temperature coefficient of frequency is less than 35 ppm/°C. Meet the requirements of low dielectric constant and low loss and lower frequency temperature coefficient required by millimeter wave devices.
  • Fig. 1 is the XRD analysis collection of illustrative plates of ceramics in embodiment 2;
  • Fig. 2 is the SEM scanning electron micrograph of embodiment 4 fired ceramic samples.
  • Synthesis of sintering aids Weigh Li 2 CO 3 , Bi 2 O 3 , H 3 BO 3 , ZnO and other raw materials, add ethanol according to the mass ratio of the mixture to absolute ethanol 1:1, use wet mixing for 16 hours, then dry at 80°C, and dry the dried mixture for 40 Mesh sieve, put into an alumina crucible, calcined at 600°C for 3 hours, grind it and use it as a sintering aid for later use.
  • main phase Ca 0.95 SiO synthesized in Example 5 ceramics adding main phase ceramics mass percentage is 10.0wt% quartz and the sintering aid synthesized in Example 5 to mix, with ZrO balls as grinding medium, with ethanol It is used as a solvent, ball milled and mixed for 16 hours, then dried, added with 8% by weight polyvinyl alcohol binder, ground and granulated, sieved and pressed under a pressure of 100MPa to form a green body with a diameter of 20mm and a thickness of 10mm. After sintering at 880°C for 3 hours in an air atmosphere, the low temperature co-fired ceramic material was obtained and its dielectric properties were tested.
  • main phase CaSiO3 ceramics synthesized in Example 2 add main phase ceramics mass percentage as 7.0wt% fused silica and the sintering aid synthesized in Example 2 to mix, with ZrO Balls as grinding media, ethanol as Solvent, ball mill and mix for 16 hours, then dry, add 8% by weight polyvinyl alcohol binder, grind and granulate, sieve and press under 100MPa pressure to form a green body with a diameter of 20mm and a thickness of 10mm.
  • the low temperature co-fired ceramic material was obtained by sintering at 850°C for 3 hours in an air atmosphere, and its dielectric properties were tested.
  • Example 2 Mix the main phase CaSiO3 ceramics synthesized in Example 2 with the sintering aid synthesized in Example 2, use ZrO2 balls as the grinding medium, use ethanol as the solvent, dry the mixture after ball milling for 16 hours, and add 8% by weight
  • the polyvinyl alcohol binder was ground and granulated, and pressed under a pressure of 100 MPa to form a green body with a diameter of 20 mm and a thickness of 10 mm after sieving.
  • the low temperature co-fired ceramic material was obtained by sintering at 930°C for 3 hours in an air atmosphere, and its dielectric properties were tested.
  • Table 1 shows the test results of the dielectric properties of the materials corresponding to the comparative example and Examples 1-7.
  • Agilent 8719ET network analyzer was used to test the dielectric constant ⁇ r and Q ⁇ f value for the dielectric properties.
  • the frequency temperature coefficient of the sample ⁇ f (f 110-f 25)/(f 25 ⁇ 85) is calculated and determined, where f 110 and f 25 are the resonance center frequencies of the sample at 110°C and 25°C, respectively.
  • the low-temperature co-fired ceramic materials listed in the above table have a dielectric constant less than 7.5, a Q ⁇ f value greater than 20000GHz, and an absolute value of the temperature coefficient of frequency less than 35ppm/°C. Meet the requirements of low dielectric constant and low loss and lower frequency temperature coefficient required by millimeter wave devices.
