WO2018040297A1 - 乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法 - Google Patents

乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法 Download PDF

Info

Publication number
WO2018040297A1
WO2018040297A1 PCT/CN2016/106196 CN2016106196W WO2018040297A1 WO 2018040297 A1 WO2018040297 A1 WO 2018040297A1 CN 2016106196 W CN2016106196 W CN 2016106196W WO 2018040297 A1 WO2018040297 A1 WO 2018040297A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
parts
latex
graft copolymer
mass
Prior art date
Application number
PCT/CN2016/106196
Other languages
English (en)
French (fr)
Inventor
何宇
潘杰辉
罗燕群
王兴强
何显新
石建伟
Original Assignee
广州熵能创新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州熵能创新材料股份有限公司 filed Critical 广州熵能创新材料股份有限公司
Publication of WO2018040297A1 publication Critical patent/WO2018040297A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a process for producing a vinyl graft copolymer, a vinyl graft copolymer obtained by the process, and a resin composition containing the vinyl graft copolymer.
  • Patent Document 2 discloses that a network structure obtained by crosslinking each of the two polymers is continuously interpenetrated, and the obtained mixture is added to the material.
  • the method of modification discloses a method of copolymerizing a macromonomer formed of a polysiloxane and a diisocyanate with an acrylate monomer.
  • Patent Document 4 discloses a method of graft copolymerizing a polyorganosiloxane rubber and a vinyl monomer.
  • Patent Document 1 US4826929 (A)
  • Patent Document 2 US5424375(A)
  • Patent Document 3 US6545114 (B1)
  • Patent Document 4 CN103391952 (A)
  • the polysiloxane and the vinyl monomer have not been copolymerized into a composite material which is excellent in compatibility, and is excellent in overall properties, particularly flame retardancy and impact resistance under low temperature conditions.
  • an object of the present invention is to provide a graft copolymer capable of copolymerizing a polysiloxane and a vinyl monomer to have good compatibility, flame retardancy and impact resistance under low temperature conditions.
  • a method, and a vinyl-based graft copolymer obtained by the method and a resin composition containing the vinyl-based graft copolymer are provided.
  • the inventors have conducted a series of studies and found that the agglomeration of the silicone-based latex is simultaneously carried out with the radical polymerization of the vinyl monomer, and the obtained agglomerate is graft-polymerized with the vinyl monomer.
  • a vinyl-based graft copolymer was obtained, thereby preparing a vinyl-based graft copolymer having good compatibility, flame retardancy, and impact resistance under low temperature conditions. Further, it has been found that the flame retardancy of the vinyl-based graft copolymer and the impact resistance under low-temperature conditions can be further improved by controlling the particle size of the agglomerate and optimizing the ratio of the vinyl monomer.
  • a first aspect of the invention provides a process for producing a vinyl-based graft copolymer comprising: attaching a silicone-based latex in the presence of a silicone-based latex and a vinyl monomer (b1) a step of simultaneously polymerizing a vinyl monomer (b1) with a polysiloxane latex to obtain an agglomerate; and graft-polymerizing the obtained agglomerate with the vinyl monomer (b2) to obtain ethylene
  • the step of grafting a copolymer, wherein the vinyl monomers (b1) and (b2) may be the same or different.
  • the polysiloxane latex is a latex of a linear polysiloxane having a vinyl group, and a vinyl content in the silicone latex is relative to the polysiloxane 100% by mass of the solid content in the latex is 0.01 to 3% by mass.
  • the above silicone-based latex is obtained by polymerizing a dimethylsiloxane monomer, a vinyl siloxane monomer, and a capping agent as needed, in the above polysiloxane.
  • a crosslinking agent is not used in the production of the alkane latex, and the number average molecular weight (Mn) of the above silicone latex is 200,000 to 600,000.
  • the pre-agglomeration silicone latex has an average particle diameter of 20 to 80 nm, and the agglomerated silicone latex has an average particle diameter of 100 to 800 nm.
  • the amount of the silicone-based latex added as a solid component, the amount of the vinyl monomer (b1) added, and the amount of the vinyl monomer (b2) added are set in total.
  • the silicone-based latex is added in an amount of 20 to 40 parts by mass based on the solid content, and the above ethylene is used.
  • the total addition amount of the base monomer (b1) and the above vinyl monomer (b2) is 60 to 80 parts by mass.
  • the amount of the silicone-based latex added as a solid component, the amount of the vinyl monomer (b1) added, and the amount of the vinyl monomer (b2) added are set in total.
  • the amount is 100 parts by mass
  • the vinyl monomer (b1) is added in an amount of 20 to 60 parts by mass
  • the vinyl monomer (b2) is added in an amount of 20 to 40 parts by mass.
  • the vinyl monomer (b1) and the vinyl monomer (b2) are selected from the group consisting of methyl (meth)acrylate, ethyl (meth)acrylate, and hydroxypropyl (meth)acrylate Ester, n-butyl (meth)acrylate, (meth)acrylic acid, isooctyl (meth)acrylate, (meth)acrylonitrile, N-methylolacrylamide, styrene and (meth)acrylic acid One or more of borneol esters.
  • a vinyl-based graft copolymer obtained by the production method according to the first aspect, wherein the vinyl-based graft copolymer has a butanone-insoluble component of 80% by mass or more.
  • the number average molecular weight (Mn) of the butanone-soluble component of the vinyl-based graft copolymer is 10,000 to 140,000, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) ( Mw/Mn) is 2.0 to 3.0.
  • a resin composition comprising the vinyl-based graft copolymer of the second aspect and a thermoplastic resin.
  • the present invention it is possible to provide a method for preparing a vinyl-based graft copolymer which is capable of copolymerizing a polysiloxane and a vinyl monomer to have good compatibility, flame retardancy and low temperature conditions.
  • Impact-resistant vinyl graft copolymer when the vinyl graft copolymer obtained by the above production method is mixed with a thermoplastic resin such as PC, a resin composition excellent in both low-temperature impact resistance and flame retardancy can be obtained.
  • the resin composition of the present invention can be widely used in electronic appliances and industrial machine parts.
  • the preparation method of the vinyl-based graft copolymer of the present invention comprises: agglomerating the polysiloxane latex in the presence of a silicone latex and a vinyl monomer (b1) while allowing a vinyl monomer (b1) a step of radically polymerizing with a silicone-based latex to obtain an agglomerate; and a step of graft-polymerizing the obtained agglomerate with a vinyl monomer (b2) to obtain a vinyl-based graft copolymer
  • the vinyl monomers (b1) and (b2) may be the same or different.
  • a graft copolymer of a multilayer structure can be obtained, which can be used as an impact modifier, which is added to a thermoplastic resin to obtain excellent low temperature impact resistance.
  • a flame retardant resin composition e.g., a graft copolymer of a multilayer structure.
  • the above multilayer structure means that the polymer particles are composed of a core and an outer shell, and the inner core and the outer shell respectively have different properties, and the influence on the matrix resin is also different.
  • the core has most of the properties of the polymer particles themselves, and the outer shell acts as a synergistic effect, helping the particles in the matrix tree. Dispersion in fat.
  • the polysiloxane latex used in the production method of the present invention is preferably a latex of a linear polysiloxane having a vinyl group (reactive functional group). This is because the linear polysiloxane has a high degree of regularity, and the surface of the particles is less likely to remain silanol, while the branched polysiloxane has a low degree of regularity and a large amount of silanol is likely to remain on the surface of the particles.
  • the residual silanol changes the surface energy of the latex particles, making agglomeration more difficult. Moreover, there are many factors affecting the residual amount of silanol on the surface of the particles in production, and it is difficult to stabilize the production batch.
  • the vinyl content in the silicone-based latex is preferably 0.01 to 3% by mass based on 100% by mass of the solid content in the silicone-based latex, and the lower limit thereof is preferably 0.02% by mass, more preferably 0.1% by mass, still more preferably 0.8% by mass, and the upper limit thereof is preferably 2.5% by mass, more preferably 2% by mass, still more preferably 1% by mass.
  • the above silicone-based latex can be obtained by polymerization of a dimethylsiloxane monomer, a vinyl siloxane monomer, and a capping agent as needed.
  • a crosslinking agent it is preferred not to use a crosslinking agent. This is because, when a crosslinking agent is used, a branched polysiloxane is easily formed. As described above, the molecular weight of the branched polysiloxane is low, and a large amount of silanol easily remains on the surface of the particle, and the remaining Silanol changes the surface energy of the latex particles, making agglomeration more difficult.
  • dimethylsiloxane monomer examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane. These can be used alone. One type may be used in combination of two or more types. Among them, octamethylcyclotetrasiloxane is preferably used from the viewpoint of easily controlling the particle size distribution.
  • vinyl siloxane-based monomer examples include ⁇ -(meth)acryloyloxypropyldimethoxymethylsilane and ⁇ -(meth)acryloyloxypropyl group.
  • hexamethyldisiloxane tetramethyldivinyldisiloxane
  • methoxytrimethylsilane ethoxytrimethylsiloxane
  • Methylvinyl methoxy silane dimethyl vinyl ethoxy silane, etc. may be used alone or in combination of two or more.
  • a mixed monomer containing a dimethylsiloxane monomer, a vinyl siloxane monomer, and a capping agent as needed is mixed with an emulsifier, an acid catalyst, water, or the like, and pre-emulsified to obtain a monomer. Emulsion. Then, the above monomer emulsion is polymerized at a certain temperature. Finally, the acid is neutralized with a basic substance to obtain a silicone-based latex.
  • the number average molecular weight (Mn) of the above silicone-based latex is preferably 200,000 to 600,000, and the lower limit is more It is preferably 220,000, more preferably 240,000, still more preferably 260,000, and the upper limit thereof is more preferably 500,000, still more preferably 400,000, and still more preferably 300,000.
  • the polysiloxane latex is agglomerated in the presence of the silicone latex and the vinyl monomer (b1) while the vinyl monomer (b1) and the silicone latex are Radical Polymerization.
  • the average particle diameter of the polysiloxane latex before agglomeration is preferably 20 to 80 nm.
  • the average particle diameter of the polysiloxane latex after agglomeration is preferably from 100 to 800 nm.
  • the average particle diameter of the silicone-based latex can be controlled by changing the kind of the emulsifier and the amount thereof, and can also be controlled by changing the kind of the vinyl monomer (b1) and the amount thereof.
  • the average particle diameter of the polysiloxane-based latex before agglomeration is more preferably 25 to 79 nm, and more It is preferably 40 to 78 nm, more preferably 60 to 78 nm, and the average particle diameter of the polysiloxane latex after agglomeration is more preferably from 250 to 800 nm, still more preferably from 320 to 796 nm, still more preferably from 400 to 780 nm.
  • the amount of the emulsifier in the process of synthesizing the agglomerate is relative to the solid content of the silicone latex and the vinyl group.
  • the total amount of the monomer (b1) to be added is preferably 0.3 to 1.2 parts by mass, more preferably 0.4 to 1.0 part by mass, still more preferably 0.5 to 0.9 parts by mass, even more preferably 0.5 to 0.8 parts by mass.
  • examples of the emulsifier which can simultaneously perform agglomeration and radical polymerization include sodium lauryl sulfate, sodium dodecyl diphenyl ether disulfonate, and sodium cetyl diphenyl ether disulfonate.
  • the amount of the silicone-based latex added as a solid component, the amount of the vinyl monomer (b1) added, and the vinyl monomer (b2) When the total amount of the addition amount is 100 parts by mass, the amount of the silicone latex to be added in terms of solid content is preferably 20 to 40 parts by mass, and the total of the vinyl monomer (b1) and the vinyl monomer (b2) is added.
  • the amount is preferably 60 to 80 parts by mass.
  • the addition amount of the silicone-based latex in terms of solid content is more preferably 25 to 40 parts by mass, still more preferably 30 to 40, from the viewpoint of having both flame retardancy and impact resistance (especially, low-temperature impact resistance).
  • the mass part is more preferably 30 to 35 parts by mass.
