CN112341170A - 一种抗热冲击氧化物透波陶瓷材料及其制备方法 - Google Patents

一种抗热冲击氧化物透波陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112341170A
CN112341170A CN202011181278.5A CN202011181278A CN112341170A CN 112341170 A CN112341170 A CN 112341170A CN 202011181278 A CN202011181278 A CN 202011181278A CN 112341170 A CN112341170 A CN 112341170A
Authority
CN
China
Prior art keywords
zirconium
ceramic material
thermal shock
calcium
transparent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011181278.5A
Other languages
English (en)
Other versions
CN112341170B (zh
Inventor
周军
张大海
张敬义
刘晓明
张娟
曹淑伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN202011181278.5A priority Critical patent/CN112341170B/zh
Publication of CN112341170A publication Critical patent/CN112341170A/zh
Application granted granted Critical
Publication of CN112341170B publication Critical patent/CN112341170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/08Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种抗热冲击氧化物透波陶瓷材料及其制备方法,该陶瓷材料包含如下体积百分比含量的组份:介电常数≤10的氧化物陶瓷基体20%~92%;二氧化硅包覆的磷酸锆钙陶瓷8%~80%。该材料室温‑1000℃线膨胀系数介于0~0.3×10‑6/K范围内,具有优良的抗热冲击性能,且介电和力学性能良好。本发明在低介电氧化物陶瓷材料中引入一定比例的经过纳米二氧化硅包覆的磷酸锆钙陶瓷颗粒,通过空气气氛高温热处理,得到接近零膨胀系数的陶瓷材料。该方法基于成熟的陶瓷材料制备方法,操作简单,周期短,成本低,工艺放大难度低,易于实现工程化。

Description

一种抗热冲击氧化物透波陶瓷材料及其制备方法
技术领域
本发明属于功能材料技术领域,特别涉及一种抗热冲击氧化物透波陶瓷材料及其制备方法。
背景技术
氧化物透波陶瓷材料,特别是氧化铝、镁铝尖晶石等陶瓷材料,受其热膨胀系数较大的影响,在经受快速升温或降温环境下,内部会产生极大的热应力,从而造成材料破坏,导致其可靠性较差,严重限制了该类材料的工程应用范围。因此,如果能够把氧化物热透波陶瓷材料的热膨胀系数降低至零或接近零,则可大幅降低材料的热应力,显著提高该类材料在温度急剧变化环境下的可靠性,从而拓宽其应用范围。如何在降低材料热膨胀系数的同时,保持其低介电的特性,同时使其具有较高的力学性能,是目前需要亟待解决的问题。
发明内容
本发明的目的在于克服上述缺陷,提供一种氧化物透波陶瓷材料,该材料具有近似零膨胀系数、低介电以及良好的力学性能,可靠性大幅优于普通氧化物透波陶瓷材料,可用于严苛热冲击环境下(瞬间温度变化≥1000℃)的透波窗口等应用领域。
本发明的另一个目的在于提供一种氧化物透波陶瓷材料的制备方法,采用复合陶瓷思路,在氧化物陶瓷中引入具有负膨胀系数且介电性能良好的陶瓷材料。
为实现上述发明目的,本发明提供如下技术方案:
一种抗热冲击氧化物透波陶瓷材料,包含如下体积百分比含量的组分:
氧化物透波陶瓷材料基体 20%~92%
二氧化硅包覆的磷酸锆钙陶瓷 8%~80%;
氧化物透波陶瓷材料基体的介电常数≤10。