  • the introduction of fused silica can not only reduce the sintering temperature, but also increase the Q ⁇ f value of the material and improve the temperature coefficient of frequency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种低介电硅灰石系低温共烧陶瓷材料及其制备方法,涉及电子材料技术领域。该陶瓷材料配方组成为:CaxSiO3+awt%SiO2+bwt%R2O+cwt%Bi2O3+dwt%B2O3+ewt%MO;其中:0.9≤x≤1.1,0<a≤30,1≤b≤5,0<c≤3,0<d≤6,0≤e≤10;R2O为Li2O、K2O中的至少一种;MO为ZnO、MgO、BaO、CoO、CuO、La2O3、MnO2中的一种或多种。本发明提供的低温共烧陶瓷材料满足低介电、低损耗及低温烧结的要求,可应用于毫米波LTCC器件等领域。

Description

一种低介电硅灰石系低温共烧陶瓷材料及其制备方法 技术领域
本发明属于电子材料技术领域,具体涉及一种低介电硅灰石系低温共烧陶瓷材料及其制备方法。
背景技术
低温共烧陶瓷技术(Low-temperature co-firing ceramics,LTCC)是电子封装技术的一种,其包括低温共烧陶瓷材料、器件设计等技术,其中低温共烧陶瓷是基础和关键。近年来,随着5G通信技术的快速发展,微波技术朝着更高频率,即向着毫米波和亚毫米波的方向发展,也对低温共烧陶瓷材料提出越来越高的要求,其中包括:低介电常数,以降低信号在传输过程中的延迟时间;高Q值(1/tanδ),即低介电损耗,以降低器件的插入损耗,保证良好的选频特性;能够在900℃下与Ag、Cu等金属导电材料实现共烧;除此之外,还应具有足够的机械强度以及环境可靠性等性能,具备抗电镀或化学镀镀液侵蚀性。
目前研究的高频低介电常数低温共烧陶瓷材料主要有微晶玻璃、玻璃-陶瓷和陶瓷-助剂三大体系。其中微晶玻璃体系在烧结过程需要严格控制材料的析晶问题,对工艺过程要求较为严苛,目前只有美国FEERO公司的A6M材料得到广泛应用。玻璃-陶瓷体系需要较多玻璃才能实现陶瓷的低温烧结,但带来的问题却是材料损耗的急剧增大。而陶瓷-助剂体系的材料一般很难达到较低的介电常数,不像玻璃-陶瓷体系中可引入较低介电常数的玻璃。
(Ca,Mg)SiO 3系微波介质陶瓷具有良好的介电性能,材料成本低廉。专利CN103193389B中混合至少两种氧化镁、氧化钙或氧化硅在1500-1800℃下形成玻璃态,且氧化镁、氧化钙及氧化硅的总量为100摩尔百分比,然后添加CaTiO 3、MgTiO 3、ZrTiO 4及TiO 2等材料在1500-1800℃下熔融后再在900℃下烧结。此方法过程复杂,而且介电常数较高,两次熔融至玻璃态的过程导致其Q×f值较低。专利申请CN112759378A中介绍了一种CaO-MgO-TiO 2-SiO 2陶瓷材料,该材料将碳酸钙、氧化镁、二氧化钛、二氧化硅、氧化锰、氧化锂和氧化铋混合后直接预烧然后再860-880℃烧结而成的低温共烧陶瓷。其中氧化锂和氧化铋作为烧结助剂复合加入配料中,其和TiO 2组合形成低共熔点的物质Li 2TiO 3(900℃)。此方法在预烧过程中加入所有原料,会导致预烧时各成分之间的反应不可控,生成的物相复杂且具有不确定性。而且其材料介电常数介电常数为9.5±0.1,Q×f值较低。以上专利所述材料的介电常数都超过9,限制了其在低介高频场景的应用。专利CN 200410039848.1报道了以(Ca,Mg)SiO 3系统为主成分,采用CaTiO 3调整频率温度系数,Li 2CO 3和V 2O 5为 烧结助剂的低温烧结微波介质陶瓷配方及制备工艺,该低温烧结微波介质陶瓷材料可与银电极实现良好共烧匹配,其材料性能:介电常数8-10,品质因数Qf>25000GHz,该材料取得了批量应用。但该材料存在以下问题:(1)低熔点氧化物V 2O 5具有极佳的助烧效果,可显著降低(Ca,Mg)SiO 3陶瓷的烧结温度,但其具有较强的毒性,对人体有害,不能满足日益重视的环保需要。(2)V 2O 5在烧结过程中形成液相促进陶瓷烧结的同时,也易促使银电极的短距离扩散,易发生银迁移造成的层间电路短路风险,这将造成产品可靠性不良的重大隐患。
发明内容
为了解决上述技术问题,本发明的第一个目的在于提供一种低介电硅灰石系低温共烧陶瓷材料,该材料具有较低的介电常数,较高的Q×f值,较低的频率温度系数,而且能够实现低温烧结。本发明的第二个目的在于提供一种低介电硅灰石系低温共烧陶瓷材料及其制备方法,采用先合成主相陶瓷,再制备氧化物助烧剂,最后进行低温烧结的合成路线。该制备方法烧结工艺简单,可重复性好。
为了实现上述第一个发明的目的,本发明采用以下技术方案:
一种低介电硅灰石系低温共烧陶瓷材料,该低温共烧陶瓷材料的配方表达式为:Ca xSiO 3+awt%SiO 2+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO;其中:
0.9≤x≤1.1;
0<a≤30,1≤b≤5,0<c≤3,0<d≤6,0≤e≤10;a、b、c、d和e分别为SiO 2、RO、Bi 2O 3、B 2O 3和MO相占Ca xSiO 3的质量分数;