  • the total amount of the vinyl monomer (b1) and the vinyl monomer (b2) to be added is more preferably 60 to 75 parts by mass, still more preferably 60 to 70 parts by mass, still more preferably 65 to 70 parts by mass.
  • the vinyl monomer (b1) is preferably 20 to 60 parts by mass, more preferably 25 to 55 parts by mass, still more preferably 30 to 50 parts by mass
  • the amount of the vinyl monomer (b2) to be added is preferably 20 to 40 parts by mass, more preferably It is preferably 22 to 35 parts by mass, and more preferably 25 to 30 parts by mass.
  • the silicone-based latex in the synthesis of the agglomerate, may be added to the vinyl monomer at one time, or the polysiloxane may be used at a fixed rate.
  • the alkane latex is added dropwise to the vinyl monomer.
  • a chemical bond can be introduced into the polysiloxane-based polymer by a vinyl group on the polysiloxane during agglomeration.
  • An agglomerate is formed between the vinyl polymer and the vinyl polymer.
  • the silicone latex is agglomerated by a vinyl polymer formed during the polymerization to form agglomerates.
  • the vinyl monomers (b1) and (b2) used in the method for producing the vinyl-based graft copolymer of the present invention may be the same or different, and examples thereof include methyl (meth)acrylate and (meth)acrylic acid. Ethyl ester, hydroxypropyl (meth)acrylate, n-butyl (meth)acrylate, (meth)acrylic acid, isooctyl (meth)acrylate, (meth)acrylonitrile, N-methylol acrylamide , styrene and isobornyl (meth)acrylate. These vinyl monomers may be used alone or in combination of two or more.
  • the agglomerate is graft-copolymerized with the vinyl monomer (b2)
  • a conventional emulsion polymerization method is selected, and it is preferably added by a starvation method.
  • the temperature and the addition of the molecular chain transfer agent may be appropriately increased. From the viewpoint of improving the dispersibility of the vinyl-based graft copolymer as an impact modifier in the resin, it is preferred to add an appropriate molecular chain transfer agent.
  • one or more of the inorganic peroxide, the organic peroxide, and the azo initiator may be used to make the silicone latex or
  • the agglomerates are polymerized with a vinyl monomer to obtain a composite latex.
  • inorganic peroxide examples include hydrogen peroxide, potassium persulfate, and ammonium persulfate. These inorganic peroxides may be used alone or in combination of two or more.
  • organic peroxide examples include dibenzoyl peroxide, dicumyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxy neoheptate, and succinic acid peroxide. , tert-butyl peroxy-2-ethylhexanoate, t-butyl peroxypivalate, and the like. These organic peroxides may be used alone or in combination of two or more.
  • azo initiator examples include 2,2'-azobisisobutyronitrile, 2,2'-azobisisoheptanenitrile, and 4,4'-azobis(4-cyanovaleric acid). 2,2'-azobis[N-(2-carboxymethyl)-2-methylpropionamidine hydrate, 2,2'-azobis(N,N'-dimethyleneisobutylene) Dihydrochloride and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride and the like. These azo initiators may be used alone or in combination of two or more.
  • the vinyl-based graft copolymer obtained by the production method of the present invention preferably has a butanone-insoluble component of 80% by mass or more, more preferably 90% by mass, still more preferably 95% by mass or more, and still more preferably 97% by mass or more.
  • the number average molecular weight (Mn) of the butanone-soluble component of the obtained vinyl-based graft copolymer is preferably 10,000 to 140,000, and the lower limit thereof is more preferably 40,000, still more preferably 50,000, still more preferably 60,000.
  • the limit is more preferably 120,000, still more preferably 110,000, still more preferably 100,000.
  • the resin composition obtained by adding the vinyl-based graft copolymer to the thermoplastic resin has good low-temperature impact resistance, and the above-mentioned butanone
  • the number average molecular weight (Mn) of the soluble component is less than 140,000, the resin composition obtained by adding the vinyl graft copolymer to the thermoplastic resin is excellent in transparency.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the butanone-soluble component of the vinyl-based graft copolymer is preferably 2.0 to 3.0. More preferably, Mw/Mn is from 2.5 to 3.0.
  • the resin composition of the present invention contains a vinyl-based graft copolymer and a resin (particularly a thermoplastic resin).
  • the vinyl-based graft copolymer is usually added to the resin (particularly, a thermoplastic resin) in the form of a powder.
  • the powder of the vinyl-based graft copolymer is subjected to a series of post-treatment processes such as coagulation, drying, and crushing of the vinyl-based graft copolymer obtained by the above production method, thereby finally obtaining a powder of a vinyl-based graft copolymer. .
  • thermoplastic resin examples include polystyrene (PS), (meth) acrylate styrene copolymer (MS), styrene acrylonitrile copolymer (SAN), and acrylonitrile butadiene styrene copolymer.
  • PS polystyrene
  • MS meth acrylate styrene copolymer
  • SAN styrene acrylonitrile copolymer
  • ABS acrylate, styrene, acrylonitrile copolymer
  • ASA acrylonitrile copolymer
  • AES acrylonitrile
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PET Polyethylene terephthalate
  • PBT polybutylene terephthalate
  • thermoplastic resins may be used alone or in combination of two or more.
  • the content of the vinyl-based graft copolymer in the resin composition is preferably from 1 to 35 parts by mass, more preferably from 2 to 20 parts by mass, even more preferably from 3 to 10 parts by mass, per 100 parts by mass of the thermoplastic resin.
  • the obtained composition has high transparency, good impact resistance and flame retardancy, and when it is 35 parts by mass or less, the thermoplastic resin is not impaired. The characteristics, and the impact resistance, transparency and flame retardancy are optimal.
  • the resin composition preferably further contains one or more of an antioxidant, a lubricant, an anti-drip agent, a filler, and a pigment which are generally used.
  • an antioxidant include a phosphorus-based antioxidant and a phenol-based antioxidant.
  • the lubricant include stearic acid, glyceryl stearate, paraffin wax, and polyethylene paraffin.
  • the anti-drip agent include PTFE and the like.
  • the filler include calcium carbonate, magnesium hydroxide, and titanium dioxide.
  • the pigment include iron red, iron yellow, zinc iron yellow, and the like.
  • the impact strength was tested in accordance with GB/T 1843-2008 "Determination of Izod Impact Strength" and expressed in kilojoules per square meter (kJ/m 2 ). Among them, regarding the low-temperature impact strength, the cantilever beam notched impact strength was measured after the spline was placed at a constant temperature of -30 ° C and -40 ° C for 48 hours.
  • Butanone insoluble matter (%) 100 ⁇ (mass of butanone insoluble component after drying) / (mass of powder before Soxhlet extraction).
  • the butanone-insoluble component obtained by the above method was used to calculate the graft ratio according to the following formula.
  • Graft ratio (amount of vinyl monomer (b2) grafted) / (total amount of vinyl monomer (b2) before grafting) ⁇ 100%
  • the number average molecular weight/weight average molecular weight of the butanone-soluble component of the vinyl-based graft copolymer was measured, and the butanone-soluble component of the vinyl-based graft copolymer was collected and dried by a vacuum dryer at 80 ° C. hour.
  • the molecular weight (number average molecular weight / weight average molecular weight) of the obtained soluble matter was measured by gel permeation chromatography (GPC). When the GPC measurement was carried out, the eluent was THF and the temperature was 23 ⁇ 2 °C.
  • the number average molecular weight of the silicone-based latex was measured in the same manner as described above, that is, the silicone-based latex was dried at 80 ° C for 24 hours using a vacuum dryer.
  • the molecular weight (number average molecular weight / weight average molecular weight) of the obtained dried product was measured by gel permeation chromatography (GPC). When the GPC measurement was carried out, the eluent was THF and the temperature was 23 ⁇ 2 °C.
  • the sheet-like formed body was cut into a thickness of 3 mm ⁇ a width of 12.7 mm ⁇ a length of 127 mm, and five identical-sized splines were produced in parallel, and they were placed in an environment of a temperature of 23 ° C and a humidity of 50% for 24 hours, and then subjected to a UL94 test. Calculate the number of roots produced by the flame drop in the spline that causes the cotton wool to catch fire. The smaller the number of roots, the more excellent the flame retardancy.
  • the test piece (length 80.0 mm, width 10.0 mm, thickness 4 mm) was heat-treated in an oven at a temperature of 120 ° C for 12 hours.
  • the test piece was taken out from the oven, and allowed to stand in an environment of a temperature of 23 ° C and a relative humidity of 50% for 24 hours or more, and then the impact strength was measured at a temperature of 23 ° C as an index of heat aging resistance.
  • the heating rate was set to 120 ° C / h, and the deformation amount was 0.21 mm.
  • the deformation amount measuring device was adjusted before each test to make the deformation amount zero.
  • the latex was added dropwise to the British LS-230 Coulter laser scattering test cell to determine the average particle size of the polymer particles in the latex.
  • the solid content of the silicone latex of Example 1-3 was about 35%.
  • the vinyl content in the silicone-based latex (100% by mass based on the solid content in the silicone-based latex) and the molecular weight of the silicone-based latex are shown in Table 1.
  • a vinyl graft copolymer was obtained in the same manner as in Example 8 except that the amount of the emulsifier sodium dodecylbenzenesulfonate was changed to 1.05 part at the time of synthesizing the agglomerates.
  • a graft copolymer was obtained in the same manner as in Example 6 except that the amount of the emulsifier sodium dodecylsulfonate was changed to 0.15 part at the time of synthesizing the agglomerates.
  • Comparative Example 5 Polymer obtained in Example 1 of Chinese Patent Application No. CN 103391952 (A) (without agglomeration).
  • Comparative Example 6 A model of S2100 manufactured by Mitsubishi Rayon Co., Ltd., Japan.
  • the powder of the vinyl graft copolymer was mixed with a PC resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: S-2000F) in the proportions shown in Table 3, and a twin-screw extruder (Jean Electromechanical) was used. Co., Ltd. SHJ-36) melt-kneaded at a mold temperature of 280 °C. Then, 0.3 parts of a phosphorus-based antioxidant (trade name: ADEAKSTAB PEP36, manufactured by ADEKA Co., Ltd.) was added, and phenolic antioxidants were added.
  • a phosphorus-based antioxidant trade name: ADEAKSTAB PEP36, manufactured by ADEKA Co., Ltd.
  • the obtained pellets were dried at 80 ° C for 12 hours, and then injection-molded at 280 ° C by an injection molding machine (Zhuzhou Shuangsheng Plastic Machinery Factory SSF500-III). According to the requirements, a test piece for impact test, combustion test, and heat aging test was separately prepared using a multi-cavity metal mold. The properties of impact strength, flame retardancy, heat aging resistance, heat resistance and the like were evaluated using pellets and test pieces, and the results are shown in Table 3.
  • Example 3 since the average particle diameter of the silicone-based latex after agglomeration was too small, the number of particles having a particle diameter of 100 nm or less was large. Compared with Example 8, the obtained resin composition did not achieve good effects such as low-temperature impact resistance and heat aging resistance.
  • the resin composition to which the vinyl-based graft copolymer powder obtained in Example 4-8 was added had excellent low-temperature impact resistance, flame retardancy, and heat aging resistance. And since the present invention employs a specific method for synthesizing a vinyl-based graft copolymer so that it is added to a thermoplastic resin, the obtained resin composition is superior in low-temperature impact resistance, flame retardancy and heat resistance.
  • the resin composition of the graft copolymer produced in Comparative Example 5 and Comparative Example 6 was added.
  • the vinyl-based graft copolymer according to the present invention can be mixed with a thermoplastic resin such as PC to prepare a resin composition excellent in low-temperature impact resistance and flame retardancy.
  • a thermoplastic resin such as PC
  • the resin composition of the present invention can be widely used in electronic appliances and industrial machine parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明涉及的乙烯基系接枝共聚物的制备方法包括:在聚硅氧烷系胶乳和乙烯基单体(b1)的存在下,将聚硅氧烷系胶乳附聚,同时使乙烯基单体(b1)与聚硅氧烷系胶乳自由基聚合,得到附聚物的步骤;和使得到的附聚物与乙烯基单体(b2)接枝聚合,得到乙烯基系接枝共聚物的步骤,其中,乙烯基单体(b1)和(b2)可以相同也可以不同。根据本发明的制备方法可以得到一种多层结构的乙烯基系接枝共聚物,该接枝共聚物可以用作抗冲击改性剂,通过将其加入热塑性树脂中,能够得到兼具优异的耐低温冲击性和阻燃性的树脂组合物。

