WO2018032564A1 - 高压制备量子点的方法以及量子点 - Google Patents
高压制备量子点的方法以及量子点 Download PDFInfo
- Publication number
- WO2018032564A1 WO2018032564A1 PCT/CN2016/098745 CN2016098745W WO2018032564A1 WO 2018032564 A1 WO2018032564 A1 WO 2018032564A1 CN 2016098745 W CN2016098745 W CN 2016098745W WO 2018032564 A1 WO2018032564 A1 WO 2018032564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- preparation
- acid
- precursor
- metal
- ligand
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/54—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
- C09K11/701—Chalcogenides
- C09K11/703—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/74—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
Definitions
- the invention relates to a method for preparing quantum dots and quantum dots prepared by the preparation method.
- Quantum dots also known as semiconductor nanocrystals, are materials having a particle size of usually 1-20 nm and having a crystal structure. Quantum dots can fluoresce under appropriate light source or voltage excitation, and have great application potential in display, biomarker, illumination, and solar energy fields.
- quantum dots are prepared by chemically reacting a cationic precursor with an anionic precursor in a high temperature organic solvent to form nanocrystals.
- the method has high requirements for the selection of the organic solvent, and needs to have a good dissolving ability for the reaction precursor, has a boiling point higher than the chemical reaction temperature, and remains stable in the high temperature environment at the time of the chemical reaction, and does not participate in the reaction.
- organic solvents also need to have the following properties: environmentally friendly, stable in air for storage, low toxicity, low melting point (less than 25 ° C, preferably less than 20 ° C) ) to facilitate processing at room temperature.
- the invention combines the problem that the selection range of the organic solvent in the quantum dot industrialization preparation process is small and difficult to recover, and proposes a new quantum dot preparation method, aiming at reducing the cost of industrial production of quantum dots and environmental pollution problems.
- the invention provides a method for preparing quantum dots, comprising the steps of: a) mixing a cationic precursor, a first ligand, a first organic solvent to form a cationic-ligand solution; b) being in a closed high pressure environment and being inert In a gaseous atmosphere, mixing the anion precursor with the cation-ligand solution and heating to a first temperature initiates a chemical reaction between the cation-ligand and the anion precursor to form quantum dots.
- the high pressure range is from 0.2 MPa to 5 MPa.
- the cationic precursor comprises a compound of a Group I metal element, a compound of a Group II metal element, a compound of a Group III metal element, a compound of a Group IV metal element, or a transition metal element compound.
- the cationic precursor comprises at least one of the following metal elements: Cd, Zn, Hg, Cu, Ag, Ni, Co, Fe, Mn, Ti, Zr, In, Pb.
- the cationic precursor comprises at least one of the following compounds: metal oxides, metal carbonates, metal halides, metal alkoxides, metal thiolates, metal imides, metal alkyls, metal aryls Base salt, metal complex, metal solvate.
- the cationic precursor comprises at least one of the following compounds: zinc chloride, zinc acetate, zinc stearate, zinc carbonate, zinc oxide, cadmium oxide, cadmium acetate, cadmium stearate, cadmium carbonate, chlorine Cadmium, indium oxide, indium acetate, indium carbonate, indium chloride.
- the first ligand comprises one or more of a fatty acid, an alkylamine, an alkylphosphine, an alkylphosphine oxide, a phosphonic acid.
- the fatty acid comprises capric acid, oleic acid, dodecanoic acid, myristic acid, palmitic acid or octadecanoic acid.
- the first organic solvent has a melting point below 25 ° C and a boiling point above 150 ° C.
- the first organic solvent comprises at least one of the following compounds: 1-heptane, 1-octane, 1-decane, 1-decane, 1-undecane, 1-dodecane, 1-tridecane, 1-tetradecane, 1-heptene, 1-octene, 1-decene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-hexylamine, 1-heptylamine, 1-octylamine, 1-decylamine, 1-decylamine, 1-undecylamine, 1-dodecylamine, 1-hexadecylamine, 1 ,12-diaminododecane, 1,18-diaminooctadecane, 1,16-diaminohexadecane, 1,14-diaminotetradecane, 1-heptanol, 1-octanol
- the anionic precursor is selected from the group consisting of a simple substance, a covalent compound, or an ionic compound.
- the anionic precursor comprises at least one of the following elements: a sulfur element, a selenium element, a phosphorus element, and a cerium element.
- the anion precursor prior to mixing with the cation-ligand solution, is mixed with a second ligand, a second organic solvent to form an anionic precursor solution, the anion precursor being in the anion precursor solution
- the mode is mixed with the cation-ligand solution.
- the first temperature range is from 150 to 350 °C.
- the first temperature range is from 200 to 350 °C.
- the quantum dot is selected from one of the following compounds: CdSe, CdS, CdTe, ZnSe, ZnS, InP, InAs, CdZnSe, CdZnS, CdZnTe, InZnP, InZnAs.
- the preparation method further comprises the step c) further heating the reactant in step b) to a second temperature for a period of time.
- the second temperature range is from 250 to 350 °C.
- the present invention also proposes a quantum dot produced by the preparation method as described above.
- the quantum dots have a full width at half maximum of less than 30 nm and a quantum efficiency of greater than 80%.
- the present invention has the following beneficial effects: by the preparation method of the present invention, the range of the optional organic solvent is increased, and the preparation and production of quantum dots can be realized by using an organic solvent having a lower boiling point to recover more easily.
- the preparation method of the invention reduces production costs and is more environmentally friendly.
- the quantum dots obtained by the preparation method of the present invention can be widely used in fields such as display.
- Example 1 is a view showing absorption and emission spectra of quantum dots of Example 2 of the present invention.
- Example 5 is a view showing absorption and emission spectra of quantum dots of Example 5 of the present invention.
- Fig. 3 is a chart showing the absorption and emission spectra of the quantum dots of Example 6 of the present invention.
- the invention provides a method for preparing quantum dots, comprising the steps of: a) mixing a cationic precursor, a first ligand, a first organic solvent to form a cationic-ligand solution; b) being in a closed high pressure environment and being inert In a gas atmosphere, the anion precursor is mixed with the cation-ligand solution and heated to a first temperature to initiate a chemical reaction between the cation-ligand and the anion precursor to form quantum dots.