在上述抗热冲击氧化物透波陶瓷材料中,氧化物透波陶瓷材料基体为石英、硅酸钇、镁铝尖晶石、莫来石、氧化铝、氧化钇或氧化铍中一种或一种以上组合。
在上述抗热冲击氧化物透波陶瓷材料中,磷酸锆钙陶瓷颗粒成分为晶态CaZr4(PO4)6
在上述抗热冲击氧化物透波陶瓷材料中,二氧化硅包覆的磷酸锆钙陶瓷颗粒粒径为5~50微米,二氧化硅占所述二氧化硅包覆的磷酸锆钙陶瓷颗粒的体积百分比为5-20%。
上述一种抗热冲击氧化物透波陶瓷材料的制备方法,包括以下步骤:
(1)制备磷酸锆钙陶瓷颗粒;
(2)磷酸锆钙陶瓷颗粒表面包覆二氧化硅;
(3)在氧化物透波陶瓷基体材料粉体中混入二氧化硅包覆的磷酸锆钙陶瓷颗粒后成型;
(4)在空气气氛下热处理后,得到抗热冲击氧化物透波陶瓷材料。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,步骤(1)中,制备磷酸锆钙陶瓷颗粒的具体过程如下:
在磷酸溶液中首先溶入含钙化合物,随后加入含锆化合物,采用球磨或搅拌的方式混合均匀后干燥过筛,在空气气氛热处理后,得到磷酸锆钙陶瓷颗粒。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,含钙化合物为氢氧化钙、氧化钙或碳酸钙中的一种或多种,所述含锆化合物为氧化锆、氢氧化锆或碳酸锆中的一种或多种。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,步骤(1)空气气氛热处理条件为1300℃-1500℃热处理1-3h。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,步骤(2)中,磷酸锆钙陶瓷颗粒表面包覆二氧化硅具体过程如下:将磷酸锆钙与硅溶胶通过球磨或搅拌混合均匀后,通过喷雾干燥法形成初步包覆的颗粒,在空气气氛热处理后,得到二氧化硅包覆的磷酸锆钙陶瓷粉体。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,步骤(2)空气气氛热处理条件为1000℃-1300℃热处理1-2h。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,硅溶胶平均粒径介于5-30nm,质量百分比浓度为2-12%。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,步骤(3)中,在氧化物透波陶瓷基体材料粉体中混入二氧化硅包覆的磷酸锆钙陶瓷颗粒后成型的具体过程如下:把二氧化硅包覆的磷酸锆钙陶瓷颗粒和氧化物透波陶瓷基体材料粉体通过球磨混合,溶剂为水,水的加入比例为两种粉体总质量的100-150%,球磨时间8-24h,之后进行成型。
在上述抗热冲击氧化物透波陶瓷材料的制备方法中,步骤(4)中空气气氛下热处理条件为温度为1100-1600℃,保温时间1-3h。
本发明与现有技术相比具有如下有益效果:
(1)本发明首次在氧化物透波陶瓷基体中引入具有负膨胀系数且介电性能良好的经过二氧化硅包覆预处理的磷酸锆钙陶瓷,得到具有近似零膨胀系数、低介电的氧化物透波陶瓷材料;相比于单纯的磷酸锆钙,加入预先经过纳米二氧化硅包覆后的磷酸锆钙陶瓷,显著提高了材料的力学性能及高温稳定性,可在提高烧结活性的同时,防止磷酸锆钙与其他氧化物反应使其失去负膨胀特性,以最终得到同时具有接近零膨胀系数特性和良好力学强度的透波陶瓷材料。
(2)本发明所述氧化物透波陶瓷材料膨胀系数介于0~0.3×10-6/K范围内,介电常数≤10,损耗角正切≤0.01,抗弯强度≥30MPa。在降低材料热膨胀系数的同时,保持了其低介电的特性和较高的力学性能,在温度剧烈变化条件下的可靠性大幅优于普通氧化物透波陶瓷材料,可应用于严苛的热冲击环境下(瞬间温度变化≥1000℃)使用的透波罩、透波窗口等应用领域。
(3)本方法基于成熟的陶瓷材料制备方法,周期短,成本低,操作简单,工艺放大难度低,易于实现工程化。
附图说明
图1为本发明抗热冲击氧化物透波陶瓷材料的制备流程图。
具体实施方式
下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
本发明抗热冲击氧化物透波陶瓷材料包含如下体积百分比含量的组分:
氧化物透波陶瓷基体 20%~92%
二氧化硅包覆的磷酸锆钙陶瓷 8%~80%。
氧化物透波陶瓷基体的介电常数≤10,可以是石英、硅酸钇、镁铝尖晶石、莫来石、氧化铝、氧化钇或氧化铍中一种或一种以上组合。
