WO2018036076A1 - 一种z-hfo-1336的制备方法 - Google Patents

一种z-hfo-1336的制备方法 Download PDF

Info

Publication number
WO2018036076A1
WO2018036076A1 PCT/CN2017/000200 CN2017000200W WO2018036076A1 WO 2018036076 A1 WO2018036076 A1 WO 2018036076A1 CN 2017000200 W CN2017000200 W CN 2017000200W WO 2018036076 A1 WO2018036076 A1 WO 2018036076A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfo
reaction
hexafluoro
catalyst
butene
Prior art date
Application number
PCT/CN2017/000200
Other languages
English (en)
French (fr)
Inventor
王宗令
周强
吴庆
耿为利
方伟
Original Assignee
王宗令
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王宗令 filed Critical 王宗令
Publication of WO2018036076A1 publication Critical patent/WO2018036076A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/22Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon triple bonds

Definitions

  • the invention belongs to the field of organic synthesis, and in particular relates to a preparation method of Z-HFO-1336.
  • 1,1,1,4,4,4-hexafluorobutene is a zero ODP, low GWP material.
  • Z-HFO-1336 cis isomer of 1,1,1,4,4,4-hexafluoro-2-butene
  • the fourth generation of foaming agent can completely replace HCFC-141b and HFC-245fa in the future and has broad market prospects.
  • Its trans isomer is also one of the refrigerant substitutes, and can form azeotrope with 1-chloro-3,3,3-trifluoropropene or ethylene oxide, and can be used as a new type of foaming agent and refrigerant.
  • the synthesis process of HFO-1336 mainly has the following:
  • WO2011146820 reports a process for the reduction of hexafluoro-2-butyne to Z-HFO-1336 at 25-35 ° C in the presence of solvent ethanol and 3.5% lead poisoned Pd/CaCO3 catalyst, yield 60-98%. .
  • the downside is that hexafluoro-2-butyne is not readily available.
  • US2011028769A1 is based on 1,1,1-trifluoro-2,2-dichloroethane and stirred at 80 ° C in the presence of copper powder, cuprous chloride, 2,2'-bipyridine and solvent DMF. At 4h, HFO-1336 was obtained, in which the ratios of cis to trans were 13.9% and 82.6%, respectively.
  • JP2010001244 uses 1,1,1-trifluoro 2-bromo-2-chloroethane as a raw material, and is dechlorinated by zinc powder to obtain HFO-1336 in a yield of 68%.
  • US2011288349A1 uses hexafluoropropylene and chloroform as raw materials, and adds HFO-1336 by addition, fluorination and dehydrochlorination.
  • the proportion of cis hexafluoro-2-butene exceeds 90%.
  • WO2011119388A2 uses carbon tetrachloride and ethylene as raw materials, adds and dehydrochlorinate to obtain trichloropropene isomer mixture, trichloropropene isomer mixture and carbon tetrachloride addition, fluorination and dehydrochlorination to obtain HFO- 1336.
  • the proportions of cis and trans hexafluoro-2-butene were 61% and 38%, respectively.
  • CN103193586B uses hexachlorobutadiene as a raw material, fluorination to form 1,1,1,4,4,4-hexafluoro 2,3-dichlorobutane, and dechlorination of zinc powder to obtain HFO-1336.
  • HFO-1336 (CN103193586B) is a good choice for the synthesis of hexachlorobutadiene.
  • Hexachlorobutadiene is a by-product of methane chloride production. There is no good treatment. If it is treated by incineration, it will produce dioxin, which is very environmentally friendly. If it is converted into high value-added product HFO-1336, it is expected to solve such problems fundamentally.
  • the disadvantage of CN103193586B is that the method of dechlorination of zinc powder is adopted, and a large amount of zinc chloride is solid-formed, which is difficult to handle and is not environmentally friendly.
  • the invention aims at the deficiencies of the prior art, and provides a preparation method of Z-HFO-1336 which is simple in process, low in cost, environmentally friendly, and easy to industrialize.
  • the technical solution adopted by the invention is: a preparation method of Z-HFO-1336, comprising the following steps:
  • step (b) reacting the gas phase product obtained in the step (a) with a hydrogen molar ratio of 0.05 to 1:1 under the action of a hydrogenation reaction catalyst, the reaction temperature is 25 to 150 ° C, and the contact time is 0.5 to 60 s.
  • the product was collected, condensed, and rectified to obtain a Z-HFO-1336 product.
  • the mass concentration of the potassium hydroxide aqueous solution described in the step (a) is preferably from 10 to 70%.
  • the potassium hydroxide aqueous solution has a mass percentage concentration of more preferably 15 to 50%.
  • the catalyst described in the step (a) is preferably a quaternary ammonium salt, a crown ether-based organic solvent, or a water-soluble organic solvent.
  • the catalyst described in the step (a) is more preferably dimethyl sulfoxide (DMSO), diethylene glycol dimethyl ether, tetrabutylammonium bromide, tetramethylammonium chloride or cetyltrimethyl bromide.
  • DMSO dimethyl sulfoxide
  • diethylene glycol dimethyl ether tetrabutylammonium bromide
  • tetramethylammonium chloride tetramethylammonium chloride
  • cetyltrimethyl bromide cetyltrimethyl bromide.
  • ammonium phosphate and 18-crown ether-6 One of ammonium phosphate and 18-crown ether-6.
  • the mass ratio of potassium hydroxide to 2-chloro-1,1,1,4,4,4-hexafluoro-2-butene in the step (a) is preferably from 0.4 to 0.8:1, 2-chloro-1.
  • the mass ratio of 1,1,4,4,4-hexafluoro-2-butene to the catalyst is preferably 5 to 20:1, the reaction temperature is preferably 50 to 90 ° C, and the reaction time is preferably 3 to 5 h.
  • the hydrogenation catalyst described in the step (b) is preferably lead poisoned palladium/calcium carbonate or quinoline poisoned palladium/barium sulfate.
  • the content of lead in the lead poisoned palladium/calcium carbonate is preferably 0.01 to 0.1 wt.% (wt.%, mass percent).
  • the content of the quinoline poisoned palladium/barium sulfate in the quinoline is preferably 0.01 to 0.1 wt.%.
  • the molar ratio of the gas phase product to the hydrogen gas in the step (b) is preferably from 0.1 to 0.5:1, the reaction temperature is preferably from 25 to 100 ° C, and the contact time is preferably from 1 to 30 s.
  • the second step of the reaction is to prepare Z-HFO-1336 by catalytic hydrogenation using hexafluoro-2-butyne as a raw material, and the hydrogenation reactor can adopt a fixed bed reactor.
  • the reaction equation is:
  • the preparation method of Z-HFO-1336 provided by the invention adopts 2-chloro-1,1,1,4,4,4-hexafluoro-2-butene as raw material, firstly 2-chloro-1,1,1 , 4,4,4-hexafluoro-2-butene and potassium hydroxide aqueous solution are reacted under the condition of surface active catalyst to prepare Hexafluoro-2-butyne, hexafluoro-2-butyne is catalytically hydrogenated in a fixed bed reactor for highly selective preparation to form Z-HFO-1336.
  • the raw material 2-chloro-1,1,1,4,4,4-hexafluoro-2-butene in the present invention can be catalytically fluorinated by the by-product hexachlorobutadiene produced during the production of methane chloride. Obtained (refer to the method of patent CN104072333A).
  • the invention has the advantages that the raw materials are easy to obtain, environmentally friendly, continuous, and low in cost.
  • the catalyst has a great influence on the reaction, and the reaction conversion rate is carried out without adding a catalyst. And the selectivity is greatly reduced.
  • the catalyst may be selected from the group consisting of quaternary ammonium salts, crown ethers or water-soluble organic solvents, preferably DMSO, diethylene glycol dimethyl ether, tetrabutylammonium bromide, tetramethyl chlorination.
  • DMSO diethylene glycol dimethyl ether
  • tetrabutylammonium bromide tetramethyl chlorination.
  • the concentration of potassium hydroxide is too low, the reaction activity is too low or even unreacted, too high
  • the formation of a substitute by-product affects the reaction selectivity, so the mass percentage concentration of the aqueous potassium hydroxide solution is preferably from 10% to 70%, more preferably from 15% to 50%.
  • the reaction temperature has a great influence on the reaction, and the reaction temperature is low.
  • the reaction rate is too low.
  • the reaction temperature in the present invention is 40 to 100 ° C, preferably 50 to 90 ° C.
  • the hexafluorobutyne hydrogenation reaction can be carried out in a fixed bed reactor.
  • the hydrogenation catalyst is a poisoned precious metal catalyst, preferably a Lindlar hydrogenation catalyst: lead poisoned palladium/calcium carbonate, quinolin poisoned palladium/ Barium sulfate catalyst.
  • the mass percentage of lead in the lead poisoned palladium/calcium carbonate is preferably 0.01 to 0.1%, and the mass percentage of the quinoline poisoned palladium/barium sulfate in the quinoline is preferably 0.01 to 0.1%.
  • the molar ratio of hexafluoro-2-butyne to hydrogen is too high.
  • the conversion of the raw material is too low. If the molar ratio is too low, the by-product of hydrogenation will be formed, resulting in a decrease in product selectivity. Therefore, hexafluoro-2-butyne and hydrogen
  • the molar ratio is 0.05 to 1.0:1, preferably 0.1 to 0.5:1.
  • the hydrogenation reaction temperature is 25 to 150 ° C, preferably 25 to 100 ° C.
  • the reaction contact time is 0.5 to 60 s, preferably 1 to 30 s.
  • the present invention has the following advantages:
  • the process is simple and the yield is high.
  • the invention uses 2-chloro-1,1,1,4,4,4-hexafluoro-2-butene as a raw material to obtain a product by saponification and hydrogenation reduction reaction, which is significantly simplified.
  • the process, the reaction yield is above 89%;
  • the three wastes are less discharged, green and environmentally friendly.
  • the second step of the reaction obtains the product through the hydrogenation reduction reaction, avoiding the generation of by-products and reducing the emissions of the three wastes;
  • the raw materials are easy to obtain and the cost is low.
  • the raw material of the present invention 2-chloro-1,1,1,4,4,4-hexafluoro-2-butene, can be produced as a by-product of the methane chloride production process.
  • the preparation of chloroprene by catalytic fluorination further reduces the cost;
  • the invention has simple operation, mild reaction conditions, simple product purification, and the product of the desired purity can be obtained by conventional condensation and rectification in the field, and is easy to be industrialized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种Z-HFO-1336的制备方法,包括以下步骤:(a)将氢氧化钾水溶液、催化剂、2-氯-1,1,1,4,4,4-六氟-2-丁烯混合进行反应,所述氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比为0.3~0.9∶1,2-氯-1,1,1,4,4,4-六氟-2-丁烯与催化剂的质量比为1~30∶1,反应温度为40~100℃,反应时间为2~6h,收集并冷凝反应过程中产生的气相产物;(b)在加氢反应催化剂作用下,将步骤(a)得到的气相产物与氢气按摩尔比0.05~1∶1进行反应,所述反应温度为25~150℃,接触时间为0.5~60s,收集产物并冷凝、精馏得到Z-HFO-1336产品。本发明具有工艺简单,反应条件温和,收率高,环保、可连续化、成本低等优点。

