CN116675534A - 一种多孔Y-Si-O透波陶瓷及其制备方法 - Google Patents

一种多孔Y-Si-O透波陶瓷及其制备方法 Download PDF

Info

Publication number
CN116675534A
CN116675534A CN202310153086.0A CN202310153086A CN116675534A CN 116675534 A CN116675534 A CN 116675534A CN 202310153086 A CN202310153086 A CN 202310153086A CN 116675534 A CN116675534 A CN 116675534A
Authority
CN
China
Prior art keywords
porous
wave
temperature
time
transparent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310153086.0A
Other languages
English (en)
Inventor
李端
李俊生
于秋萍
向天意
刘荣军
王衍飞
万帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202310153086.0A priority Critical patent/CN116675534A/zh
Publication of CN116675534A publication Critical patent/CN116675534A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种多孔Y‑Si‑O透波陶瓷及其制备方法,制备方法包括将纳米级Y2O3粉体、硅溶胶和蛋白粉加水球磨混合,将所得混合浆料注模成型,固化后经干燥、脱模、梯度升温干燥、排胶、烧结,得到多孔陶瓷坯体,将多孔陶瓷坯体浸渍于硅溶胶中,然后交联固化和裂解,重复浸渍‑交联固化‑裂解过程,最后烧结,得到多孔Y‑Si‑O透波陶瓷。本发明的制备方法设备简单、工艺安全、原料成本低,制得的多孔Y‑Si‑O透波陶瓷具有密度低、孔隙率高、强度高、熔点高、介电常数和损耗低等优点,可应用于耐高温抗氧化透波材料领域。

Description

一种多孔Y-Si-O透波陶瓷及其制备方法
技术领域
本发明涉及耐高温抗氧化透波陶瓷制备技术领域,具体涉及一种多孔Y-Si-O透波陶瓷及其制备方法。
背景技术
随着科学技术的发展,新一代航天飞行器将朝着更高马赫、更长航时、更高精度的方向发展,相应的构件材料也将面临高温烧蚀、复杂载荷、多场耦合和气流冲刷等极端环境,而现有材料体系很难满足以上使用需求。氮化物复合材料具有优良的高温力学性能和热稳定性,但其在有氧环境下的长时使用温度也低于1400℃。因此,亟需发展长时耐高温、抗氧化、抗烧蚀、抗热震、低介电的新型电磁透波材料。
Y-Si-O陶瓷由于具有较好的耐高温、抗氧化、低热导、低热膨胀、耐化学腐蚀等优良性能,已经广泛应用于高温抗氧化涂层材料、光学基质材料和介电材料等领域,但是由于其介电常数较高(>9),在耐高温透波材料领域的应用还未见报道。
目前,多孔Y-Si-O陶瓷成型工艺的研究报道较少,主要工艺有冷凝成型工艺、有机泡沫浸渍工艺、凝胶注模工艺和发泡-凝胶注模工艺。专利CN10358848A公开了一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法,通过发泡-凝胶注模工艺,在水介质中加入反应粉体、单体、交联剂、发泡剂、抑制剂、催化剂及引发剂等制备出孔隙率75%~85%、压缩强度3MPa~8MPa的多孔材料。但该方法添加剂较多,且单体丙烯酰胺和交联剂N,N’-亚甲基双丙烯酰胺具有一定毒性,不符合绿色工业的发展要求,而且制备出的多孔材料由于其孔隙率过高,力学性能并不理想。专利CN103011817A公开了一种钇硅氧多孔高温陶瓷材料的制备方法,通过有机泡沫浸渍工艺,以聚氨酯有机泡沫为模板,经过碱腐蚀和CMC溶液浸泡预处理后,再用Y2SiO5浆料浸渍-挂浆-离心-干燥-排胶-烧结处理,最终得到Y2Si2O7多孔材料,该方法利用的有机泡沫模板,后期排胶过程很难除尽有机物,高温后产生的残碳对材料介电性能影响较大,不适用于透波领域。因此,如何简易制备耐高温、抗氧化、力学性能和介电性能优异的多孔Y-Si-O陶瓷是具有一定挑战性的难题。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种密度低、孔隙率高、强度高、熔点高、介电常数和损耗低的多孔Y-Si-O透波陶瓷及其制备方法。
为解决上述技术问题,本发明采用以下技术方案。
一种多孔Y-Si-O透波陶瓷的制备方法,包括以下步骤:
S1、将纳米级Y2O3粉体、硅溶胶和蛋白粉加入水中球磨混合,得到混合浆料,将混合浆料注模成型,固化后进行干燥、脱模、梯度升温干燥、排胶、烧结,得到多孔陶瓷坯体;其中,所述注模成型的温度为50℃~100℃,所述烧结的温度为1200℃~1800℃;
S2、将上述所得多孔陶瓷坯体浸渍于硅溶胶中,然后进行交联固化和裂解,所述交联固化的温度为80℃~150℃,所述裂解的温度为200℃~600℃,重复浸渍-交联固化-裂解的过程,再于1000℃~1800℃下烧结,得到多孔Y-Si-O透波陶瓷。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,步骤S2中,所述浸渍的时间为0.5h~12h,所述交联固化的时间为3h~24h,所述裂解的时间为2h~12h,所述重复浸渍-交联固化-裂解的次数为1次~10次;所述烧结的过程为:以5℃/min~10℃/min的升温速率升到烧结温度保温1h~16h。
上述的多孔Y-Si-O透波陶瓷的制备方法,更优选的,步骤S2中,所述浸渍的时间为3h~6h,所述交联固化的温度为100℃~120℃,所述交联固化的时间为6h~12h,所述裂解的温度为300℃~400℃,所述裂解的时间为3h~8h,所述烧结的温度为1400℃~1600℃,所述烧结保温的时间为1h~8h。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,步骤S1中,所述纳米级Y2O3粉体的纯度为99.99%,粒径为5nm~50nm,所述蛋白粉为食品级蛋白粉,纯度≥99.5%;步骤S1和步骤S2中,所述硅溶胶的固含量为20%~40%,pH值为2~3,所述硅溶胶中SiO2纳米粒子的直径为1nm~10nm。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,所述纳米级Y2O3粉体的粒径为5nm~20nm,所述硅溶胶中SiO2纳米粒子的直径为3nm~5nm。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,步骤S1中,所述纳米级Y2O3粉体与所述硅溶胶中SiO2的摩尔比为1∶1~3,所述蛋白粉的含量为混合浆料中粉体总含量的5wt.%~30wt.%,所述混合浆料的固含量为30wt.%~60wt.%。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,所述纳米级Y2O3粉体与所述硅溶胶中SiO2的摩尔比为1∶1~2.3,所述蛋白粉的含量为混合浆料中粉体总含量的10wt.%~15wt.%,所述混合浆料的固含量为40wt.%~50wt.%。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,步骤S1中,所述球磨的时间为3h~24h,所述球磨的转速为200转/min~500转/min;所述注模成型的保温固化时间为10min~300min;所述干燥为室温干燥,所述室温干燥的时间为12h~36h,所述梯度升温干燥的温度范围为30℃~60℃,所述梯度升温干燥的总时间为36h~120h;所述排胶、烧结的过程为:在空气气氛中以1℃/min~5℃/min的升温速率升到600℃~900℃保温排胶0.5h~5h,继续以5℃/min~10℃/min的升温速率升到烧结温度保温1h~16h。
上述的多孔Y-Si-O透波陶瓷的制备方法,优选的,步骤S1中,所述球磨的时间为6h~10h,所述注模成型的温度为70℃~80℃,所述注模成型的保温固化时间为30min~90min,所述室温干燥的时间为18h~24h,所述梯度升温干燥采用的温度包括40℃、50℃和60℃,每个温度干燥时间为12h~36h,所述排胶的升温速率为1℃/min~2℃/min,所述排胶的温度为600℃~700℃,所述排胶的时间为1h~2h,所述烧结的温度为1400℃~1600℃,所述烧结的保温时间为2h~8h。
作为一个总的技术构思,本发明还提供一种上述的多孔Y-Si-O透波陶瓷的制备方法制得的多孔Y-Si-O透波陶瓷。该多孔Y-Si-O透波陶瓷具有多级孔结构,密度低、孔隙率高、强度高、介电常数和损耗低。
本发明中,硅溶胶为SiO2的水溶液。
本发明中,室温通常是指20℃~30℃,但不限于此。
本发明的原理在于:
本发明基于蛋白发泡凝胶注模、原位固相反应及硅溶胶浸渍裂解工艺制备多级孔结构材料,采用蛋白发泡凝胶注模和原位固相反应制备初级多孔结构的Y-Si-O陶瓷,然后利用硅溶胶浸渍裂解及二次原位固相反应烧结,得到具有多级孔结构的高强度Y-Si-O陶瓷。该方法设备简单、工艺安全、成本低,有利于制备密度低、孔隙率高、强度高、介电常数和损耗低的材料,该材料综合性能优异,可应用于耐高温抗氧化透波材料领域。
与现有技术相比,本发明的优点在于:
1、本发明的制备方法选用纳米级Y2O3粉体和硅溶胶中的SiO2纳米粒子作为反应原料,反应接触更加充分,反应程度更高,且该原位反应为放热反应有利于烧结致密化形成烧结颈,获得高强度的多孔材料。
本发明使用的造孔剂及凝胶助剂都为蛋白粉,除原位固相反应原料外未添加其他助剂,且形成的多孔结构有利于蛋白粉的排除,不会使目标产物中含有剩余碳对材料的介电性能造成影响,有利于应用在透波领域。
本发明通过硅溶胶浸渍裂解工艺能够控制多孔结构的孔隙率和致密度,可以根据需要选择浸渍次数,且硅溶胶SiO2纳米粒子和多孔基底的二次原位固相反应,进一步提高了多孔材料的强度。
2、本发明的制备方法需要的设备简单,原料成本低,工艺安全,有利于大规模工业化生产。
3、本发明的多孔Y-Si-O透波陶瓷同时具备密度低、孔隙率高、强度高、熔点高、介电常数和损耗低的优点。
附图说明
图1为本发明实施例1制得的多孔Y-Si-O透波陶瓷的样品外观图。
图2为本发明实施例1制得的多孔Y-Si-O透波陶瓷的XRD谱图。
图3为本发明实施例1制得的多孔Y-Si-O透波陶瓷的SEM照片。
图4为本发明实施例1制得的多孔Y-Si-O透波陶瓷的热膨胀曲线图
图5为本发明实施例1制得的多孔Y-Si-O透波陶瓷的热重曲线图。
图6为本发明实施例2制得的多孔Y-Si-O透波陶瓷的SEM照片。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。
实施例1:
一种本发明的多孔Y-Si-O透波陶瓷的制备方法,包括以下步骤:
S1、将56.55g纳米级Y2O3粉体、127.56g固含量23.5%的硅溶胶和8.65g蛋白粉加入18.79g去离子水球磨混合4h,球磨转速300转/min,得到混合浆料,其中,纳米级Y2O3粉体的纯度为99.99%,粒径为5nm~50nm,蛋白粉为食品级蛋白粉,纯度≥99.5%,硅溶胶的pH值为2~3,硅溶胶中SiO2纳米粒子直径为1nm~10nm,纳米级Y2O3与硅溶胶中SiO2的摩尔比为1∶2,蛋白粉含量为混合浆料中粉体总含量的10wt.%,混合浆料的固含量为45wt.%;将混合浆料注模成型,注模温度为80℃,保温固化时间为40min,室温干燥24h后脱模,转移至密闭真空干燥箱分别于40℃、50℃、60℃干燥24h,最后在空气气氛中以1℃/min升温速率升至600℃排胶1h后,再以5℃/min的升温速度升至1550℃保温烧结4h,得到多孔陶瓷坯体;
S2、将步骤S1所得多孔陶瓷坯体用硅溶胶(与步骤S1采用的硅溶胶相同)浸渍4h,在120℃交联固化12h,再在300℃裂解5h,重复以上浸渍-交联固化-裂解工艺1次,最后在马弗炉里以5℃/min的升温速率升至1550℃保温烧结1h,得到多孔Y-Si-O透波陶瓷,外观如图1所示。
将上述多孔Y-Si-O透波陶瓷进行表征,所得样品密度为1.31g/cm3,开孔率为67.5%,其物相组成及微观形貌分别如图2和图3所示。由图2可知,本实施例制备得到的多孔Y-Si-O陶瓷的物相组成主要为γ-Y2Si2O7的纯相,由反应Y2O3+2SiO2→Y2Si2O7生成,而微观形貌为多级孔结构,初级孔为直径10~250μm(图3a)的圆形孔(图3b),二级孔为初级孔内壁表面形成的微米贯穿孔(图3c),直径<2μm,孔隙之间由原位反应形成的烧结颈较为明显,能有效提高其力学强度,所测压缩强度为43.6±3.9MPa,明显高于现有报道的多孔Y-Si-O陶瓷。通过谐振腔法测试所得介电常数和介电损耗都较低,分别为3.05和1.30×10-3,其热学性能结果如图4和图5所示,由图4可知,随着温度升高,样品线膨胀逐渐增加,而相应的热膨胀系数也随之增加,由室温至500℃以内,热膨胀系数小于3.0×10-6·K-1。图5为所得多孔材料在空气中由室温至1500℃的热重曲线,由图可知,样品质量在100℃以内失重小于1%,主要为样品中吸附的少量水分,之后随着温度升高样品质量基本保持不变,未发生氧化或分解,样品抗氧化性较好。
实施例2:
一种本发明的多孔Y-Si-O透波陶瓷的制备方法,包括以下步骤:
S1、将56.55g纳米级Y2O3粉体、127.56g固含量23.5%的硅溶胶和8.65g蛋白粉加入18.79g去离子水球磨混合6h,转速300转/min,得到混合浆料,其中,纳米级Y2O3粉体的纯度为99.99%,粒径为5nm~50nm,蛋白粉为食品级蛋白粉,纯度≥99.5%,硅溶胶的pH值为2~3,硅溶胶中SiO2纳米粒子直径为1nm~10nm,纳米级Y2O3与硅溶胶中SiO2的摩尔比为1∶2,蛋白粉含量为混合浆料中粉体总含量的10wt.%,混合浆料的固含量为45wt.%;将混合浆料注模成型,注模温度为80℃,保温固化的时间为40min,室温干燥24h后脱模,转移至密闭真空干燥箱分别于40℃、50℃、60℃干燥24h,最后在马弗炉中在空气气氛中以1℃/min升温速率升至600℃排胶1h,再以5℃/min的升温速率升至1550℃保温烧结4h,得多孔陶瓷坯体;
S2、将步骤S1所得多孔陶瓷坯体用硅溶胶浸渍4h,在120℃交联固化12h,再在300℃裂解5h,重复以上浸渍-交联固化-裂解工艺5次,最后在马弗炉里以5℃/min的升温速率升至1000℃保温烧结1h,得到多孔Y-Si-O透波陶瓷。
将上述Y-Si-O多孔复相陶瓷进行表征,所得样品密度为1.91g/cm3,开孔率为47.8%,其物相组成为γ-Y2Si2O7和无定形的SiO2,微观形貌如图6所示,由图可知,该多级孔结构与实施例1相比,初级孔内部被无定形结构的SiO2填充,孔壁内壁表面被沉积下来的SiO2填充,开孔率有所降低,贯穿的微米孔减少,因此对应的压缩强度增大至52.6±4.5MPa,介电常数为3.58,介电损耗为1.14×10-3,变化不大。
实施例3:
一种本发明的多孔Y-Si-O透波陶瓷的制备方法,包括以下步骤:
S1、将67.8g Y2O3粉体、76.53g固含量23.5%的硅溶胶和8.59g蛋白粉加入34.13g去离子水球磨混合5h,球磨转速为300转,其中,纳米级Y2O3粉体的纯度为99.99%,粒径为5nm~50nm,蛋白粉为食品级蛋白粉,纯度≥99.5%,硅溶胶的pH值为2~3,硅溶胶中SiO2纳米粒子直径为1nm~10nm,纳米级Y2O3粉体与硅溶胶中SiO2的摩尔比为1∶1,蛋白粉含量为混合浆料中粉体总含量的10wt.%,混合浆料的固含量为50wt.%;将混合浆料注模成型,注模温度为85℃,保温固化时间为35min,室温干燥24h后脱模,转移至密闭真空干燥箱分别于40℃、50℃、60℃干燥24h,最后在空气气氛中以1℃/min升温速率升至600℃排胶1h后,再以5℃/min的升温速度升至1600℃保温烧结8h,得到多孔陶瓷坯体。测试该多孔陶瓷样品密度为1.31g/cm3
S2、将步骤S1所得多孔陶瓷坯体用硅溶胶浸渍6h,在120℃交联固化12h,再在300℃裂解5h,重复以上浸渍-交联固化-裂解工艺4次,最后在马弗炉里以5℃/min的升温速度升至1000℃保温烧结1h,得到多孔Y-Si-O透波陶瓷。
将上述所得多孔Y-Si-O透波陶瓷进行表征,所得样品密度为1.63g/cm3,开孔率为57.3%,其物相组成为X2-Y2SiO5和无定形的SiO2,压缩强度为50.1±4.3MPa,介电常数为3.16,介电损耗为1.57×10-3
实施例4:
一种本发明的多孔Y-Si-O透波陶瓷的制备方法,包括以下步骤:
S1、将67.8g纳米级Y2O3粉体、76.53g固含量23.5%的硅溶胶和6.86g蛋白粉加入54.73g去离子水球磨混合3h,球磨转速为400转/min,得到混合浆料,其中,纳米级Y2O3粉体的纯度为99.99%,粒径为5nm~50nm,蛋白粉为食品级蛋白粉,纯度≥99.5%,硅溶胶的pH值为2~3,硅溶胶中SiO2纳米粒子直径为1nm~10nm,纳米级Y2O3与硅溶胶中SiO2的摩尔比为1∶1,蛋白粉含量为混合浆料中粉体总含量的8wt.%,混合浆料的固含量45wt.%;将混合浆料注模成型,注模温度为85℃,保温固化时间为50min,室温干燥24h后脱模,转移至密闭真空干燥箱分别于40℃、50℃、60℃干燥24h,最后在空气气氛中以1℃/min升温速率升至600℃排胶1h后,再以5℃/min的升温速度升至1600℃保温烧结2h,得到多孔陶瓷坯体。测试该多孔陶瓷坯体密度为0.93g/cm3,开孔率79.8%。
S2、将步骤S1所得多孔陶瓷坯体用硅溶胶浸渍6h,在120℃交联固化12h,再在300℃裂解5h,重复以上浸渍-交联固化-裂解工艺4次,最后在马弗炉里以5℃/min的升温速度升至1600℃保温烧结2h,得到多孔Y-Si-O透波陶瓷。
将上述多孔Y-Si-O透波陶瓷进行表征,所得样品密度为1.90g/cm3,开孔率为57.3%,其物相组成为X2-Y2SiO5和γ-Y2Si2O7,压缩强度为55.6±5.2MPa,介电常数为3.48,介电损耗为1.43×10-3
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种多孔Y-Si-O透波陶瓷的制备方法,其特征在于,包括以下步骤:
S1、将纳米级Y2O3粉体、硅溶胶和蛋白粉加入水中球磨混合,得到混合浆料,将混合浆料注模成型,固化后进行干燥、脱模、梯度升温干燥、排胶、烧结,得到多孔陶瓷坯体;其中,所述注模成型的温度为50℃~100℃,所述烧结的温度为1200℃~1800℃;
S2、将上述所得多孔陶瓷坯体浸渍于硅溶胶中,然后进行交联固化和裂解,所述交联固化的温度为80℃~150℃,所述裂解的温度为200℃~600℃,重复浸渍-交联固化-裂解的过程,再于1000℃~1800℃下烧结,得到多孔Y-Si-O透波陶瓷。
2.根据权利要求1所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,步骤S2中,所述浸渍的时间为0.5h~12h,所述交联固化的时间为3h~24h,所述裂解的时间为2h~12h,所述重复浸渍-交联固化-裂解的次数为1次~10次;所述烧结的过程为:以5℃/min~10℃/min的升温速率升到烧结温度保温1h~16h。
3.根据权利要求2所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,步骤S2中,所述浸渍的时间为3h~6h,所述交联固化的温度为100℃~120℃,所述交联固化的时间为6h~12h,所述裂解的温度为300℃~400℃,所述裂解的时间为3h~8h,所述烧结的温度为1400℃~1600℃,所述烧结保温的时间为1h~8h。
4.根据权利要求1~3中任一项所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,步骤S1中,所述纳米级Y2O3粉体的纯度为99.99%,粒径为5nm~50nm,所述蛋白粉为食品级蛋白粉,纯度≥99.5%;步骤S1和步骤S2中,所述硅溶胶的固含量为20%~40%,pH值为2~3,所述硅溶胶中SiO2纳米粒子的直径为1nm~10nm。
5.根据权利要求4所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,所述纳米级Y2O3粉体的粒径为5nm~20nm,所述硅溶胶中SiO2纳米粒子的直径为3nm~5nm。
6.根据权利要求1~3中任一项所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,步骤S1中,所述纳米级Y2O3粉体与所述硅溶胶中SiO2的摩尔比为1∶1~3,所述蛋白粉的含量为混合浆料中粉体总含量的5wt.%~30wt.%,所述混合浆料的固含量为30wt.%~60wt.%。
7.根据权利要求6所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,所述纳米级Y2O3粉体与所述硅溶胶中SiO2的摩尔比为1∶1~2.3,所述蛋白粉的含量为混合浆料中粉体总含量的10wt.%~15wt.%,所述混合浆料的固含量为40wt.%~50wt.%。
8.根据权利要求1~3中任一项所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,步骤S1中,所述球磨的时间为3h~24h,所述球磨的转速为200转/min~500转/min;所述注模成型的保温固化时间为10min~300min;所述干燥为室温干燥,所述室温干燥的时间为12h~36h,所述梯度升温干燥的温度范围为30℃~60℃,所述梯度升温干燥的总时间为36h~120h;所述排胶、烧结的过程为:在空气气氛中以1℃/min~5℃/min的升温速率升到600℃~900℃保温排胶0.5h~5h,继续以5℃/min~10℃/min的升温速率升到烧结温度保温1h~16h。
9.根据权利要求8所述的多孔Y-Si-O透波陶瓷的制备方法,其特征在于,步骤S1中,所述球磨的时间为6h~10h,所述注模成型的温度为70℃~80℃,所述注模成型的保温固化时间为30min~90min,所述室温干燥的时间为18h~24h,所述梯度升温干燥采用的温度包括40℃、50℃和60℃,每个温度干燥时间为12h~36h,所述排胶的升温速率为1℃/min~2℃/min,所述排胶的温度为600℃~700℃,所述排胶的时间为1h~2h,所述烧结的温度为1400℃~1600℃,所述烧结的保温时间为2h~8h。
10.一种如权利要求1~9中任一项所述的多孔Y-Si-O透波陶瓷的制备方法制得的多孔Y-Si-O透波陶瓷。
CN202310153086.0A 2023-02-23 2023-02-23 一种多孔Y-Si-O透波陶瓷及其制备方法 Pending CN116675534A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310153086.0A CN116675534A (zh) 2023-02-23 2023-02-23 一种多孔Y-Si-O透波陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310153086.0A CN116675534A (zh) 2023-02-23 2023-02-23 一种多孔Y-Si-O透波陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN116675534A true CN116675534A (zh) 2023-09-01

Family

ID=87779751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310153086.0A Pending CN116675534A (zh) 2023-02-23 2023-02-23 一种多孔Y-Si-O透波陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116675534A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330907A (ja) * 1992-05-29 1993-12-14 Isuzu Motors Ltd 低熱伝導セラミックス及びその製造方法
CN1891666A (zh) * 2005-07-08 2007-01-10 山东理工大学 氧化钇透明透波薄壁陶瓷管制备方法
US20090294017A1 (en) * 2008-05-30 2009-12-03 Precision Photonics Corporation Optical contacting enabled by thin film dielectric interface
CN103011817A (zh) * 2012-12-24 2013-04-03 中国科学院金属研究所 一种钇硅氧多孔高温陶瓷材料的制备方法
CN103588482A (zh) * 2013-11-28 2014-02-19 中国科学院金属研究所 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法
CN104387110A (zh) * 2014-10-30 2015-03-04 中国科学院金属研究所 一种轻质低热导γ-Y2Si2O7多孔陶瓷的绿色制备方法
CN105985131A (zh) * 2015-02-12 2016-10-05 中国科学院金属研究所 耐高温低热导的Y2SiO5多孔材料的制备方法
WO2018040749A1 (zh) * 2016-08-30 2018-03-08 深圳顺络电子股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN108329051A (zh) * 2017-07-04 2018-07-27 中国科学院金属研究所 一种超高孔隙率和低坯体收缩率Y2SiO5多孔陶瓷的制备方法
CN110790574A (zh) * 2019-05-31 2020-02-14 中国人民解放军国防科技大学 一种具有多级孔结构的Si3N4-SiCN陶瓷及其制备方法
CN111606727A (zh) * 2020-05-25 2020-09-01 中国科学院金属研究所 高温透波隔热一体化纤维增强γ-(Y1-xHox)2Si2O7多孔固溶体及制备方法
CN112341170A (zh) * 2020-10-29 2021-02-09 航天材料及工艺研究所 一种抗热冲击氧化物透波陶瓷材料及其制备方法
CN114573347A (zh) * 2022-03-11 2022-06-03 成都大学 一种以Y2Si2O7为基体的SiO2/SiC基微波吸收陶瓷的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330907A (ja) * 1992-05-29 1993-12-14 Isuzu Motors Ltd 低熱伝導セラミックス及びその製造方法
CN1891666A (zh) * 2005-07-08 2007-01-10 山东理工大学 氧化钇透明透波薄壁陶瓷管制备方法
US20090294017A1 (en) * 2008-05-30 2009-12-03 Precision Photonics Corporation Optical contacting enabled by thin film dielectric interface
CN103011817A (zh) * 2012-12-24 2013-04-03 中国科学院金属研究所 一种钇硅氧多孔高温陶瓷材料的制备方法
CN103588482A (zh) * 2013-11-28 2014-02-19 中国科学院金属研究所 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法
CN104387110A (zh) * 2014-10-30 2015-03-04 中国科学院金属研究所 一种轻质低热导γ-Y2Si2O7多孔陶瓷的绿色制备方法
CN105985131A (zh) * 2015-02-12 2016-10-05 中国科学院金属研究所 耐高温低热导的Y2SiO5多孔材料的制备方法
WO2018040749A1 (zh) * 2016-08-30 2018-03-08 深圳顺络电子股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN108329051A (zh) * 2017-07-04 2018-07-27 中国科学院金属研究所 一种超高孔隙率和低坯体收缩率Y2SiO5多孔陶瓷的制备方法
CN110790574A (zh) * 2019-05-31 2020-02-14 中国人民解放军国防科技大学 一种具有多级孔结构的Si3N4-SiCN陶瓷及其制备方法
CN111606727A (zh) * 2020-05-25 2020-09-01 中国科学院金属研究所 高温透波隔热一体化纤维增强γ-(Y1-xHox)2Si2O7多孔固溶体及制备方法
CN112341170A (zh) * 2020-10-29 2021-02-09 航天材料及工艺研究所 一种抗热冲击氧化物透波陶瓷材料及其制备方法
CN114573347A (zh) * 2022-03-11 2022-06-03 成都大学 一种以Y2Si2O7为基体的SiO2/SiC基微波吸收陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, UJ等: "Sintering temperature dependent micro and macro mechanical properties of Si3N4f/SiO2 composite materials", 《CERAMICS INTERNATIONAL》, vol. 45, no. 17, 30 November 2019 (2019-11-30), pages 21931 - 21940, XP085858501, DOI: 10.1016/j.ceramint.2019.07.205 *

Similar Documents

Publication Publication Date Title
Colombo et al. Ceramic foams from preceramic polymers
Cao et al. Preparation of porous Al 2 O 3-ceramics by biotemplating of wood
CN109824381B (zh) 一种碳化硅陶瓷膜及其制备方法和用途
CN107285806B (zh) 纳米孔径的多孔刚玉-镁铝尖晶石陶瓷及其制备方法
CN108516814B (zh) 一种低温制备高强度莫来石陶瓷的方法
JPH0397635A (ja) 発泡シリコーン樹脂から製造された泡沫状のオキシ炭化ケイ素ガラス
WO2003035577A1 (fr) Structure poreuse a base de carbure de silicium, et son procede de production
WO2022222778A1 (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
Jia et al. Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by sol infiltration
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN112898009B (zh) 一种多层结构的六铝酸钙泡沫陶瓷的制备方法
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
Wu et al. Preparation and properties of reticulated porous γ-Y2Si2O7 ceramics with high porosity and relatively high strength
CN112225456A (zh) 一种抗菌防霉陶瓷釉料及其制备方法和应用
CN106565272B (zh) 一种碳化硅陶瓷泡沫的制备方法
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN111548183B (zh) 通过凝胶注模和碳热还原制备分级多孔碳化硅陶瓷的方法
CN110820323B (zh) 一种碳纤维表面Si-C-O陶瓷抗氧化涂层的制备方法
CN116675534A (zh) 一种多孔Y-Si-O透波陶瓷及其制备方法
Rambo et al. Processing of cellular glass ceramics
JP2002226285A (ja) 軽量セラミックス部材およびその製造方法
CN112500181B (zh) 氧化硅短纤维模压陶瓷天线窗复合材料及其制备方法
CN107840677A (zh) 一种氧化铝基泡沫陶瓷及其制备方法
CN114478068A (zh) 一种高温抗氧化石墨制品及其制备方法
CN115872732B (zh) 一种多孔硅酸钇-氧化铝复相透波陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination