WO2018038104A1 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
WO2018038104A1
WO2018038104A1 PCT/JP2017/029947 JP2017029947W WO2018038104A1 WO 2018038104 A1 WO2018038104 A1 WO 2018038104A1 JP 2017029947 W JP2017029947 W JP 2017029947W WO 2018038104 A1 WO2018038104 A1 WO 2018038104A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
electrode terminal
gas sensor
wiring
arm
Prior art date
Application number
PCT/JP2017/029947
Other languages
English (en)
French (fr)
Inventor
松本 隆
満治 吉良
山本 浩貴
有里 桑原
Original Assignee
Nissha株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha株式会社 filed Critical Nissha株式会社
Priority to KR1020187032707A priority Critical patent/KR102345197B1/ko
Priority to CN201780052110.4A priority patent/CN109642883B/zh
Priority to EP17843582.2A priority patent/EP3447482B1/en
Publication of WO2018038104A1 publication Critical patent/WO2018038104A1/ja
Priority to US16/280,033 priority patent/US10527572B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0059Avoiding interference of a gas with the gas to be measured
    • G01N33/006Avoiding interference of water vapour with the gas to be measured

Definitions

  • the present invention relates to a gas sensor that detects by burning a gas that generates water by combustion with a catalyst.
  • Hydrogen is detected by a catalytic combustion type gas sensor using a resistor on which a catalyst containing, for example, platinum, palladium, rhodium or the like, which burns hydrogen on a metal wire made of a metal or an alloy such as platinum and palladium, for example.
  • Detection of hydrogen by a catalytic combustion type gas sensor is performed by utilizing a change in resistance value of a resistor whose temperature rises as hydrogen burns. By the way, such a gas sensor may be used even in an environment that is below freezing.
  • Patent Document 1 Japanese Patent No. 5927647
  • Patent Document 1 Japanese Patent No. 5927647
  • Patent Document 1 Japanese Patent No. 5927647
  • the gas detector is provided with a heating unit and is heated by the heating unit, the power consumption is greatly increased by trying to prevent the formation of frost.
  • a catalytic combustion type gas sensor is attached to an automobile equipped with a fuel cell, it is required to suppress power consumption of the catalytic combustion type gas sensor as much as possible in order to suppress consumption of the automobile battery.
  • An object of the present invention is to provide a small gas sensor that can suppress a gas detection failure caused by frost with low power consumption.
  • a gas sensor according to an aspect of the present invention is installed so as to protrude from a wiring body to be mounted having a first wiring and a second wiring, and a voltage is supplied from the first wiring and the second wiring and the first wiring.
  • a gas sensor that detects a gas that generates water by combustion by measuring a resistance value using the second wiring, the resistor carrying a catalyst that promotes the combustion of the gas, one end of the resistor, A first electrode terminal connected between the first wiring and a second electrode terminal connected between the other end of the resistor and the second wiring, the first electrode terminal being connected to the first wiring; At least one first connection portion and a first arm portion extending from the first connection portion to one end of the resistor, and the second electrode terminal includes at least one second connection portion connected to the second wiring.
  • the terminal and the second electrode terminal are formed so that at least a part of the first arm part and at least a part of the second arm part are insulatively coated to form a water vapor diffusion cavity extending from the resistor to the wiring body or the vicinity of the wiring body.
  • a water vapor diffusion cavity that reaches from the resistor to the wiring body to be mounted or the vicinity thereof is formed between the resistor and the wiring body. Since it reaches the wiring body or its vicinity through this water vapor diffusion cavity, frost grows mainly starting from the wiring body or its vicinity, and the first arm can be used without consuming the heating energy for melting the frost.
  • the combustion time required for frost to grow can be increased by effectively using the entire length of the part and the second arm, and the state in which gas detection can be performed without being affected by the frost is kept long. Can do.
  • the first electrode terminal and the second electrode terminal may be bridged and fixed to each other at a position substantially the same as the resistor or farther from the wiring body. By configuring in this way, the location where the first electrode terminal and the second electrode terminal are bridged does not exist between the resistor and the wiring body, so the location where water vapor generated by the resistor is bridged It is difficult to reach, and it is difficult for frost to grow starting from the bridged point, so that the distance through which frost is transmitted can be earned.
  • the first arm and the second arm are represented by the X and Y coordinates of the plane perpendicular to the Z axis with respect to the vertical length represented by the Z coordinate extending in the vertical direction from the wiring body.
  • the horizontal lengths may be configured to be substantially the same.
  • the first arm portion and the second arm portion are 2 in comparison with the case where the first arm portion and the second arm portion are set straight in the vertical direction while suppressing the vertical size and horizontal size from the wiring body.
  • the combustion time that can be detected more than twice can be increased.
  • the first arm portion and the second arm portion may both be bent in an L shape.
  • the first arm that frost is transmitted from the wiring body to the resistor body while suppressing the vertical height of the first electrode terminal and the second electrode terminal with a simple structure by bending it into an L shape.
  • the distance between the part and the second arm part can be increased.
  • the first arm portion has two first connection portions that extend in two branches from one end of the resistor and are connected to the first wiring, and the second arm portion is the other end of the resistor. It may be configured so as to have two second connection portions that are divided into two forks and connected to the second wiring. With this configuration, the gas sensor is supported by a total of four arms, ie, the first arm portion and the second arm portion, so that the installation stability and strength of the gas sensor on the wiring body are increased. Will improve.
  • the first arm and the second arm are separated from each other from the vicinity of the first connection portion and the second connection portion to the vicinity of the height position where the resistor is substantially disposed. It may be configured to be insulated. By being comprised in this way, the area which covers the surface of the 1st electrode terminal and the 2nd electrode terminal with resin which frost does not rise easily can be lengthened, and the malfunction which generate
  • the first arm portion has a first separation portion that extends in a horizontal direction or an oblique direction from one end of the resistor and moves away from the resistor in the horizontal direction, and the first separation portion is covered with a resin.
  • the second arm portion has a second separation portion that extends in a horizontal direction or an oblique direction from the other end of the resistor and moves away from the resistor in the horizontal direction, and the second separation portion is covered with resin. May be configured. By covering the first separation portion and the second separation portion with the resin, it becomes difficult for frost to grow compared to the case where the first electrode terminal and the second electrode terminal are exposed, and the frost reaches the resistor. Can be suppressed.
  • the gas sensor described above may be configured to further include a frame-shaped cap that covers the resistor. When such a cap is provided, the resistor can be protected during handling of the gas sensor while preventing the cap from obstructing when the gas to be detected is guided around the resistor, resulting in defective products. Can be suppressed.
  • the gas sensor of the present invention downsizing is facilitated, and the problem of gas detection due to frost can be suppressed with low power consumption.
  • the circuit diagram which shows an example of the gas detection apparatus by which the gas sensor which concerns on 1st Embodiment is mounted.
  • the schematic diagram which shows an example of a structure of the gas sensor mounted in a printed wiring board.
  • the schematic diagram for demonstrating the housing of a gas sensor, a 1st electrode terminal, and a 2nd electrode terminal.
  • the front view which shows an example of a structure of a housing, a 1st electrode terminal, and a 2nd electrode terminal.
  • the bottom view which shows an example of a structure of a housing, a 1st electrode terminal, and a 2nd electrode terminal.
  • the side view which shows an example of a structure of a housing, a 1st electrode terminal, and a 2nd electrode terminal.
  • the top view which shows an example of a structure of a housing, a 1st electrode terminal, and a 2nd electrode terminal.
  • the perspective view which shows an example of the state by which the resistor was attached to the housing.
  • the perspective view which shows typically an example of the state in which the cap was attached to the housing.
  • the front view which shows typically an example of the state in which the cap was attached to the housing.
  • the side view which shows typically an example of the state in which the cap was attached to the housing.
  • the side view which shows typically an example of the other form of a housing.
  • the schematic diagram which shows the structure of the gas sensor which concerns on 2nd Embodiment.
  • the graph which shows the relationship between the sensitivity at the time of changing the position etc. of the resistor of a gas sensor, and time.
  • the perspective view which shows the other example of a structure of a housing, a 1st electrode terminal, and a 2nd electrode terminal.
  • the perspective view which shows the other example of the state by which the resistor was attached to the housing.
  • the side view which shows typically the other example of the other form of a housing.
  • a gas sensor that detects hydrogen that burns to generate water
  • the detection target of the gas sensor of the present invention is not limited to hydrogen, and examples of the detection target that generates water by combustion include methane, propane, and butane.
  • a gas detection device using the gas sensor will be briefly described.
  • FIG. 1 schematically shows an example of a measurement circuit of the gas detection device 1 using the gas sensor 10.
  • the measurement circuit of the gas detection device 1 includes a bridge circuit 5 including a gas sensor 10, a compensation element 2, a first fixed resistor 3, and a second fixed resistor 4.
  • the first electrode terminal 12 that is one terminal of the gas sensor 10 is connected to the connection point Pa, and the second electrode terminal 13 that is the other terminal of the gas sensor 10 is connected to the connection point Pc.
  • One terminal of the compensation element 2 is connected to the connection point Pc, and the other terminal of the compensation element 2 is connected to the connection point Pb.
  • connection points Pd and Pc are output terminals of the bridge circuit 5, and the microcomputer 6 is connected to the connection point Pd and the connection point Pc via the amplifier circuit 7.
  • the microcomputer 6 has an AD conversion function, for example, and is configured to be able to take in a potential difference generated between the connection point Pd and the connection point Pc as digital data.
  • the compensation element 2 is used to compensate for a change in the electrical resistance value of the resistor 11.
  • the compensating element 2 preferably has the same or similar operating characteristics as the gas sensor 10 except that it does not have catalytic activity for burning hydrogen.
  • a compensation element 2 for example, there is an element formed using the first electrode terminal 12 and the second electrode terminal 13 included in the gas sensor 10 and a platinum wire connected therebetween.
  • a substance having no catalytic activity for burning hydrogen instead of the catalyst is formed without supporting the catalyst in a region corresponding to the catalyst supporting region of the gas sensor 10.
  • the power supply E1 is turned on simultaneously with the start of the vehicle system, and the power supply E1 of the gas detection device 1 is not turned off until the vehicle system is stopped.
  • the microcomputer 6 calculates the gas concentration from the output of the gas detection device 1 and outputs the result while the power supply E1 of the gas detection device 1 is on.
  • the power consumed by the gas sensor 10 is set in a range of, for example, 10 mW to 100 mW.
  • the gas sensor 10 is installed as a wiring body so as to protrude from the printed wiring board 90, for example. Since hydrogen is lighter than air, the gas sensor 10 protrudes downward from the lower surface 90 a of the printed wiring board 90. In this embodiment, the case where the gas sensor 10 is installed to protrude downward from the printed wiring board 90 is described, but the direction in which the gas sensor 10 protrudes is not limited to the downward direction.
  • a first wiring 91 and a second wiring 92 are wired on the printed wiring board 90.
  • the connection point Pa in FIG. 1 to which the first electrode terminal 12 is connected is in the first wiring 91. 1 is connected to the second electrode terminal 13 in the second wiring 92.
  • the gas sensor 10 is housed in a sensor cavity S1 surrounded by a sensor casing 80.
  • An opening 82 communicating with the sensor cavity S1 is formed below the sensor casing 80.
  • the entire opening 82 is covered with a water repellent film 83. Accordingly, the hydrogen to be measured passes through the water repellent film 83 and reaches the gas sensor 10.
  • the reason why the opening 82 is covered with the water repellent film 83 is to prevent foreign matters, particularly water droplets, from reaching the gas sensor 10.
  • the gas sensor 10 includes a cap 15 for protecting the resistor 11.
  • the cap 15 has a frame shape, and openings 15b through which hydrogen passes are formed on six surfaces, respectively. In other words, the cap 15 is composed of a rectangular parallelepiped frame 15a having six surfaces open.
  • Such a frame-shaped cap 15 can be manufactured, for example, by drawing a plate-like member and making a hole with a punch.
  • the frame shape here is a concept including a skeleton shape in which rod-shaped members are combined in a rectangular parallelepiped shape.
  • the shape of the cap 15 is not limited to the frame shape.
  • the resistor 11 is connected between the first electrode terminal 12 and the second electrode terminal 13.
  • the resin molded body covering the first electrode terminal 12 and the second electrode terminal 13 is the housing 20.
  • a thermoplastic resin can be used as the resin constituting the housing 20, and examples of the thermoplastic resin include nylon resin, polybutylene terephthalate resin (PBT resin), and liquid crystal polymer resin.
  • PBT resin polybutylene terephthalate resin
  • liquid crystal polymer resin In order to make it difficult for frost to propagate on the surface of the housing 20, it is preferable to use a water-repellent resin as the resin constituting the housing 20.
  • FIG. 2 shows a state in which the gas sensor 10 is viewed from the front
  • FIG. 3 schematically shows a state in which the gas sensor 10 is viewed from the side surface on the first wiring 91 side. In FIG. 3, the sensor casing 80 and the cap 15 are not shown. As can be seen from FIG. 2 and FIG.
  • FIGS. 4 to 7 show configurations of the first electrode terminal 12, the second electrode terminal 13, and the housing 20.
  • the first electrode terminal 12 and the second electrode terminal 13 are formed by bending a plate member made of a metal or alloy having good conductivity.
  • the white which is an alloy of stainless steel or copper, zinc, and nickel can be used, for example.
  • the first electrode terminal 12 of the gas sensor 10 surface-mounted on the printed wiring board 90 that is a wiring body has a first connection portion 121 that is bent so as to be parallel to the first wiring 91.
  • the first bottom portion 122 to which one end of the resistor 11 is connected is a part of the first arm portion 123, and is a portion that protrudes vertically downward (Z-axis direction) in the first arm portion 123.
  • the first bottom portion 122 is a surface parallel to the XY plane exposed downward.
  • the first arm portion 123 extends from the first bottom portion 122 in two forks in two directions, a positive direction in the Y-axis direction and a negative direction. That is, the first arm portion 123 extends in two branches from one end of the resistor 11 and is connected to the two first connection portions 121. As shown in FIGS.
  • the first arm portion 123 includes a first vertical portion 126 extending in the Z-axis direction (vertical direction) and a first horizontal portion extending in the Y-axis direction (horizontal direction). 127. Both the first vertical portion 126 and the first horizontal portion 127 are covered with a thermoplastic resin.
  • the second electrode terminal 13 of the gas sensor 10 surface-mounted on the printed wiring board 90 that is a wiring body has a second connection portion 131 that is bent so as to be parallel to the second wiring 92.
  • the second bottom portion 132 to which the other end of the resistor 11 is connected is a part of the second arm portion 133, and is a portion that protrudes vertically downward (Z-axis direction) in the second arm portion 133.
  • the second bottom portion 132 is a surface parallel to the XY plane exposed downward.
  • the second arm portion 133 extends from the second bottom portion 132 in two forks in two directions, a positive direction in the Y-axis direction and a negative direction. That is, the second arm part 133 extends in a bifurcated manner from the other end of the resistor 11 and is connected to the two second connection parts 131.
  • the second arm part 133 includes a second vertical part 136 extending in the Z-axis direction (vertical direction) and a second horizontal part 137 extending in the Y-axis direction (horizontal direction). Contains. Both the second vertical portion 136 and the second horizontal portion 137 are covered with a thermoplastic resin.
  • the above-described structure in which the first vertical portion 126 and the first horizontal portion 127 and the second vertical portion 136 and the second horizontal portion 137 are covered with the thermoplastic resin can be formed by insert molding, for example. As shown in FIGS. 6 and 7, openings 26 and 27 are formed on the opposite side of the first bottom portion 122 and the second bottom portion 132.
  • the first horizontal portion 127 of the first arm portion 123 described above is a first separation portion that extends in the horizontal direction from one end of the resistor 11 and moves away from the resistor 11 in the horizontal direction.
  • the second horizontal portion 137 of the second arm portion 133 is a second separation portion that extends in the horizontal direction from the other end of the resistor 11 and moves away from the resistor 11 in the horizontal direction.
  • the first horizontal portion 127 that is the first separation portion and the second horizontal portion 137 that is the second separation portion are also covered with resin.
  • frost is hardly transmitted as compared with the case where the metal first arm portion 123 and the second arm portion 133 are exposed.
  • the effect which suppresses the extension of frost is not lost.
  • the first electrode terminal 12 and the second electrode terminal 13 are bridged by the bridge portion 21 of the housing 20 and fixed to each other at a position far from the printed wiring board 90 by substantially the same as the resistor 11. Except for the bridge portion 21, the first horizontal portion 127 of the first arm portion 123 and the second horizontal portion 137 of the second arm portion 133 are separated from each other and covered with insulation. As a result, the opening 22 is formed immediately above the arrangement position of the resistor 11, in other words, between the resistor 11 and the printed wiring board 90. By forming such an opening 22, a water vapor diffusion cavity S ⁇ b> 2 that continues continuously to the printed wiring board 90 is formed above the resistor 11.
  • thermoplastic resin covering the first vertical portion 126 of the first arm portion 123 is separated from the thermoplastic resin covering the second vertical portion 136 of the second arm portion 133.
  • the first arm portion 123 is separated from the second arm portion 133 from the vicinity of the first connection portion 121 to the vicinity of the height position where the resistor 11 is substantially disposed, and is insulated by the thermoplastic resin. It is that it has been. That is, between the distance D3 shown in FIG. 4, the first arm portion 123 and the second arm portion 133 are separated from each other and insulated.
  • the first arm portion 123 and the second arm portion 133 are separated and covered with insulation, so that an opening 23 having an opening also on the printed wiring board 90 is formed. As shown in FIG.
  • the first arm portion 123 is bent into an L shape at two locations. By being bent into an L shape at two locations, the first arm portion 123 has a substantially C-shaped shape as a whole when viewed from the side. Similar to the first arm portion 123, the second arm portion 133 is bent in an L shape at two locations. By being bent into an L-shape at two locations, the second arm portion 133 as a whole exhibits a substantially C-shape when viewed from the side.
  • the first arm portion 123 and the second arm portion 133 are divided into two forks, the C-shaped shape is exhibited as a whole, but the first arm portion 123 and the second arm portion 133 are not divided into two forks. It can also be configured in a shape.
  • the housing 20 is provided with four claws 25 for attaching the cap 15.
  • claw 25 has the upward protrusion amount larger than the downward direction.
  • FIG. 8 shows a state in which the housing 20 to which the resistor 11 is attached is viewed obliquely from below.
  • one end 11 a of the resistor 11 is connected to the first bottom 122 of the first electrode terminal 12, and the other end 11 b of the resistor 11 is connected to the second bottom of the second electrode terminal 13.
  • 132 Vertically above the resistor 11 (Z-axis direction) is connected to the water vapor diffusion cavity S2 through the opening 22.
  • the resistor 11 is formed by winding a platinum wire in a coil shape.
  • the wire diameter of the platinum wire is, for example, about several tens of micrometers, and the diameter of the coil is, for example, about several hundreds of micrometers.
  • the resistor 11 carries palladium as a catalyst on the surface of the coiled portion.
  • FIGS. 9 to 11 schematically show a state where the cap 15 is attached to the housing 20.
  • the cap 15 has a frame shape constituted by a frame 15a made of an alloy of iron and nickel, for example. Thus, it becomes easy to reach
  • the frame 15a is arranged at the positions of 12 sides of the rectangular parallelepiped.
  • the frame 15a is, for example, a mountain-shaped material (L angle).
  • the space between the frames 15a facing each other is set to a width that does not allow a finger to enter. Therefore, when the cap 15 is attached, the finger does not enter from the opening 15b and touch the resistor 11.
  • the cap 15 can protect the resistor 11 from not only the finger but also other foreign substances.
  • a hole 15 c is formed in the cap 15 on the side in contact with the housing 20.
  • the claw 25 of the housing 20 is fitted into the hole 15c.
  • Reference values for the sizes of the housing 20 and the cap 15 are as follows. When the housing 20 and the cap 15 are combined, the length L1 in the X direction is, for example, about 3 to 4 mm, the length L2 in the Y direction is, for example, about 6 to 9 mm, and the length L3 in the Z direction is, for example, 5 to It is about 7 mm.
  • the length L4 of the housing 20 in the X direction is obtained by subtracting the plate thickness of the frame 15a of the cap 15 from the length L1 of the cap 15 in the X direction, but is substantially equal to L1 because the plate thickness is thin.
  • the length L5 of the housing 20 in the Y direction is obtained by subtracting the plate thickness of the frame 15a from the length L2 of the cap 15 in the Y direction, but is substantially equal to L2 because the plate thickness is thin.
  • the length L6 of the housing 20 in the Z direction is, for example, about 3 to 5 mm.
  • the length L7 of the opening 24 of the housing 20 is about 4 to 7 mm, for example.
  • the length L8 of the cap 15 in the Z direction is, for example, about 2.5 to 5 mm.
  • the first electrode terminal 12 and the second electrode terminal 13 are configured so as to be divided into two forks from the one end 11a and the other end 11b of the resistor 11, so that the housing 20 has four arms.
  • the first electrode terminal 12 and the first electrode terminal 12 are arranged in either the plus direction or the minus direction in the X axis direction from the one end 11a and the other end 11b of the resistor 11.
  • the housing 20 can be configured to be attached to the printed wiring board 90 with four arms.
  • the number of arms of the housing 20 is not limited to two and four, and may be three or five or more.
  • the printed wiring board 90 is provided so as to cover the water vapor diffusion cavity S2, but an opening is provided in the printed wiring board 90 or the gas sensor 10 is connected to the printed wiring board 90.
  • the water vapor diffusion cavity S2 can penetrate the printed wiring board 90, or the printed wiring board 90 can be configured not to cover the water vapor diffusion cavity S2.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • a plurality of embodiments and modifications described in this specification can be arbitrarily combined as necessary.
  • the mounting component that generates heat may be disposed near the gas sensor 10 and combined with the gas sensor 10. Good.
  • the mounting component that generates heat is preferably a mounting component that operates together when the electric circuit in which the gas sensor 10 is incorporated operates.
  • a mounting component there is, for example, a chip resistor of an electric circuit in which the gas sensor 10 is incorporated.
  • a chip resistor of an electric circuit in which the gas sensor 10 is incorporated.
  • the first fixed resistor 3 and the second fixed resistor 4 of FIG. 1 are configured by chip resistors
  • chip resistors are arranged in the vicinity of the gas sensor 10 as mounting components 30.
  • the resistor 11 and the printed wiring board of the gas sensor 10 are not affected by frost for the same amount of time.
  • the distance D1 of 90 can be set even smaller.
  • the mounting component 30 may be a dedicated heater. Good.
  • this dedicated heater only needs to prevent frost formation, there is no need to heat it above the boiling point of water, for example, a switching temperature of 1 ° C. or higher and 50 ° C. or lower, more preferably 5 ° C. or higher and 10 ° C. or lower. Configured to turn off at. For example, using a temperature sensor and a switching element, the heater can be turned off when the temperature reaches 5 ° C.
  • the gas sensor 10 is mounted on an automobile or the like, the driving power of the gas sensor 10 and the heater is covered by the battery of the automobile, so that the driving power of the gas sensor 10 and the heater is required to be as small as possible.
  • the gas sensor 10 is installed so as to protrude from the printed wiring board 90 (an example of a wiring body) to be mounted having the first wiring 91 and the second wiring 92.
  • the printed wiring board 90 has been described as an example of the wiring body, but the wiring body is not limited to the printed wiring board, and may be any place where the first wiring 91 and the second wiring 92 can be wired. It may be a wiring area of an electrical component box or a plastic case.
  • the gas sensor is not limited to a gas sensor that detects hydrogen, and the detection target may be anything that burns to produce water (H 2 O).
  • the first electrode terminal 12 has at least one first connection part 121 connected to the first wiring 91 and a first arm part 123 extending from the first connection part 121 to one end 11 a of the resistor 11.
  • the second electrode terminal 13 includes at least one second connection part 131 connected to the second wiring 92 and a second arm part 133 extending from the second connection part 131 to the other end 11 b of the resistor 11. ing.
  • the first embodiment the case where there are two first connection portions 121 and two second connection portions 131 has been described.
  • the 1 connection part 121 and the 2nd connection part 131 may be provided, respectively.
  • the first electrode terminal 12 and the second electrode terminal 13 include at least a part of the first arm part 123 and at least one of the second arm part 133 so as to form a water vapor diffusion cavity S2 extending from the resistor 11 to the printed wiring board 90.
  • the parts are insulated and fixed to each other.
  • the portions other than the first bottom portion 122 and the second bottom portion 132 for attaching the resistor 11 and the portions facing the openings 26 and 27 on the opposite side are all covered with the thermoplastic resin.
  • the water vapor diffusion cavity S2 reaches the lower surface 90a of the printed wiring board 90. However, for example, a number that contacts the lower surface 90a and covers the lower surface 90a so that water vapor does not directly hit the printed wiring board 90.
  • a thin protective film of about ⁇ m to several hundred ⁇ m may be provided.
  • the water vapor diffusion cavity S2 does not reach the printed wiring board 90 (wiring body), but reaches the vicinity thereof, so that the water vapor diffusion cavity S2 reaches the printed wiring board 90 described later. The same effect as the case is produced.
  • the water vapor diffusion cavity S2 reaching from the resistor 11 to the printed wiring board 90 or the vicinity thereof is formed between the resistor 11 and the printed wiring board 90, so that hydrogen burns. Since the generated water vapor reaches the printed wiring board 90 or the vicinity thereof through the water vapor diffusion cavity S2, frost grows mainly from the printed wiring board 90 or the vicinity thereof (for example, the above-described protective film). As a result, it is possible to increase the combustion time required for the frost to grow by effectively using the entire length of the first arm portion 123 and the second arm portion 133 without consuming the heating energy for melting the frost. It is possible to maintain a state in which gas detection can be performed without being affected by frost.
  • FIG. 14 shows the relationship between the gas sensor 10, the output, and the time using the distance D1 from the printed wiring board 90 to the resistor 11 and the distance D10 from the resistor 11 to the opening 82 of the sensor casing 80 as parameters. ing.
  • curves C1 and C2 show the output when the distance D1 is 1 mm and the distance D10 is 3 mm
  • the curve C3 shows the output when the distance D1 is 1 mm and the distance D10 is 6 mm
  • the curve C4 shows the output when the distance D1 is 1 mm and the distance D10 is 3 mm
  • the curve C3 shows the output when the distance D1 is 1 mm and the distance D10 is 6 mm
  • the curve C4 shows the relationship between the gas sensor 10, the output, and the time using the distance D1 from the printed wiring board 90 to the resistor 11 and the distance D10 from the resistor 11 to the opening 82 of the sensor casing 80 as parameters. ing.
  • curves C1 and C2 show the output when the distance D1 is 1
  • the curve C5 shows the output when the distance D1 is 2 mm and the distance D10 is 6 mm
  • the curve C6 shows the output when the distance D1 is 2 mm.
  • the output when the distance D10 is 9.9 mm is shown.
  • the curve C7 shows the output when the distance D1 is 3 mm and the distance D10 is 6 mm.
  • the curve C8 shows the output when the distance D1 is 3 mm and the distance D10 is 9.9 mm.
  • the output at the time is shown. However, in the measurement of the curves C1 to C8 shown in FIG.
  • the environmental temperature is minus 35 ° C.
  • the resistor 11 starts from the L-shaped portion of the first electrode terminal 12 and the second electrode terminal 13. Until the distance D2 was 2.5 mm. From this result, it can be seen that the decrease in sensitivity is suppressed by increasing the distance D1. Further, it can be seen that when the view is changed, the decrease in sensitivity is suppressed by increasing the distance D1 + D2.
  • the first electrode terminal 12 and the second electrode terminal 13 are bridged and fixed to each other by the bridge portion 21 at a position far from the printed wiring board 90 by substantially the same distance D1 as the resistor 11. Due to such a configuration, the bridge portion 21 that bridges the first electrode terminal 12 and the second electrode terminal 13 does not exist between the printed wiring board 90 and the resistor 11. Most of the generated water vapor rises upward, making it difficult for the water vapor to reach the bridge portion 21 at the same height as the resistor 11, and the frost is difficult to grow from the bridge portion 21 as a starting point. You can earn distance. For example, as shown in FIG.
  • first arm portion 123 and the second arm portion 133 are planes perpendicular to the Z axis with respect to the vertical length (distance D3 shown in FIG. 4) represented by the Z coordinate extending in the vertical direction from the printed wiring board 90.
  • the horizontal length (distance D4 shown in FIG. 5) represented by the X coordinate and Y coordinate is substantially the same.
  • frost may melt during use, and the time during which sensitivity can be maintained may be extended beyond the length of the first arm portion 123 and the second arm portion 133. is there.
  • the first arm portion 123 and the second arm portion 133 are both bent into an L-shape, so that the first electrode terminal 12 and the second electrode portion 12 can be formed with a simple structure. While suppressing the vertical height of the electrode terminal 13, the distance between the first arm portion 123 and the second arm portion 133 through which frost is transmitted before the frost reaches from the printed wiring board 90 to the resistor 11 can be increased. . Note that the number of times of folding into the L-shape is not limited to one, and the same effect can be obtained even when the shape is bent into the L-shape a plurality of times.
  • the first arm portion 123 extends in a bifurcated manner from the one end 11 a of the resistor 11 and is connected to the first wiring 91.
  • the gas sensor 10 is supported by a total of four arms, ie, the first arm portion 123 and the second arm portion 133, so that the gas sensor 10 can be installed on the printed circuit board 90. Stability is improved. In this case, the installation strength is also improved by soldering the first connection part 121 and the second connection part 131 to the first wiring 91 and the second wiring 92, respectively, for all four arms.
  • the first arm 123 and the second arm 133 are substantially arranged with the resistor 11 from the vicinity of the first connection 121 and the second connection 131. They are separated from each other up to the vicinity of the height position and are covered with an insulating coating with resin. That is, the sections of the distance D3 shown in FIG. 4 are separated from each other and insulated.
  • the first arm portion 123 has a first separation portion that extends in the horizontal direction from the one end 11a of the resistor 11 and moves away from the resistor 11 in the horizontal direction. 1 separation part is covered with resin.
  • the first separation portion is, for example, a section from one end 11a of the resistor 11 in FIG. 5 to the distance D4.
  • the second arm portion 133 has a second separation portion that extends in the horizontal direction from the other end 11b of the resistor 11 and moves away from the resistor 11 in the horizontal direction, and the second separation portion is covered with resin.
  • the second separation part is, for example, a section from the other end 11b of the resistor 11 in FIG. 5 to the distance D4.
  • the first arm portion 123 and the second arm portion 133 are insulatively coated with resin at the portion where the first connecting portion 121 and the second connecting portion 131 extend straight in the Z-axis direction. It is also possible to configure so as to exclude. As shown in FIGS. 17 and 12, the first arm 123 and the second arm 133 are formed so as to extend in an oblique direction in addition to the horizontal direction. It may be configured to have a first separation portion and a second separation portion for moving away from the first separation portion.
  • the cap 15 covering the resistor 11 has a frame shape.
  • a hand or other foreign matter is placed on the resistor 11 when the gas sensor 10 is handled while preventing the cap 15 from becoming an obstacle when the gas to be detected is guided around the resistor 11. Can be prevented and the resistor can be protected when the gas sensor is handled, and the occurrence of defective products can be suppressed without reducing the sensitivity of hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】霜によるガス検知の不具合を低消費電力で抑制することができる小型のガスセンサを提供する。 【解決手段】第1電極端子12は、第1配線に接続される少なくとも1つの第1接続部121と第1接続部121から抵抗体11の一端11aまで延びる第1腕部123とを有する。第2電極端子13は、第2配線に接続される少なくとも1つの第2接続部131と第2接続部131から抵抗体11の他端11bまで延びる第2腕部133とを有する。第1電極端子12と第2電極端子13は、抵抗体11から配線体又は配線体の近傍まで達する水蒸気拡散キャビティS2を形成するように第1腕部123の少なくとも一部と第2腕部133の少なくとも一部とが絶縁被覆されて互いに固定されている。

Description

ガスセンサ
 本発明は、燃焼して水を生じるガスを触媒で燃焼させて検出するガスセンサに関する。
 近年、水素を使った燃料電池が実用化され、水素を検知するガスセンサの需要が高まっている。水素は、例えば白金及びパラジウムなどの金属又は合金からなる金属線に水素を燃焼させる例えば白金、パラジウム及びロジウムなどを含む触媒が担持された抵抗体を用いた接触燃焼式のガスセンサにより検知される。接触燃焼式のガスセンサによる水素の検知は、水素が燃えることによって温度が上昇する抵抗体の抵抗値の変化を利用して行われる。
 ところで、このようなガスセンサは、氷点下になる環境下でも使用される場合がある。氷点下になる環境下でガスセンサが使用されると、水素と酸素が燃焼して生じる水が凍ってガスセンサの周囲に霜が形成される。このような霜が抵抗体に達すると、水素の拡散が阻害され、水素の検知精度が悪くなる。そこで、特許文献1(特許第5927647号公報)に記載のガス検知器は、貴金属線材を支える支持部に回路基板を貫通させて、ガス検知素子を収容したハウジングの反対側の回路基板に支持部を加熱する加熱部を備えるように構成されている。
特許第5927647号公報
 しかしながら、ガス検知器に加熱部を備え、加熱部で加熱することにより霜の形成を妨げようとすると消費電力が大幅に増加する。例えば、燃料電池を搭載した自動車に接触燃焼式のガスセンサを取り付ける場合には、自動車のバッテリーの消耗を抑えるために接触燃焼式のガスセンサでの消費電力をできる限り抑制することが要求される。
 本発明の課題は、霜によるガス検知の不具合を低消費電力で抑制することができる小型のガスセンサを提供することである。
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係るガスセンサは、第1配線及び第2配線を有する実装対象の配線体から突出するように設置されて、第1配線及び第2配線から電圧が供給されるとともに第1配線及び第2配線を使って抵抗値を測定することにより、燃焼して水を生じるガスを検出するガスセンサであって、ガスの燃焼を促進する触媒を担持する抵抗体と、抵抗体の一端と第1配線の間に接続された第1電極端子と、抵抗体の他端と第2配線の間に接続された第2電極端子と、を備え、第1電極端子は、第1配線に接続される少なくとも1つの第1接続部と第1接続部から抵抗体の一端まで延びる第1腕部とを有し、第2電極端子は、第2配線に接続される少なくとも1つの第2接続部と第2接続部から抵抗体の他端まで延びる第2腕部とを有し、第1電極端子と第2電極端子は、第1腕部の少なくとも一部と第2腕部の少なくとも一部とが絶縁被覆され、抵抗体から配線体又は配線体の近傍まで達する水蒸気拡散キャビティを形成するように互いに固定されている。
 このように構成されたガスセンサによれば、抵抗体から実装対象の配線体又はその近傍に達する水蒸気拡散キャビティが抵抗体と配線体との間に形成されるので、ガスが燃焼してできる水蒸気がこの水蒸気拡散キャビティを通って配線体又はその近傍に達するため、主に配線体又はその近傍を起点として霜が成長することとなり、霜を融かすための加熱エネルギーを消費しなくても第1腕部と第2腕部の長さ全体を有効に使って霜が成長するのに必要な燃焼時間を増やすことができ、霜の影響を受けずにガス検知を行うことができる状態を長く保つことができる。
 上述のガスセンサは、第1電極端子と第2電極端子が、抵抗体と実質的に同じかそれよりも配線体から遠く離れた位置でブリッジされて互いに固定されていてもよい。このように構成することで、第1電極端子と第2電極端子をブリッジしている箇所が抵抗体と配線体との間に存在しなくなるので、抵抗体で発生した水蒸気がブリッジしている箇所に到達しにくくなり、ブリッジしている箇所を起点に霜が成長しにくくなることで霜が伝わる距離を稼ぐことができる。
 上述のガスセンサは、第1腕部及び第2腕部が、配線体から鉛直方向に延びるZ座標で表される鉛直方向長さに対するZ軸に垂直な平面のX座標及びY座標で表される水平方向長さが実質的に同じになるように構成されてもよい。このように構成されることで、配線体からの鉛直方向の大きさ及び水平方向の大きさを抑えながら、第1腕部及び第2腕部を鉛直方向にまっすぐに立てた場合に比べて2倍以上に検知を行える燃焼時間を増やすことができる。
 上述のガスセンサは、第1腕部及び第2腕部が、ともにL字型に折り曲げられていてもよい。L字型に折り曲げることで、簡単な構造で、第1電極端子及び第2電極端子の鉛直方向の高さを抑制しながら、配線体から抵抗体まで霜が達するまでに霜が伝う第1腕部及び第2腕部の距離を長くすることができる。
 上述のガスセンサは、第1腕部が、抵抗体の一端から二股に分かれて延びていて第1配線に接続する第1接続部を2つ有し、第2腕部が、抵抗体の他端から二股に分かれて延びていて第2配線に接続されている第2接続部を2つ有するように構成されてもよい。このように構成されることで、2股の第1腕部と2股の第2腕部の合計4本の腕でガスセンサが支えられるので、ガスセンサの配線体への設置の安定性及び設置強度が向上する。
 上述のガスセンサは、第1腕部及び第2腕部は、第1接続部及び第2接続部の近傍から実質的に抵抗体が配置されている高さ位置の近傍まで互いに分離されて樹脂により絶縁被覆されるように構成されるものであってもよい。このように構成されることで、第1電極端子及び第2電極端子の表面を霜が這い上がり難い樹脂で覆う区間を長くすることができ、霜により発生する不具合を抑制することができる。
 上述のガスセンサは、第1腕部は、抵抗体の一端から水平方向又は斜め方向に延びて抵抗体から水平方向に遠ざかるための第1離隔部を有し、第1離隔部が樹脂で覆われており、第2腕部は、抵抗体の他端から水平方向又は斜め方向に延びて抵抗体から水平方向に遠ざかるための第2離隔部を有し、第2離隔部が樹脂で覆われるように構成されてもよい。第1離隔部及び第2離隔部が樹脂で覆われることにより、第1電極端子及び第2電極端子が露出している場合に比べて霜が成長し難くなり、霜が抵抗体に到達するのを抑制することができる。
 上述のガスセンサは、抵抗体を覆う、枠状のキャップをさらに備えるように構成されてもよい。このようなキャップを備える場合には、抵抗体の周囲に検知対象のガスを導くときにキャップが障害になるのを防ぎながら、ガスセンサの取り扱い時に抵抗体を保護することができ、不良品が発生するのを抑制することができる。
 本発明のガスセンサによれば、小型化が容易になり、且つ霜によるガス検知の不具合を低消費電力で抑制することができる。
第1実施形態に係るガスセンサが搭載されたガス検知装置の一例を示す回路図。 プリント配線基板に実装されるガスセンサの構成の一例を示す模式図。 ガスセンサのハウジングと第1電極端子及び第2電極端子を説明するための模式図。 ハウジングと第1電極端子及び第2電極端子の構成の一例を示す正面図。 ハウジングと第1電極端子及び第2電極端子の構成の一例を示す底面図。 ハウジングと第1電極端子及び第2電極端子の構成の一例を示す側面図。 ハウジングと第1電極端子及び第2電極端子の構成の一例を示す平面図。 ハウジングに抵抗体が取り付けられた状態の一例を示す斜視図。 ハウジングにキャップが取り付けられた状態の一例を模式的に示す斜視図。 ハウジングにキャップが取り付けられた状態の一例を模式的に示す正面図。 ハウジングにキャップが取り付けられた状態の一例を模式的に示す側面図。 ハウジングの他の形態の一例を模式的に示す側面図。 第2実施形態に係るガスセンサの構成を示す模式図。 ガスセンサの抵抗体の位置などを変化させた場合の感度と時間の関係を示すグラフ。 ハウジングと第1電極端子及び第2電極端子の構成の他の例を示す斜視図。 ハウジングに抵抗体が取り付けられた状態の他の例を示す斜視図。 ハウジングの他の形態の他の例を模式的に示す側面図。
〈第1実施形態〉
 以下、本発明の第1実施形態に係るガスセンサとして、燃焼して水を生じる水素を検出するガスセンサを例に挙げて説明する。しかしながら、本発明のガスセンサの検出対象は、水素に限られるものではなく、燃焼して水を生じる検知対象としては、例えばメタン、プロパン及びブタンが挙げられる。
 ガスセンサの説明をするのに先立ち、ガスセンサを用いたガス検知装置について簡単に説明する。
(1)ガスセンサを用いたガス検知装置
 図1には、ガスセンサ10を用いたガス検知装置1の測定回路の一例が模式的に示されている。ガス検知装置1の測定回路は、ガスセンサ10と補償用素子2と第1固定抵抗3と第2固定抵抗4からなるブリッジ回路5を備えている。ガスセンサ10の一方端子である第1電極端子12が接続点Paに接続され、ガスセンサ10の他方端子である第2電極端子13が接続点Pcに接続されている。
 補償用素子2の一方端子は接続点Pcに接続され、補償用素子2の他方端子が接続点Pbに接続されている。
 また、第1固定抵抗3の一方端子が接続点Paに接続され、第1固定抵抗3の他方端子が接続点Pdに接続されている。第2固定抵抗4の一方端子が接続点Pdに接続され、第2固定抵抗4の他方端子が接続点Pbに接続されている。
 接続点Pd,Pcは、ブリッジ回路5の出力端子であり、接続点Pdと接続点Pcに増幅回路7を経てマイクロコンピュータ6が接続されている。マイクロコンピュータ6は、例えばAD変換機能を有し、接続点Pdと接続点Pcとの間に生じた電位差をデジタルデータとして取り込むことができるように構成されている。
 補償用素子2は、抵抗体11の電気抵抗値の変化を補償するために用いられる。補償用素子2は、水素を燃焼させる触媒活性を有しない以外は、ガスセンサ10と同じか又は近似の動作特性を有することが好ましい。このような補償用素子2としては、例えば、ガスセンサ10が有する第1電極端子12及び第2電極端子13とそれらの間に接続された白金線を用いて形成されるものがある。このような補償用素子2の場合、例えば、ガスセンサ10の触媒担持領域に相当する領域に触媒を担持せずに、触媒に代えて水素を燃焼させる触媒活性を有しない物質が形成される。
 例えば、ガス検知装置1を自動車に搭載して使用するときには、自動車のシステム始動と同時に電源E1が入り、自動車のシステム停止までガス検知装置1の電源E1を切らないように構成する。マイクロコンピュータ6は、ガス検知装置1の電源E1が入っている間中、ガス検知装置1の出力からガス濃度を算出し、その結果を出力する。このとき、ガスセンサ10が消費する電力は、例えば10mW以上100mW以下の範囲に設定される。
(2)ガスセンサの構成
 ガスセンサ10は、図2に示されているように、配線体として例えばプリント配線基板90から突出するように設置される。水素が空気よりも軽いため、ガスセンサ10は、プリント配線基板90の下面90aから下方に向かって突出している。なお、この実施形態ではガスセンサ10がプリント配線基板90から下方に向かって突出して設置される場合について説明しているが、ガスセンサ10が突出する方向は下方には限られない。プリント配線基板90には、第1配線91及び第2配線92が配線されている。第1電極端子12が接続する図1の接続点Paは、第1配線91にある。また、第2電極端子13が接続する図1の接続点Pcは、第2配線92にある。
 このガスセンサ10は、センサケーシング80で囲まれたセンサキャビティS1の中に収納されている。センサケーシング80の下方には、センサキャビティS1に連通する開口部82が形成されている。開口部82の全体は、撥水膜83で覆われている。従って、測定対象の水素は、撥水膜83を透過してガスセンサ10に到達する。開口部82が撥水膜83で覆われているのは、異物、特に水滴がガスセンサ10に到達するのを防ぐためである。
 ガスセンサ10は、抵抗体11を保護するためのキャップ15を備えている。キャップ15は、枠状を呈し、水素が通過する開口部15bが6面にそれぞれ形成されている。言い換えると、キャップ15は、6面を開放した直方体形状のフレーム15aで構成されている。このような枠状のキャップ15は、例えば、板状部材を絞り加工し、パンチで穴を開けることにより製造することができる。なお、ここでいう枠状は、棒状部材が直方体状に組み合わさったスケルトン形状を含む概念である。また、ここでは枠状のキャップ15を用いているが、キャップ15の形状は枠状に限られるものではない。抵抗体11は、第1電極端子12と第2電極端子13との間に接続されている。これら、第1電極端子12と第2電極端子13を覆っている樹脂成形体がハウジング20である。ハウジング20を構成する樹脂には例えば熱可塑性樹脂を用いることができ、熱可塑性樹脂としては例えばナイロン樹脂、ポリブチレンテレフタレート樹脂(PBT樹脂)及び液晶ポリマー樹脂がある。ハウジング20の表面を霜が伝いにくくするためには、ハウジング20を構成する樹脂には、撥水性の樹脂を用いることが好ましい。
 ガスセンサ10の抵抗体11は、プリント配線基板90から距離D1だけ離れている。そして、抵抗体11からプリント配線基板90まで達する水蒸気拡散キャビティS2が形成されている。抵抗体11で水素が燃焼して生じた水蒸気は、この水蒸気拡散キャビティS2を通ってプリント配線基板90の下面90aに到達する。従って、霜の成長は、主に、プリント配線基板90の下面90aが起点となる。図2がガスセンサ10を正面から見た状態を示しているのに対し、図3にはガスセンサ10を第1配線91の側の側面から見た状態が模式的に示されている。図3においては、センサケーシング80及びキャップ15の記載が省略されている。図2及び図3を見て分かるように、抵抗体11で水素が燃焼して生じた水に起因して発生した霜が抵抗体11に到達するためには、プリント配線基板90から距離D1だけ霜が下に向かって伝い、そこからさらに横方向に距離D2だけ霜が伝わないと、霜が抵抗体11まで達しない。このように、霜が伝う距離がD1+D2に延びることによって、霜による不具合の発生が抑制される。
(2-1)第1電極端子、第2電極端子及びハウジング
 図4乃至図7には第1電極端子12、第2電極端子13及びハウジング20の構成が示されている。第1電極端子12及び第2電極端子13は、導電性の良い金属又は合金製の板状部材を折り曲げて形成されている。第1電極端子12及び第2電極端子13を構成する部材としては、例えば、ステンレス、又は銅と亜鉛とニッケルの合金である洋白を用いることができる。配線体であるプリント配線基板90に面実装されるガスセンサ10の第1電極端子12は、第1配線91に平行になるように曲げられた第1接続部121を有している。抵抗体11の一端が接続される第1底部122は、第1腕部123の一部であり、第1腕部123において鉛直下方(Z軸方向)に向かって突出している部分である。この第1底部122は、下方に向かって露出しているXY平面に平行な面である。第1腕部123は、第1底部122からY軸方向のプラス方向とマイナス方向の2方向に向かって2股に分かれて延びている。つまり、第1腕部123は、抵抗体11の一端から二股に分かれて延びていて2つの第1接続部121に繋がっている。この第1腕部123は、図6及び図7に示されているように、Z軸方向(鉛直方向)に延びる第1垂直部126と、Y軸方向(水平方向)に延びる第1水平部127とを含んでいる。これら第1垂直部126も第1水平部127も熱可塑性樹脂で覆われている。
 配線体であるプリント配線基板90に面実装されるガスセンサ10の第2電極端子13は、第2配線92に平行になるように曲げられた第2接続部131を有している。抵抗体11の他端が接続される第2底部132は、第2腕部133の一部であり、第2腕部133において鉛直下方(Z軸方向)に向かって突出している部分である。この第2底部132は、下方に向かって露出しているXY平面に平行な面である。第2腕部133は、第2底部132からY軸方向のプラス方向とマイナス方向の2方向に向かって2股に分かれて延びている。つまり、第2腕部133は、抵抗体11の他端から二股に分かれて延びていて2つの第2接続部131に繋がっている。この第2腕部133は、図7に示されているように、Z軸方向(鉛直方向)に延びる第2垂直部136と、Y軸方向(水平方向)に延びる第2水平部137とを含んでいる。これら第2垂直部136も第2水平部137も熱可塑性樹脂で覆われている。上述の第1垂直部126及び第1水平部127並びに第2垂直部136及び第2水平部137を熱可塑性樹脂で覆う構造は、例えばインサート成形によって形成することができる。なお、第1底部122及び第2底部132の反対側には、図6及び図7に示されているように、開口部26,27が形成されている。
 上述の第1腕部123の第1水平部127は、抵抗体11の一端から水平方向に延びて抵抗体11から水平方向に遠ざかるための第1離隔部である。また、第2腕部133の第2水平部137は、抵抗体11の他端から水平方向に延びて抵抗体11から水平方向に遠ざかるための第2離隔部である。これら第1離隔部である第1水平部127も第2離隔部である第2水平部137も樹脂で覆われている。このように樹脂で覆われることにより、金属製の第1腕部123及び第2腕部133が露出する場合に比べれば霜が伝い難くなる。なお、全体が完全に樹脂で覆われていなくて第1離隔部及び第2離隔部の一部が樹脂で覆われている場合に、霜の延びを抑制する効果がなくなるものではない。
 第1電極端子12と第2電極端子13は、抵抗体11と実質的に同じだけプリント配線基板90から遠く離れた位置で、ハウジング20のブリッジ部21によってブリッジされて互いに固定されている。このブリッジ部21を除き、第1腕部123の第1水平部127と第2腕部133の第2水平部137は、互いに分離して絶縁被覆されている。その結果、開口部22が、抵抗体11の配置位置の直上に、言い換えると抵抗体11とプリント配線基板90との間に形成される。このような開口部22が形成されることで、抵抗体11の上方にはプリント配線基板90まで連続して続く水蒸気拡散キャビティS2が形成される。
 また、第1腕部123の第1垂直部126を覆っている熱可塑性樹脂は、第2腕部133の第2垂直部136を覆っている熱可塑性樹脂から分離されている。言い換えると、第1腕部123は、第1接続部121の近傍から実質的に抵抗体11が配置される高さ位置の近傍まで、第2腕部133から分離されて熱可塑性樹脂によって絶縁被覆されているということである。つまり、図4に示されている距離D3の間では、第1腕部123と第2腕部133とが互いに分離されて絶縁被覆されている。このように第1腕部123と第2腕部133が分離されて絶縁被覆されることにより、プリント配線基板90の方も開口した開口部23が形成される。
 図6に示されているように、第1腕部123は、2箇所においてL字型に折り曲げられている。2箇所においてL字型に折り曲げられることにより、第1腕部123は、側面から見ると、全体として、ほぼC字型の形状を呈する。この第1腕部123と同様に、第2腕部133は、2箇所においてL字型に折り曲げられている。2箇所においてL字型に折り曲げられることにより、第2腕部133は、側面から見ると、全体として、ほぼC字型の形状を呈する。ここでは、第1腕部123及び第2腕部133が二股に分かれているので、全体としてC字型の形状を呈するが、第1腕部123及び第2腕部133が二股に分かれていない形状に構成することもできる。例えば、第1底部122と第2底部132の中央で切断したような形状、すなわち側面から見てL字型の形状を呈するように構成することもできる。その場合には、第1接続部121及び第2接続部131がそれぞれ1つずつになるため、第1接続部121及び第2接続部131がそれぞれ2つずつある場合に比べれば安定性が悪くなるが、このような側面から見てL字型を呈する構成でも実用上の支障はない。
 ハウジング20には、キャップ15を取り付けるための爪25が4箇所設けられている。爪25は、下方よりも上方の突出量が大きくなっている。下方からキャップ15を嵌めると、爪25が引っ掛かってキャップ15が固定される。
(2-2)抵抗体
 図8には、抵抗体11が取り付けられたハウジング20を斜め下方から見た状態が示されている。図8に示されているように、抵抗体11の一端11aが、第1電極端子12の第1底部122に接続され、抵抗体11の他端11bが、第2電極端子13の第2底部132に接続されている。抵抗体11の鉛直上(Z軸方向)は、開口部22を通して水蒸気拡散キャビティS2に繋がっている。
 抵抗体11は、白金線をコイル状に巻回して形成されている。白金線の線径は例えば数十μm程度であり、コイルの直径は例えば数百μm程度である。抵抗体11は、コイル状の部分の表面にパラジウムを触媒として担持している。
(2-3)キャップ
 図9乃至図11には、ハウジング20にキャップ15が取り付けられた状態が模式的に示されている。キャップ15は、例えば、鉄とニッケルの合金からなるフレーム15aで構成された枠状を呈する。このように骨組みだけのような立体形状にすることで、水素が抵抗体11に到達し易くなっている。フレーム15aは、直方体の12本の辺の位置に配置されている。フレーム15aは、例えば山形材(Lアングル)である。フレーム15aの互いに対向する間隔は、指が入らない幅に設定されている。従って、キャップ15を取り付けた状態では、開口部15bから指が侵入して抵抗体11に触ることは無い。また、キャップ15は、指だけでなく他の異物からも抵抗体11を保護することができる。キャップ15には、ハウジング20に接触する側に、穴部15cが形成されている。この穴部15cにハウジング20の爪25が嵌る。
 ハウジング20とキャップ15の大きさについての参考値を示すと次のようになる。ハウジング20とキャップ15を組み合わせたときのX方向の長さL1は例えば3~4mm程度であり、Y方向の長さL2は例えば6~9mm程度であり、Z方向の長さL3は例えば5~7mm程度である。それに対して、ハウジング20のX方向の長さL4はキャップ15のX方向の長さL1からキャップ15のフレーム15aの板厚を引いたものになるが、板厚が薄いのでほぼL1に等しくなる。また、ハウジング20のY方向の長さL5はキャップ15のY方向の長さL2からフレーム15aの板厚を引いたものになるが、板厚が薄いのでほぼL2に等しくなる。ハウジング20のZ方向の長さL6は例えば3~5mm程度である。ハウジング20の開口部24の長さL7は例えば4~7mm程度である。また、キャップ15のZ方向の長さL8は例えば2.5~5mm程度である。
(3)変形例
(3-1)変形例1A
 上記第1実施形態では、第1電極端子12及び第2電極端子13をL字型に折り曲げる場合について説明したが、第1電極端子12及び第2電極端子13の形状はこのような計上に限られるものではない。例えば、図12に示されている第1電極端子12(又は第2電極端子13)のように、側面から見たときに半円形になるように形成することもできる。このように構成すれば、抵抗体11からプリント配線基板90までの距離L10(Z軸方向の長さ)及び抵抗体11からハウジング20の端までの距離L9(X軸方向の長さ)を小さく抑えながら、プリント配線基板90からハウジング20を伝って抵抗体11に到達するまでの距離L11を大きくすることができる。
(3-2)変形例1B
 上記第1実施形態では、第1電極端子12及び第2電極端子13が抵抗体11の一端11a及び他端11bから二股に分かれて延びるように構成することで、ハウジング20が4本の腕でプリント配線基板90に取り付けられる場合について説明したが、既に説明したように抵抗体11の一端11a及び他端11bからX軸方向のプラス方向又はマイナス方向のいずれか一方に第1電極端子12及び第2電極端子13がそれぞれ延びるように構成することで、ハウジング20が4本の腕でプリント配線基板90に取り付けられるように構成することもできる。
 また、ハウジング20の腕の数は、2本及び4本に限られるものではなく、3本であってもよく、5本以上であってもよい。
(3-3)変形例1C
 上記第1実施形態では、水蒸気拡散キャビティS2の上に蓋をするようにプリント配線基板90が設けられているが、プリント配線基板90に開口部を設けて、又は、ガスセンサ10をプリント配線基板90の端部に設けて、水蒸気拡散キャビティS2がプリント配線基板90を突き抜けるように、又はプリント配線基板90で水蒸気拡散キャビティS2の上部に蓋をされないように構成することもできる。
(4)他の実施形態
(4-1)
〈第2実施形態〉
 以上、本発明の第1実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 上記第1実施形態では、自ら発熱する実装部品を考慮しない場合について説明したが、図13に示すように、自ら発熱する実装部品30をガスセンサ10の近傍に配置して、ガスセンサ10と組み合わせてもよい。この場合、自ら発熱する実装部品は、ガスセンサ10が組み込まれた電気回路が動作するときに一緒に動作する実装部品であることが好ましい。このような実装部品としては、ガスセンサ10が組み込まれた電気回路の例えばチップ抵抗がある。例えば、図1の第1固定抵抗3及び第2固定抵抗4をチップ抵抗で構成するときに、このようなチップ抵抗を実装部品30としてガスセンサ10の近傍に配置する。自ら発熱する実装部品30で抵抗体11の直上のプリント配線基板90の下面90aを暖めることにより、同程度の時間だけ霜の影響を受けなくする場合に、ガスセンサ10の抵抗体11とプリント配線基板90の距離D1をさらに小さく設定することができる。
(4-2)
〈第3実施形態〉
 上記第2実施形態では、自ら発熱する実装部品30を用いて抵抗体11の直上のプリント配線基板90の下面90aを暖める場合について説明したが、この実装部品30は、専用のヒータであってもよい。特に、この専用のヒータは、霜着きを防止すればよいため、水の沸点以上に加熱する必要は無く、例えば、1℃以上50℃以下、さらに好ましくは、5℃以上10℃以下のスイッチング温度でターンオフするように構成される。例えば、温度センサとスイッチング素子とを用いて、5℃になればヒータをターンオフするように構成することができる。ガスセンサ10が自動車などに搭載される場合には、自動車のバッテリーでガスセンサ10及びヒータの駆動電力が賄われるため、ガスセンサ10及びヒータの駆動電力をできる限り小さくすることが求められる。
(5)特徴
(5-1)
 以上説明したように、ガスセンサ10は、第1配線91及び第2配線92を有する実装対象のプリント配線基板90(配線体の例)から突出するように設置されている。ここでは、プリント配線基板90を配線体の例として説明したが、配線体は、プリント配線板に限られるものではなく、第1配線91及び第2配線92を配線できる場所であればよく、例えば電装品箱又はプラスチックケースの配線領域でもよい。
 既に説明したように、ガスセンサは水素を検知するガスセンサに限られるものではなく、検知対象は燃焼して水(H2O)を生じるものであればよい。ただし、水素のように空気よりも軽いガスを検知するガスセンサは、検知対象のガスが下から上に移動するため、配線体から下方に突出するように設けられる。
 第1電極端子12は、第1配線91に接続される少なくとも1つの第1接続部121と第1接続部121から抵抗体11の一端11aまで延びる第1腕部123とを有している。また、第2電極端子13は、第2配線92に接続される少なくとも1つの第2接続部131と第2接続部131から抵抗体11の他端11bまで延びる第2腕部133とを有している。上記第1実施形態では、第1接続部121及び第2接続部131が2つの場合について説明したが、変形例1Bで説明したように、ハウジング20の腕を2本にする場合には、第1接続部121及び第2接続部131がそれぞれ1つずつ設けられる構成であってもよい。
 第1電極端子12と第2電極端子13は、抵抗体11からプリント配線基板90まで達する水蒸気拡散キャビティS2を形成するように第1腕部123の少なくとも一部と第2腕部133の少なくとも一部とが絶縁被覆されて互いに固定されている。第1実施形態では、抵抗体11を取り付けるための第1底部122及び第2底部132及びその反対側の開口部26,27に面する部分以外は全て熱可塑性樹脂で覆われている。第1実施形態では、水蒸気拡散キャビティS2がプリント配線基板90の下面90aに達しているが、例えば、水蒸気がプリント配線基板90に直接あたらないように、下面90aに当接して下面90aを覆う数μm~数百μm程度の薄い保護膜を設けてもよい。そのような保護膜を設けた場合には、水蒸気拡散キャビティS2がプリント配線基板90(配線体)に達しないが、その近傍までは達するので、後述するプリント配線基板90に水蒸気拡散キャビティS2が達する場合の効果と同様の効果を奏する。
 このように構成されたガスセンサによれば、抵抗体11からプリント配線基板90又はその近傍に達する水蒸気拡散キャビティS2が抵抗体11とプリント配線基板90との間に形成されるので、水素が燃焼してできる水蒸気がこの水蒸気拡散キャビティS2を通ってプリント配線基板90又はその近傍に達するため、主にプリント配線基板90又はその近傍(例えば、上述の保護膜)を起点として霜が成長する。その結果、霜を融かすための加熱エネルギーを消費しなくても第1腕部123と第2腕部133の長さ全体を有効に使って霜が成長するのに必要な燃焼時間を増やすことができ、霜の影響を受けずにガス検知を行うことができる状態を長く保つことができる。
 図14には、プリント配線基板90から抵抗体11までの距離D1と、抵抗体11からセンサケーシング80の開口部82までの距離D10をパラメータとして、ガスセンサ10と出力と時間との関係が示されている。図14において、曲線C1,C2は距離D1が1mmで距離D10が3mmのときの出力を示しており、曲線C3は距離D1が1mmで距離D10が6mmのときの出力を示しており、曲線C4は距離D1が1mmで距離D10が9.9mmのときの出力を示しており、曲線C5は距離D1が2mmで距離D10が6mmのときの出力を示しており、曲線C6は距離D1が2mmで距離D10が9.9mmのときの出力を示しており、曲線C7は距離D1が3mmで距離D10が6mmのときの出力を示しており、曲線C8は距離D1が3mmで距離D10が9.9mmのときの出力を示している。ただし、図14に示されている曲線C1~C8の測定は、環境温度がマイナス35℃で且つ、第1電極端子12及び第2電極端子13のL字型に折り曲げられた部分から抵抗体11までの距離D2が2.5mmの条件で行われた。この結果から、距離D1を長くすることにより、感度の低下が抑制されることが分かる。また、見方を変えると距離D1+D2を長くすることにより、感度の低下が抑制されることが分かる。
(5-2)
 また、第1電極端子12と第2電極端子13は、抵抗体11と実質的に同じ距離D1だけプリント配線基板90から遠く離れた位置でブリッジ部21によりブリッジされて互いに固定されている。このような構成によって、第1電極端子12と第2電極端子13をブリッジしているブリッジ部21がプリント配線基板90と抵抗体11との間には存在しなくなることから、抵抗体11で発生した水蒸気の大部分が上に向かって上昇し、抵抗体11と同じ高さにあるブリッジ部21に水蒸気が到達しにくくなり、ブリッジ部21を起点に霜が成長し難くなることで霜が伝わる距離を稼ぐことができる。
 例えば、図15に示されているように、ブリッジ部21がプリント配線基板90から離れる距離D6の方が、プリント配線基板90から抵抗体11が離れる距離D5よりも大きくなるように構成した場合でも、抵抗体11で発生した水蒸気が上に上昇するために抵抗体11よりも下にあるブリッジ部21が霜の成長の起点になることはないので、霜が伝わる距離を稼ぐことができる。
(5-3)
 また、第1腕部123及び第2腕部133が、プリント配線基板90から鉛直方向に延びるZ座標で表される鉛直方向長さ(図4に記載の距離D3)に対するZ軸に垂直な平面のX座標及びY座標で表される水平方向長さ(図5に記載の距離D4)が実質的に同じになるように構成されている。このように構成されることで、プリント配線基板90からの鉛直方向の大きさ及び水平方向の大きさを抑えながら、第1腕部123及び第2腕部133を鉛直方向にまっすぐに立てた場合に比べて霜が伝う距離はおよそ2倍程度になる。その結果、霜が成長して抵抗体11に達するまでの時間が2倍程度は掛かるようになり、連続使用する場合に感度維持できる時間も2倍程度は延長することができる。なお、実際に使用される場合には、使用途中で霜が融ける場合があり、第1腕部123及び第2腕部133の長さが長くなる以上に感度維持できる時間が延長されることもある。
(5-4)
 また、上述の第1実施形態に係るガスセンサ10では、第1腕部123及び第2腕部133が、ともにL字型に折り曲げられることで、簡単な構造で、第1電極端子12及び第2電極端子13の鉛直方向の高さを抑制しながら、プリント配線基板90から抵抗体11まで霜が達するまでに霜が伝う第1腕部123及び第2腕部133の距離を長くすることができる。なお、L字型に折り曲げる回数は1回に限られるものではなく、複数回L字型に折り曲げられても同様の効果を奏する。
(5-5)
 上述の第1実施形態に係るガスセンサ10では、図8に開示されているように、第1腕部123が、抵抗体11の一端11aから二股に分かれて延びていて第1配線91に接続する第1接続部121を2つ有し、第2腕部133が、抵抗体11の他端11bから二股に分かれて延びていて第2配線92に接続されている第2接続部131を2つ有する。このように構成されることで、2股の第1腕部123と2股の第2腕部133の合計4本の腕でガスセンサ10が支えられるのでガスセンサ10のプリント配線基板90への設置の安定性が向上する。この場合、4本の腕の全てついて、第1接続部121及び第2接続部131が第1配線91及び第2配線92にそれぞれはんだ付けされることで設置強度も向上する。
(5-6)
 上述の第1実施形態に係るガスセンサ10では、第1腕部123及び第2腕部133は、第1接続部121及び第2接続部131の近傍から実質的に抵抗体11が配置されている高さ位置の近傍まで互いに分離されて樹脂により絶縁被覆されている。つまり、図4に示されている距離D3の区間が互いに分離されて絶縁されている。このように構成されることで、第1電極端子12及び第2電極端子13の表面を霜が這い上がり難い樹脂で覆う区間が長くなり、霜により発生する不具合を抑制する効果を向上させることができる。
(5-7)
 上述の第1実施形態に係るガスセンサ10は、第1腕部123は、抵抗体11の一端11aから水平方向に延びて抵抗体11から水平方向に遠ざかるための第1離隔部を有し、第1離隔部が樹脂で覆われている。第1離隔部は、例えば図5の抵抗体11の一端11aから距離D4までの区間である。同様に、第2腕部133は、抵抗体11の他端11bから水平方向に延びて抵抗体11から水平方向に遠ざかるための第2離隔部を有し、第2離隔部が樹脂で覆われる。第2離隔部は、例えば図5の抵抗体11の他端11bから距離D4までの区間である。このように第1離隔部及び第2離隔部が樹脂で覆われることにより、第1電極端子12及び第2電極端子13が露出している場合に比べて霜が成長し難くなり、霜が抵抗体11に到達するのを抑制することができる。
 なお、図16に示されているように、第1腕部123及び第2腕部133が第1接続部121及び第2接続部131からZ軸方向に真っ直ぐ延びている部分の樹脂による絶縁被覆を除くように構成することもできる。
 また、図17及び図12に示されているように、水平方向以外に、斜め方向に第1腕部123及び第2腕部133が延びるように形成されることで、抵抗体11から水平方向に遠ざかるための第1離隔部及び第2離隔部を有するように構成されてもよい。
(5-8)
 上述の第1実施形態に係るガスセンサ10では、図9乃至図11を用いて説明したように、抵抗体11を覆うキャップ15は、枠状を呈する。このようなキャップ15を備える場合には、抵抗体11の周囲に検知対象のガスを導くときにキャップ15が障害になるのを防ぎながら、ガスセンサ10の取り扱い時に抵抗体11に手や他の異物が触れるのを防止してガスセンサの取り扱い時に抵抗体を保護することができ、水素の感度を低下させずに不良品が発生するのを抑制することができる。
1   ガス検知装置
10   ガスセンサ
11   抵抗体
12   第1電極端子
13   第2電極端子
15   キャップ
20   ハウジング
21   ブリッジ部
90   プリント配線基板(配線体の例)
91   第1配線
92   第2配線
121   第1接続部
123   第1腕部
131   第2接続部
133   第2腕部
S1   センサキャビティ
S2   水蒸気拡散キャビティ

Claims (8)

  1.  第1配線及び第2配線を有する実装対象の配線体から突出するように設置されて、前記第1配線及び前記第2配線から電圧が供給されるとともに前記第1配線及び前記第2配線を使って抵抗値を測定することにより、燃焼して水を生じるガスを検出するガスセンサであって、
     前記ガスの燃焼を促進する触媒を担持する抵抗体と、
     前記抵抗体の一端と前記第1配線の間に接続された第1電極端子と、
     前記抵抗体の他端と前記第2配線の間に接続された第2電極端子と、
    を備え、
     前記第1電極端子は、前記第1配線に接続される少なくとも1つの第1接続部と前記第1接続部から前記抵抗体の前記一端まで延びる第1腕部とを有し、
     前記第2電極端子は、前記第2配線に接続される少なくとも1つの第2接続部と前記第2接続部から前記抵抗体の前記他端まで延びる第2腕部とを有し、
     前記第1電極端子と前記第2電極端子は、前記第1腕部の少なくとも一部と前記第2腕部の少なくとも一部とが絶縁被覆され、前記抵抗体から前記配線体又は前記配線体の近傍まで達する水蒸気拡散キャビティを形成するように互いに固定されている、ガスセンサ。
  2.  前記第1電極端子と前記第2電極端子は、前記抵抗体と実質的に同じかそれよりも前記配線体から遠く離れた位置でブリッジされて互いに固定されている、
    請求項1に記載のガスセンサ。
  3.  前記第1腕部及び前記第2腕部は、前記配線体から鉛直方向に延びるZ座標で表される鉛直方向長さに対するZ軸に垂直な平面のX座標及びY座標で表される水平方向長さが実質的に同じになるように構成されている、
    請求項1又は請求項2に記載のガスセンサ。
  4.  前記第1腕部及び前記第2腕部は、ともにL字型に折り曲げられている、
    請求項1から3のいずれか一項に記載のガスセンサ。
  5.  前記第1腕部は、前記抵抗体の前記一端から二股に分かれて延びていて前記第1配線に接続されている前記第1接続部を2つ有し、
     前記第2腕部は、前記抵抗体の前記他端から二股に分かれて延びていて前記第2配線に接続されている前記第2接続部を2つ有する、
    請求項1から4のいずれか一項に記載のガスセンサ。
  6.  前記第1腕部及び前記第2腕部は、前記第1接続部及び前記第2接続部の近傍から実質的に前記抵抗体が配置されている高さ位置の近傍まで互いに分離されて絶縁被覆されている、
    請求項1から5のいずれか一項に記載のガスセンサ。
  7.  前記第1腕部は、前記抵抗体の前記一端から水平方向又は斜め方向に延びて前記抵抗体から水平方向に遠ざかるための第1離隔部を有し、前記第1離隔部が樹脂で覆われており、
     前記第2腕部は、前記抵抗体の前記他端から水平方向又は斜め方向に延びて前記抵抗体から水平方向に遠ざかるための第2離隔部を有し、前記第2離隔部が樹脂で覆われている、
    請求項1から6のいずれか一項に記載のガスセンサ。
  8.  前記抵抗体を覆う、枠状のキャップをさらに備える、
    請求項1から7のいずれか一項に記載のガスセンサ。
PCT/JP2017/029947 2016-08-25 2017-08-22 ガスセンサ WO2018038104A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187032707A KR102345197B1 (ko) 2016-08-25 2017-08-22 가스 센서
CN201780052110.4A CN109642883B (zh) 2016-08-25 2017-08-22 气体传感器
EP17843582.2A EP3447482B1 (en) 2016-08-25 2017-08-22 Gas sensor structure suppressing gas detection problems caused by frost
US16/280,033 US10527572B2 (en) 2016-08-25 2019-02-20 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016164426A JP6375343B2 (ja) 2016-08-25 2016-08-25 ガスセンサ
JP2016-164426 2016-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/280,033 Continuation US10527572B2 (en) 2016-08-25 2019-02-20 Gas sensor

Publications (1)

Publication Number Publication Date
WO2018038104A1 true WO2018038104A1 (ja) 2018-03-01

Family

ID=61246104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029947 WO2018038104A1 (ja) 2016-08-25 2017-08-22 ガスセンサ

Country Status (6)

Country Link
US (1) US10527572B2 (ja)
EP (1) EP3447482B1 (ja)
JP (1) JP6375343B2 (ja)
KR (1) KR102345197B1 (ja)
CN (1) CN109642883B (ja)
WO (1) WO2018038104A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102466332B1 (ko) * 2018-01-02 2022-11-15 삼성전자주식회사 가스 센서 패키지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284498A (ja) * 2005-04-04 2006-10-19 Honda Motor Co Ltd ガスセンサ
JP2007040757A (ja) * 2005-08-01 2007-02-15 Honda Motor Co Ltd ガスセンサ
JP2008107137A (ja) * 2006-10-24 2008-05-08 Honda Motor Co Ltd ガスセンサ
US20110174052A1 (en) * 2010-01-20 2011-07-21 Gm Global Technology Operations, Inc. Hydrogen sensor assembly

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870001052B1 (ko) * 1983-03-29 1987-05-26 싱코스모스덴기 가부시기 가이샤 열선형 반도체 가스 검지장치
KR910002656B1 (ko) * 1988-09-14 1991-04-27 세이고 가부시기가이샤 접촉연소식 co 개스센서
CN1025759C (zh) * 1992-08-29 1994-08-24 中国有色金属工业总公司昆明贵金属研究所 微功耗催化可燃气体传感器
JP3480823B2 (ja) * 1999-11-02 2003-12-22 フィガロ技研株式会社 ガスセンサ及びその製造方法
JP4021827B2 (ja) * 2003-09-19 2007-12-12 本田技研工業株式会社 ガスセンサ
JP4340218B2 (ja) * 2004-11-26 2009-10-07 本田技研工業株式会社 ガス検出装置
US7360395B2 (en) * 2005-04-04 2008-04-22 Honda Motor Co., Ltd. Gas sensor
JP4630133B2 (ja) * 2005-06-07 2011-02-09 本田技研工業株式会社 ガスセンサ
JP4669856B2 (ja) * 2007-05-25 2011-04-13 本田技研工業株式会社 ガス検出装置
JP4919516B2 (ja) * 2008-01-15 2012-04-18 理研計器株式会社 ガス検出器の製造方法
DE102009056863A1 (de) * 2009-12-03 2011-06-09 Daimler Ag Vorrichtung zur Erfassung der Wasserstoffkonzentration
KR101268028B1 (ko) * 2010-11-08 2013-05-27 (주)와이즈산전 가스 센서
JP5927647B2 (ja) * 2012-02-01 2016-06-01 新コスモス電機株式会社 ガス検知器
CN102539489A (zh) * 2012-02-09 2012-07-04 中国矿业大学 一种催化燃烧式瓦斯敏感元件的封装结构
KR101464375B1 (ko) * 2012-06-22 2014-11-25 한국과학기술원 초저전력용 가스센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284498A (ja) * 2005-04-04 2006-10-19 Honda Motor Co Ltd ガスセンサ
JP2007040757A (ja) * 2005-08-01 2007-02-15 Honda Motor Co Ltd ガスセンサ
JP2008107137A (ja) * 2006-10-24 2008-05-08 Honda Motor Co Ltd ガスセンサ
US20110174052A1 (en) * 2010-01-20 2011-07-21 Gm Global Technology Operations, Inc. Hydrogen sensor assembly

Also Published As

Publication number Publication date
KR20190041966A (ko) 2019-04-23
US10527572B2 (en) 2020-01-07
KR102345197B1 (ko) 2021-12-30
EP3447482B1 (en) 2020-04-29
JP2018031694A (ja) 2018-03-01
JP6375343B2 (ja) 2018-08-15
EP3447482A4 (en) 2019-04-17
CN109642883A (zh) 2019-04-16
CN109642883B (zh) 2021-10-15
US20190178829A1 (en) 2019-06-13
EP3447482A1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP5373474B2 (ja) 可燃性ガス検出装置
JP6498130B2 (ja) レーザー光線を用いた煤煙センサーの製造方法
JP4877404B2 (ja) 電流検出装置
JP5016599B2 (ja) ガス検出装置
WO2007114267A1 (ja) 接触燃焼式ガスセンサとその検知素子および補償素子
KR20100035682A (ko) 입자상 물질 센서
JP6375343B2 (ja) ガスセンサ
JP2002181764A (ja) 積層型ガスセンサ及びそれを用いたガス濃度検出装置
JP2013096856A (ja) 電流検出装置
JP2013096881A (ja) 電流検出装置
JP2010101736A (ja) ガス検出器
CN1854698A (zh) 浸入式测量用探头,尤其是坠入式测量用探头
JP5966224B2 (ja) 電流検出用抵抗器の実装構造
JP7187139B2 (ja) 接触燃焼式ガスセンサ
JP2015152523A (ja) ガス検出器
JP6347617B2 (ja) ガス検出器、及び、ガス検出システム
JP2012233747A (ja) 液面検出装置
JP2010066174A (ja) ガスセンサ
JP2018205078A (ja) 半導体式ガス検知素子および半導体式ガス検知素子の製造方法
JP2013015397A (ja) 温度センサの製造方法及び温度センサ
JP5374081B2 (ja) ガスセンサ
JP2005335422A (ja) インタンクモジュール
JP5651550B2 (ja) 温度センサ及び温度センサの製造方法
JP2012047476A (ja) ガスセンサ
JP5645719B2 (ja) ガスセンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187032707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017843582

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017843582

Country of ref document: EP

Effective date: 20181122

NENP Non-entry into the national phase

Ref country code: DE