Description

一种Z-HFO-1336的制备方法 技术领域
本发明属于有机合成领域,具体涉及一种Z-HFO-1336的制备方法。
背景技术
1,1,1,4,4,4-六氟丁烯(HFO-1336)属于零ODP,低GWP值物质。Z-HFO-1336(1,1,1,4,4,4-六氟-2-丁烯的顺式异构体),被认为是发泡剂HCFC-141b的理想替代品之一,属于第四代发泡剂,在未来可以完全替代HCFC-141b和HFC-245fa,具有广阔的市场前景。其反式异构体也是制冷剂的替代品之一,与1-氯-3,3,3-三氟丙烯或环氧乙烷能够形成恒沸物,可以作为新型的发泡剂、制冷剂和灭火剂使用。目前杜邦公司已经完成了市场推广,并建立起了6000吨/年的生产装置,国内HCFC-141b年产量为8万吨,若用1,1,1,4,4,4-六氟丁烯全部代替HCFC-141b,那么每年就相当于减少二氧化碳排放5600万吨,保护了臭氧层,保护丁生态环境。
目前HFO-1336的合成工艺主要有以下几条:
(1)六氟-2-丁炔法
WO2011146820报道了一种六氟-2-丁炔在溶剂乙醇、3.5%铅毒化的Pd/CaCO3催化剂存在下,在25~35℃下还原生成Z-HFO-1336的工艺,收率60~98%。不足之处是六氟-2-丁炔原料不易得。
(2)1,1,1-三氟卤代乙烷法
US2011028769A1以1,1,1-三氟-2,2-二氯乙烷为起始原料,在铜粉、氯化亚铜、2,2’-联吡啶及溶剂DMF存在下在80℃搅拌反应4h,得HFO-1336,其中顺式与反式的比例分别为13.9%和82.6%。
JP2010001244以1,1,1-三氟2-溴-2-氯乙烷为原料,经锌粉偶联脱氯得到HFO-1336,收率68%。
(3)六氟丙烯法
US2011288349A1以六氟丙烯和三氯甲烷为原料,经加成、氟化、脱氯化氢得到HFO-1336,顺式六氟-2-丁烯所占比重超过90%。
(4)四氯化碳法
WO2011119388A2以四氯化碳和乙烯为原料,经加成、脱氯化氢得到三氯丙烯异构体混合物,三氯丙烯异构体混合物再与四氯化碳加成,氟化、脱氯化氢得到HFO-1336。其中顺式和反式六氟-2-丁烯所占比重分别为61%和38%。
(5)六氯丁二烯法
CN103193586B以六氯丁二烯为原料,经氟化生成1,1,1,4,4,4-六氟2,3-二氯丁烷,再经锌粉脱氯得到HFO-1336。
反应方程式为:
Figure PCTCN2017000200-appb-000001
以上各条合成工艺各有优缺点,其中以六氯丁二烯为原料合成HFO-1336(CN103193586B)是一个不错的选择,六氯丁二烯是甲烷氯化物生产过程中的副产物,目前还没有很好的处理方法,若采用焚烧进行处理的话会有二噁英的生成,非常不环保,若将其转化为高附加值的产品HFO-1336,有望从根本上解决此类问题。CN103193586B的不足之处是采用了锌粉脱氯的方法,会有大量的氯化锌废固生成,较难处理不利于环保。
发明内容
本发明针对现有技术的不足之处,提供了一种工艺简单、成本低、绿色环保、易于工业化的Z-HFO-1336的制备方法。
本发明采用的技术方案为:一种Z-HFO-1336的制备方法,包括以下步骤:
(a)将氢氧化钾水溶液、催化剂、2-氯-1,1,1,4,4,4-六氟-2-丁烯混合进行反应,所述氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比为0.3~0.9∶1,2-氯-1,1,1,4,4,4-六氟 -2-丁烯与催化剂的质量比为1~30∶1,反应温度为40~100℃,反应时间为2~6h,收集并冷凝反应过程中产生的气相产物;
(b)在加氢反应催化剂作用下,将步骤(a)得到的气相产物与氢气按摩尔比0.05~1∶1进行反应,所述反应温度为25~150℃,接触时间为0.5~60s,收集产物并冷凝、精馏得到Z-HFO-1336产品。
步骤(a)所述的氢氧化钾水溶液质量百分浓度优选为10~70%。所述的氢氧化钾水溶液质量百分浓度更优选为15~50%。
步骤(a)所述的催化剂优选为季铵盐、冠醚类有机溶剂、水溶性有机溶剂。步骤(a)所述的催化剂更优选为二甲基亚砜(DMSO)、二乙二醇二甲醚、四丁基溴化铵、四甲基氯化铵、十六烷基三甲基溴化铵、18-冠醚-6中的一种。