磷酸锆钙陶瓷颗粒成分为晶态CaZr4(PO4)6
二氧化硅包覆的磷酸锆钙陶瓷颗粒粒径为5~50微米,二氧化硅占所述二氧化硅包覆的磷酸锆钙陶瓷颗粒的体积百分比为5~20%。
图1为本发明抗热冲击氧化物透波陶瓷材料的制备流程图。抗热冲击氧化物透波陶瓷材料的制备方法包括以下步骤:
(1)制备磷酸锆钙陶瓷颗粒,具体过程如下:
按照CaZr4(PO4)6对应的摩尔比,在磷酸溶液中首先溶入含钙化合物,随后加入含锆化合物,采用球磨或搅拌的方式混合均匀后干燥过筛,在空气气氛热处理后,得到磷酸锆钙陶瓷颗粒。含钙化合物为氢氧化钙、氧化钙或碳酸钙中的一种或多种,含锆化合物为氧化锆、氢氧化锆或碳酸锆中的一种或多种。空气气氛热处理条件为1300℃-1500℃热处理1-3h。
关于磷酸锆钙材料的高温介电性能未查询到相关报道,本发明申请人通过材料制备和测试,制备出的磷酸锆钙成分为CaZr4(PO4)6,粒径为2~30微米,结晶良好,在室温-1000℃介电常数为8-12.8,损耗角正切0.005-0.01,室温~100℃,实测平均线膨胀系数为-4×10-6/K,室温~1000℃平均线膨胀系数为-2.2×10-6/K,说明该材料具有优良的介电性能和负膨胀特性。
(2)磷酸锆钙陶瓷颗粒表面包覆二氧化硅,具体过程如下:
将磷酸锆钙与硅溶胶通过球磨或搅拌混合均匀后,通过喷雾干燥法形成初步包覆的颗粒,在空气气氛热处理后,得到二氧化硅包覆的磷酸锆钙陶瓷粉体。空气气氛热处理条件为1000℃-1300℃热处理1-2h。硅溶胶平均粒径介于5-30nm,质量百分比浓度为2-12%。
(3)在氧化物透波陶瓷基体材料粉体中混入二氧化硅包覆的磷酸锆钙陶瓷颗粒后成型,具体过程如下:
把二氧化硅包覆的磷酸锆钙陶瓷颗粒和氧化物透波陶瓷基体材料粉体通过球磨混合,溶剂为去离子水,去离子水的加入比例为两种粉体总质量的100-150%,球磨时间8-24h,随后采用注浆成型或干燥过筛后干压、冷等静压等陶瓷材料常规成型方法成型。
通过试验发现,磷酸锆钙材料烧结活性较差,对力学性能有削弱作用,且易于发生多种氧化物反应,难以在高温下保持负膨胀系数。通过对比试验发现,二氧化硅可以与磷酸锆钙在较高温度下稳定共存,尝试首先使磷酸锆钙颗粒表面包覆一层二氧化硅,而后再与其他氧化物混合,可使磷酸锆钙晶相在高温下稳定保持,通过进一步试验,发现采用纳米二氧化硅包覆,还可提高材料致密度和力学性能。二氧化硅占包覆颗粒的体积百分比应为5-20%,硅溶胶平均粒径介于5-30nm。通过多种包覆方法的对比试验,发现把磷酸锆钙颗粒混于硅溶胶溶液中,通过球磨或搅拌的方式混合均匀后直接采用喷雾干燥制粉,一方面所得的磷酸锆钙具有一定的粘性,另一方面,磷酸锆钙颗粒为微米级,尺寸较大,使得纳米二氧化硅倾向于吸附在颗粒表面。硅溶胶质量百分比浓度为2-12%为宜。喷雾干燥可形成初步包覆的颗粒,但包覆较为松散,易在随后工艺过程中脱落,应在空气气氛1000℃-1300℃热处理1-2h以得到粒径5~50微米二氧化硅稳定包覆的磷酸锆钙陶瓷颗粒粉体。
为达到接近零膨胀的效果,磷酸锆钙加入比例可根据公式进行近似估算,计算方法为,复合材料线膨胀系数α=V1α1+V2α2,其中V1为磷酸锆钙陶瓷的体积百分比,α1为磷酸锆钙陶瓷的线膨胀系数,V2为氧化物透波陶瓷相的体积百分比,α2为氧化物透波陶瓷相的线膨胀系数。在已知磷酸锆钙陶瓷和氧化物透波陶瓷相线膨胀系数的情况下,可大致计算出加入不同比例磷酸锆钙后复合陶瓷材料的线膨胀系数。如对于石英陶瓷材料,磷酸锆钙加入比例为体积百分比18%时,室温~1000℃线膨胀系数可降至零附近。对于膨胀系数较高的氧化铝材料,磷酸锆钙加入比例为体积百分比75%时,室温~1000℃线膨胀系数可降至~0.2×10-6/K。
(4)在空气气氛下热处理后,得到一种抗热冲击氧化物透波陶瓷材料,热处理条件为温度为1100-1600℃,保温时间1-3h。
实施例1
按照CaZr4(PO4)6对应的摩尔比,在磷酸溶液中首先溶入氢氧化钙,随后加入氧化锆,球磨混合均匀后干燥过筛,在1400℃热处理2h,得到结晶良好的磷酸锆钙陶瓷粉体。
把磷酸锆钙粉体加入硅溶胶溶液搅拌均匀,二氧化硅占包覆颗粒的体积百分比为5%,硅溶胶平均粒径为10nm,质量百分比浓度为4%,采用喷雾干燥制粉,随后在1150℃热处理2h得到粒径10微米二氧化硅包覆的磷酸锆钙陶瓷颗粒。
在石英粉体中混入体积百分比18%的二氧化硅包覆的磷酸锆钙陶瓷颗粒,溶剂水的加入比例为石英和二氧化硅包覆的磷酸锆钙两种粉体总重量的120%,球磨12h后形成陶瓷浆料,注浆成型,随后在空气气氛下于1150℃烧结1h,形成低膨胀低介电石英陶瓷材料,材料室温-1000℃线膨胀系数近似为零,室温-1000℃介电常数为3.8-4.0,损耗角正切≤0.006(@10GHz),抗弯强度38MPa。
实施例2
按照CaZr4(PO4)6对应的摩尔比,在磷酸溶液中首先溶入碳酸钙,随后加入氢氧化锆和碳酸锆,球磨混合均匀后干燥过筛,在空气气氛1300℃热处理3h,得到结晶良好的磷酸锆钙陶瓷粉体。
把磷酸锆钙粉体加入硅溶胶溶液搅拌均匀,二氧化硅占包覆颗粒的体积百分比为15%,硅溶胶平均粒径20nm,质量百分比浓度为10%,采用喷雾干燥制粉,随后在空气气氛1250℃热处理1h得到粒径25微米二氧化硅包覆的磷酸锆钙陶瓷颗粒。
在硅酸钇(Y2O3·SiO2)陶瓷材料粉体中混入体积百分比60%的二氧化硅包覆的磷酸锆钙陶瓷颗粒,溶剂水的加入比例为两种粉体总重量的150%,球磨8h后形成陶瓷浆料,干燥过筛后干压成型,随后在空气气氛下于1600℃烧结1h,形成低膨胀低介电陶瓷材料,材料室温-1000℃线膨胀系数为0.3×10-6/K,室温-1000℃介电常数为5.2~5.8,损耗角正切≤0.08,抗弯强度35MPa。
实施例3
按照CaZr4(PO4)6对应的摩尔比,在磷酸溶液中首先溶入氧化钙,随后加入碳酸锆,搅拌均匀后干燥过筛,在空气气氛1500℃热处理1h,得到结晶良好的磷酸锆钙陶瓷粉体。
把磷酸锆钙粉体加入硅溶胶溶液球磨均匀,二氧化硅占包覆颗粒的体积百分比为20%,硅溶胶平均粒径30nm,质量百分比浓度为12%,采用喷雾干燥制粉,随后在空气气氛1300℃热处理1h得到粒径40微米二氧化硅包覆的磷酸锆钙陶瓷颗粒。
在氧化铝陶瓷材料粉体中混入体积百分比80%的二氧化硅包覆的磷酸锆钙陶瓷颗粒,溶剂水的加入比例为两种粉体总重量的100%,球磨20h后形成陶瓷浆料,干燥过筛后冷等静压成型,随后在空气气氛下于1500℃烧结2h,形成低膨胀低介电陶瓷材料,材料室温-1000℃线膨胀系数为~0.1×10-6/K,室温-1000℃介电常数为6.1-6.6,损耗角正切≤0.01,抗弯强度为32MPa。
实施例4
按照CaZr4(PO4)6对应的摩尔比,在磷酸溶液中首先溶入氢氧化钙和碳酸钙,随后加入氢氧化锆,搅拌均匀后干燥过筛,在空气气氛1350℃热处理2.5h,得到结晶良好的磷酸锆钙陶瓷粉体。
把磷酸锆钙粉体加入硅溶胶溶液搅拌均匀,二氧化硅占包覆颗粒的体积百分比为12%,硅溶胶平均粒径16nm,质量百分比浓度为8%,采用喷雾干燥制粉,随后在空气气氛1200℃热处理1h得到粒径16微米二氧化硅包覆的磷酸锆钙陶瓷颗粒。
在镁铝尖晶石(MgO·Al2O3)陶瓷材料粉体中混入体积百分比75%的二氧化硅包覆的磷酸锆钙陶瓷颗粒,溶剂水的加入比例为两种粉体总质量的140%,球磨16h后形成陶瓷浆料,注浆成型,随后在空气气氛下于1400℃烧结3h,形成低膨胀低介电陶瓷材料,材料室温-1000℃线膨胀系数为~0.3×10-6/K,室温-1000℃介电常数为4.4-4.8,损耗角正切≤0.008,抗弯强度为46MPa。以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (13)

1.一种抗热冲击氧化物透波陶瓷材料,其特征在于,包含如下体积百分比含量的组分:
氧化物透波陶瓷材料基体 20%~92%
二氧化硅包覆的磷酸锆钙陶瓷 8%~80%;
所述氧化物透波陶瓷材料基体的介电常数≤10。
2.根据权利要求1所述的一种抗热冲击氧化物透波陶瓷材料,其特征在于,所述氧化物透波陶瓷材料基体为石英、硅酸钇、镁铝尖晶石、莫来石、氧化铝、氧化钇或氧化铍中一种或一种以上组合。
3.根据权利要求1所述的一种抗热冲击氧化物透波陶瓷材料,其特征在于,所述磷酸锆钙陶瓷颗粒成分为晶态CaZr4(PO4)6
4.根据权利要求1所述的一种抗热冲击氧化物透波陶瓷材料,其特征在于,所述二氧化硅包覆的磷酸锆钙陶瓷颗粒粒径为5~50微米,二氧化硅占所述二氧化硅包覆的磷酸锆钙陶瓷颗粒的体积百分比为5~20%。
5.根据权利要求1-4任一项所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)制备磷酸锆钙陶瓷颗粒;
(2)磷酸锆钙陶瓷颗粒表面包覆二氧化硅;
(3)在氧化物透波陶瓷基体材料粉体中混入二氧化硅包覆的磷酸锆钙陶瓷颗粒后成型;