- the present invention can realize the preparation of quantum dots by using a low-boiling organic solvent under normal pressure, so that the organic solvent is more convenient to be recycled, which not only reduces the cost but also is more environmentally friendly.
- the preparation of quantum dots is a nano-scale microscopic control reaction, which is extremely sensitive to various reaction conditions, and slight changes in reaction conditions will have a large impact on quantum dot products.
- the invention is not simply to increase the pressure of the quantum dot preparation reaction, but to make a corresponding exploration and adjustment of a plurality of other reaction conditions in the preparation process of the quantum dots, and proves that the high-quality quantum dots are prepared and produced under high pressure. possibility.
- the high pressure causes the boiling point of the first organic solvent to rise.
- the high pressure ranges corresponding to different organic solvents are different. In a preferred embodiment, the high pressure range is from 0.2 MPa to 5 MPa.
- the cationic precursor and the ligand undergo a coordination reaction in the first organic solvent to form a cationic-ligand compound, and are dissolved in the first organic solvent.
- the cationic precursor includes one or more cationic precursor compounds.
- the cationic precursor comprises at least one of the following compounds: a compound of a Group I metal element, a compound of a Group II metal element, a compound of a Group III metal element, a metal element of a Group IV metal element Compound, transition metal element compound.
- the cationic precursor comprises at least one of the following metal elements: Cd, Zn, Hg, Cu, Ag, Ni, Co, Fe, Mn, Ti, Zr, In, Pb.
- the cationic precursor comprises at least one of the following compounds: metal oxides, metal carbonates, metal halides, metal alkoxides, metal thiolates, metal imides, metal alkyls , metal aryl salts, metal complexes, metal solvates.
- the cationic precursor comprises at least one of the following compounds: zinc chloride, zinc acetate, zinc stearate, zinc carbonate, zinc oxide, cadmium oxide, cadmium acetate, cadmium stearate, cadmium carbonate , cadmium chloride, indium oxide, indium acetate, indium carbonate, indium chloride.
- the first ligand includes, but is not limited to, one or more of a fatty acid, an alkylamine, an alkylphosphine, an alkylphosphine oxide, a phosphonic acid.
- the fatty acid comprises citric acid, oleic acid (OA), dodecanoic acid, myristic acid, palmitic acid or octadecanoic acid.
- the first organic solvent is used to dissolve the cationic precursor compound or the anionic precursor compound as well as various ligand compounds, and requires a strong solvency and remains stable without participating in the chemical reaction.
- the first organic solvent needs to have a high boiling point.
- the first organic solvent of the invention has a shorter carbon chain and is more convenient for recycling and reuse, which will greatly reduce the cost and avoid environmental pollution.
- the first organic solvent comprises at least one of an alkane, an olefin, an alkanol, an alkylamine, an alkyl ester, a fatty acid, an alkyl mercaptan having a carbon number ranging from 6 to 18.
- the first organic solvent has a carbon number ranging from 8 to 12.
- the first organic solvent has a melting point below 25 ° C and a boiling point above 100 ° C.
- the first organic solvent has a melting point below 20 ° C and a boiling point above 100 ° C.
- the first organic solvent comprises one of the following compounds: 1-heptane, 1-octane, 1-decane, 1-decane, 1-undecane, 1-12 Alkane, 1-tridecan, 1-tetradecane, 1-heptene, 1-octene, 1-decene, 1-decene, 1-undecene, 1-dodecene, 1-tride Alkene, 1-tetradecene, 1-hexylamine, 1-heptylamine, 1-octylamine, 1-decylamine, 1-decylamine, 1-undecylamine, 1-dodecylamine, 1-hexadecylamine 1,12-Diaminododecane, 1,18-diaminooctadecane, 1,16-diaminohexadecane, 1,14-diaminotetradecane, 1-heptanol, 1-octanol , 1-nonano
- the first organic solvent includes one of the following compounds in addition to the low boiling high temperature organic solvent: 1-hexadecene, 1-heptadecene, 1-octadecene, 1-ten Octamine, oleylamine, oleic acid.
- the proportion of the above compound is not more than 10%.
- the anion precursor is selected from the group consisting of a simple substance, a covalent compound, or an ionic compound.
- the anionic precursor comprises at least one of the following elements: sulfur element, selenium element, phosphorus element, antimony element, arsenic element.
- the anion precursor comprises at least one of the group consisting of sulfur, hydrogen sulfide, selenium, selenium oxide, zinc phosphide, phosphine, and zinc arsenide.
- the anion precursor is mixed with the cation-ligand solution in the form of an anionic precursor solution.
- the anion precursor is mixed with the second ligand, the second organic solvent to form an anionic precursor solution prior to mixing with the cation-ligand solution.
- the anion precursor is mixed with the second ligand to form an anionic precursor solution prior to mixing with the cation-ligand solution.
- the second ligand and the second organic solvent are selected in the same range as the first ligand and the first organic solvent as described above.
- the second organic solvent is selected from the group consisting of Tributyl phosphate (TBP).
- the first temperature is used to initiate a chemical reaction that generates quantum dots.
- the chemical reaction initiated by the first temperature in the present invention refers to the reaction of a cation precursor with an anion precursor, the reaction of a cation-ligand with an anion precursor, the reaction of a cation-ligand with an anion-ligand or the cation precursor Anion-ligand reaction.
- the first temperature range of the present invention is from 150 to 350 °C.
- the first temperature range is from 200 to 350 °C.
- Different cation precursors, anion precursors, and different pressures have different reaction temperatures.
- the first temperature range is from 150 to 250 °C.
- the preparation method further comprises the step c): further heating the product in step b) to a second temperature for a period of time.
- the second temperature range is from 200 to 350 °C. More preferably, the second temperature range is from 250 to 300 °C. The higher the pressure in the reactor, the lower the second temperature required.
- the pressure in the reactor ranges from 0.2 MPa to 0.5 MPa
- the first reaction temperature ranges from 200 to 250 °C.
- the first reaction temperature ranges from 200 to 250 ° C and the second reaction temperature ranges from 250 to 300 ° C.
- the pressure in the reactor ranges from 0.5 MPa to 1 MPa
- the first reaction temperature ranges from 150 to 220 °C.
- the first reaction temperature ranges from 150 to 220 ° C and the second reaction temperature ranges from 220 to 260 ° C.
- the quantum dot of the present invention is a core-shell structure
- the preparation method further comprises the step d): further adding the precursor compound required for the synthesis of the shell to the reaction vessel of the step b) for a period of time.
- the precursor compound required for synthesizing the shell is dissolved in an organic solvent having a surfactant to form one or more precursor compound solutions, and the synthetic shell is further added to the reactor of step b).
- the desired precursor compound solution is maintained for a period of time.
- Each time step d) is repeated, a shell is formed.
- the precursor compound required to synthesize the shell is added.
- the preparation method of the present invention further comprises the step of purifying: adding an alcohol to the final reactant to produce a precipitate, and finally obtaining the purified quantum dot solid by at least one centrifugation, washing, and re-centrifugation step. Disperse it in an organic solvent and store it.
- the present invention also proposes a quantum dot capable of emitting fluorescence, which is produced by the preparation method as described above.
- the quantum dots are selected from any one of the following compounds: CdSe, CdS, CdTe, ZnSe, ZnS, InP, InAs, CdZnSe, CdZnS, CdZnTe, InZnP, InZnAs.
- the quantum dots produced by the preparation method of the present invention include various structures.
- the quantum dots are a single nanocrystalline core, and the outer layer has no shell other than the functional group.
- the quantum dots comprise a core and at least one shell.
- the quantum dots comprise a core and a shell, and have a core-shell structure.
- the quantum dots comprise a core and two shells in a core-shell structure.
- the quantum dots are selected from any one of the following compounds: CdSe/ZnS, CdSe/CdS/ZnS, CdSeS/ZnS, CdTe/ZnS, InP/ZnS, CdZnSe/ZnS, ZnSe/ZnS, InAs /ZnS, InZnP/ZnS, InZnAs/ZnS.
- the quantum dots prepared by the present invention have higher quantum efficiency and a narrower half-width.
- the quantum dots have a quantum efficiency higher than 80% and a half width less than 30 nm.
- the quantum dots have a quantum efficiency greater than 90% and a half-value width less than 25 nm.
- a method for preparing a CdSe/ZnSe/ZnS quantum dot comprises the steps of: placing 0.128 g of CdO, 1.83 g of Zn(Ac) 2 , 15 ml of OA and 35 ml of 1-tetradecene into a reaction kettle system, and the reaction kettle Sealed, heated to 100 ° C, vacuumed and argon gas was introduced. After 30 minutes, the temperature was raised to 300 ° C, and the pressure of the kettle body was 0.2 MPa, which was pressurized to 0.5 MPa in the reactor. 3 ml of Se/TBP having a concentration of 2 M was injected into the interior of the autoclave to generate a CdSe core.
- the quantum dot emission peak wavelength obtained in this example has a peak wavelength of 608 nm and a half-value width of 30 nm, as shown in FIG.
- Example 2 The same as in Example 1, except that 1-decene was replaced by 1-decene, and OA was replaced by 1-dodecanoic acid.
- the quantum dot emission peak wavelength obtained in this example was tested to be 615 nm and the half width was 29 nm.
- Example 2 The same as in Example 1, except that the temperature was raised to 200 ° C and the inside of the reactor was pressurized to 2 MPa.
- the quantum dot emission peak wavelength obtained in this example was tested to be 610 nm and the half width was 32 nm.
- Example 2 The same as in Example 1, except that 1 ml of Se/TBP having a concentration of 2 M was injected into the interior of the autoclave, and after 30 s, 2 ml of Se/TBP having a concentration of 1 M was added dropwise to the kettle at a rate of 10 ml/h. After testing, the quantum dot emission peak wavelength obtained in this example was 464 nm, and the half width was 23 nm, as shown in FIG. 2 .
- a method for preparing an InP/ZnS quantum dot comprises the steps of: adding 150 mg of indium acetate, 100 mg of zinc acetate, 600 mg of OA, and 40 ml of 1-dodecene to a reaction vessel, evacuating and heating to 100 ° C, and introducing argon gas. .
- the mixture was heated to 230 ° C, and the pressure of the kettle body was 0.2 MPa, which was pressurized to 0.5 MPa in the reactor.
- 1 ml of a phosphine/oleylamine solution was first injected into the inner surface of the kettle body, and 1 ml of tributylphosphine was further injected.
- the temperature was maintained at 230 ° C for 10 min and then lowered to 200 ° C.
- a further 7.5 ml of phosphine/dodecene solution was injected into the three-necked flask. Heat to 200 ° C, add 8 ml of 1 M S / TBP, grow ZnS shell.
- the reaction solution was centrifuged and purified by washing with acetone twice, and finally the quantum dots were redispersed in an organic solvent. After testing, the quantum dot emission peak wavelength obtained in this example was 588 nm, and the half width was 73 nm, as shown in FIG.
- high quality quantum dots can be synthesized using a solvent having a lower boiling point at a lower temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
一种量子点的制备方法,包括以下步骤:a)将阳离子前体、第一配体、第一有机溶剂混合形成阳离子-配体溶液;b)在密闭的高压环境下以及惰性气体氛围中,将阴离子前体与所述阳离子-配体溶液混合,并加热到第一温度引发所述阳离子-配体与所述阴离子前体发生化学反应,生成量子点。通过该制备方法,可选择的有机溶剂范围增加,可使用沸点较低的回收更加容易的有机溶剂来实现量子点的制备和生产,降低了生产成本,对环境更加友好。
Description
本发明涉及一种量子点的制备方法以及由此制备方法制得的量子点。
量子点,又称为半导体纳米晶体,是粒径通常为1-20纳米、并具有晶体结构的材料。量子点可在适当的光源或电压激发下发出荧光,在显示、生物标记、照明以及太阳能领域都具有非常大的应用潜力。
目前,量子点的制备方法主要是通过在高温有机溶剂中使阳离子前体与阴离子前体发生化学反应生成纳米晶体。此方法对有机溶剂的选择要求比较高,需要能够对反应前体具有较好的溶解能力,具有高于化学反应温度的沸点,同时在化学反应发生时的高温环境中保持稳定不参与反应。从便于制备操作以及产业化生产的需求来看,有机溶剂还需要有以下性质:环境友好性,在空气中稳定以便于存放,低毒性,低熔点(低于25℃,最好低于20℃)以便于室温下进行处理。此外,在产业化生产时还会面临大量有机溶剂的处理问题。为了达到上述要求,目前高温有机相制备量子点中所使用的有机溶剂选择范围十分有限,而且一般具有较长的碳链,较大的分子量,沸点偏高,难于回收。这些问题在产业化生产中更加放大,成为阻碍量子点制备产业化的一个难题。
发明内容
本发明结合量子点产业化制备过程中存在的有机溶剂选择范围小,难以回收的问题,提出了一种新的量子点制备方法,旨在降低量子点产业化生产的成本以及环境污染问题。
本发明提出了一种量子点的制备方法,包括以下步骤:a)将阳离子前体、第一配体、第一有机溶剂混合形成阳离子-配体溶液;b)在密闭的高压环境下以及惰性气体氛围中,将阴离子前体与所述阳离子-配体溶液混合,并加热到第一温度引发所述阳离子-配体与所述阴离子前体发生化学反应,生成量子点。
优选地,所述高压范围为0.2Mpa-5Mpa。
优选地,所述阳离子前体包括第I族金属元素的化合物、第II族金属元素的化合物、第III族金属元素的化合物、第IV族金属元素的化合物或者过渡金属元素化合物。
优选地,所述阳离子前体包括以下金属元素中的至少一种:Cd、Zn、Hg、Cu、Ag、Ni、Co、Fe、Mn、Ti、Zr、In、Pb。
优选地,所述阳离子前体包括以下化合物中的至少一种:金属氧化物、金属碳酸盐、金属卤化物、金属醇盐、金属硫醇盐、金属酰亚胺、烷基金属、金属芳基盐、金属配合物、金属溶剂化物。
优选地,所述阳离子前体包括以下化合物中的至少一种:氯化锌、醋酸锌、硬脂酸锌、碳酸锌、氧化锌、氧化镉、醋酸镉、硬脂酸镉、碳酸镉、氯化镉、氧化铟、醋酸铟、碳酸铟、氯化铟。
优选地,所述第一配体包括脂肪酸、烷基胺、烷基膦、烷基氧化膦、膦酸中的一种或者多种。
优选地,所述脂肪酸包括癸酸、油酸、十二酸、十四酸、十六酸或者十八酸。
优选地,所述第一有机溶剂的熔点低于25℃,沸点高于150℃。
优选地,所述第一有机溶剂包括以下化合物中的至少一种:1-庚烷、1-辛烷、1-壬烷、1-癸烷、1-十一烷、1-十二烷、1-十三烷、1-十四烷、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯、1-十四烯、1-己胺、1-庚胺、1-辛胺、1-壬胺、1-癸胺、1-十一胺、1-十二胺、1-十六胺、1,12-二氨基十二烷、1,18-二氨基十八烷、1,16-二氨基十六烷、1,14-二氨基十四烷、1-庚醇、1-辛醇、1-壬醇、1-癸醇、1-十六醇、1-十二醇、1-十三醇、1-十四醇、乙酸十二烷基酯、1-戊酸、1-己酸、1-庚酸、1-辛酸、1-壬酸、1-癸酸、十一酸、十二酸、十三酸、十四酸、1-癸硫醇、1-十一硫醇、1-十二硫醇、1-十四硫醇。
优选地,所述阴离子前体选自单质、共价化合物或者离子化合物。
优选地,所述阴离子前体包括至少一种以下元素:硫元素、硒元素、磷元素、碲元素。
优选地,在与所述阳离子-配体溶液混合之前,所述阴离子前体与第二配体、第二有机溶剂混合形成阴离子前体溶液,所述阴离子前体以所述阴离子前体溶液的方式与所述阳离子-配体溶液混合。
优选地,所述第一温度范围为150-350℃。
优选地,所述第一温度范围为200-350℃。
优选地,所述量子点选自一下化合物中的一种:CdSe、CdS、CdTe、ZnSe、ZnS、InP、InAs、CdZnSe、CdZnS、CdZnTe、InZnP、InZnAs。
优选地,所述制备方法还包括步骤c)将步骤b)中的反应物进一步加热到第二温度并保持一段时间。
优选地,所述第二温度范围为250-350℃。
本发明还提出了一种量子点,由如上所述的制备方法制得。
优选地,所述量子点的半峰宽小于30nm,量子效率高于80%。
与现有技术相比,本发明具有以下有益效果:通过本发明的制备方法,可选择的有机溶剂范围增加,可使用沸点较低的回收更加容易的有机溶剂来实现量子点的制备和生产。本发明的制备方法降低了生产成本,对环境更加友好。本发明的制备方法得到的量子点可广泛应用于显示等领域中。
图1为本发明中实施例2的量子点的吸收和发射光谱图;
图2为本发明中实施例5的量子点的吸收和发射光谱图;
图3为本发明中实施例6的量子点的吸收和发射光谱图。
下面将结合本发明实施方式,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都属于本发明保护范围。
本发明提出了一种量子点的制备方法,包括以下步骤:a)将阳离子前体、第一配体、第一有机溶剂混合形成阳离子-配体溶液;b)在密闭的高压环境下以及惰性气体氛围中,将阴离子前体与阳离子-配体溶液混合,并加热到第一温度引发阳离子-配体与阴离子前体发生化学反应,生成量子点。
相对于传统的量子点高温有机相制备方法,本发明可使用常压下较低沸点的有机溶剂实现量子点的制备,使得有机溶剂更便于回收,不仅降低了成本,而且对环境更加友好。需要说明的是,量子点的制备是一种纳米级的微观控制反应,对各个反应条件极其敏感,反应条件稍有的变动就会对量子点产品造成较大的影响。本发明并不是简单的将量子点制备反应的压力提高,而是对量子点制备过程中的多个其它反应条件进行了相应的摸索和调整,证明了高压下制备和生产高质量的量子点的可能性。
高压使得第一有机溶剂的沸点升高。不同的有机溶剂对应的高压范围是不同的。在一个优选实施方式中,高压范围为0.2Mpa-5Mpa。
阳离子前体与配体在第一有机溶剂中发生配位反应,形成阳离子-配体化合物,并溶解在第一有机溶剂中。
阳离子前体包括一种或者多种阳离子前体化合物。在一个优选的实施方式中,阳离子前体包括以下化合物中的至少一种:第I族金属元素的化合物、第II族金属元素的化合物、第III族金属元素的化合物、第IV族金属元素的化合物、过渡金属元素化合物。在一个优选实施方式中,阳离子前体包括以下金属元素中的至少一种:Cd、Zn、Hg、Cu、Ag、Ni、Co、Fe、Mn、Ti、Zr、In、Pb。在一个优选的实施方式中,阳离子前体包括以下化合物中的至少一种:金属氧化物、金属碳酸盐、金属卤化物、金属醇盐、金属硫醇盐、金属酰亚胺、烷基金属、金属芳基盐、金属配合物、金属溶剂化物。在一个具体实施方式中,阳离子前体包括以下化合物中的至少一种:氯化锌、醋酸锌、硬脂酸锌、碳酸锌、氧化锌、氧化镉、醋酸镉、硬脂酸镉、碳酸镉、氯化镉、氧化铟、醋酸铟、碳酸铟、氯化铟。
在一个优选的实施方式中,第一配体包括但不限于脂肪酸、烷基胺、烷基膦、烷基氧化膦、膦酸中的一种或者多种。优选地,脂肪酸包括癸酸、油酸(Oleic acid,简称OA)、十二酸、十四酸、十六酸或者十八酸。
第一有机溶剂用于溶解阳离子前体化合物或者阴离子前体化合物以及各种配体化合物,需要有较强的溶解能力,且保持稳定不参与化学反应。为满足高温反应的需要,第一有机溶剂需具有高沸点。此外由于作为溶剂大量使用,需考虑使用成本问题和环境污染问题。相对于现有的量子点制备中的有机溶剂,本发明的第一有机溶剂具有较短的碳链,更便于回收和再利用,将极大的降低成本,避免环境污染。
在一个优选的实施方式中,第一有机溶剂包括碳原子数范围为6-18的烷烃、烯烃、烷醇、烷基胺、烷基酯、脂肪酸、烷基硫醇中的至少一种。优选地,第一有机溶剂的碳原子数范围为8-12。优选地,第一有机溶剂的熔点低于25℃,沸点高于100℃。优选地,第一有机溶剂的熔点低于20℃,沸点高于100℃。
在一个优选的实施方式中,第一有机溶剂包括以下化合物中的一种:1-庚烷、1-辛烷、1-壬烷、1-癸烷、1-十一烷、1-十二烷、1-十三烷、1-十四烷、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯、1-十四烯、1-己胺、1-庚胺、1-辛胺、1-壬胺、1-癸胺、1-十一胺、1-十二胺、1-十六胺、1,12-二氨基十二烷、1,18-二氨基十八烷、1,16-二氨基十六烷、1,14-二氨基十四烷、1-庚醇、1-辛醇、1-壬醇、1-癸醇、1-十六醇、1-十二醇、1-十三醇、1-十四醇、乙酸十二烷基酯、1-戊酸、1-己酸、1-庚酸、1-辛酸、1-壬酸、1-癸酸、十一酸、十二酸、十三酸、十四酸、1-癸硫醇、1-十一硫醇、1-十二硫醇、1-十四硫醇。
在一个优选的实施方式中,第一有机溶剂中除了低沸点高温有机溶剂,还包括以下化合物中的一种:1-十六烯、1-十七烯、1-十八烯、1-十八胺、油胺、油酸。在本实施方式中,上述化合物所占的比例不高于10%。
本发明中,阴离子前体选自单质、共价化合物或者离子化合物。在一个优选的实施方式中,阴离子前体包括至少一种以下元素:硫元素、硒元素、磷元素、碲元素、砷元素。在一个具体的实施方式中,阴离子前体包括以下物质中的至少一种:硫单质、硫化氢、硒单质、氧化硒、磷化锌、磷化氢、砷化锌。
在一个优选的实施方式中,阴离子前体以阴离子前体溶液的方式与所述阳离子-配体溶液混合。在一个具体实施方式中,在与阳离子-配体溶液混合之前,阴离子前体与第二配体、第二有机溶剂混合形成阴离子前体溶液。在一个具体实施方式中,在与阳离子-配体溶液混合之前,阴离子前体与第二配体混合形成阴离子前体溶液。第二配体与第二有机溶剂的选择范围同如上所述的第一配体和第一有机溶剂。在一个优选的实施方式中,第二有机溶剂选自磷酸三丁酯(Tributyl phosphate,简称TBP)。
第一温度用于引发生成量子点的化学反应。本发明中第一温度所引发的化学反应,指阳离子前体与阴离子前体的反应、阳离子-配体与阴离子前体的反应、阳离子-配体与阴离子-配体的反应或者阳离子前体与阴离子-配体的反应。本发明的第一温度范围为150-350℃。优选地,第一温度范围为200-350℃。不同的阳离子前体、阴离子前体以及不同的压力下,反应温度有所不同。
本发明中反应釜内的压强越高,所需的第一温度越低。在一个优选的实施方式中,第一温度范围为150-250℃。
在一个优选的实施方式中,制备方法还包括步骤c):将步骤b)中的产物进一步加热到第二温度并保持一段时间。优选地,第二温度范围为200-350℃。更优选地,第二温度范围为250-300℃。反应釜内的压强越高,所需的第二温度也越低。
在一个优选的实施方式中,反应釜内的压强范围为0.2MPa-0.5MPa,第一反应温度范围为200-250℃。在一个优选的实施方式中,第一反应温度范围为200-250℃,第二反应温度范围为250-300℃。
在一个优选的实施方式中,反应釜内的压强范围为0.5MPa-1MPa,第一反应温度范围为150-220℃。在一个优选的实施方式中,第一反应温度范围为150-220℃,第二反应温度范围为220-260℃。
在一个优选的实施方式中,本发明的量子点为核壳结构,制备方法还包括步骤d):向步骤b)的反应釜中进一步加入合成壳所需的前体化合物,并保持一段时间。在一个具
体的优选的实施方式中,合成壳所需的前体化合物溶解在具有表面活性剂的有机溶剂中形成一种或者多种前体化合物溶液,向步骤b)的反应釜中进一步加入合成壳所需的前体化合物溶液,并保持一段时间。每重复一次步骤d),形成一层壳。每一层壳的合成步骤中,加入合成该层壳所需的前体化合物。
在一个优选的实施方式中,本发明的制备方法还包括提纯的步骤:向最终的反应物中加入醇,产生沉淀,通过至少一次离心、洗涤、再离心步骤,将最终得到纯化的量子点固体,将其分散到有机溶剂中保存。
本发明还提出了一种能够发出荧光的量子点,由如上所述的制备方法制得。
在一个优选的实施方式中,量子点选自以下化合物中的任意一种:CdSe、CdS、CdTe、ZnSe、ZnS、InP、InAs、CdZnSe、CdZnS、CdZnTe、InZnP、InZnAs。
通过本发明制备方法制得的量子点包括多种结构。在一个优选实施方式中,量子点为单一的纳米晶核,外层除了功能基团没有壳的存在。在一个优选实施方式中,量子点包括核和至少一层壳。在一个具体实施方式中,量子点包括核和一层壳,呈核壳结构。在另一个具体实施方式中,量子点包括核和两层壳,呈核壳结构。
在一个具体实施方式中,量子点选自以下化合物中的任意一种:CdSe/ZnS、CdSe/CdS/ZnS、CdSeS/ZnS、CdTe/ZnS、InP/ZnS、CdZnSe/ZnS、ZnSe/ZnS、InAs/ZnS、InZnP/ZnS、InZnAs/ZnS。
本发明制备的量子点的具有较高的量子效率和较窄的半峰宽。在一个优选的实施方式中,量子点的量子效率高于80%,半峰宽低于30nm。在一个优选的实施方式中,量子点的量子效率高于90%,半峰宽低于25nm。
实施例1
一种CdSe/ZnSe/ZnS量子点的制备方法,包括以下步骤:将0.128g CdO、1.83g Zn(Ac)2、15ml OA以及35ml 1-十四烯,置于反应釜体系中,将反应釜密闭,升温至100℃,抽真空后通入氩气。30min后,升温至300℃,釜体压力显示为0.2MPa,向反应釜内增压至0.5MPa。向釜体内部高压注射3ml浓度为2M的Se/TBP,生成CdSe核。30min后,按10ml/h的速度向釜内滴加2ml浓度为1M的Se/TBP,生长ZnSe壳层。然后滴加4ml浓度为1M的S/TBP,生长ZnS壳层。停止反应,通入冷却水降至常温,将反应液离心并用有机溶剂洗涤,最后将量子点再分散在有机溶剂中。经测试,本实施例制得的量子点发射峰波长峰值为625nm,半峰宽为27nm。
实施例2
与实施例1相同,所不同的在于,用1-十二烯替代1-十四烯。经测试,本实施例制得的量子点发射峰波长峰值为608nm,半峰宽为30nm,如图1所示。
实施例3
与实施例1相同,所不同的在于,用1-癸烯替代1-十四烯,以1-十二酸代替OA。经测试,本实施例制得的量子点发射峰波长峰值为615nm,半峰宽为29nm。
实施例4
与实施例1相同,所不同的在于,升温至200℃,反应釜内增压至2Mpa。经测试,本实施例制得的量子点发射峰波长峰值为610nm,半峰宽为32nm。
实施例5
与实施例1相同,所不同的在于,向釜体内部高压注射1ml浓度为2M的Se/TBP,30s后,按10ml/h的速度向釜内滴加2ml浓度为1M的Se/TBP。经测试,本实施例制得的量子点发射峰波长峰值为464nm,半峰宽为23nm,如图2所示。
实施例6
一种InP/ZnS量子点的制备方法,包括以下步骤:向反应釜中加入150mg醋酸铟、100mg醋酸锌、600mg OA以及40ml 1-十二烯,抽真空并加热到100℃,通入氩气。加热到230℃,釜体压力显示为0.2MPa,向反应釜内增压至0.5MPa。向釜体内部液面下先注入1ml磷化氢/油胺溶液,再注入1ml三丁基磷。将温度保持在230℃10min,然后降至200℃。向三颈瓶中再注入7.5ml磷化氢/十二烯溶液。加热到200℃,加入8ml浓度为1M的S/TBP,生长ZnS壳层。将反应液离心并用丙酮洗涤纯化两次,最后将量子点再分散在有机溶剂中。经测试,本实施例制得的量子点发射峰波长峰值为588nm,半峰宽为73nm,如图3所示。
以上说明,通过本发明的方法,可在较低的温度下,使用沸点较低的溶剂合成高质量的量子点。
尽管发明人已经对本发明的技术方案做了较详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本发明精神的实质,本发明中出现的术语用于对本发明技术方案的阐述和理解,并不能构成对本发明的限制。
Claims (20)
- 一种量子点的制备方法,其特征在于,包括以下步骤:a)将阳离子前体、第一配体、第一有机溶剂混合形成阳离子-配体溶液;b)在密闭的高压环境下以及惰性气体氛围中,将阴离子前体与所述阳离子-配体溶液混合,并加热到第一温度引发所述阳离子-配体与所述阴离子前体发生化学反应,生成量子点。
- 根据权利要求1所述的制备方法,其特征在于:所述高压范围为0.2Mpa-5Mpa。
- 根据权利要求1所述的制备方法,其特征在于:所述阳离子前体包括第I族金属元素的化合物、第II族金属元素的化合物、第III族金属元素的化合物、第IV族金属元素的化合物或者过渡金属元素化合物。
- 根据权利要求3所述的制备方法,其特征在于:所述阳离子前体包括以下金属元素中的至少一种:Cd、Zn、Hg、Cu、Ag、Ni、Co、Fe、Mn、Ti、Zr、In、Pb。
- 根据权利要求1所述的制备方法,其特征在于:所述阳离子前体包括以下化合物中的至少一种:金属氧化物、金属碳酸盐、金属卤化物、金属醇盐、金属硫醇盐、金属酰亚胺、烷基金属、金属芳基盐、金属配合物、金属溶剂化物。
- 根据权利要求1所述的制备方法,其特征在于:所述阳离子前体包括以下化合物中的至少一种:氯化锌、醋酸锌、硬脂酸锌、碳酸锌、氧化锌、氧化镉、醋酸镉、硬脂酸镉、碳酸镉、氯化镉、氧化铟、醋酸铟、碳酸铟、氯化铟。
- 根据权利要求1所述的制备方法,其特征在于:所述第一配体包括脂肪酸、烷基胺、烷基膦、烷基氧化膦、膦酸中的一种或者多种。
- 根据权利要求1所述的制备方法,其特征在于:所述脂肪酸包括癸酸、油酸、十二酸、十四酸、十六酸或者十八酸。
- 根据权利要求1所述的制备方法,其特征在于:所述第一有机溶剂的熔点低于25℃,沸点高于100℃。
- 根据权利要求1所述的制备方法,其特征在于:所述第一有机溶剂包括以下化合物中的至少一种:1-庚烷、1-辛烷、1-壬烷、1-癸烷、1-十一烷、1-十二烷、1-十三烷、1-十四烷、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯、1-十三烯、1-十四烯、1-己胺、1-庚胺、1-辛胺、1-壬胺、1-癸胺、1-十一胺、1-十二胺、1-十六胺、1,12-二氨基十二烷、1,18-二氨基十八烷、1,16-二氨基十六烷、1,14-二氨基十四烷、1-庚醇、1-辛醇、1-壬醇、1-癸醇、1-十六醇、1-十二醇、1-十三醇、1-十四醇、乙酸十二 烷基酯、1-戊酸、1-己酸、1-庚酸、1-辛酸、1-壬酸、1-癸酸、十一酸、十二酸、十三酸、十四酸、1-癸硫醇、1-十一硫醇、1-十二硫醇、1-十四硫醇。
- 根据权利要求1所述的制备方法,其特征在于:所述阴离子前体选自单质、共价化合物或者离子化合物。
- 根据权利要求1所述的制备方法,其特征在于:所述阴离子前体包括至少一种以下元素:硫、硒、磷、碲、砷。
- 根据权利要求1所述的制备方法,其特征在于:在与所述阳离子-配体溶液混合之前,所述阴离子前体与第二配体、第二有机溶剂混合形成阴离子前体溶液,所述阴离子前体以所述阴离子前体溶液的方式与所述阳离子-配体溶液混合。
- 根据权利要求1所述的制备方法,其特征在于:所述第一温度范围为150-300℃。
- 根据权利要求1所述的制备方法,其特征在于:所述第一温度范围为200-250℃。
- 根据权利要求1所述的制备方法,其特征在于:所述量子点选自一下化合物中的一种:CdSe、CdS、CdTe、ZnSe、ZnS、InP、InAs、CdZnSe、CdZnS、CdZnTe、InZnP、InZnAs。
- 根据权利要求1所述的制备方法,其特征在于:所述制备方法还包括步骤c):将步骤b)中的反应物进一步加热到第二温度并保持一段时间。
- 根据权利要求18所述的制备方法,其特征在于:所述第二温度范围为250-350℃。
- 根据权利要求1所述的制备方法,其特征在于:所述制备方法还包括步骤d):向步骤b)的反应釜中进一步加入合成壳所需的前体化合物,并保持一段时间。
- 一种量子点,其特征在于,由权利要求1-19中任一所述的制备方法制得。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610680363.3 | 2016-08-17 | ||
CN201610680363.3A CN106367068A (zh) | 2016-08-17 | 2016-08-17 | 高压制备量子点的方法以及量子点 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018032564A1 true WO2018032564A1 (zh) | 2018-02-22 |
Family
ID=57878029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/098745 WO2018032564A1 (zh) | 2016-08-17 | 2016-09-12 | 高压制备量子点的方法以及量子点 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN108690600B (zh) |
WO (1) | WO2018032564A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111682118A (zh) * | 2020-06-24 | 2020-09-18 | 合肥福纳科技有限公司 | 量子点的制备方法、光敏层和太阳能电池器件 |
CN114560485A (zh) * | 2022-03-19 | 2022-05-31 | 长沙宁曦新材料有限公司 | 一种超细氧化铝的制备方法 |
CN116904194A (zh) * | 2023-07-17 | 2023-10-20 | 华南理工大学 | 一种β-cyc辅助合成In-V族量子点及其合成方法和应用 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107098324A (zh) * | 2017-05-08 | 2017-08-29 | 苏州星烁纳米科技有限公司 | 一种磷化铟量子点的制备方法 |
CN109233801A (zh) * | 2017-07-11 | 2019-01-18 | Tcl集团股份有限公司 | 表面修饰的量子点及其制备方法、应用与qled器件 |
CN107384380A (zh) * | 2017-07-14 | 2017-11-24 | 苏州星烁纳米科技有限公司 | 一种合金量子点制备方法 |
CN108557902B (zh) * | 2018-04-16 | 2019-11-05 | 中南大学 | 一种CoFe2O4量子点的制备方法及其应用 |
WO2020048534A1 (zh) * | 2018-09-07 | 2020-03-12 | Tcl集团股份有限公司 | 一种复合材料及其制备方法与量子点发光二极管 |
CN108998031A (zh) * | 2018-10-18 | 2018-12-14 | 中国人民解放军陆军炮兵防空兵学院 | 一种制备碲锌镉量子点的方法 |
CN110734767B (zh) * | 2019-11-15 | 2022-04-22 | 武汉大学 | 一种制备尺寸可控的有机相硒化银量子点的方法 |
CN113717713B (zh) * | 2021-09-27 | 2024-01-05 | 淮北扑浪新材料有限公司 | 一种InP量子点及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1631793A (zh) * | 2004-11-05 | 2005-06-29 | 中国科学院长春应用化学研究所 | 硒化镉和碲化镉量子点的合成方法 |
WO2007147055A2 (en) * | 2006-06-15 | 2007-12-21 | Evident Technologies, Inc. | Method of preparing semiconductor nanocrystal compositions |
CN101585516A (zh) * | 2009-06-15 | 2009-11-25 | 中国医药城泰州纳米生命医学研究院 | 一种CdSe和CdSe-ZnSe核壳量子点的制备方法 |
KR20140075271A (ko) * | 2012-12-11 | 2014-06-19 | (주)에코플럭스 | 가압합성법을 이용한 양자점의 합성방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101139524A (zh) * | 2007-10-11 | 2008-03-12 | 复旦大学 | 一种近红外发光碲硫化镉量子点的制备方法 |
CN101225300B (zh) * | 2008-02-14 | 2011-06-01 | 华东师范大学 | 尺寸可调的硫化镉量子点的制备方法 |
CN103897702B (zh) * | 2014-04-20 | 2015-08-05 | 吉林师范大学 | 一种ZnSe量子点及其制备方法 |
CN106564931B (zh) * | 2015-09-22 | 2018-05-29 | 苏州星烁纳米科技有限公司 | 一种纳米晶体制备方法 |
-
2016
- 2016-08-17 CN CN201810298014.4A patent/CN108690600B/zh active Active
- 2016-08-17 CN CN201610680363.3A patent/CN106367068A/zh active Pending
- 2016-09-12 WO PCT/CN2016/098745 patent/WO2018032564A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1631793A (zh) * | 2004-11-05 | 2005-06-29 | 中国科学院长春应用化学研究所 | 硒化镉和碲化镉量子点的合成方法 |
WO2007147055A2 (en) * | 2006-06-15 | 2007-12-21 | Evident Technologies, Inc. | Method of preparing semiconductor nanocrystal compositions |
CN101585516A (zh) * | 2009-06-15 | 2009-11-25 | 中国医药城泰州纳米生命医学研究院 | 一种CdSe和CdSe-ZnSe核壳量子点的制备方法 |
KR20140075271A (ko) * | 2012-12-11 | 2014-06-19 | (주)에코플럭스 | 가압합성법을 이용한 양자점의 합성방법 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111682118A (zh) * | 2020-06-24 | 2020-09-18 | 合肥福纳科技有限公司 | 量子点的制备方法、光敏层和太阳能电池器件 |
CN111682118B (zh) * | 2020-06-24 | 2023-06-09 | 合肥福纳科技有限公司 | 量子点的制备方法、光敏层和太阳能电池器件 |
CN114560485A (zh) * | 2022-03-19 | 2022-05-31 | 长沙宁曦新材料有限公司 | 一种超细氧化铝的制备方法 |
CN114560485B (zh) * | 2022-03-19 | 2024-03-22 | 长沙宁曦新材料有限公司 | 一种超细氧化铝的制备方法 |
CN116904194A (zh) * | 2023-07-17 | 2023-10-20 | 华南理工大学 | 一种β-cyc辅助合成In-V族量子点及其合成方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106367068A (zh) | 2017-02-01 |
CN108690600B (zh) | 2021-03-02 |
CN108690600A (zh) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018032564A1 (zh) | 高压制备量子点的方法以及量子点 | |
CN102159503B (zh) | 制备水性兼容性纳米粒子的方法 | |
KR101907124B1 (ko) | 비결정질 TiO2 물질, 이의 제조 방법, 및 이를 포함하는 광촉매 | |
JP6754372B2 (ja) | コアシェル粒子、コアシェル粒子の製造方法およびフィルム | |
US20200318002A1 (en) | Group III-V Quantum Dots, Method for Preparing the Same | |
EP4261266A1 (en) | Stable and efficient light-emitting all-inorganic calcium fluoride perovskite quantum dot, preparation method therefor, and application thereof | |
CN105378027A (zh) | 使用膦制造的量子点 | |
US20220127155A1 (en) | Colloidal ternary group iii-v nanocrystals synthesized in molten salts | |
CN108795412B (zh) | 一种量子点及其制备方法 | |
Sagar et al. | Single-precursor intermediate shelling enables bright, narrow line width InAs/InZnP-based QD emitters | |
CN110143579B (zh) | 一种纳米晶体的制备方法 | |
Riehle et al. | Role of alcohol in the synthesis of CdS quantum dots | |
Yang et al. | Highly luminescent Zn–Cu–In–S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites | |
Cui et al. | Facile, low-cost, and large-scale synthesis of CsPbBr3 nanorods at room-temperature with 86% photoluminescence quantum yield | |
CN113845142A (zh) | 一种铯铅碘钙钛矿纳米晶及其制备方法和应用 | |
Geisenhoff et al. | Manipulation of precursor reactivity for the facile synthesis of heterostructured and hollow metal selenide nanocrystals | |
CN106244146B (zh) | 一种以2,3-二巯基丙磺酸钠同时作为稳定剂和硫源制备CdTe/CdS量子点的方法 | |
Kim et al. | Green Ag–In–Ga–S quantum dots as highly absorption-capable, efficient, and color-pure emitters | |
CN112538354B (zh) | 量子点复合材料及制备方法、发光薄膜和显示器件 | |
CN110272739B (zh) | 一种低温溶液法合成高发光效率的钙钛矿纳米材料的方法 | |
Loan et al. | Double-shelling AgInS2 nanocrystals with GaS x/ZnS to make them emit bright and stable excitonic luminescence | |
Pan et al. | Lead-free Cs2SnX6 (X= Cl, Br, I) nanocrystals in mesoporous SiO2 with more stable emission from VIS to NIR light | |
CN108892112B (zh) | 金属硒化物纳米晶的制备方法 | |
KR20230158832A (ko) | 삼성분 상 할로겐화납 페로브스카이트 나노결정의 제조방법 | |
Yatsui et al. | Realization of red shift of absorption spectra using optical near-field effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16913319 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16913319 Country of ref document: EP Kind code of ref document: A1 |