步骤(a)所述的氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比优选为0.4~0.8∶1,2-氯-1,1,1,4,4,4-六氟-2-丁烯与催化剂的质量比优选为5~20∶1,反应温度优选为50~90℃,反应时间优选为3~5h,
步骤(b)所述的加氢反应催化剂优选为铅毒化过的钯/碳酸钙或喹啉毒化过的钯/硫酸钡。所述的铅毒化过的钯/碳酸钙中铅的含量优选为0.01~0.1wt.%(wt.%,质量百分含量)。所述的喹啉毒化过的钯/硫酸钡中喹啉的含量优选为0.01~0.1wt.%。
步骤(b)所述的气相产物与氢气的摩尔比优选为0.1~0.5∶1,所述反应温度优选为25~100℃,接触时间优选为1~30s。
本发明中第一步反应以2-氯-1,1,1,4,4,4-六氟-2-丁烯为原料,与氢氧化钾在催化剂催化条件下进行反应,制备生成六氟-2-丁炔,反应方程式为:
Figure PCTCN2017000200-appb-000002
第二步反应以六氟-2-丁炔为原料,催化加氢反应制备得到Z-HFO-1336,加氢反应器可采用固定床反应器。反应方程式为:
本发明提供的Z-HFO-1336的制备方法,以2-氯-1,1,1,4,4,4-六氟-2-丁烯为原料,首先2-氯-1,1,1,4,4,4-六氟-2-丁烯与氢氧化钾水溶液在表面活性催化剂催化条件下反应,制备 六氟-2-丁炔,六氟-2-丁炔于固定床反应器中进行催化加氢反应高选择性制备生成Z-HFO-1336。本发明中的原料2-氯-1,1,1,4,4,4-六氟-2-丁烯可以通过甲烷氯化物生产过程中生成的副产物六氯丁二烯进行催化氟化制备得到(参照专利CN104072333A的方法)。本发明具有原料易得、环保、可连续化、成本低的优点。
2-氯-1,1,1,4,4,4-六氟-2-丁烯皂化反应制备六氟-2-丁炔,碱的选择对反应结果有较大影响,选用氢氧化钾进行反应提高了反应转化率,同时避免了反应温度和反应时间较长而导致高聚物的生成。因此优选氢氧化钾作为皂化反应所用碱。
2-氯-1,1,1,4,4,4-六氟-2-丁烯皂化反应制备六氟-2-丁炔,催化剂对反应有较大影响,若不加催化剂则反应转化率及选择性会大幅降低,本发明中催化剂可选用季铵盐、冠醚类或水溶性有机溶剂,优选为DMSO、二乙二醇二甲醚、四丁基溴化铵、四甲基氯化铵、十六烷基三甲基溴化铵、18-冠醚-6中的一种。
2-氯-1,1,1,4,4,4-六氟-2-丁烯皂化反应制备六氟-2-丁炔,氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比对反应有影响,若质量比太低则原料反应不完全,对后期分离带来困难,若质量比太高,则会有较多氢氧化钾剩余不利于环保,因此所述氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比为0.3~0.9∶1,优选为0.4~0.8∶1。
2-氯-1,1,1,4,4,4-六氟-2-丁烯皂化反应制备六氟-2-丁炔,氢氧化钾浓度太低反应活性太低甚至不反应,太高则会有取代副产物的生成影响反应选择性,因此氢氧化钾水溶液质量百分浓度优选为10%~70%,更优选为15%~50%。
2-氯-1,1,1,4,4,4-六氟-2-丁烯皂化反应制备六氟-2-丁炔,反应温度对反应有较大影响,反应温度低反应速率太低,反应温度太高会有取代副产物生成,降低反应收率,因此本发明中反应温度为40~100℃,优选为50~90℃。
六氟丁炔加氢反应可在固定床反应器中进行,加氢反应催化剂为毒化过的贵金属催化剂,优选林德拉加氢催化剂:铅毒化的钯/碳酸钙、喹啉毒化过的钯/硫酸钡催化剂。
加氢反应催化剂铅及喹啉加入量对反应有较大的影响,若加入量不足,则反应不会停留在烯烃阶段,导致反应选择性降低,若加入量太高则反应不会进行,因此本发明中铅毒化过的钯/碳酸钙中铅的质量百分含量优选为0.01~0.1%,喹啉毒化过的钯/硫酸钡中喹啉的质量百分含量优选为0.01~0.1%。
六氟-2-丁炔与氢气的摩尔比太高原料转化率太低,摩尔比太低则会有过氢化的副产物生成,导致产物选择性降低,因此六氟-2-丁炔与氢气的摩尔比为0.05~1.0∶1,优选为 0.1~0.5∶1。
加氢反应温度太高会有过氢化的副产物生成,导致产物选择性降低,太低原料转化率太低,因此加氢反应温度为25~150℃,优选为25~100℃。
加氢反应接触时间太长产物选择性降低,太短原料转化率太低,因此反应接触时间为0.5~60s,优选为1~30s。
与现有技术相比,本发明具有以下优点:
1、工艺简单,收率高,本发明以2-氯-1,1,1,4,4,4-六氟-2-丁烯为原料,通过皂化、加氢还原反应得到产品,显著简化了工艺,反应收率在89%以上;
2、三废排放少,绿色环保,第二步反应通过加氢还原反应得到产品,避免了副产物的产生,三废排放少;
3、原料易得,成本低,本发明中的原料2-氯-1,1,1,4,4,4-六氟-2-丁烯可以通过甲烷氯化物生产过程中生成的副产物六氯丁二烯进行催化氟化制备得到,进一步降低了成本;
4、易工业化生产,本发明操作简单,反应条件温和,且产品提纯简单,反应产物经本领域常规的冷凝、精馏后即可得到所需纯度的产品,易于产业化生产。
具体实施方式
以下通过实施例对本发明进行更具体的说明,但本发明并不限于所述的实施例。
实施例1:
向反应釜中加入质量百分浓度为15%的氢氧化钾水溶液207g、DMSO5g、六氟-2-氯丁烯100g后,升温至50℃进行反应,反应时间为3h,收集并冷凝反应过程中产生的气相产物后得到气相产品,经过冷凝后的气相产品与氢气按摩尔比0.1∶1通入装有30ml0.01wt.%铅毒化过的钯/碳酸钙催化剂,内径为30mm的镍管固定床式反应器中,控制接触时间1s,反应温度25℃,冷凝收集粗品后精馏提纯得到Z-HFO-133675g,收率为91%。
实施例2:
向反应釜中加入质量百分浓度为50%的氢氧化钾水溶液168g、18-冠-6醚20g、六氟-2-氯丁烯100g后,升温至90℃进行反应,反应时间为5h,收集并冷凝反应过程中产 生的气相产物后得到气相产品,经过冷凝后的气相产品与氢气按摩尔比0.5∶1通入装有30ml0.1wt.%铅毒化过的钯/碳酸钙催化剂,内径为30mm的镍管固定床式反应器中,控制接触时间30s,反应温度100℃,冷凝收集粗品后精馏提纯得到Z-HFO-1336 73g,收率为89%。
实施例3:
向反应釜中加入质量百分浓度为20%的氢氧化钾水溶液210g、四丁基溴化铵10g、六氟-2-氯丁烯100g后,升温至60℃进行反应,反应时间为4h,收集并冷凝反应过程中产生的气相产物后得到气相产品,经过冷凝后的气相产品与氢气按摩尔比0.2∶1通入装有30ml0.01wt.%喹啉毒化过的钯/硫酸钡催化剂,内径为30mm镍管固定床式反应器中,控制接触时间5s,反应温度50℃,冷凝收集粗品后精馏提纯得到Z-HFO-133678g,收率为95%。
实施例4:
向反应釜中加入质量百分浓度为30%的氢氧化钾水溶液186g、二乙二醇二甲醚15g、六氟-2-氯丁烯100g后,升温至70℃进行反应,反应时间为3.5h,收集并冷凝反应过程中产生的气相产物后得到气相产品,经过冷凝后的气相产品与氢气按摩尔比0.3∶1通入装有30ml0.1wt.%喹啉毒化过的钯/硫酸钡催化剂,内径为30mm镍管固定床式反应器中,控制接触时间10s,反应温度60℃,冷凝收集粗品后精馏提纯得到Z-HFO-1336 74g,收率为90%。
实施例5:
向反应釜中加入质量百分浓度为40%的氢氧化钾水溶液175g、十六烷基三甲基溴化铵8g、六氟-2-氯丁烯100g后,升温至80℃进行反应,反应时间为4.5h,收集并冷凝反应过程中产生的气相产物后得到气相产品,经过冷凝后的气相产品与氢气按摩尔比0.4∶1通入装有30ml0.05wt.%喹啉毒化过钯/硫酸钡催化剂,内径为30mm的镍管固定床式反应器中,控制接触时间20s,反应温度70℃,冷凝收集粗品后精馏提纯得到Z-HFO-1336 78g,收率为95%。
实施例6:
向反应釜中加入质量百分浓度为25%的氢氧化钾水溶液336g、四甲基氯化铵16g、六氟-2-氯丁烯100g后,升温至65℃进行反应,反应时间为5h,收集并冷凝反应过程中产生的气相产物后得到气相产品,经过冷凝后的气相产品与氢气按摩尔比0.35∶1通入装 有30ml0.08wt.%铅毒化过钯/碳酸钙催化剂,内径为30mm的镍管固定床式反应器中,控制接触时间15s,反应温度65℃,冷凝收集粗品后精馏提纯得到Z-HFO-1336 76g,收率为93%。

Claims (10)

  1. 一种Z-HFO-1336的制备方法,其特征在于包括以下步骤:
    (a)将氢氧化钾水溶液、催化剂、2-氯-1,1,1,4,4,4-六氟-2-丁烯混合进行反应,所述氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比为0.3~0.9∶1,2-氯-1,1,1,4,4,4-六氟-2-丁烯与催化剂的质量比为1~30∶1,反应温度为40~100℃,反应时间为2~6h,收集并冷凝反应过程中产生的气相产物;
    (b)在加氢反应催化剂作用下,将步骤(a)得到的气相产物与氢气按摩尔比0.05~1∶1进行反应,所述反应温度为25~150℃,接触时间为0.5~60s,收集产物并冷凝、精馏得到Z-HFO-1336产品。
  2. 根据权利要求1所述的Z-HFO-1336的制备方法,其特征在于步骤(a)所述的氢氧化钾水溶液质量百分浓度为10~70%。
  3. 根据权利要求2所述的Z-HFO-1336的制备方法,其特征在于所述的氢氧化钾水溶液质量百分浓度为15~50%。
  4. 根据权利要求1所述的Z-HFO-1336的制备方法,其特征在于步骤(a)所述的催化剂为季铵盐、冠醚类有机溶剂、水溶性有机溶剂。
  5. 根据权利要求4所述的Z-HFO-1336的制备方法,其特征在于步骤(a)所述的催化剂为二甲基亚砜、二乙二醇二甲醚、四丁基溴化铵、四甲基氯化铵、十六烷基三甲基溴化铵、18-冠醚-6中的一种。
  6. 根据权利要求1所述的Z-HFO-1336的制备方法,其特征在于步骤(a)所述的氢氧化钾与2-氯-1,1,1,4,4,4-六氟-2-丁烯的质量比为0.4~0.8∶1,2-氯-1,1,1,4,4,4-六氟-2-丁烯与催化剂的质量比为5~20∶1,反应温度为50~90℃,反应时间为3~5h。
  7. 根据权利要求1所述的Z-HFO-1336的制备方法,其特征在于步骤(b)所述的加氢反应催化剂为铅毒化过的钯/碳酸钙或喹啉毒化过的钯/硫酸钡。
  8. 根据权利要求7所述的Z-HFO-1336的制备方法,其特征在于所述的铅毒化过的钯/碳酸钙中铅的质量百分含量为0.01~0.1%。
  9. 根据权利要求7所述的Z-HFO-1336的制备方法,其特征在于所述的喹啉毒化过的钯/硫酸钡中喹啉的质量百分含量为0.01~0.1%。
  10. 根据权利要求1所述的Z-HFO-1336的制备方法,其特征在于步骤(b)所述的 气相产物与氢气的摩尔比为0.1~0.5∶1,所述反应温度为25~100℃,接触时间为1~30s。
PCT/CN2017/000200 2016-08-22 2017-03-01 一种z-hfo-1336的制备方法 WO2018036076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610710346.X 2016-08-22
CN201610710346.XA CN106349007B (zh) 2016-08-22 2016-08-22 一种z-hfo-1336的制备方法

Publications (1)

Publication Number Publication Date
WO2018036076A1 true WO2018036076A1 (zh) 2018-03-01

Family

ID=57844595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000200 WO2018036076A1 (zh) 2016-08-22 2017-03-01 一种z-hfo-1336的制备方法

Country Status (2)

Country Link
CN (1) CN106349007B (zh)
WO (1) WO2018036076A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082473A1 (zh) * 2022-10-21 2024-04-25 广东电网有限责任公司 一种反式1,1,1,4,4,4-六氟-2-丁烯的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106349007B (zh) * 2016-08-22 2019-06-11 巨化集团技术中心 一种z-hfo-1336的制备方法
CN106966856B (zh) * 2017-03-08 2021-10-22 浙江衢化氟化学有限公司 一种1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN111065616A (zh) * 2017-09-11 2020-04-24 科慕埃弗西有限公司 用于制备(e)-1,1,1,4,4,4-六氟丁-2-烯的液相方法
CN110950735B (zh) * 2019-10-22 2022-08-30 浙江巨化技术中心有限公司 一种气相法制备1,1,1,4,4,4-六氟-2-丁炔的方法
CN112194561B (zh) * 2020-09-29 2022-11-11 西安近代化学研究所 一种顺式六氟-2-丁烯的制备方法
CN114436759B (zh) * 2020-11-04 2023-10-27 浙江省化工研究院有限公司 一种1,1,1,2,4,4,4-七氟-2-丁烯的气相制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892739A (zh) * 2010-05-21 2013-01-23 霍尼韦尔国际公司 用于顺式1,1,1,4,4,4-六氟-2-丁烯的方法
CN104684877A (zh) * 2012-09-28 2015-06-03 纳幕尔杜邦公司 氯化反应物的脱氯化氢以制备1,1,1,4,4,4-六氟-2-丁炔
WO2015120250A1 (en) * 2014-02-07 2015-08-13 E. I. Du Pont De Nemours And Company Integrated process for the production of z-1,1,1,4,4,4-hexafluoro-2-butene
CN106349007A (zh) * 2016-08-22 2017-01-25 巨化集团技术中心 一种z‑hfo‑1336的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0822248A2 (pt) * 2008-05-23 2019-09-24 Du Pont "processos para a síntese de alcenos fluorados e processo para hidrogenação"
US9328042B2 (en) * 2014-08-11 2016-05-03 The Chemours Company Fc, Llc Integrated process for the production of Z-1,1,1,4,4,4-hexafluoro-2-butene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892739A (zh) * 2010-05-21 2013-01-23 霍尼韦尔国际公司 用于顺式1,1,1,4,4,4-六氟-2-丁烯的方法
CN104684877A (zh) * 2012-09-28 2015-06-03 纳幕尔杜邦公司 氯化反应物的脱氯化氢以制备1,1,1,4,4,4-六氟-2-丁炔
WO2015120250A1 (en) * 2014-02-07 2015-08-13 E. I. Du Pont De Nemours And Company Integrated process for the production of z-1,1,1,4,4,4-hexafluoro-2-butene
CN106349007A (zh) * 2016-08-22 2017-01-25 巨化集团技术中心 一种z‑hfo‑1336的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. N. HASZELDINE: "The Addition of Free Radicals to Unsaturated Systems. Part I.The Direction of Radical Addition to 3:3:3-Trifluoropropene", JOURNAL OF THE CHEMICAL SOCIETY, 1 January 1952 (1952-01-01), XP008084552, ISSN: 0368-1769, DOI: doi:10.1039/jr9520002504 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082473A1 (zh) * 2022-10-21 2024-04-25 广东电网有限责任公司 一种反式1,1,1,4,4,4-六氟-2-丁烯的制备方法

Also Published As

Publication number Publication date
CN106349007A (zh) 2017-01-25
CN106349007B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2018036076A1 (zh) 一种z-hfo-1336的制备方法
JP4190615B2 (ja) 1230zaの気相フッ素化
JP4322981B2 (ja) 245faの調製
JP6132042B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
EP2326612B1 (en) Process for preparing 2,3,3,3-tetrafluoropropene
JP5576586B2 (ja) 統合hfcトランス−1234ze製造方法
JP6072835B2 (ja) テトラフルオロプロペンの作製方法
US9000241B2 (en) Use of copper-nickel catalysts for dehlogenation of chlorofluorocompounds
CN106008147B (zh) Z-1,1,1,4,4,4-六氟-2-丁烯的制备方法
JP2013529216A (ja) 1,1,1,4,4,4−ヘキサフルオロ−2−ブテンのための方法
US8299300B2 (en) Method for preparing difluoroacetic acid and salts thereof
JP2019196347A (ja) フルオロオレフィンの製造方法
CN104072333A (zh) 一种2-氯-1,1,1,4,4,4-六氟-2-丁烯的制备方法
WO2019047447A1 (zh) 一种联产多种卤代烯烃和氟代烷烃的方法
WO2017028442A1 (zh) 一种用甲基氯化镁制备2,3,3,3-四氟丙烯的方法
JP6371846B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
US7335805B2 (en) Processes for purifying reaction products and processes for separating chlorofluorinated compounds
CN106179426A (zh) 一种合成2,3,3,3‑四氟丙烯的催化剂及其制备方法和用途
JP2014111665A (ja) 統合hfcトランス−1234ze製造方法
AU2002343436A1 (en) Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons
CN106316775A (zh) 一种 1,1,1,4,4,4‑六氟‑2‑丁烯的制备方法
CN110841667A (zh) 一种催化剂及其在七氟丙烷制备中的应用
CN106966856B (zh) 一种1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN110950735B (zh) 一种气相法制备1,1,1,4,4,4-六氟-2-丁炔的方法
JP2013529215A (ja) ヘキサフルオロ−2−ブチンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842502

Country of ref document: EP

Kind code of ref document: A1