R 2O为Li 2O、K 2O中的至少一种;
MO为ZnO、MgO、BaO、CoO、CuO、La 2O 3、MnO 2中的一种或多种;
SiO 2为石英和熔融石英中的至少一种。
作为优选方案,所述主相陶瓷材料的组成为:Ca xSiO 3,且0.9≤x≤1.0。
作为优选方案,所述SiO 2为熔融石英。
为了实现上述第二个发明的目的,本发明采用以下技术方案:
一种低介电硅灰石系低温共烧陶瓷材料的制备方法,其特征在于,包括以下步骤:
1)主相陶瓷Ca xSiO 3的合成:按化学式Ca xSiO 3计量比称量原材料CaCO 3和SiO 2,以去离子水为溶剂,球磨混合16~24h后干燥再过40目筛,粉碎均匀后装入氧化铝坩埚在900℃~1300℃下煅烧2~4h合成主相陶瓷,研磨后作为陶瓷基料备用;
2)烧结助剂的合成:按bwt%RO+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的相对质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、B 2O 3或H 3BO 3、ZnO、MgO或Mg(OH) 2、BaCO 3、CoO或Co 2O 3、CuO、La 2O 3、MnO 2/MnCO 3原料,按混合料与无水乙醇的质量比1:1~1.5加入乙醇,采用湿法混料16-24h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在500-700℃下煅烧2-4h,研磨后作为烧结助剂备用;其中1≤b≤5,0<c≤3,0<d≤6,0≤e≤10,b、c、d和e分别为RO、Bi 2O 3、B 2O 3和MO相占Ca xSiO 3的质量分数;
3)制备好的主相Ca xSiO 3陶瓷、SiO 2和氧化物助烧剂按Ca xSiO 3+awt%SiO 2+bwt%RO+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的质量配比进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16~24h后干燥,加入重量含量为5%~8%的聚乙烯醇粘合剂研磨造粒,过筛后在80~120MPa压力下压制成直径20mm,厚度10mm的坯体,在850℃~950℃空气气氛下烧结1~3h,即得到所述低介电硅灰石系低温共烧陶瓷材料,其中a、b、c、d和e分别为SiO 2、RO、Bi 2O 3、B 2O 3和MO相占Ca xSiO 3的质量分数。
与现有技术相比,本发明材料具有以下优势:
1.本发明提供一种简单、可靠和低成本的制备方法。采用主相陶瓷和烧结助剂分别合成,然后制备低温共烧陶瓷的路线。此方法确保主相陶瓷物相的成分可控,另外确保烧结助剂合成较低共熔点(低于700℃)的Li 2O(K 2O)-Bi 2O 3-B 2O 3等化合物。对比现有技术,此方法合成的主相陶瓷物相更易可控,低共熔点化合物的降温效果更好,且介电性能更好。
2.本专利对主相陶瓷的钙硅比进行了设计和优化,研究其对材料介电性能的影响。特别地,当主相陶瓷Ca xSiO 3中的0.9≤x≤1,材料的介电性能较优。这是由于预烧过程中除了生成硅灰石相(CaSiO 3),还有部分介电损耗较大的Ca 2SiO 4相生成,因此过量SiO 2的有利于促进硅灰石相的合成,同时也提高了材料的介电性能。
3.使用熔融石英和Ca xSiO 3陶瓷进行复合,一方面熔融石英的介电常数较小,可以有效降低材料的介电常数;另一方面熔融石英在烧结过程中易形成液相,因此能起到湿润粉体颗粒,促进烧结的效果。
4.本发明通过引入复合氧化物进行协同降温,并控制碱金属氧化物和Bi 2O 3的添加量,规避了陶瓷材料与银电极共烧时极易发生的由于银迁移造成的层间电路短路风险。另外为了规避复杂且难以控制批次稳定性的玻璃助剂制备工艺,通过对引入的各种烧结助剂氧化物进行预先混料煅烧处理工艺,解决了陶瓷流延浆料制备时B 2O 3等氧化物以及粉体中的自由羟基与PVB等粘合剂中的羟基交联反应导致浆料粘度偏大而无法得到高质量生瓷片的问题。
5.本发明提供一种低介电硅灰石系低温共烧陶瓷材料,其介电常数小于7.5,Q×f值大于20000GHz,频率温度系数绝对值小于35ppm/℃。满足毫米波器件要求的低介电常数和低损耗及较低频率温度系数的要求。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。
图1是实施例2中陶瓷的XRD分析图谱;
图2是实施例4烧陶瓷样品的SEM扫描电镜图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例的,旨在用于解释本发明,而不能理解为对本发明的限制。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用以限定本发明。
实施例1
1)主相合成:按化学式Ca 0.98SiO 3计量比称量原材料CaCO 3和石英,以去离子水为溶剂,球磨混合24h后干燥在过40目筛,粉碎均匀后装入氧化铝坩埚在1200℃下煅烧3h合成主相陶瓷。
2)烧结助剂的合成:按3wt%Li 2O+2wt%Bi 2O 3+3wt%B 2O 3+3wt%ZnO的相对主相陶瓷的质量分数比,称取Li 2CO 3、Bi 2O 3、H 3BO 3、ZnO等原料,按混合料与无水乙醇的质量比1:1加入乙醇,采用湿法混料16h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在600℃下煅烧3h,研磨后作为烧结助剂备用。
3)在主相Ca 0.98SiO 3陶瓷中加入分别占主相陶瓷质量百分比为3.0wt%的熔融石英和上一步合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在850℃空气气氛下烧结3h,即得到低温共烧陶瓷材料并测试其介电性能。
实施例2
1)主相合成:按化学式CaSiO 3计量比称量原材料CaCO 3和石英,以去离子水为溶 剂,球磨混合24h后干燥在过40目筛,粉碎均匀后装入氧化铝坩埚在1250℃下煅烧3h合成主相陶瓷。
2)烧结助剂的合成:按1.5wt%Li 2O+1wt%K 2O+0.5wt%Bi 2O 3+2.5wt%B 2O 3+3wt%BaO+2wt%MnO 2的相对主相陶瓷的质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、H 3BO 3、BaCO 3、MnO 2等原料,按混合料与无水乙醇的质量比1:1加入乙醇,采用湿法混料16h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在650℃下煅烧3h,研磨后作为烧结助剂备用。
3)在主相CaSiO 3陶瓷中加入分别占主相陶瓷质量百分比为3.5wt%的熔融石英和上一步合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在900℃空气气氛下烧结3h即得到低温共烧陶瓷材料并测试其介电性能。图1为烧结后陶瓷的XRD图谱,陶瓷的主要物相为CaSiO 3和少量的SiO 2相。
实施例3
1)主相合成:按化学式Ca 1.02SiO 3计量比称量原材料CaCO 3和石英,以去离子水为溶剂,球磨混合24h后干燥在过40目筛,粉碎均匀后装入氧化铝坩埚在1300℃下煅烧3h合成主相陶瓷。
2)烧结助剂的合成:按2.5wt%Li 2O+1wt%Bi 2O 3+2.5wt%B 2O 3+2wt%MgO的相对主相陶瓷的质量分数比,称取Li 2CO 3、Bi 2O 3、H 3BO 3、MgO等原料,按混合料与无水乙醇的质量比1:1加入乙醇,采用湿法混料16h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在700℃下煅烧3h,研磨后作为烧结助剂备用。
3)在主相Ca 1.02SiO 3陶瓷中加入分别占主相陶瓷质量百分比为5.0wt%的熔融石英和上一步合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在850℃空气气氛下烧结3h,即得到低温共烧陶瓷材料并测试其介电性能。
实施例4
1)主相合成:按化学式CaSiO 3计量比称量原材料CaCO 3和石英,以去离子水为溶剂,球磨混合24h后干燥在过40目筛,粉碎均匀后装入氧化铝坩埚在1200℃下煅烧3h合成主相陶瓷。
2)烧结助剂的合成:按4wt%Li 2O+1.5wt%Bi 2O 3+4wt%B 2O 3+1wt%La 2O 3+2wt%CuO的相对主相陶瓷的质量分数比,称取Li 2CO 3、Bi 2O 3、H 3BO 3、La 2O 3、CuO等原料,按混合料与无水乙醇的质量比1:1加入乙醇,采用湿法混料16h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在600℃下煅烧3h,研磨后作为烧结助剂备用。
3)在主相CaSiO 3陶瓷中加入分别占主相陶瓷质量百分比为2.0wt%的熔融石英和上一步合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在880℃空气气氛下烧结3h即得到低温共烧陶瓷材料并测试其介电性能。图2为陶瓷样品截面的扫描电镜照片,可以看出这种低温共烧陶瓷的致密性较好。
实施例5
1)主相合成:按化学式Ca 0.95SiO 3计量比称量原材料CaCO 3和熔融石英,以去离子水为溶剂,球磨混合24h后干燥在过40目筛,粉碎均匀后装入氧化铝坩埚在1100℃下煅烧3h合成主相陶瓷。
2)烧结助剂的合成:按3.75wt%Li 2O+2.5wt%Bi 2O 3+3.75wt%B 2O 3+1wt%CoO+2wt%CuO的相对主相陶瓷的质量分数比,称取Li 2CO 3、Bi 2O 3、H 3BO 3、CoO、CuO等原料,按混合料与无水乙醇的质量比1:1加入乙醇,采用湿法混料16h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在650℃下煅烧3h,研磨后作为烧结助剂备用。
3)在主相Ca 0.95SiO 3陶瓷中加入分别占主相陶瓷质量百分比为10.0wt%的熔融石英和上一步合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在850℃空气气氛下烧结3h即得到低温共烧陶瓷材料并测试其介电性能。
实施例6
在实施例5中合成的主相Ca 0.95SiO 3陶瓷中加入主相陶瓷质量百分比为10.0wt%的石英和实施例5中合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在880℃空气气氛下烧结3h即得到低温共烧陶瓷材料并测试其介电性能。
实施例7
在实施例2中合成的主相CaSiO 3陶瓷中加入主相陶瓷质量百分比为7.0wt%的熔融石英和实施例2中合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在850℃空气气氛下烧结3h即得到低温共烧陶瓷材料并测试其介电性能。
对照例1
将实施例2中合成的主相CaSiO 3陶瓷和实施例2中合成的烧结助剂进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16h后干燥,加入重量含量8%的聚乙烯醇粘合剂研磨造粒,过筛后在100MPa压力下压制成直径20mm,厚度10mm的坯体。在930℃空气气氛下烧结3h即得到低温共烧陶瓷材料并测试其介电性能。
表1是对照例与实施例1~7对应的材料介电性能测试结果。其中,介电性能采用Agilent 8719ET网络分析仪测试介电常数ε r和Q×f值。样品的频率温度系数τ f=(f 110-f 25)/(f 25×85)计算确定,其中f 110和f 25分别为样品在110℃和25℃下的谐振中心频率。
表1 各实施例和对照例的介电性能测试结果
编号 ε r Q×f(GHz) τ f(ppm/℃)
1 6.68 24200 -25.9
2 6.85 22400 -30.3
3 7.26 21600 -34.8
4 6.92 22870 -28.6
5 6.40 21730 -23.7
6 6.45 20350 -25.2
7 6.60 20900 -27.5
对照例1 7.04 18580 -38.2
上表里列出的低温共烧陶瓷材料,其介电常数小于7.5,Q×f值大于20000GHz,频率温度系数绝对值小于35ppm/℃。满足毫米波器件要求的低介电常数和低损耗及较低频率温度系数的要求。与对照例相比,引入熔融石英后既能降低烧结温度,也能提高材料Q×f值和改善频率温度系数。
需要说明的是,在本发明的描述中,术语“包括”、“包含”等意在涵盖非排他性的包含,还包括一些没有明确列出的其他要素的过程、方法和原物料等。“实施例”或某个“具体实施 例”等意指结合该实施例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例中。
因此,尽管上文已经应用了具体实施例对发明进行阐述,可以理解的是,上述实施例是用于理解本发明的方法及核心事项,不能理解为对本发明的限制。本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均应视为本发明的保护范围。

Claims (4)

  1. 一种低介电硅灰石系低温共烧陶瓷材料,其特征在于,该低温共烧陶瓷材料的配方表达式为:Ca xSiO 3+awt%SiO 2+bwt%R 2O+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO;其中:
    0.9≤x≤1.1;
    0<a≤30,1≤b≤5,0<c≤3,0<d≤6,0≤e≤10;a、b、c、d和e分别为SiO 2、RO、Bi 2O 3、B 2O 3和MO相占Ca xSiO 3的质量分数;
    R 2O为Li 2O、K 2O中的至少一种;
    MO为ZnO、MgO、BaO、CoO、CuO、La 2O 3、MnO 2中的一种或多种;
    SiO 2为石英和熔融石英中的至少一种。
  2. 根据权利要求1所述的一种低介电硅灰石系低温共烧陶瓷材料,其特征在于,所述主相陶瓷材料的组成为:Ca xSiO 3,且0.9≤x≤1.0。
  3. 根据权利要求1所述的一种低介电硅灰石系低温共烧陶瓷材料,其特征在于,所述SiO 2为熔融石英。
  4. 根据权利要求1所述的一种低介电硅灰石系低温共烧陶瓷材料的制备方法,其特征在于,包括以下步骤:
    1)主相陶瓷Ca xSiO 3的合成:按化学式Ca xSiO 3计量比称量原材料CaCO 3和SiO 2,以去离子水为溶剂,球磨混合16~24h后干燥再过40目筛,粉碎均匀后装入氧化铝坩埚在900℃~1300℃下煅烧2~4h合成主相陶瓷,研磨后作为陶瓷基料备用;
    2)烧结助剂的合成:按bwt%RO+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的相对质量分数比,称取Li 2CO 3、K 2CO 3、Bi 2O 3、B 2O 3或H 3BO 3、ZnO、MgO或Mg(OH) 2、BaCO 3、CoO或Co 2O 3、CuO、La 2O 3、MnO 2/MnCO 3原料,按混合料与无水乙醇的质量比1:1~1.5加入乙醇,采用湿法混料16-24h后于80℃烘干,将烘干的混合料过40目筛,装入氧化铝坩埚,在500-700℃下煅烧2-4h,研磨后作为烧结助剂备用;其中1≤b≤5,0<c≤3,0<d≤6,0≤e≤10,b、c、d和e分别为RO、Bi 2O 3、B 2O 3和MO相占Ca xSiO 3的质量分数;
    3)制备好的主相Ca xSiO 3陶瓷、SiO 2和氧化物助烧剂按Ca xSiO 3+awt%SiO 2+bwt%RO+cwt%Bi 2O 3+dwt%B 2O 3+ewt%MO的质量配比进行混合,以ZrO 2球为磨介,以乙醇为溶剂,球磨混料16~24h后干燥,加入重量含量为5%~8%的聚乙烯醇粘合剂研磨造粒,过筛后在80~120MPa压力下压制成直径20mm,厚度10mm的坯体,在850℃~950℃空气气氛下烧结1~3h,即得到所述低介电硅灰石系低温共烧陶瓷材料,其中a、b、c、d和e分别为SiO 2、RO、Bi 2O 3、B 2O 3和MO相占Ca xSiO 3的质量分数。
PCT/CN2022/114695 2022-02-28 2022-08-25 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法 WO2023159895A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023574632A JP2024520706A (ja) 2022-02-28 2022-08-25 低誘電率ワラストナイト系低温同時焼成セラミック材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210188646.1A CN114573333B (zh) 2022-02-28 2022-02-28 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法
CN202210188646.1 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023159895A1 true WO2023159895A1 (zh) 2023-08-31

Family

ID=81771345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114695 WO2023159895A1 (zh) 2022-02-28 2022-08-25 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法

Country Status (3)

Country Link
JP (1) JP2024520706A (zh)
CN (1) CN114573333B (zh)
WO (1) WO2023159895A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573333B (zh) * 2022-02-28 2023-06-09 嘉兴佳利电子有限公司 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法
CN115521138B (zh) * 2022-09-28 2023-07-07 深圳顺络电子股份有限公司 一种低介低损耗ltcc材料及其制备方法
CN116003127B (zh) * 2023-01-06 2023-08-22 湖南聚能陶瓷材料有限公司 一种低损耗微波介质陶瓷及其制备方法
CN116023123B (zh) * 2023-01-13 2023-12-15 广东风华高新科技股份有限公司 一种低温共烧陶瓷材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692808A (zh) * 2015-02-06 2015-06-10 佛山市三水新华雄陶瓷有限公司 一种降低陶瓷烧成温度的添加剂及方法
US20170334785A1 (en) * 2016-05-17 2017-11-23 Walsin Technology Corporation Low-temperature co-fired microwave dielectric ceramic material and preparation method thereof
CN112537947A (zh) * 2020-12-09 2021-03-23 江苏科技大学 一种低损耗低介电常数微波介质陶瓷材料及其制备方法
CN114573333A (zh) * 2022-02-28 2022-06-03 嘉兴佳利电子有限公司 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402465C (zh) * 2006-09-12 2008-07-16 吉林大学 用硅灰石制备介电陶瓷的方法
KR101179510B1 (ko) * 2010-01-12 2012-09-07 한국과학기술연구원 결정성 보로실리케이트계 유리프리트 및 이를 포함하는 저온 동시소성용 저유전율 유전체 세라믹 조성물
CN102584234B (zh) * 2012-03-13 2014-04-16 嘉兴佳利电子股份有限公司 一种环保型低温烧结高介微波介质陶瓷及其制备方法
CN103613369A (zh) * 2013-10-22 2014-03-05 山东科技大学 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN103922714B (zh) * 2014-03-18 2015-09-16 福建火炬电子科技股份有限公司 一种低介电常数多层电容器瓷料及其制备方法
CN106187141B (zh) * 2016-07-12 2019-06-28 深圳顺络电子股份有限公司 一种cbs系ltcc材料及其制备方法
CN110357597A (zh) * 2019-08-01 2019-10-22 电子科技大学 一种钙硼硅系高热膨胀陶瓷基板材料及其制备方法
CN113024122A (zh) * 2021-03-10 2021-06-25 嘉兴佳利电子有限公司 一种SiO2系高频低介低温共烧陶瓷材料及其制备方法
CN113354399A (zh) * 2021-07-13 2021-09-07 宜宾红星电子有限公司 低温共烧复合陶瓷材料及制备方法
CN113716870B (zh) * 2021-09-03 2023-03-07 中国人民解放军国防科技大学 一种适用于高频的ltcc基板材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692808A (zh) * 2015-02-06 2015-06-10 佛山市三水新华雄陶瓷有限公司 一种降低陶瓷烧成温度的添加剂及方法
US20170334785A1 (en) * 2016-05-17 2017-11-23 Walsin Technology Corporation Low-temperature co-fired microwave dielectric ceramic material and preparation method thereof
CN112537947A (zh) * 2020-12-09 2021-03-23 江苏科技大学 一种低损耗低介电常数微波介质陶瓷材料及其制备方法
CN114573333A (zh) * 2022-02-28 2022-06-03 嘉兴佳利电子有限公司 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114573333B (zh) 2023-06-09
JP2024520706A (ja) 2024-05-24
CN114573333A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023159895A1 (zh) 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN103265271B (zh) 频率温度系数可调低温烧结氧化铝陶瓷材料及制备方法
CN102659396A (zh) 一种低介电微波陶瓷介质材料及其制备方法
KR20210118407A (ko) Ltcc 마이크로파 유전체 재료 및 이의 제조 방법
CN102153341B (zh) 一种中介电常数低温共烧陶瓷材料及其制备方法
CN112919894A (zh) 一种频率稳定型低介微波介质陶瓷材料及其制备方法
WO2023159896A1 (zh) 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN107176834B (zh) 中高介电常数的ltcc陶瓷材料及其制备方法
JP4632534B2 (ja) 誘電体磁器及びその製造方法
CN113354399A (zh) 低温共烧复合陶瓷材料及制备方法
US11897815B2 (en) Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor and low-temperature preparation method thereof
CN105347781B (zh) 一种陶瓷材料及其制备方法
JP3737773B2 (ja) 誘電体セラミック組成物
CN110171962B (zh) 一种低温共烧陶瓷微波与毫米波材料
CN102531558A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN101565302A (zh) 一种led用陶瓷封装材料及其制作方法
CN114656155B (zh) 一种低介低损耗低膨胀玻璃材料及其制备方法和应用
CN112608144B (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN111574213B (zh) 一种低介电常数ltcc材料及其制备方法
CN111470778B (zh) 一种钙钡硅铝玻璃基低介低温共烧陶瓷材料及其制备方法
CN109650886B (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN111943673A (zh) 一种低温烧结bnt微波介质材料及其制备方法
CN116730619B (zh) 一种用于ltcc的低损耗微晶玻璃材料及其制备方法
TWI798814B (zh) 一種毫米波天線模組用低溫共燒陶瓷材料及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18562338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023574632

Country of ref document: JP