Description

乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法 技术领域
本发明涉及一种乙烯基系接枝共聚物的制备方法、由该制备方法得到的乙烯基系接枝共聚物和含有该乙烯基系接枝共聚物的树脂组合物。
背景技术
热塑性树脂成型品被广泛地应用于日常生活的各个领域中,但是通常经过改性才能具有良好的抗冲击性和阻燃性。加入常用的增韧剂,如MBS、ACR、EVA-g-MAH等,可以赋予热塑性树脂良好的冲击韧性,不过同时也会引起阻燃性的下降。而加入常用的阻燃剂如低聚磷酸酯类化合物,能起到良好的阻燃效果,但是又会降低抗冲击性。因此兼具阻燃和增韧作用的抗冲击改性剂的开发研究越来越具有应用价值。
另外,许多材料虽然在常温下具有优异的抗冲击性,但在低温环境下,都存在耐疲劳强度低、易产生应力开裂及缺口冲击敏感度高的缺点,这些都限制了它们的应用。提高这些材料的低温韧性,扩大其应用范围也非常具有现实意义。
聚硅氧烷具有耐低温性、低表面能、耐水性、耐老化性、耐腐蚀性和耐候性等一系列优异和独特的性能,并且由于结构中含有硅元素,使其具有一定的阻燃效果。目前,专利文献1公开了一种加入聚硅氧烷系聚合物提高树脂的抗冲击性,并使其在高温下依然保持良好的韧性的方法。但是聚硅氧烷系聚合物与很多的热塑性树脂的相容性并不好,而烯烃聚合物与热塑性树脂有良好的相容性,并且由于聚硅氧烷系聚合物的分子主链为饱和的碳-碳键结构、侧链为极性酯基而具有优异的耐候性、耐油性、耐臭氧性和抗紫外线等特性。使聚硅氧烷与乙烯基单体接枝聚合,能够提高聚硅氧烷与聚合物基体的相容性,使弹性颗粒更充分地分布于树脂基体中。
另外,为了综合聚硅氧烷和聚丙烯酸酯的优点,专利文献2公开了一种将这两种聚合物各自交联后所得的网络结构连续地相互穿插、将得到的混合物添加到材料中来进行改性的方法。专利文献3公开了一种将由聚硅氧烷和二异氰酸酯所形成的大分子单体与丙烯酸酯类单体共聚的方法。专利文献4公开了一种将聚有机硅氧烷系橡胶和乙烯基单体接枝共聚的方法。
现有技术文献
专利文献
专利文献1:US4826929(A)
专利文献2:US5424375(A)
专利文献3:US6545114(B1)
专利文献4:CN103391952(A)
发明内容
发明所要解决的课题
但是,在上述文献公开的技术中,还未能将聚硅氧烷和乙烯基单体共聚成相容性良好、综合性能尤其是阻燃性和低温条件下的抗冲击性优异的复合材料。
鉴于上述事实,本发明的课题在于:提供一种能够将聚硅氧烷和乙烯基单体共聚成相容性良好、兼具阻燃性和低温条件下的抗冲击性的接枝共聚物的方法,并且提供由该方法得到的乙烯基系接枝共聚物以及含有该乙烯基系接枝共聚物的树脂组合物。
用于解决课题的方案
本发明人经过一系列研究,结果发现,通过使聚硅氧烷系胶乳的附聚与乙烯基单体的自由基聚合同时进行,并且使得到的附聚物与乙烯基单体接枝聚合,得到乙烯基系接枝共聚物,由此制备一种相容性良好、兼具阻燃性和低温条件下的抗冲击性的乙烯基系接枝共聚物。并且发现通过对附聚物粒径的控制和对乙烯基单体比例的优化,能够进一步提高乙烯基系接枝共聚物的阻燃性和低温条件下的抗冲击性。
本发明的第一方面提供一种乙烯基系接枝共聚物的制备方法,其包括:在聚硅氧烷系胶乳和乙烯基单体(b1)的存在下,将聚硅氧烷系胶乳附聚,同时使乙烯基单体(b1)与聚硅氧烷系胶乳自由基聚合,得到附聚物的步骤;和使得到的附聚物与乙烯基单体(b2)接枝聚合,得到乙烯基系接枝共聚物的步骤,其中,乙烯基单体(b1)和(b2)可以相同也可以不同。
并且,在第一方面中,上述聚硅氧烷系胶乳为具有乙烯基的直链型聚硅氧烷的胶乳,上述聚硅氧烷系胶乳中的乙烯基含量相对于上述聚硅氧烷系胶乳中的固体成分100质量%为0.01~3质量%。
并且,在第一方面中,上述聚硅氧烷系胶乳通过使二甲基硅氧烷类单体、乙烯基硅氧烷类单体和根据需要的封头剂聚合得到,在上述聚硅氧烷系胶乳的制造中不使用交联剂,上述聚硅氧烷系胶乳的数均分子量(Mn)为20万~60万。
并且,在第一方面中,附聚前聚硅氧烷系胶乳的平均粒径为20~80nm,附聚后聚硅氧烷系胶乳的平均粒径为100~800nm。
并且,在第一方面中,将上述聚硅氧烷系胶乳以固体成分计的添加量、上述乙烯基单体(b1)的添加量和上述乙烯基单体(b2)的添加量的合计设为100质量份时,上述聚硅氧烷系胶乳以固体成分计的添加量为20~40质量份,上述乙烯 基单体(b1)和上述乙烯基单体(b2)的合计添加量为60~80质量份。
并且,在第一方面中,将上述聚硅氧烷系胶乳以固体成分计的添加量、上述乙烯基单体(b1)的添加量和上述乙烯基单体(b2)的添加量的合计设为100质量份时,上述乙烯基单体(b1)的添加量为20~60质量份,上述乙烯基单体(b2)的添加量为20~40质量份。
并且,在第一方面中,上述乙烯基单体(b1)和上述乙烯基单体(b2)选自(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟基丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸、(甲基)丙烯酸异辛酯、(甲基)丙烯腈、N-羟甲基丙烯酰胺、苯乙烯和(甲基)丙烯酸异冰片酯中的1种以上。
另外,本发明的第二方面提供一种通过第一方面所述的制备方法而得到的乙烯基系接枝共聚物,该乙烯基系接枝共聚物的丁酮不溶成分为80质量%以上。
并且,在第二方面中,上述乙烯基系接枝共聚物的丁酮可溶成分的数均分子量(Mn)为10000~140000,重均分子量(Mw)和数均分子量(Mn)之比(Mw/Mn)为2.0~3.0。
本发明的第三方面提供一种树脂组合物,其含有第二方面所述的乙烯基系接枝共聚物和热塑性树脂。
发明效果
根据本发明,能够提供一种乙烯基系接枝共聚物的制备方法,该制备方法能够将聚硅氧烷和乙烯基单体共聚成相容性良好、兼具阻燃性和低温条件下的抗冲击性的乙烯基系接枝共聚物。并且将由上述制备方法得到的乙烯基系接枝共聚物与PC等热塑性树脂混合时,能够得到耐低温冲击性和阻燃性都优异的树脂组合物。本发明的树脂组合物可以广泛用于电子电器和工业机械零件。
具体实施方式
首先,对本发明的乙烯基系接枝共聚物的制备方法进行说明。
本发明的乙烯基系接枝共聚物的制备方法包括:在聚硅氧烷系胶乳和乙烯基单体(b1)的存在下,将聚硅氧烷系胶乳附聚,同时使乙烯基单体(b1)与聚硅氧烷系胶乳自由基聚合,得到附聚物的步骤;和使得到的附聚物与乙烯基单体(b2)接枝聚合,得到乙烯基系接枝共聚物的步骤,其中,乙烯基单体(b1)和(b2)可以相同也可以不同。
根据本发明的制备方法可以得到一种多层结构的接枝共聚物,该接枝共聚物可以用作抗冲击改性剂,将其加入热塑性树脂中,能够得到兼具优异的耐低温冲击性和阻燃性的树脂组合物。上述的多层结构是指,聚合物颗粒由内核与外壳组成,内核与外壳分别具备不同的性能,对基体树脂的影响也不同。通常来说内核具备聚合物颗粒本身的大部分性能,外壳则起到协效作用,有助于颗粒在基体树 脂中的分散。
本发明的制备方法中所使用的聚硅氧烷系胶乳优选为具有乙烯基(活性官能团)的直链型聚硅氧烷的胶乳。这是因为,直链型聚硅氧烷分子规整度高,颗粒表面不易残存硅醇,而支链型的聚硅氧烷分子规整度低,颗粒表面容易残存大量的硅醇。残存的硅醇会改变胶乳颗粒的表面能,使得附聚更困难。而且在生产中影响硅醇在颗粒表面的残留量的因素较多,难以实现生产批次的稳定,附聚后产物的粒径及粒径分布更难以预估。另外,通过聚硅氧烷上的乙烯基,可以将化学键导入聚硅氧烷系聚合物与乙烯基聚合物之间,或者接枝单体成分之间。从得到良好附聚效果的观点考虑,优选聚硅氧烷系胶乳中的乙烯基含量相对于聚硅氧烷系胶乳中的固体成分100质量%为0.01~3质量%,其下限值优选为0.02质量%,更优选为0.1质量%,进一步优选为0.8质量%,其上限值优选为2.5质量%,更优选为2质量%,进一步优选为1质量%。
上述聚硅氧烷系胶乳可以通过二甲基硅氧烷类单体、乙烯基硅氧烷类单体和根据需要的封头剂聚合而得到。在本发明的聚硅氧烷系胶乳的制造中优选不使用交联剂。这是因为,在使用交联剂时,容易形成支链型的聚硅氧烷,如上所述,支链型的聚硅氧烷分子规整度低,颗粒表面容易残存大量的硅醇,残存的硅醇会改变胶乳颗粒的表面能,使得附聚更困难。而且在生产中影响硅醇在颗粒表面的残留量的因素较多,难以实现生产批次的稳定,附聚后产物的粒径及粒径分布更难以预估。因此本发明中优选不使用交联剂,有利于形成直链型的聚硅氧烷。
作为上述二甲基硅氧烷类单体的具体例,例如可以列举六甲基环三硅氧烷、八甲基环四硅氧烷、十甲基环五硅氧烷等,这些可以单独使用1种,也可以混合使用2种以上。其中,从容易控制粒径分布的观点出发,优选使用八甲基环四硅氧烷。
作为上述乙烯基硅氧烷类单体的具体例,例如可以列举γ-(甲基)丙烯酰氧基丙基二甲氧基甲基硅烷、γ-(甲基)丙烯酰氧基丙基二乙氧基甲基硅烷、乙烯基甲基二甲氧基硅烷、乙烯基甲基二乙氧基硅烷、四甲基四乙烯基环四硅氧烷等,这些可以单独使用1种,也可以混合使用2种以上。
作为上述封头剂的具体例,例如可以列举六甲基二硅氧烷、四甲基二乙烯基二硅氧烷、甲氧基三甲基硅烷、乙氧基三甲基硅氧烷、二甲基乙烯基甲氧基硅烷、二甲基乙烯基乙氧基硅烷等,这些可以单独使用1种,也可以混合使用2种以上。
关于聚硅氧烷系胶乳的制造方法,可以列举如下的方法。
首先,将含有二甲基硅氧烷类单体、乙烯基硅氧烷类单体以及根据需要的封头剂的混合单体与乳化剂、酸催化剂、水等混合,预乳化后得到单体乳液。然后,在一定的温度下使上述单体乳液聚合。最后,用碱性物质中和酸,即可得到聚硅氧烷系胶乳。
上述聚硅氧烷系胶乳的数均分子量(Mn)优选为20万~60万,其下限值更 优选为22万,更加优选为24万,进一步优选为26万,其上限值更优选为50万,更加优选为40万,进一步优选为30万。
在本发明中,在聚硅氧烷系胶乳和乙烯基单体(b1)的存在下,将聚硅氧烷系胶乳附聚,同时使乙烯基单体(b1)与聚硅氧烷系胶乳自由基聚合。附聚前聚硅氧烷系胶乳的平均粒径优选为20~80nm。附聚后聚硅氧烷系胶乳的平均粒径优选为100~800nm。聚硅氧烷系胶乳的平均粒径可以通过改变乳化剂的种类及其用量来控制,也可以通过改变乙烯基单体(b1)的种类及其用量来控制。其中,从得到的乙烯基系接枝共聚物的抗冲击性(特别是耐低温冲击性)的观点来看,附聚前聚硅氧烷系胶乳的平均粒径更优选为25~79nm,更加优选为40~78nm,进一步优选为60~78nm,附聚后聚硅氧烷系胶乳的平均粒径更优选为250~800nm,更加优选为320~796nm,进一步优选为400~780nm。为了使附聚后聚硅氧烷系胶乳的平均粒径处于上述范围,在合成附聚物的过程中,乳化剂的用量相对于聚硅氧烷系胶乳以固体成分计的添加量和乙烯基单体(b1)的添加量的合计100质量份优选为0.3~1.2质量份,更优选为0.4~1.0质量份,更加优选为0.5~0.9质量份,进一步优选为0.5~0.8质量份。另外,作为可以同时进行附聚和自由基聚合的乳化剂,例如可以列举十二烷基硫酸钠、十二烷基二苯醚二磺酸钠、十六烷基二苯醚二磺酸钠、二辛基琥珀酸钠、十二醇聚醚硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠等。
在本发明的乙烯基系接枝共聚物的制备方法中,将聚硅氧烷系胶乳以固体成分计的添加量、乙烯基单体(b1)的添加量和乙烯基单体(b2)的添加量的合计设为100质量份时,聚硅氧烷系胶乳以固体成分计的添加量优选为20~40质量份,乙烯基单体(b1)和乙烯基单体(b2)的合计添加量优选为60~80质量份。从兼具阻燃性和抗冲击性(特别是耐低温冲击性)的观点考虑,聚硅氧烷系胶乳以固体成分计的添加量更优选为25~40质量份,更加优选为30~40质量份,进一步优选为30~35质量份。乙烯基单体(b1)和乙烯基单体(b2)的合计添加量更优选为60~75质量份,更加优选为60~70质量份,进一步优选为65~70质量份。
将聚硅氧烷系胶乳以固体成分计的添加量、乙烯基单体(b1)的添加量和乙烯基单体(b2)的添加量的合计设为100质量份时,乙烯基单体(b1)的添加量优选为20~60质量份,更优选为25~55质量份、进一步优选为30~50质量份,乙烯基单体(b2)的添加量优选为20~40质量份,更优选为22~35质量份,进一步优选为25~30质量份。
在本发明的乙烯基系接枝共聚物的制备方法中,在合成附聚物时,可以将聚硅氧烷系胶乳一次性添加到乙烯基单体中,也可以利用固定速度将聚硅氧烷系胶乳滴加到乙烯基单体中。为了控制体系的附聚程度,优选将聚硅氧烷系胶乳一次性添加到乙烯基单体中,同时进行附聚和自由基聚合。关于形成附聚物的步骤,在附聚的过程中通过聚硅氧烷上的乙烯基,可以将化学键导入聚硅氧烷系聚合物 与乙烯基聚合物之间,形成附聚物。或者是以在聚合过程中形成的乙烯基聚合物为桥梁,将聚硅氧烷系胶乳附聚在一起,形成附聚物。
在本发明的乙烯基系接枝共聚物的制备方法中使用的乙烯基单体(b1)和(b2)可以相同也可以不同,例如可以列举(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟基丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸、(甲基)丙烯酸异辛酯、(甲基)丙烯腈、N-羟甲基丙烯酰胺、苯乙烯和(甲基)丙烯酸异冰片酯等。这些乙烯基单体可以单独使用1种,也可以混合使用2种以上。
在形成乙烯基系接枝共聚物的步骤中,使附聚物与乙烯基单体(b2)接枝共聚时,选用常规的乳液聚合方式,并优选采用饥饿法添加。为了控制所得到的乙烯基系接枝共聚物的丁酮可溶成分的分子量和接枝率,可以适当地升高温度和添加分子链转移剂。从提高乙烯基系接枝共聚物作为抗冲击改性剂在树脂中的分散性的观点考虑,优选添加适当的分子链转移剂。
在形成附聚物和形成接枝共聚物的步骤中,可以采用无机过氧化物、有机过氧化物以及偶氮系引发剂中的1种以上的聚合引发剂,使聚硅氧烷系胶乳或附聚物与乙烯基单体聚合而得到复合胶乳。
作为无机过氧化物,可以列举过氧化氢、过硫酸钾、过硫酸铵等。这些无机过氧化物可以单独使用1种,也可以混合使用2种以上。
作为有机过氧化物,可以列举过氧化二苯甲酰、过氧化二异丙苯、过氧化氢异丙苯、叔丁基过氧化氢、过氧化新庚酸叔丁酯、过氧化丁二酸、过氧化-2-乙基己酸叔丁酯、过氧化新戊酸叔丁酯等。这些有机过氧化物可以单独使用1种,也可以混合使用2种以上。
作为偶氮系引发剂,可以列举2,2′-偶氮二异丁腈、2,2′-偶氮二异庚腈、4,4′-偶氮双(4-氰基戊酸)、2,2′-偶氮双[N-(2-羧甲基)-2-甲基丙脒]水合物、2,2′-偶氮双(N,N′-二亚甲基异丁脒)二盐酸盐和2,2′-偶氮双[2-(2-咪唑啉-2-基)丙烷]二盐酸盐等。这些偶氮系引发剂可以单独使用1种,也可以混合使用2种以上。
另外,关于通过本发明的制备方法而得到的乙烯基系接枝共聚物,其丁酮不溶成分优选为80质量%以上,更优选为90质量%,更加优选为95质量%以上,进一步优选为97质量%以上。当上述丁酮不溶成分低于80质量%时,会影响组合物的抗冲击性。所得到的乙烯基系接枝共聚物的丁酮可溶成分的数均分子量(Mn)优选为10000~140000,其下限值更优选为40000,更加优选为50000,进一步优选为60000,其上限值更优选为120000,更加优选为110000,进一步优选为100000。当上述丁酮可溶成分的数均分子量(Mn)高于10000时,将该乙烯基系接枝共聚物加入到热塑性树脂中而得到的树脂组合物的耐低温冲击性良好,当上述丁酮可溶成分的数均分子量(Mn)低于140000时,将该乙烯基系接枝共聚物加入到热塑性树脂中而得到的树脂组合物的透明性良好。另外乙烯基系接枝共聚物的丁酮可溶成分的重均分子量(Mw)和数均分子量(Mn)之比(Mw/Mn)优选为2.0~3.0。 Mw/Mn更优选为2.5~3.0。
本发明的树脂组合物含有乙烯基系接枝共聚物和树脂(特别是热塑性树脂)。其中,乙烯基系接枝共聚物通常以粉体的形式加入树脂(特别是热塑性树脂)中。乙烯基系接枝共聚物的粉体通过对由上述制备方法得到的乙烯基系接枝共聚物进行凝聚、干燥、破碎等一系列后处理工艺,最终得到乙烯基系接枝共聚物的粉体。
作为热塑性树脂,可以列举聚苯乙烯(PS)、(甲基)丙烯酸酯·苯乙烯共聚物(MS)、苯乙烯·丙烯腈共聚物(SAN)、丙烯腈·丁二烯·苯乙烯共聚物(ABS)、丙烯酸酯·苯乙烯·丙烯腈共聚物(ASA)、丙烯腈·乙丙橡胶·苯乙烯共聚物(AES)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二醇酯(PBT)等。这些热塑性树脂可以单独使用1种,也可以混合使用2种以上。
关于树脂组合物中的乙烯基系接枝共聚物的含量,相对于热塑性树脂100质量份优选为1~35质量份,更优选为2~20质量份,进一步优选为3~10质量份。其中,在乙烯基系接枝共聚物的含量为1质量份以上时,得到的组合物透明性高、抗冲击性和阻燃性都良好,在35质量份以下时,不会损害热塑性树脂本来的特性,并且耐冲击性、透明性和阻燃性达到最佳值。
在树脂组合物中优选还含有通常使用的抗氧化剂、润滑剂、抗滴落剂、填料和颜料中的1种以上。作为抗氧化剂,例如可以列举磷系抗氧化剂、酚系抗氧化剂等。作为润滑剂,例如可以列举硬脂酸、硬脂酸甘油酯、石蜡、聚乙烯石蜡等。作为抗滴落剂,例如可以列举PTFE等。作为填料,例如可以列举碳酸钙、氢氧化镁、二氧化钛等。作为颜料,例如可以列举铁红、铁黄、锌铁黄等。
本发明中各物性的测定通过如下方法进行。
(1)低温冲击强度
冲击强度采用GB/T 1843-2008《悬臂梁冲击强度的测定》的标准进行测试,并以千焦每平方米(kJ/m2)表示。其中,关于低温冲击强度,将样条在-30℃和-40℃恒温放置48小时后,测量悬臂梁缺口冲击强度。
(2)丁酮不溶成分
利用索氏提取器,将1g乙烯基系接枝共聚物粉体在100ml丁酮中回流8小时,过滤分离丁酮不溶成分。用真空干燥机使分离出的丁酮不溶成分在80℃下干燥24小时后,测定质量。其中可按下式计算丁酮不溶成分。
丁酮不溶成分(%)=100×(干燥后的丁酮不溶成分的质量)/(索氏提取前粉体的质量)。
(3)接枝率
将上述方法得到的丁酮不溶成分,按照下面的公式计算接枝率。
接枝率=(接枝上的乙烯基单体(b2)量)/(接枝前的乙烯基单体(b2)总量)×100%
(4)数均分子量/重均分子量
关于乙烯基系接枝共聚物的丁酮可溶成分的数均分子量/重均分子量的测定,收集乙烯基系接枝共聚物的丁酮可溶成分,用真空干燥机在80℃下干燥24小时。利用凝胶渗透色谱法(GPC),测定得到的可溶物的分子量(数均分子量/重均分子量)。进行GPC测定时,洗脱液为THF,温度为23±2℃。
关于聚硅氧烷系胶乳的数均分子量的测定与上述的方法相同,即,将聚硅氧烷系胶乳用真空干燥机在80℃下干燥24小时。利用凝胶渗透色谱法(GPC),测定得到的干燥物的分子量(数均分子量/重均分子量)。进行GPC测定时,洗脱液为THF,温度为23±2℃。
(5)阻燃性
将片状成形体切成厚度3mm×宽度12.7mm×长度127mm,平行制作5根同等规格样条,将它们放置在温度23℃、湿度50%的环境下24小时后,进行UL94试验。计算样条中使脱脂棉着火的有火焰落下物产生的根数。根数越少,阻燃性越优异。
(6)耐热老化性
将试验片(长度80.0mm、宽度10.0mm、厚度4mm)在温度120℃的烘箱中热处理12小时。从烘箱取出试验片,在温度23℃、相对湿度50%的环境下放置24小时以上,然后在温度23℃,测定冲击强度,作为耐热老化性的指标。
(7)耐热性
采用国标GB/T1634-2001所述的测定方法,设定升温速率为120℃/h,变形量为0.21mm。每次测试前调节变形量测量装置使变形量为零。
(8)平均粒径
以蒸馏水作为流动相,将胶乳逐滴添加至英国LS-230 Coulter激光散射测试池中,测定胶乳中聚合物颗粒的平均粒径。
实施例
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。除非特别说明,实施例中所涉及的材料、方法均为本领域常用的材料和方法。另外,关于本说明书中的“份”、“%”,除非特别说明,分别表示“质量份”、“质量%”。
1.聚硅氧烷系胶乳的制造例如下。
实施例1
(1)在具备电动搅拌器、恒压滴液漏斗、温度计和冷凝管的四口烧瓶中加入61份去离子水和0.6份十二烷基苯磺酸的混合物,开启搅拌器,并将温度升至70℃,使温度保持恒定。然后将1.6份六甲基环三硅氧烷、28份八甲基环四硅氧烷和3份γ-(甲基)丙烯酰氧基丙基二甲氧基甲基硅烷混合均匀后作为滴加组分,用恒 压滴液漏斗逐滴加入四口烧瓶中,并以2小时滴完,滴加完毕后保温2小时。
(2)将124份去离子水、1份十二烷基苯磺酸钠、3.4份六甲基环三硅氧烷、57份八甲基环四硅氧烷、5份γ-(甲基)丙烯酰氧基丙基二乙氧基甲基硅烷和2份六甲基二硅氧烷混合后,置于高剪切分散均质机中均质分散。然后用恒压滴液漏斗滴加到上述体系中,以4小时滴完后,将温度升至80℃,保温10小时。
(3)聚合完成后,待乳液冷却至室温,用氨水中和至pH值为7-8,即得聚硅氧烷胶乳(G1)。
实施例2
(1)在具备电动搅拌器、恒压滴液漏斗、温度计和冷凝管的四口烧瓶中加入61份去离子水和0.75份十二烷基苯磺酸的混合物,开启搅拌器,并将温度升至70℃,使温度保持恒定。然后将1.8份十甲基环五硅氧烷、30.9份八甲基环四硅氧烷和0.096份γ-(甲基)丙烯酰氧基丙基二乙氧基甲基硅烷混合均匀后作为滴加组分,用恒压滴液漏斗逐滴加入四口烧瓶中,并以2小时滴完,滴加完毕后保温2小时。
(2)将124份去离子水、1.25份十二烷基苯磺酸钠、3.6份六甲基环三硅氧烷、61.7份八甲基环四硅氧烷、1份四甲基二乙烯基二硅氧烷和1份甲氧基三甲基硅烷混合后,置于高剪切分散均质机中均质分散。然后用恒压滴液漏斗滴加到上述体系中,以4小时滴完后,将温度升至80℃,保温10小时。
(3)聚合完成后,待乳液冷却至室温,用氨水中和至pH值为7-8,即得聚硅氧烷胶乳(G2)。
实施例3
(1)在具备电动搅拌器、恒压滴液漏斗、温度计和冷凝管的四口烧瓶中加入61份去离子水和0.6份十二烷基苯磺酸的混合物,开启搅拌器,并将温度升至70℃,使温度保持恒定。然后将4.8份四甲基四乙烯基环四硅氧烷、28.1份八甲基环四硅氧烷和1份乙氧基三甲基硅氧烷混合均匀后作为滴加组分,用恒压滴液漏斗逐滴加入四口烧瓶中,并以2小时滴完,滴加完毕后保温2小时。
(2)将124份去离子水、1份十二烷基苯磺酸钠、8.9份乙烯基甲基二乙氧基硅烷、56.2份八甲基环四硅氧烷和1份二甲基乙烯基乙氧基硅烷混合后,置于高剪切分散均质机中均质分散。然后用恒压滴液漏斗滴加到上述体系中,以4小时滴完后,将温度升至80℃,保温10小时。
(3)聚合完成后,待乳液冷却至室温,用氨水中和至pH值为7-8,即得聚硅氧烷胶乳(G3)。
实施例1-3的聚硅氧烷系胶乳中的固体成分含量均为约35%。
聚硅氧烷系胶乳中的乙烯基含量(相对于聚硅氧烷系胶乳中的固体成分100质量%)以及聚硅氧烷系胶乳的分子量如表1所示。
表1
Figure PCTCN2016106196-appb-000001
2.乙烯基系接枝共聚物的制造例如下。
实施例4
(1)将4份丙烯酸异辛酯、16份丙烯酸甲酯、0.4份十二烷基磺酸钠和30份去离子水混合后进行高剪切分散,加入到装有电动搅拌器、氮气导入管、温度计和冷凝管的四口烧瓶中。启动搅拌,通入氮气,升温到70℃。反应体系升至60℃时,加入0.06份过硫酸铵,并同时投入实施例1得到的聚硅氧烷胶乳(G1)114.2份(以固体成分换算为40份)。并保持70℃反应4小时,得到聚合乳液。
(2)将0.12份吊白块、0.0014份硫酸亚铁、0.0014份乙二胺四乙酸加入到上述(1)的聚合乳液中。并将15份甲基丙烯酸甲酯、3份甲基丙烯酸异冰片酯、2份丙烯腈、0.006份叔十二碳硫醇、0.06份过氧化异丙苯、0.4份十二烷基磺酸钠、0.2份辛基酚聚氧乙烯醚(OP-10)和19.6份去离子水混合剪切分散,然后也滴加到上述(1)的聚合乳液中,以8小时滴完。滴完后,将反应温度升至75℃,保温4小时。
(3)加入1wt%氯化钙溶液,升温至70℃破乳,水洗离心,然后放入真空干燥箱中。80℃干燥24小时,得到白色粉末。并用索氏抽提器萃取以除去未反应的单体和均聚物,即可得提纯后的乙烯基系接枝共聚物。
实施例5
(1)将30份丙烯酸羟基丙酯、30份丙烯酸乙酯、0.4份十二烷基苯磺酸钠和90份去离子水混合后进行高剪切分散,加入到装有电动搅拌器、氮气导入管、温度计和冷凝管的四口烧瓶中。启动搅拌,通入氮气,升温到70℃。反应体系升至60℃时,加入0.18份过硫酸铵,并同时投入实施例2得到的聚硅氧烷胶乳(G2)57.1份(以固体成分换算为20份)。并保持70℃反应4小时,得到聚合乳液。
(2)将0.16份L-抗坏血酸、0.001份硫酸亚铁、0.001份乙二胺四乙酸加入到上述(1)的聚合乳液中。并将15份甲基丙烯酸甲酯、5份N-羟甲基丙烯酰胺,0.004份叔十二碳硫醇、0.08份叔丁基过氧化氢、0.4份十二烷基磺酸钠和19.6份去离子水混合并剪切分散,然后也滴加到上述(1)的聚合乳液中,以8小时滴完。滴完后,将反应温度升至75℃,保温4小时。
(3)加入1.0wt%CaCl溶液,升温至70℃破乳,水洗离心,然后放入真空干燥箱中。80℃干燥24小时,得到白色粉末。并用索氏抽提器萃取以除去未反应的单体和均聚物,即可得提纯后的乙烯基系接枝共聚物。
实施例6
(1)将15份甲基丙烯酸乙酯、15份丙烯酸丁酯、0.3份十二烷基磺酸钠和45份去离子水混合后进行高剪切分散,加入到装有电动搅拌器、氮气导入管、温度计和冷凝管的四口烧瓶中。启动搅拌,通入氮气,升温到65℃。反应体系升至55℃时,加入0.09份2,2′-偶氮双(N,N′-二亚甲基异丁脒)二盐酸盐,并同时投入实施例3得到的聚硅氧烷胶乳(G3)85.7份(以固体成分换算为30份)。并保持60℃反应4小时,得到聚合乳液。
(2)将0.28份吊白块、0.002份硫酸亚铁、0.002份乙二胺四乙酸加入到上述(1)的聚合乳液中。并将28份甲基丙烯酸、10份甲基丙烯酸羟基丙酯、2份甲基丙烯酸丁酯、0.008份叔十二碳硫醇、0.14份过氧化异丙苯、0.8份十二烷基磺酸钠和39.2份去离子水混合并剪切分散,然后也滴加到上述(1)的聚合乳液中,以8小时滴完。滴完后,将反应温度升至75℃,保温4小时。
(3)加入1.0wt%氯化钙溶液,室温下破乳,水洗离心,然后放入真空干燥箱中。80℃干燥24小时,得到白色粉末。并用索氏抽提器萃取以除去未反应的单体和均聚物,即可得提纯后的乙烯基系接枝共聚物。
实施例7
(1)将8.3份丙烯酸正丁酯、16.7份甲基丙烯酸丁酯、0.5份十二烷基磺酸钠和37.5份去离子水混合后进行高剪切分散,加入到装有电动搅拌器、氮气导入管、温度计和冷凝管的四口烧瓶中。启动搅拌,通入氮气,升温到55℃。反应体系升至45℃时,加入0.075份2,2′-偶氮双[2-(2-咪唑啉-2-基)丙烷]二盐酸盐,并同时投入实施例1得到的聚硅氧烷胶乳(G1)100份(以固体成分换算为35份)。并保持50℃反应4小时,得到聚合乳液。
(2)将0.26份吊白块、0.002份硫酸亚铁、0.002份乙二胺四乙酸加入到上述(1)的聚合乳液中。并将20份甲基丙烯酸甲酯、15份丙烯酸、5份丙烯腈、0.008份叔十二碳硫醇、0.13份过氧化异丙苯、0.8份十二烷基磺酸钠和39.2份去离子水混合并剪切分散,然后也滴加到上述(1)的乳液中,以8小时滴完。滴完后,将反应温度升至75℃,保温4小时。
(3)加入1.0wt%氯化钙溶液,升温至70℃破乳,水洗离心,然后放入真空干燥箱中。80℃干燥24小时,得到白色粉末。并用索氏抽提器萃取以除去未反应的单体和均聚物,即可得提纯后的乙烯基系接枝共聚物。
实施例8
(1)将17.5份丙烯酸乙酯、17.5份甲基丙烯酸异辛酯、0.7份十二烷基苯磺酸钠和52.5份去离子水混合后进行高剪切分散,加入到装有电动搅拌器、氮气导入管、温度计和冷凝管的四口烧瓶中。启动搅拌,通入氮气,升温到65℃。反应体系升至55℃时,加入0.105份的2,2′-偶氮双(N,N′-二亚甲基异丁脒)二盐酸盐,并同时投入114.2份实施例2得到的聚硅氧烷胶乳(G2)(以固体成分换算为40份)。并保持60℃反应4小时,得到聚合乳液。
(2)将0.25份L-抗坏血酸、0.004份硫酸亚铁、0.004份乙二胺四乙酸加入到上述(1)的聚合乳液中。并将10份甲基丙烯酸乙酯、15份甲基丙烯酸异冰片酯、0.005份叔十二碳硫醇、0.125份叔丁基过氧化氢、0.5份十二烷基磺酸钠、0.25份辛基酚聚氧乙烯醚(OP-10)和34份去离子水混合后进行高速剪切分散,然后也滴加到上述(1)中乳液中,以8小时滴完。滴完后,将温度升至75℃,保温4小时。
(3)加入1.0wt%氯化钙溶液,室温下破乳,水洗离心,然后放入真空干燥箱中。80℃干燥24小时,得到白色粉末。并用索氏抽提器萃取以除去未反应的单体和均聚物,即可得提纯后的乙烯基系接枝共聚物。
比较例1
除了将作为乙烯基单体(b1)的丙烯酸乙酯的加入量变为5份以及甲基丙烯酸异辛酯的用量变为5份,还有,将作为乙烯基单体(b2)的甲基丙烯酸乙酯和甲基丙烯酸异冰片酯的加入量变为23份和27份以外,以与实施例8同样的方法制得乙烯基系接枝共聚物。
比较例2
除了将作为乙烯基单体(b1)的丙烯酸乙酯的加入量变为35份以及丙烯酸羟基丙酯的用量变为35份,还有,将作为乙烯基单体(b2)的甲基丙烯酸甲酯和N-羟甲基丙烯酰胺的加入量变为7.5份和2.5份以外,以与实施例5同样的方法制得乙烯基系接枝共聚物。
比较例3
除了在合成附聚物时将乳化剂十二烷基苯磺酸钠的用量变更为1.05份以外,以与实施例8同样的方法得到乙烯基系接枝共聚物。
比较例4
除了在合成附聚物时将乳化剂十二烷基磺酸钠的用量变更为0.15份以外,以与实施例6同样的方法得到接枝共聚物。
比较例5:中国专利申请CN103391952(A)的实施例1中所得的聚合物(没有进行附聚)。
比较例6:由日本三菱丽阳株式会社生产的型号为S2100的产品。
实施例4-8以及比较例1-5中使用的聚硅氧烷系胶乳、乙烯基单体(b1)和乙烯基单体(b2)三者的比例以及聚合物特性如表2所示。
3.树脂组合物的制备和评价
按照表3记载的比例,将乙烯基系接枝共聚物的粉体与PC树脂(三菱工程塑料(株)生产,商品名:S-2000F)混合,使用双螺杆挤出机(杰恩特机电有限公司SHJ-36)在模具温度为280℃的条件下,进行熔融混炼。接着添加磷系抗氧化剂(商品名:ADEAKSTAB PEP36,株式会社ADEKA生产)0.3份、酚系抗氧化 剂(商品名:Irganox245,德国巴斯夫集团生产)0.3份和PTFE(日本旭硝子公司生产,商品名:FULLON CD123E)0.05份,继续搅拌混合,得到树脂组合物。接着,将其制成颗粒状。
将得到的颗粒在80℃下干燥12小时后,用注塑成型机(鄞州双盛塑料机械厂SSF500-Ⅲ)在280℃的条件下注塑成型。根据要求,使用多腔金属模具,分别制得冲击试验、燃烧试验和耐热老化性试验用的试验片。使用颗粒和试验片,评价冲击强度、阻燃性和耐热老化性、耐热性等性能,结果如表3所示。
表2
Figure PCTCN2016106196-appb-000002
表3
Figure PCTCN2016106196-appb-000003
由表2、3可知,比较例1中加入乙烯基单体(b1)的量过少,与实施例8相比,接枝率降低,所得到的树脂组合物的耐低温冲击性、阻燃性以及耐热老化性均下降。
另外,比较例2中加入乙烯基单体(b1)的量过多,与实施例5相比,所得到的树脂组合物的热变形温度降低,耐低温冲击性、阻燃性以及耐热老化性均下降。
比较例3中由于附聚后聚硅氧烷系胶乳的平均粒径过小,粒径在100nm以下的颗粒数目较多。与实施例8相比,所得到的树脂组合物的耐低温冲击性、耐热老化性等性能均不能达到良好的效果。
比较例4中由于附聚后聚硅氧烷系胶乳的平均粒径过大,粒径在800nm以上的颗粒数目较多。所得到的树脂组合物的耐低温冲击性、阻燃性以及耐热老化性等性能均不如实施例6。
加入了实施例4-8中得到的乙烯基系接枝共聚物粉体的树脂组合物,具有优异的耐低温冲击性、阻燃性和耐热老化性。并且由于本发明采用了特定的方法合成乙烯基系接枝共聚物,使得将其加到热塑性树脂后,所得到的树脂组合物的耐低温冲击性、阻燃性和耐热性都更优于加入比较例5和比较例6中制造的接枝共聚物的树脂组合物。
上述实施例为本发明较佳的实施方式,但是本发明并不限制于这些实施例,只要不背离本发明的精神实质和原理,对上述实施例所作的改变、修饰、替代、组合、简化均视为等效的置换方法,都包含在本发明的保护范围之内。
产业上的可利用性
本发明涉及的乙烯基系接枝共聚物能够与PC等热塑性树脂混合,制备耐低温冲击性和阻燃性优异的树脂组合物。本发明的树脂组合物可以广泛用于电子电器和工业机械零件。

Claims (10)

  1. 一种乙烯基系接枝共聚物的制备方法,其特征在于,包括:
    在聚硅氧烷系胶乳和乙烯基单体b1的存在下,将聚硅氧烷系胶乳附聚,同时使乙烯基单体b1与聚硅氧烷系胶乳自由基聚合,得到附聚物的步骤;和
    使得到的附聚物与乙烯基单体b2接枝聚合,得到乙烯基系接枝共聚物的步骤,
    其中,乙烯基单体b1和b2可以相同也可以不同。
  2. 如权利要求1所述的制备方法,其特征在于:
    所述聚硅氧烷系胶乳为具有乙烯基的直链型聚硅氧烷的胶乳,所述聚硅氧烷系胶乳中的乙烯基含量相对于所述聚硅氧烷系胶乳中的固体成分100质量%为0.01~3质量%。
  3. 如权利要求1或2所述的制备方法,其特征在于:
    所述聚硅氧烷系胶乳通过使二甲基硅氧烷类单体、乙烯基硅氧烷类单体和根据需要的封头剂聚合得到,在所述聚硅氧烷系胶乳的制造中不使用交联剂,所述聚硅氧烷系胶乳的数均分子量Mn为20万~60万。
  4. 如权利要求1或2所述的制备方法,其特征在于:
    附聚前聚硅氧烷系胶乳的平均粒径为20~80nm,附聚后聚硅氧烷系胶乳的平均粒径为100~800nm。
  5. 如权利要求1或2所述的制备方法,其特征在于:
    将所述聚硅氧烷系胶乳以固体成分计的添加量、所述乙烯基单体b1的添加量和所述乙烯基单体b2的添加量的合计设为100质量份时,所述聚硅氧烷系胶乳以固体成分计的添加量为20~40质量份,所述乙烯基单体b1和所述乙烯基单体b2的合计添加量为60~80质量份。
  6. 如权利要求1或2所述的制备方法,其特征在于:
    将所述聚硅氧烷系胶乳以固体成分计的添加量、所述乙烯基单体b1的添加量和所述乙烯基单体b2的添加量的合计设为100质量份时,所述乙烯基单体b1的添加量为20~60质量份,所述乙烯基单体b2的添加量为20~40质量份。
  7. 如权利要求1或2所述的制备方法,其特征在于:
    所述乙烯基单体b1和所述乙烯基单体b2选自(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟基丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸、(甲基)丙烯酸异辛酯、(甲基)丙烯腈、N-羟甲基丙烯酰胺、苯乙烯和(甲基) 丙烯酸异冰片酯中的1种以上。
  8. 一种通过权利要求1~7中任一项所述的制备方法而得到的乙烯基系接枝共聚物,其特征在于:
    所述乙烯基系接枝共聚物的丁酮不溶成分为80质量%以上。
  9. 如权利要求8所述的乙烯基系接枝共聚物,其特征在于:
    所述乙烯基系接枝共聚物的丁酮可溶成分的数均分子量Mn为10000~140000,重均分子量Mw和数均分子量Mn之比以Mw/Mn计为2.0~3.0。
  10. 一种树脂组合物,其特征在于:
    含有权利要求8或9所述的乙烯基系接枝共聚物和热塑性树脂。
PCT/CN2016/106196 2016-08-31 2016-11-17 乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法 WO2018040297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610789392.3 2016-08-31
CN201610789392.3A CN106519144B (zh) 2016-08-31 2016-08-31 乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法

Publications (1)

Publication Number Publication Date
WO2018040297A1 true WO2018040297A1 (zh) 2018-03-08

Family

ID=58344899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106196 WO2018040297A1 (zh) 2016-08-31 2016-11-17 乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法

Country Status (2)

Country Link
CN (1) CN106519144B (zh)
WO (1) WO2018040297A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661909A (zh) * 2019-05-05 2021-04-16 淮安市博彦土木工程科学研究院有限公司 一种建材领域用阻燃附聚剂的制备方法
CN113278115A (zh) * 2021-05-27 2021-08-20 英德侗富贵科技材料有限公司 一种核壳聚合物及其制备方法和应用
CN114853959A (zh) * 2022-05-11 2022-08-05 泉州师范学院 一种洁净纳米有机硅核壳增韧粉末的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151296B (zh) * 2017-04-18 2019-01-29 华南理工大学 大粒径核壳结构聚硅氧烷-丙烯酸酯/苯乙烯共聚物的制备方法
CN107602861B (zh) * 2017-08-28 2021-01-12 哈尔滨工业大学无锡新材料研究院 一种水性阻燃含氟硅油及其制备方法
JP7065799B2 (ja) * 2019-02-28 2022-05-12 日信化学工業株式会社 (メタ)アクリルシリコーン樹脂のエマルジョン組成物及び該組成物を含有した繊維処理剤、並びに該繊維処理剤で処理した繊維
CN110591098A (zh) * 2019-10-09 2019-12-20 浙江新安化工集团股份有限公司 一种甲基苯基乙烯基硅油及其制备方法和应用
CN116411476B (zh) * 2021-12-30 2024-02-23 广州熵能创新材料股份有限公司 一种纸塑用防粘阻隔组合物及其制备方法、和制成的纸浆模塑制品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331726A (ja) * 2003-05-01 2004-11-25 Mitsubishi Rayon Co Ltd グラフト共重合体およびこれを用いた熱可塑性樹脂組成物
JP2004346271A (ja) * 2003-05-26 2004-12-09 Mitsubishi Rayon Co Ltd シリコーン/アクリル複合ゴム系グラフト共重合体および熱可塑性樹脂組成物
WO2013129709A2 (ja) * 2012-10-31 2013-09-06 三菱レイヨン株式会社 ポリオルガノシロキサン含有グラフト共重合体、樹脂組成物及び成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315634B2 (en) * 2010-12-28 2016-04-19 Mitsubishi Rayon Co., Ltd. Graft copolymer, production method therefor, resin composition, and molded article
JP2014034656A (ja) * 2012-08-09 2014-02-24 Mitsubishi Rayon Co Ltd ポリオルガノシロキサン含有グラフト共重合体、それを含む樹脂組成物、及び成形体
EP3034532B1 (en) * 2013-08-13 2019-11-06 Mitsubishi Chemical Corporation Polyorganosiloxane-containing graft copolymer, resin composition, molded article, sliding-properties improvement agent, and sliding member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331726A (ja) * 2003-05-01 2004-11-25 Mitsubishi Rayon Co Ltd グラフト共重合体およびこれを用いた熱可塑性樹脂組成物
JP2004346271A (ja) * 2003-05-26 2004-12-09 Mitsubishi Rayon Co Ltd シリコーン/アクリル複合ゴム系グラフト共重合体および熱可塑性樹脂組成物
WO2013129709A2 (ja) * 2012-10-31 2013-09-06 三菱レイヨン株式会社 ポリオルガノシロキサン含有グラフト共重合体、樹脂組成物及び成形体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661909A (zh) * 2019-05-05 2021-04-16 淮安市博彦土木工程科学研究院有限公司 一种建材领域用阻燃附聚剂的制备方法
CN112661909B (zh) * 2019-05-05 2022-01-07 淮安市博彦土木工程科学研究院有限公司 一种建材领域用阻燃附聚剂的制备方法
CN113278115A (zh) * 2021-05-27 2021-08-20 英德侗富贵科技材料有限公司 一种核壳聚合物及其制备方法和应用
CN114853959A (zh) * 2022-05-11 2022-08-05 泉州师范学院 一种洁净纳米有机硅核壳增韧粉末的制备方法
CN114853959B (zh) * 2022-05-11 2023-05-26 泉州师范学院 一种洁净纳米有机硅核壳增韧粉末的制备方法

Also Published As

Publication number Publication date
CN106519144B (zh) 2019-06-04
CN106519144A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018040297A1 (zh) 乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法
JP3634964B2 (ja) グラフト共重合体粒子および熱可塑性樹脂組成物
JP5948716B2 (ja) アクリロニトリル−アクリレート−スチレングラフト共重合体、及びそれを含む熱可塑性樹脂組成物
JP4702998B2 (ja) ゴム変性樹脂およびそれを含有する熱可塑性樹脂組成物
EP3103838B1 (en) Thermoplastic resin composition
JP7106192B2 (ja) 熱可塑性樹脂組成物
JP7028243B2 (ja) ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
TWI603987B (zh) 經改質以具有耐衝擊性及改進之光學性質之pmma
TWI815944B (zh) 接枝共聚物的製備方法、接枝共聚物及包含接枝共聚物的熱塑性樹脂模製物件
JP7121134B2 (ja) コア-シェル共重合体、その製造方法、およびそれを含む熱可塑性樹脂組成物
JPH05247148A (ja) メタクリレート‐ブタジエン‐スチレングラフトポリマー、ならびに低い黄色度、良好な透明度および向上した衝撃強さを有する前記グラフトポリマーとpvcのブレンド
US20040063814A1 (en) Impact modifier for thermoplastic resin and resin composition containing the same
CN111212859A (zh) 含橡胶接枝聚合物、含有含橡胶接枝聚合物的树脂组合物及其成形体
JP7066228B2 (ja) 熱可塑性樹脂組成物
TWI465509B (zh) 橡膠改質甲基丙烯酸酯系樹脂組成物
JPH10310616A (ja) シリコーン変性アクリルゴム粒子、シリコーン変性アクリルゴム系グラフト共重合体粒子および熱可塑性樹脂組成物
KR20210028182A (ko) 높은 내열성 충격 개질된 폴리카르보네이트 배합물
KR20080015001A (ko) 폴리오르가노실록산 함유 그래프트 공중합체, 그것을함유하는 염화 비닐계 수지 조성물
JP2000302941A (ja) 耐衝撃性樹脂組成物
JP2003137946A (ja) ゴム変性樹脂およびそれを含有する熱可塑性樹脂組成物
KR20230170784A (ko) 투명한 고무 변성 스티렌계 수지 조성물
JP2024144078A (ja) 重合体粒子群及びその製造方法、並びに樹脂組成物
JP2023085185A (ja) 樹脂組成物及び成形体
JPH11116813A (ja) オルガノシロキサン系グラフト共重合体粒子の製造法
JP2015196811A (ja) ポリオレフィン樹脂用摺動性向上剤、ポリオレフィン樹脂組成物及びその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914859

Country of ref document: EP

Kind code of ref document: A1