(4)在空气气氛下热处理后,得到抗热冲击氧化物透波陶瓷材料。
6.根据权利要求5所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述步骤(1)中,制备磷酸锆钙陶瓷颗粒的具体过程如下:
在磷酸溶液中首先溶入含钙化合物,随后加入含锆化合物,采用球磨或搅拌的方式混合均匀后干燥过筛,在空气气氛热处理后,得到磷酸锆钙陶瓷颗粒。
7.根据权利要求6所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述含钙化合物为氢氧化钙、氧化钙或碳酸钙中的一种或多种,所述含锆化合物为氧化锆、氢氧化锆或碳酸锆中的一种或多种。
8.根据权利要求6所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述空气气氛热处理条件为1300℃-1500℃热处理1-3h。
9.根据权利要求5所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述步骤(2)中,磷酸锆钙陶瓷颗粒表面包覆二氧化硅具体过程如下:将磷酸锆钙与硅溶胶通过球磨或搅拌混合均匀后,通过喷雾干燥法形成初步包覆的颗粒,在空气气氛热处理后,得到二氧化硅包覆的磷酸锆钙陶瓷粉体。
10.根据权利要求9所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述空气气氛热处理条件为1000℃-1300℃热处理1-2h。
11.根据权利要求9所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述硅溶胶平均粒径介于5-30nm,质量百分比浓度为2-12%。
12.根据权利要求6-11中任一项所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述步骤(3)中,在氧化物透波陶瓷基体材料粉体中混入二氧化硅包覆的磷酸锆钙陶瓷颗粒后成型的具体过程如下:把二氧化硅包覆的磷酸锆钙陶瓷颗粒和氧化物透波陶瓷基体材料粉体通过球磨混合,溶剂为水,水的加入比例为两种粉体总质量的100-150%,球磨时间8-24h,之后进行成型。
13.根据权利要求5所述的一种抗热冲击氧化物透波陶瓷材料的制备方法,其特征在于,所述步骤(4)中空气气氛下热处理条件为温度为1100-1600℃,保温时间1-3h。
CN202011181278.5A 2020-10-29 2020-10-29 一种抗热冲击氧化物透波陶瓷材料及其制备方法 Active CN112341170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011181278.5A CN112341170B (zh) 2020-10-29 2020-10-29 一种抗热冲击氧化物透波陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011181278.5A CN112341170B (zh) 2020-10-29 2020-10-29 一种抗热冲击氧化物透波陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112341170A true CN112341170A (zh) 2021-02-09
CN112341170B CN112341170B (zh) 2022-05-24

Family

ID=74355705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011181278.5A Active CN112341170B (zh) 2020-10-29 2020-10-29 一种抗热冲击氧化物透波陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112341170B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849906A (zh) * 2022-12-28 2023-03-28 常州市卓群纳米新材料有限公司 一种热喷涂用球形钇基复合陶瓷的制备方法
CN115872732A (zh) * 2023-02-23 2023-03-31 中国人民解放军国防科技大学 一种多孔硅酸钇-氧化铝复相透波陶瓷及其制备方法
CN116675534A (zh) * 2023-02-23 2023-09-01 中国人民解放军国防科技大学 一种多孔Y-Si-O透波陶瓷及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102836A (en) * 1990-06-06 1992-04-07 Center For Innovative Technology Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
CN1597611A (zh) * 2004-07-21 2005-03-23 昆明理工大学 具有零膨胀特性的磷酸盐陶瓷材料Ca1-xBaxZr4P6O24及其制备方法
CN101401951A (zh) * 2008-11-17 2009-04-08 昆明理工大学 含二氧化硅的磷酸钙生物活性陶瓷材料及其制备方法
CN101401950A (zh) * 2008-11-17 2009-04-08 昆明理工大学 含二氧化硅的纳米磷酸钙生物活性陶瓷材料及其制备方法
US20170015600A1 (en) * 2014-09-19 2017-01-19 Hrl Laboratories, Llc Thermal and environmental barrier coating for ceramic substrates
CN108358624A (zh) * 2018-03-12 2018-08-03 济南大学 一种低膨胀磷酸盐陶瓷材料及其制备方法
CN111718121A (zh) * 2019-03-20 2020-09-29 山东工业陶瓷研究设计院有限公司 一种具有透波性能的低熔点硼酸盐材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102836A (en) * 1990-06-06 1992-04-07 Center For Innovative Technology Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
CN1597611A (zh) * 2004-07-21 2005-03-23 昆明理工大学 具有零膨胀特性的磷酸盐陶瓷材料Ca1-xBaxZr4P6O24及其制备方法
CN101401951A (zh) * 2008-11-17 2009-04-08 昆明理工大学 含二氧化硅的磷酸钙生物活性陶瓷材料及其制备方法
CN101401950A (zh) * 2008-11-17 2009-04-08 昆明理工大学 含二氧化硅的纳米磷酸钙生物活性陶瓷材料及其制备方法
US20170015600A1 (en) * 2014-09-19 2017-01-19 Hrl Laboratories, Llc Thermal and environmental barrier coating for ceramic substrates
CN108358624A (zh) * 2018-03-12 2018-08-03 济南大学 一种低膨胀磷酸盐陶瓷材料及其制备方法
CN111718121A (zh) * 2019-03-20 2020-09-29 山东工业陶瓷研究设计院有限公司 一种具有透波性能的低熔点硼酸盐材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANTOSH Y. LIMAYE: "Synthesis, sintering and thermal expansion of Cal_xSrxZr.P6Oa.- an ultra-low thermal expansion ceramic system", 《JOURNAL OF MATERIALS SCIENCE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849906A (zh) * 2022-12-28 2023-03-28 常州市卓群纳米新材料有限公司 一种热喷涂用球形钇基复合陶瓷的制备方法
CN115849906B (zh) * 2022-12-28 2023-12-26 常州市卓群纳米新材料有限公司 一种热喷涂用球形钇基复合陶瓷的制备方法
CN115872732A (zh) * 2023-02-23 2023-03-31 中国人民解放军国防科技大学 一种多孔硅酸钇-氧化铝复相透波陶瓷及其制备方法
CN115872732B (zh) * 2023-02-23 2023-06-06 中国人民解放军国防科技大学 一种多孔硅酸钇-氧化铝复相透波陶瓷及其制备方法
CN116675534A (zh) * 2023-02-23 2023-09-01 中国人民解放军国防科技大学 一种多孔Y-Si-O透波陶瓷及其制备方法

Also Published As

Publication number Publication date
CN112341170B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN112341170B (zh) 一种抗热冲击氧化物透波陶瓷材料及其制备方法
CN102145978B (zh) 用于连接SiC陶瓷的玻璃焊料、制备方法及应用
CN113603465B (zh) 一种温控器陶瓷材料及其制备方法
JP2010508231A (ja) 耐熱材料製造用配合物
EP0295834A1 (en) High temperature resistant inorganic composition
US20120276365A1 (en) Refractory Porous Ceramics
CN111548133B (zh) 一种稀土复合高温纳米陶瓷涂层的制造方法
CN111621175A (zh) 一种包含纳米氧化铝的陶瓷纤维涂料
Wu et al. Microstructure and performances of Gd2O3-added corundum–mullite ceramic composites for concentrated solar power applications
CN100358833C (zh) 一种磷酸锆陶瓷材料的制备方法
US20090253570A1 (en) High-temperature-stable ceramic layers and shaped bodies
EP2297055A1 (en) Coated reactor tube, method of making the coated tube, method for making bismuth containing glass frit powders using aerosol decomposition in said reactor tube.
Aneziris et al. Carbon containing castables and more
CN110550965A (zh) 一种莫来石晶须低温生长增韧型磷酸铝基高温胶制备方法
JP4297204B2 (ja) 無機繊維質成形体のコート材及びコートされた無機繊維質成形体
CN112142485B (zh) 陶瓷纤维材料及其制备方法
Boakye et al. Two Phase Monazite/Xenotime 30LaPO4–70YPO4 Coating of Ceramic Fiber Tows
Li et al. Effect of reduced Al2O3 mole ratio on fabrication of cordierite ceramic by solid-state sintering method
Arcaro et al. LZS/Al2O3 nanostructured composites obtained by colloidal processing and spark plasma sintering
Schneider et al. Thermal stability of Nextel 720 alumino silicate fibers
CN110562945A (zh) 一种α-磷酸三钙及其制备方法
CN116535886B (zh) 耐高温隔热保温涂料及其制备方法
JP7107075B2 (ja) 組成物、グリーンシート、焼成物、及びガラスセラミックス基板
CN115433017B (zh) 一种耐火砖材料及其制备方法与应用
CN113511907B (zh) 一种钛铝合金熔炼用熵稳定耐火材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant