WO2018028115A1 - 疲劳驾驶预警方法及云端服务器 - Google Patents

疲劳驾驶预警方法及云端服务器 Download PDF

Info

Publication number
WO2018028115A1
WO2018028115A1 PCT/CN2016/111539 CN2016111539W WO2018028115A1 WO 2018028115 A1 WO2018028115 A1 WO 2018028115A1 CN 2016111539 W CN2016111539 W CN 2016111539W WO 2018028115 A1 WO2018028115 A1 WO 2018028115A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driver
fatigue driving
driving state
state
Prior art date
Application number
PCT/CN2016/111539
Other languages
English (en)
French (fr)
Inventor
刘均
刘新
宋朝忠
欧阳张鹏
Original Assignee
深圳市元征科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元征科技股份有限公司 filed Critical 深圳市元征科技股份有限公司
Publication of WO2018028115A1 publication Critical patent/WO2018028115A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms

Definitions

  • the invention relates to a fatigue driving early warning technology, in particular to a fatigue driving early warning method cloud server.
  • the above-mentioned anti-fatigue driving system has problems of complicated structure, difficulty in control, and high hardware cost.
  • the driver may experience sensory fatigue due to the relatively static and single environment of the upper body, including but not limited to visual and auditory fatigue. This reduces the driver's sensitivity to warnings, which is not conducive to the timely delivery of warnings.
  • the main object of the present invention is to provide a fatigue driving warning method, an early warning system and a cloud server, which aims to simplify the structure of the anti-fatigue driving system, reduce the hardware cost, and improve the simplification of the anti-fatigue driving system.
  • the fatigue driving system warning method proposed by the present invention comprises the following steps:
  • An instruction corresponding to the driver's fatigue driving state level is transmitted to the smart mobile terminal or the smart vehicle unit.
  • the step of determining the driver's fatigue driving state level according to the information of the continuous running time of the vehicle, the vehicle speed, and the running state of the engine includes:
  • the driver's fatigue driving state level is determined according to the vehicle continuous running time and the vehicle speed.
  • the step of determining the fatigue driving state level of the driver according to the continuous running time of the vehicle and the vehicle speed comprises:
  • the determining the driver's fatigue driving state level according to the information about the continuous running time of the vehicle, the vehicle speed, and the running state of the engine further includes:
  • the vehicle continuous running time is reset to zero.
  • the transmitting the instruction corresponding to the driver's fatigue driving state level to the smart mobile terminal or the smart vehicle unit further comprises:
  • a flameout control command is sent to the intelligent onboard unit.
  • the invention also provides a cloud server, comprising:
  • a remote receiving port configured to receive state information of a vehicle traveling sent by the smart vehicle unit, where the state information of the vehicle driving includes information about a continuous running time of the vehicle, a vehicle speed, and an engine running state;
  • a determining module configured to determine a driver's fatigue driving state level according to the vehicle continuous running time, the vehicle speed, and the engine operating state information
  • the instruction module is configured to send an instruction corresponding to the driver's fatigue driving state level to the smart mobile terminal or the smart vehicle unit.
  • the determining module comprises:
  • a first determining module configured to determine, according to information about an operating state of the engine, whether the engine is in an operating state
  • a second determining module configured to determine a fatigue driving state level of the driver according to the continuous running time of the vehicle and the vehicle speed when the engine is in an operating state.
  • the second determining module comprises:
  • a comparison module configured to obtain a mileage of the vehicle by using the vehicle speed and the continuous running time of the vehicle, compare the mileage of the vehicle with a mileage threshold, and compare the continuous running time and time threshold of the vehicle;
  • a first-level fatigue module configured to determine that the driver is in a first-level fatigue driving state when the continuous running time of the vehicle is greater than or equal to a time threshold, and the vehicle driving mileage is less than a mileage threshold;
  • a secondary fatigue module configured to determine that the driver is in a secondary fatigue driving state when the continuous running time of the vehicle is greater than or equal to a time threshold, and the mileage of the vehicle reaches a mileage threshold;
  • the non-fatigue module is configured to determine that the driver is in a non-fatigue driving state when the continuous running time of the vehicle is less than a time threshold.
  • the determining module further comprises:
  • a third determining module configured to determine that the driver is in a non-fatigue driving state when the engine is in a non-operating state, and when the engine is in a non-operating state for a longer period of time than a preset duration, the vehicle is continuously operated Time is zero.
  • the instruction module comprises:
  • the first instruction module is configured to send an early warning instruction to the smart mobile terminal when the driver is in a first-level fatigue driving state
  • the secondary instruction module is configured to send a flameout control command to the intelligent onboard unit when the driver is in a secondary fatigue driving state.
  • the signals such as the continuous running time of the vehicle, the vehicle speed and the running time of the transmitter are collected, the driver's fatigue driving state level is judged by the above information, and different commands are sent according to different fatigue driving state levels. Therefore, it plays a warning role or even a control function, and indirectly judges the driver's fatigue driving state from the running state of the vehicle, and sends instructions in a hierarchical manner. Compared with the prior art, it is not necessary to collect and complex the driver's state or sensory consciousness. Identification, it is only necessary to judge the fatigue driving state level according to the vehicle detection information such as the continuous running time of the vehicle, the vehicle speed and the running state of the transmitter, which is easy to identify and judge, can be controlled more strongly, and relatively reduces the hardware cost.
  • FIG. 1 is a system architecture diagram of an embodiment of a cloud server according to the present invention.
  • FIG. 2 is a flow chart of an embodiment of a fatigue driving warning method according to the present invention.
  • step 20 in FIG. 2 is a detailed flowchart of step 20 in FIG. 2;
  • step 20B in FIG. 3 is a detailed flowchart of step 20B in FIG. 3;
  • FIG. 5 is a flowchart of determining a fatigue driving state level of the fatigue driving warning method of the present invention
  • Figure 6 is a detailed flow chart of the fatigue driving warning method of Figure 2;
  • FIG. 7 is a detailed framework diagram of the cloud server in FIG. 1.
  • first, second, and the like in the present invention are used for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms "connected”, “fixed” and the like should be understood broadly, unless otherwise clearly defined and limited.
  • “fixed” may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the system architecture based on the fatigue driving warning method of the present invention can be referred to FIG.
  • the architecture can involve:
  • the information collecting unit 1 is configured to continuously generate information data of the continuous data running time, the vehicle speed and the engine running state of the information data included; specifically, a series of sensors with corresponding functions and a circuit with a chronograph function; the information collecting unit 1 and The intelligent onboard unit 2 can implement wireless communication via a network or Bluetooth;
  • the intelligent vehicle unit 2 can be disposed on the vehicle, communicates with the media device and the controller on the vehicle through the CAN bus, and communicates with the cloud server through the wireless network; specifically, the vehicle-mounted computer system T-BOX (using the wireless communication technology) Telematics BOX), on-board diagnostic system OBD (On-Board Diagnostic), etc.;
  • the smart mobile terminal 3 may specifically be a mobile phone, a tablet computer, a smart wristband, a smart watch, etc., and realize wireless communication with the media device on the vehicle, the vehicle controller 5, and the cloud server 4 through a wireless network;
  • the cloud server 4 establishes communication with the intelligent mobile terminal through a remote interface and a network. Configured with memory and processor;
  • a memory for storing executable instructions of the processor; a processor for acquiring information data including a continuous running time of the vehicle, a vehicle speed, and an operating state of the engine from the smart vehicle unit side; processing the data according to the preset program The operation and judgment determine the driver's fatigue driving state level and issue an instruction to the smart mobile terminal 3 or the smart vehicle unit 2 according to the fatigue driving state level.
  • An embodiment of the present invention provides a fatigue driving warning method. Referring to FIG. 2, the method includes the following steps:
  • Step 10 Receive state information of vehicle travel sent by the smart onboard unit, where the state information of the vehicle travel includes information of a continuous running time of the vehicle, a vehicle speed, and an engine running state;
  • Step 20 Determine a driver's fatigue driving state level according to the information of the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine;
  • Step 30 Send an instruction corresponding to the driver's fatigue driving state level to the smart mobile terminal or the smart vehicle unit.
  • the cloud server After receiving the state information of the vehicle traveling, the cloud server can determine the driver's fatigue driving state level according to the information of the continuous running time of the vehicle, the vehicle speed, and the engine running state included in the state information of the running of the vehicle.
  • the fatigue driving state level is determined correspondingly.
  • the information collected next time is analyzed and judged in turn; and the cloud server
  • Different instructions are formed according to different fatigue driving state levels, sent to the smart mobile terminal, or sent to the intelligent vehicle unit; for example, when the fatigue driving state level is low, corresponding to the driver being in mild fatigue, an instruction can be issued to remind the driving Resting; when the level of fatigue driving is high, corresponding to the driver being in high fatigue, an instruction can be issued to control the transmitter to extinguish or brake the vehicle.
  • the step 20 further includes:
  • Step 20A determining whether the engine is in an operating state according to the information of the engine operating state.
  • the running state information of the engine includes two states of running and extinguishing, which can be obtained by collecting sensor information, and the sensor can be a sensor that senses the starting or extinguishing of the engine, for example, when the engine is turned off from fire to start, the sensing end of the sensor
  • the information collection terminal can determine that the operating state of the transmitter has changed from flameout to start. If the engine is in an operating state, step 20B is performed; if the transmitter is in a flameout state, step 20C is performed.
  • Step 20B if the engine is in an operating state, determining a fatigue driving state level of the driver according to the continuous running time of the vehicle and the vehicle speed;
  • the driver's fatigue driving state level is determined by the vehicle continuous running time and the vehicle speed on the premise that the engine is in the running state.
  • the time threshold may be first used as the first hierarchical division limit, and the continuous running time of the vehicle is lower than the time threshold as the non-fatigue driving state; the time threshold is reached or exceeded as the fatigue driving state; The determination of the fatigue driving state level is performed only when the driver is in a fatigue driving state.
  • the mileage threshold or the vehicle speed may be used as the second level to divide the boundary; the zone between the time threshold and the mileage threshold is the first-level fatigue driving state; the mileage threshold is above the secondary fatigue driving state; the mileage of the vehicle here may be based on The continuous running time of the vehicle and the running speed of the vehicle are calculated and can also be directly obtained from the odometer of the vehicle.
  • the driver may be determined to be in the first-level fatigue driving state; when the continuous running time of the vehicle is greater than or equal to the time threshold, the vehicle runs When the mileage reaches the mileage threshold, it is determined that the driver is in a secondary fatigue driving state.
  • step 20C if the engine is in a non-operating state, when the duration of the engine in the non-operating state is greater than the preset duration, it is determined that the driver is in a non-fatigue driving state, and the continuous running time of the vehicle is reset to zero.
  • the driver is considered to be in a resting state. If the rest time reaches the preset time period, the driver is considered to have a full rest, and the vehicle continuous running time is cleared. When the vehicle starts again, the vehicle continues to run. The running time is recalculated; if the rest time does not reach the preset duration, it is considered that the driver does not get enough rest, and the continuous running time of the vehicle will not be cleared. When the vehicle starts again, the continuous running time of the vehicle continues on the original basis. Grand total.
  • the above solution determines the driver's fatigue state level from the vehicle's own parameters, does not need to be analyzed and judged according to the driver's behavior and consciousness, is easy to identify and simplifies the judgment process, can be controlled more, and relatively reduces the hardware. cost.
  • step 20B further includes:
  • Step 201 Obtain a mileage of the vehicle by using the vehicle speed and the continuous running time of the vehicle, compare the mileage of the vehicle with a mileage threshold, and compare the continuous running time and time threshold of the vehicle;
  • two parameters are compared. The first comparison is the vehicle mileage S and the mileage threshold, and the second comparison is the vehicle continuous running time t and the time threshold, respectively, as the boundary of the two-stage fatigue driving state.
  • Step 202 When the continuous running time of the vehicle is greater than or equal to a time threshold, and the mileage of the vehicle is less than a mileage threshold, determining that the driver is in a first-level fatigue driving state;
  • Step 203 When the continuous running time of the vehicle is greater than or equal to a time threshold, the mileage of the vehicle reaches a mileage threshold, and determining that the driver is in a secondary fatigue driving state;
  • Step 204 When the continuous running time of the vehicle is less than a time threshold, determine that the driver is in a non-fatigue driving state.
  • the comparison module first calls the continuous running time parameter of the vehicle, and compares the continuous running time and the time threshold of the vehicle. As long as the vehicle is in the running state, the time will continue to increase. If the continuous running time of the vehicle is less than the time threshold, the driver is judged to be in a non-fatigue driving state. And comparing the continuous running time data of the next round of vehicles; when accumulating to a preset time threshold, determining the fatigue state level of the driver according to the mileage of the vehicle;
  • the module determines that the driver is in a secondary fatigue state level.
  • the engine is judged to be in the running state by the running state of the engine. If the engine is in the running state, two judgment parameters are called, one is the continuous running time of the vehicle, and the other is the mileage of the vehicle. In the above two parameters, the continuous running time of the vehicle satisfies the set time threshold condition, and the driving mileage of the vehicle does not satisfy the set mileage threshold condition, and then the driver is determined to be in the first-level fatigue driving state, if both the above parameters are satisfied.
  • the respective threshold conditions determine that the driver is in the secondary fatigue driving state; if the engine is in the stopped state, it is determined whether the stopping time of the vehicle is greater than the preset duration, and if so, whether the vehicle mileage and the continuous running time of the vehicle are Exceeding the respective thresholds, it is considered that the driver has obtained a sufficient rest, and the continuous running time and mileage of the vehicle are cleared; if the stopping time of the vehicle is not greater than the preset time, the operating state of the engine is continuously monitored.
  • the above judgment process starts with judging the state of the engine, and takes the continuous running time of the vehicle and the driving range of the vehicle as reference aspects in two aspects.
  • the continuous running time of the vehicle reflects the continuous driving time of the driver, and the longer the time, The more likely it is to fatigue; on the basis of knowing the continuous running time of the vehicle, plus the mileage of the vehicle, it can reflect the driver's high-speed driving time from the side.
  • the high-speed driving requires the driver to be highly concentrated and easy to get tired. It is also the main cause of fatigue driving.
  • One of the reasons is that if the average speed is above 120 km/h, continuous driving for 5 hours and an average speed of 40 km/h, driving for 5 hours, it is conceivable that the former driver is prone to fatigue.
  • This plan is a comprehensive consideration.
  • the above factors, based on the above-mentioned judgment process, can more realistically reflect the fatigue state of the driver and improve the accuracy of the early warning method.
  • the specific implementation process of the fatigue driving warning method provided by the embodiment of the present invention is as follows:
  • Step 1 The intelligent onboard unit collects state information of the vehicle travel, and the state information of the vehicle travel includes information of the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine;
  • the vehicle speed can be detected by the speed sensor set on the vehicle, and the vehicle speed is finally obtained by the vehicle radius.
  • This calculation process can be completed by the running circuit integrated in the speed sensor; the running state of the engine can also be obtained by the sensor. Sensing, when the engine is in the running state, the sensor outputs a high level signal, when the engine is in the flameout state, the sensor outputs a low level signal, and the chronograph circuit can obtain the vehicle by counting the time during which the sensor outputs a high level signal. Continuous running time.
  • the intelligent vehicle unit side establishes a communication connection with the sensor through the acquisition module timing, and collects a pulse signal from the sensor;
  • the acquisition module herein specifically includes an interface circuit, a clock circuit, an oscillator, etc.;
  • the interface circuit can be a wired or wireless network.
  • the interface is configured to connect the smart mobile terminal side to the interface of the network; the acquisition module can also obtain such information including the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine through the CAN line.
  • Step 2 the intelligent vehicle unit processes the above information and sends the information to the cloud server;
  • the intelligent on-board unit is connected to the network through the above-mentioned network interface through the sending module to package and send the fatigue state request including the vehicle continuous running time, the vehicle speed and the engine running state information to the cloud server;
  • the sending module is specifically for data transmission (I/ O) interface;
  • Step 10 The cloud server receives, by the smart onboard unit, information including a continuous running time of the vehicle, a speed of the vehicle, and an operating state of the engine;
  • Step 20 The cloud server determines the fatigue driving state level of the driver according to the information about the continuous running time of the vehicle, the vehicle speed, and the running state of the engine.
  • Step 30 The cloud server sends an instruction corresponding to the driver's fatigue driving state level to the smart mobile terminal or the smart vehicle unit; the instruction here may be an early warning instruction or a control instruction.
  • the step 30 further includes:
  • Step 301 when it is determined that the driver is currently in the first-level fatigue driving state, sending an early warning instruction to the smart mobile terminal;
  • Step 302 When it is determined that the driver is currently in the secondary fatigue driving state, send a control command to the intelligent vehicle unit.
  • the first-level command module may send an early warning command to the smart mobile terminal when the driver is in the first-level fatigue driving state; the second-level command module may be in the second-stage fatigue driving state when the driver is in the second-stage fatigue driving state; Send a flameout control command.
  • the first judgment is made from the continuous running time of the vehicle. For example, when the continuous running time of the vehicle reaches 4 hours (the time threshold is 4 hours, of course, not limited to one value, or may be a time period), it is determined that the driver is in fatigue driving. State, further judgment is made. If the average speed is low for 4 consecutive hours and the mileage of the vehicle does not reach the mileage threshold, it is considered that the driver is currently in the first-level fatigue driving state, and the driver needs to be prompted to rest, and the cloud server passes the first-level instruction.
  • the time threshold is 4 hours, of course, not limited to one value, or may be a time period
  • the module sends an early warning command to the intelligent mobile terminal; if the vehicle is driving at a high speed for 4 hours, for example, the speed is above 120 km/h and the mileage reaches 500 km (mileage threshold), if the engine is still in operation, the driver is currently in the second
  • the level of fatigue driving state requires forced engine stall; the cloud server sends a flameout control command to the intelligent vehicle unit through the secondary command module.
  • the stop time of the transmitter is judged. If the time when the engine has stopped is greater than or equal to the preset duration, and the driver is considered to have enough time to rest, the continuous running time of the vehicle and the continuous driving mileage are cleared. If the stopped time is less than the preset duration, and the driver is not considered to have enough time to rest, continue to accumulate the continuous running time and the continuous driving mileage of the vehicle, and determine that the driver is in the second-level fatigue driving state when the engine is running again.
  • the engine must be forced to stall; the cloud server sends a flameout control command to the intelligent vehicle unit through the secondary command module.
  • the fatigue driving state can also be determined through other judgment processes: for example, the vehicle speed can be first determined. When the vehicle speed reaches 120 km/h or more, the continuous running time is monitored. If the time reaches 4 hours or more, the engine is still in working state. , the driver is determined to be in the second-level fatigue driving state, forcing the engine to stall and let the driver rest; if the vehicle speed is lower than 120 km/h, the continuous running time is monitored. If the time is more than 4 hours, the engine is still working.
  • the driver In the state, the driver is determined to be in the first-level fatigue driving state, and an early warning command is issued to prompt the driver to rest; if the engine is continuously in working state, the mileage of the vehicle is monitored, for example, more than 800 kilometers, and the driver is determined to be in the second-level fatigue driving state. When the engine is still in working condition, it is determined that the driver is in the second-level fatigue driving state, forcing the engine to stall and allowing the driver to rest.
  • Step 3 The smart onboard unit receives and transmits the instruction, or the smart mobile terminal receives and executes the instruction;
  • the received instructions are processed by different devices
  • the first-level instruction module sends an early-warning instruction to the intelligent mobile terminal through the wireless network; after receiving the warning instruction, the intelligent mobile terminal can display the information through the display unit of the smart mobile terminal itself.
  • the warning instruction may be, for example, text or picture animation information, or may be an audible and visual alarm signal, and the sound and light alarm may be emitted by the sound and light unit of the smart mobile terminal itself.
  • the smart mobile terminal may also pass through the cloud server.
  • the current driving state parameter of the vehicle is acquired, and information such as the continuous running time of the vehicle, the mileage corresponding to the vehicle speed, the engine running state, and the like are displayed on the real unit.
  • the second-level command module sends a control command to the intelligent vehicle-mounted unit through the wireless network, and after receiving the control command, the intelligent vehicle-mounted unit can be connected to the vehicle-mounted system through the CAN bus with the intelligent vehicle-mounted unit.
  • the display unit performs display, and the control command can be displayed, for example, in the form of text or picture animation information, and simultaneously sends a control command to the vehicle controller via the CAN bus via the intelligent vehicle unit to control the engine to stop running.
  • the intelligent vehicle unit It is also possible to acquire the current driving state parameter of the vehicle through the cloud server, and display information such as the continuous running time of the vehicle, the mileage corresponding to the vehicle speed, the engine running state, and the like on the real unit.
  • the network interface is also connected to the network, and the feedback from the cloud server is received through the network and the input/output (I/O) interface.
  • the feedback information includes control commands, and the control commands are obtained according to the fatigue state of the driver.
  • the fatigue state is determined based on the current physical information of the driver; detailed description is made on the cloud server side.
  • An embodiment of the present invention further provides a cloud server.
  • the cloud server 4 includes a remote receiving port 41, a determining module 42 and an instruction module 43.
  • the remote receiving port 41 is configured to receive state information of the vehicle travel sent by the smart onboard unit, where the state information of the vehicle travel includes information of the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine; the remote receiving port may be a network interface or an input and output. (I/O) interface, etc., and data transmission via a wireless network with the intelligent on-board unit.
  • the state information of the vehicle travel includes information of the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine
  • the remote receiving port may be a network interface or an input and output. (I/O) interface, etc., and data transmission via a wireless network with the intelligent on-board unit.
  • I/O input and output.
  • the determining module 42 determines the fatigue driving state level of the driver according to the information about the continuous running time of the vehicle, the vehicle speed, and the engine operating state; the determining module performs a logical operation on the information according to a preset procedure to finally determine the fatigue driving state level.
  • the command module 43 is configured to transmit an instruction corresponding to the driver's fatigue driving state level to the smart mobile terminal or the smart vehicle unit.
  • the cloud server establishes communication with the intelligent mobile terminal through the remote receiving port 41 and the network, and acquires information data including the continuous running time of the vehicle, the vehicle speed, and the running state of the engine from the intelligent in-vehicle unit 2 side; the data processing is performed according to the preset The program runs and judges, and finally determines the driver's fatigue driving state level; the cloud server 4 will form different instructions according to different fatigue driving state levels, send to the smart mobile terminal, or send to the intelligent vehicle unit.
  • the determining module 42 includes a first determining module 104 and a second determining module 204; wherein the first determining module 104 is configured to determine, according to information about the engine operating state, whether the engine is in an operating state; 204 is configured to determine a fatigue driving state level of the driver according to the continuous running time of the vehicle and the vehicle speed when the engine is in an operating state.
  • the determining module 42 further includes:
  • a third determining module 304 configured to determine that the driver is in a non-fatigue driving state when the engine is in a non-operating state, and when the engine is in a non-operating state for a longer period of time than a preset duration, the vehicle is continuously The running time is zeroed.
  • the running state information of the engine includes two states of running and extinguishing, which can be obtained by collecting sensor information, and the sensor can be a sensor that senses the starting or extinguishing of the engine, for example, when the engine is turned off from fire to start, the sensing end of the sensor
  • the information collection terminal can determine that the operating state of the transmitter has changed from flameout to start. If the engine is in an operating state, the first determining module or the second determining module is triggered; if the transmitter is in a flameout state, the third determining module is triggered.
  • the time threshold may be first used as the first hierarchical division limit, and the continuous running time of the vehicle is lower than the time threshold as the non-fatigue driving state; the time threshold is reached or exceeded as the fatigue driving state; The determination of the fatigue driving state level is performed only when the driver is in a fatigue driving state.
  • the mileage threshold or the vehicle speed may be used as the second level to divide the boundary; the zone between the time threshold and the mileage threshold is the first-level fatigue driving state; the mileage threshold is above the secondary fatigue driving state; the mileage of the vehicle here may be based on The continuous running time of the vehicle and the running speed of the vehicle are calculated and can also be directly obtained from the odometer of the vehicle.
  • the driver may be determined to be in the first-level fatigue driving state; when the continuous running time of the vehicle is greater than or equal to the time threshold, the vehicle runs When the mileage reaches the mileage threshold, it is determined that the driver is in a secondary fatigue driving state.
  • the driver is considered to be in a resting state. If the rest time reaches the preset time period, the driver is considered to have a full rest, and the vehicle continuous running time is cleared. When the vehicle starts again, the vehicle continues to run. The running time is recalculated; if the rest time does not reach the preset duration, it is considered that the driver does not get enough rest, and the continuous running time of the vehicle will not be cleared. When the vehicle starts again, the continuous running time of the vehicle continues on the original basis. Grand total.
  • the second determining module 204 includes a comparing module 204a, a primary fatigue module 204b, a secondary fatigue module 204c, and a non-fatigue module 204d; wherein:
  • a comparison module configured to obtain a mileage of the vehicle by using the vehicle speed and the continuous running time of the vehicle, compare the mileage of the vehicle with a mileage threshold, and compare the continuous running time and time threshold of the vehicle;
  • two parameters are compared. The first comparison is the vehicle mileage S and the mileage threshold, and the second comparison is the vehicle continuous running time t and the time threshold, respectively, as the boundary of the two-stage fatigue driving state.
  • the first-level fatigue module 204b is configured to determine that the driver is in a first-level fatigue driving state when the continuous running time of the vehicle is greater than or equal to a time threshold, and the vehicle driving mileage is less than a mileage threshold;
  • the secondary fatigue module 204c is configured to determine that the driver is in a secondary fatigue driving state when the continuous running time of the vehicle is greater than or equal to a time threshold and the mileage of the vehicle reaches a mileage threshold;
  • the non-fatigue module 204d is configured to determine that the driver is in a non-fatigue driving state when the continuous running time of the vehicle is less than a time threshold.
  • the comparison module first calls the continuous running time parameter of the vehicle, and compares the continuous running time and the time threshold of the vehicle. As long as the vehicle is in the running state, the time will continue to increase. If the continuous running time of the vehicle is less than the time threshold, the driver is judged to be in a non-fatigue driving state. And comparing the continuous running time data of the next round of vehicles; when accumulating to a preset time threshold, determining the fatigue state level of the driver according to the mileage of the vehicle;
  • the module determines that the driver is in a secondary fatigue state level.
  • the first judgment is made from the continuous running time of the vehicle. For example, when the continuous running time of the vehicle reaches 4 hours (the time threshold is 4 hours, of course, not limited to one value, or may be a time period), it is determined that the driver is in fatigue driving. State, further judgment is made. If the average speed is low for 4 consecutive hours and the mileage of the vehicle does not reach the mileage threshold, it is considered that the driver is currently in the first-level fatigue driving state, and the driver needs to be prompted to rest, and the cloud server passes the first-level instruction.
  • the time threshold is 4 hours, of course, not limited to one value, or may be a time period
  • the module sends an early warning command to the intelligent mobile terminal; if the vehicle is driving at a high speed for 4 hours, for example, the speed is above 120 km/h and the mileage reaches 500 km (mileage threshold), if the engine is still in operation, the driver is currently in the second
  • the level of fatigue driving state requires forced engine stall; the cloud server sends a flameout control command to the intelligent vehicle unit through the secondary command module.
  • the stop time of the transmitter is judged. If the engine has stopped for more than the preset time, it is considered that the driver has enough time to rest, and the continuous running time and the continuous driving mileage are cleared. The stopped time is less than the preset duration, and it is considered that the driver does not get enough time to rest, and then continues to accumulate the continuous running time and continuous driving mileage of the vehicle, and determines that the driver is in the second-level fatigue driving state when the engine is running again, the cloud
  • the server sends a flameout control command to the intelligent vehicle unit through the secondary command module to force the engine to stall.
  • the fatigue driving state can also be determined through other judgment processes: for example, the vehicle speed can be first determined. When the vehicle speed reaches 120 km/h or more, the continuous running time is monitored. If the time reaches 4 hours or more, the engine is still in working state. , the driver is determined to be in the second-level fatigue driving state, forcing the engine to stall and let the driver rest; if the vehicle speed is lower than 120 km/h, the continuous running time is monitored. If the time is more than 4 hours, the engine is still working.
  • the driver In the state, the driver is determined to be in the first-level fatigue driving state, and an early warning command is issued to prompt the driver to rest; if the engine is continuously in working state, the mileage of the vehicle is monitored, for example, more than 800 kilometers, and the driver is determined to be in the second-level fatigue driving state. When the engine is still in working condition, it is determined that the driver is in the second-level fatigue driving state, forcing the engine to stall and allowing the driver to rest.
  • the instruction module 43 further includes a first level instruction module 431 and a second level instruction module 432; the first level instruction module 431 is configured to send to the smart mobile terminal 3 when the driver is in the first stage fatigue driving state.
  • the second instruction module 432 is configured to send a flameout control command to the smart onboard unit 2 when the driver is in the secondary fatigue driving state.
  • the fatigue driving early warning system in the embodiment of the present invention includes an information collecting unit 1, an intelligent vehicle unit 2, an intelligent mobile terminal 3, and a cloud server 4; wherein the information collecting unit 1 is installed on the vehicle for continuously generating the vehicle. Data of continuous running time, vehicle speed and engine running state information; wireless communication between the information collecting unit 1 and the intelligent vehicle unit 2 via Bluetooth or WIFI module;
  • the intelligent onboard unit 2 has an acquisition module 21, a transmission module 22, and a receiving module 23; the cloud server 4 is provided with a remote receiving port 41, a judging module 42 and an instruction module 43; and between the intelligent in-vehicle unit 2 and the cloud server 4 via a wireless network or an interface protocol Data transmission;
  • the collecting module 21 is configured to collect state information of the running of the vehicle, and the information about the running state of the vehicle, including the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine, may specifically be a collector, and collect information data at a preset frequency;
  • the sending module 22 is configured to send, to the cloud server 4, information including the continuous running time of the vehicle, the vehicle speed, and the running state of the engine;
  • the remote receiving port 41 is configured to receive information including the continuous running time of the vehicle, the speed of the vehicle, and the running state of the engine; 22 and the remote receiving port 41 can be understood as a data transmission interface;
  • the determining module 42 is configured to determine a fatigue driving state level of the driver according to the information about the continuous running time of the vehicle, the vehicle speed, and the running state of the engine; the command module 43 is configured to send and transmit to the smart mobile terminal 3 or the smart vehicle unit 2
  • the driver's fatigue driving state level corresponds to an instruction; the receiving module 23 is configured to receive and transmit the instruction to the smart vehicle unit 2.
  • the fatigue driving warning system further includes a display module and an alarm module; the display module displays the continuous running time of the vehicle, the mileage corresponding to the vehicle speed, the engine running state information, and the warning instruction; the alarm module executes The warning instruction.
  • Both the display module and the alarm module can be integrated on the intelligent on-board unit or shared with the display or alarm of the on-board system for the driver to observe and be alerted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

一种疲劳驾驶预警方法及云端服务器(4)。疲劳驾驶预警方法包括以下步骤:接收智能车载单元(2)发送的车辆行驶的状态信息,车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息(10);根据车辆连续运行时间、车辆速度及发动机运行状态信息,确定驾驶员的疲劳驾驶状态等级(20);向智能移动终端(3)或智能车载单元(2)发送与驾驶员的疲劳驾驶状态等级对应的指令(30)。疲劳驾驶预警方法及云端服务器(4)不需要对驾驶员的状态或感官意识进行采集和复杂的识别,只需要根据车辆的连续运行时间、车辆速度及发动机的运行状态等车辆的检测信息即可判断疲劳驾驶状态等级,易于识别和判断,可操控更强,且相对降低了硬件成本,简化了系统的构架。

Description

疲劳驾驶预警方法及云端服务器
技术领域
本发明涉及一种疲劳驾驶预警技术,尤其是一种疲劳驾驶预警方法云端服务器。
背景技术
随着汽车的普及,人们对汽车驾驶安全性的要求也越来越高。据统计,60%以上的交通事故与疲劳驾驶有关,而因疲劳驾驶造成交通事故的占交通事故总数的20%左右,占特大交通事故的40%以上。《道路交通安全法实施条例》第六十二条第七款规定:驾驶机动车不得连续行驶超过4小时不停车休息。可见,预防疲劳驾驶具有显著的意义,并且因此具有广泛的需求。
现有技术中的防疲劳驾驶系统的方案之一是利用摄像头对驾驶员进行监控,并用状态识别器进行识别,以判定驾驶员是否处于疲劳状态;另一种方案是使用传感器来测量驾驶员的血氧饱和度,从而判定驾驶员是否处于疲劳状态,以便发出警告提醒。上述防疲劳驾驶系统都存在结构复杂、难以控制、硬件成本高等问题。
此外,在长时间驾驶之后,驾驶员可由于上身的相对静止和单一的环境而产生感官上的疲劳,包括但不限于视觉和听觉疲劳等。这使得驾驶员对警告的敏感度降低,从而不利于警告的及时传达。
发明内容
本发明的主要目的是提供一种疲劳驾驶预警方法、预警系统及云端服务器,旨在简化防疲劳驾驶系统的结构、降低硬件成本并提高简化防疲劳驾驶系统的可操控性。
为实现上述目的,本发明提出的疲劳驾驶系统预警方法,包括以下步骤:
接收智能车载单元发送的车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定所述驾驶员的疲劳驾驶状态等级;
向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令。
优选地,所述根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级的步骤包括:
根据所述发动机运行状态的信息判断所述发动机是否处于运行状态;
若所述发动机处于运行状态,则根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级。
优选地,所述根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级的步骤包括:
利用所述车辆速度和所述车辆连续运行时间获得车辆行驶里程,比较所述车辆行驶里程与里程阈值,及比较所述车辆连续运行时间与时间阈值;
当所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,确定所述驾驶员处于一级疲劳驾驶状态;
当所述车辆连续运行时间大于或等于时间阈值,车辆行驶里程达到里程阈值,确定所述驾驶员处于二级疲劳驾驶状态;
当所述车辆连续运行时间小于时间阈值,则确定所述驾驶员处于非疲劳驾驶状态。
优选地,所述根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级还包括:
若所述发动机处于非运行状态,则在所述发动机处于非运行状态的时长大于预设时长时,确定所述驾驶员处于非疲劳驾驶状态,将所述车辆连续运行时间归零。
优选地,所述向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令进一步地包括:
当判定所述驾驶员处于一级疲劳驾驶状态时,则向智能移动终端发送预警指令;
当判定所述驾驶员处于二级疲劳驾驶状态时,,则向智能车载单元发送熄火控制指令。
本发明还提供一种云端服务器,包括:
远程接收端口,用于接收智能车载单元发送的车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
判断模块,用于根据所述车辆连续运行时间、车辆速度及发动机运行状态信息,确定驾驶员的疲劳驾驶状态等级;
所述指令模块,用于向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令。
优选地,所述判断模块包括:
第一确定模块,用于根据所述发动机运行状态的信息判断所述发动机是否处于运行状态;
第二确定模块,用于在所述发动机处于运行状态时,根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级。
优选地,所述第二确定模块包括:
比较模块,用于利用所述车辆速度和所述车辆连续运行时间获得车辆行驶里程,比较所述车辆行驶里程与里程阈值,及比较所述车辆连续运行时间与时间阈值;
一级疲劳模块,用于在所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,确定所述驾驶员处于一级疲劳驾驶状态;
二级疲劳模块,用于在所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程达到里程阈值时,确定所述驾驶员处于二级疲劳驾驶状态;
非疲劳模块,用于在所述车辆连续运行时间小于时间阈值时,确定所述驾驶员处于非疲劳驾驶状态。
优选地,所述判断模块进一步包括:
第三确定模块,用于在所述发动机处于非运行状态,且在所述发动机处于非运行状态的时长大于预设时长时,确定所述驾驶员处于非疲劳驾驶状态,将所述车辆连续运行时间归零。
优选地,所述指令模块包括:
所述一级指令模块,用于在所述驾驶员处于一级疲劳驾驶状态时,向智能移动终端发送预警指令;
所述二级指令模块,用于在所述驾驶员处于二级疲劳驾驶状态时;则向智能车载单元发送熄火控制指令。
本发明技术方案中,通过对车辆连续运行时间、车辆速度及发送机运行时间等信号进行采集,通过上述信息判断驾驶员的疲劳驾驶状态等级,进而根据不同的疲劳驾驶状态等级发送不同的指令,从而起到警示作用甚或控制作用,从车辆的运行状态上间接判断驾驶员的疲劳驾驶状态,并分等级发送指令,相对现有技术,不需要对驾驶员的状态或感官意识进行采集和复杂的识别,只需要根据车辆的连续运行时间、车辆速度及发送机的运行状态等车辆的检测信息即可判断疲劳驾驶状态等级,易于识别和判断,可操控更强,且相对降低了硬件成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明云端服务器一实施例的系统构架图;
图2为本发明疲劳驾驶预警方法一实施例的流程图;
图3为图2中步骤20的细化流程图;
图4为图3中步骤20B的细化流程图;
图5为本发明疲劳驾驶预警方法的疲劳驾驶状态等级判断流程图;
图6为图2中疲劳驾驶预警方法的详细流程图;
图7为图1中云端服务器的详细框架图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明疲劳驾驶预警方法基于的系统架构可以参照图1所示。该架构可以涉及:
信息采集单元1,用于连续生成包含的信息数据车辆连续运行时间、车辆速度及发动机运行状态的信息数据;具体可以是一系列相应功能的传感器及具有记时功能的电路;信息采集单元1与智能车载单元2可通过网络或蓝牙实现无线通信;
智能车载单元2,可设置于车辆上,通过CAN总线与车辆上的媒体设备及控制器实现通信,通过无线网络与云端服务器实现通信;具体可以是应用无线通信技术的车载电脑系统T-BOX(Telematics BOX)、车载诊断系统OBD(On-Board Diagnostic)等;
智能移动终端3,具体可以是手机、平板电脑、智能手环、智能手表等,通过无线网络与车辆上的媒体设备及车辆控制器5、云端服务器4实现无线通信;
云端服务器4,通过远程接口及网络与智能移动终端建立通信。配置有存储器和处理器;
存储器,用于存储处理器的可执行指令;处理器,用于从智能车载单元侧获取包含车辆连续运行时间、车辆速度及发动机运行状态的信息数据;对上述数据处理,并按照预设的程序运行和判断,最终确定驾驶员的疲劳驾驶状态等级,并根据疲劳驾驶状态等级向智能移动终端3或智能车载单元2发出指令。
以下基于上述系统框架对本发明实施例方案进行详细阐述。
本发明一实施例提供一种疲劳驾驶预警方法,参见图2,该方法包括以下步骤:
步骤10,接收智能车载单元发送的车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
步骤20,根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级;
步骤30,向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令。
云端服务器接收上述车辆行驶的状态信息后,根据车辆行驶的状态信息中包含的车辆连续运行时间、车辆速度及发动机运行状态的信息,能够确定驾驶员的疲劳驾驶状态等级,这里需要说明的是只有当采集的上述车辆行驶的状态信息达到疲劳驾驶状态的情况下,才会对应确定疲劳驾驶状态等级,如果未达到疲劳驾驶状态,则依次轮回对下次采集的信息进行分析、判断;并且云端服务器会根据不同的疲劳驾驶状态等级形成不同的指令,向智能移动终端发送,或向智能车载单元发送;例如,当疲劳驾驶状态等级较低,对应于驾驶员处于轻度疲劳,可以发出指令提醒驾驶进行休息;当疲劳驾驶状态等级较高,对应于驾驶员处于高度疲劳,可以发出指令控制发送机熄火或制动车辆。
作为优选实施方式,参见图3,所述步骤20进一步包括:
步骤20A,根据所述发动机运行状态的信息判断所述发动机是否处于运行状态。发动机的运行状态信息包括运行和熄火两种状态,可以通过采集传感器信息的方式获得,传感器可以是感知发动机机启动或熄火的传感器,例如,在发动机由熄火转为启动时,则传感器的感应端发送变化,信息输出端的信息随之发生变化,则信息采集端据此能够判断出发送机的运行状态由熄火转为启动。如果发动机处于运行状态,则执行步骤20B;如果发送机处于熄火状态,则执行步骤20C。
步骤20B,若所述发动机处于运行状态,则根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级;
发动机处于运行状态的前提下,由车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级。
时间阈值时根据实验获得的数据,这里可以首先将时间阈值作为第一层次划分界限,车辆连续运行时间低于时间阈值的界定为非疲劳驾驶状态;达到或超过时间阈值的界定为疲劳驾驶状态;只有当驾驶员处于疲劳驾驶状态时,才进行疲劳驾驶状态等级的判定。
这里可将里程阈值或车辆速度作为第二层次划分界限;位于时间阈值与里程阈值之间的地带为一级疲劳驾驶状态;位于里程阈值以上作为二级疲劳驾驶状态;这里的车辆行驶里程可以根据车辆的连续运行时间和车辆的运行速度计算获得,也可以从车辆的里程计直接获取。
当所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,可确定所述驾驶员处于一级疲劳驾驶状态;当所述车辆连续运行时间大于或等于时间阈值,车辆行驶里程达到里程阈值时,确定所述驾驶员处于二级疲劳驾驶状态。
步骤20C,若所述发动机处于非运行状态,则在所述发动机处于非运行状态的时长大于预设时长时,确定所述驾驶员处于非疲劳驾驶状态,将所述车辆连续运行时间归零。
如果发动机处于停止即熄火状态,则认为驾驶员处于休息状态,如果休息时间达到预设时长,则认为驾驶员得到了充分的休息,就对车辆连续运行时间清零,车辆再次启动时,车辆连续运行时间重新计算;如果休息时间没有达到预设时长,则认为驾驶员没有得到充分的休息,就不会对车辆连续运行时间清零,车辆再次启动时,车辆连续运行时间在原来的基础上继续累计。
上述方案,从车辆自身的参数出发,判断驾驶员的疲劳状态等级,不需要根据驾驶员的行为和意识进行分析和判断,易于识别且简化了判断流程,可操控更强,且相对降低了硬件成本。
作为优选实施方式,参见图4,步骤20B进一步包括:
步骤201,利用所述车辆速度和所述车辆连续运行时间获得车辆行驶里程,比较所述车辆行驶里程与里程阈值,及比较所述车辆连续运行时间与时间阈值;
车辆速度可以是平均速度,也可以是瞬时速度;如果车辆速度是平均速度V,车辆连续运行时间为t;则由S=V×t,获得车辆行驶里程S;如果车辆速度是瞬时速度Vi,则由S= 获得车辆行驶里程S;车辆速度可由速度传感器检测获得,对瞬时速度求平均值可获得车辆在一段时间内的平均速度;车辆行驶里程还可以通过计数器对车轮的转数进行计数,最后由车轮的周长与车轮的总转数乘积获得,这里比较两个参数,第一比较车辆行驶里程S与里程阈值,第二比较车辆连续运行时间t与时间阈值,分别作为两级疲劳驾驶状态的界限。
步骤202,当所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,确定所述驾驶员处于一级疲劳驾驶状态;
步骤203,当所述车辆连续运行时间大于或等于时间阈值,车辆行驶里程达到里程阈值,确定所述驾驶员处于二级疲劳驾驶状态;
步骤204,当所述车辆连续运行时间小于时间阈值,则确定所述驾驶员处于非疲劳驾驶状态。
比较模块首先调用车辆连续运行时间参数,比较车辆连续运行时间与时间阈值,只要车辆处于运行状态,这个时间就会持续增加,如果车辆连续运行时间小于时间阈值,则判断驾驶员处于非疲劳驾驶状态,并对下一轮车辆连续运行时间数据进行比较;当累计到预设的时间阈值,再根据车辆行驶里程确定驾驶员的疲劳状态等级;
如果车辆行驶里程小于里程阈值,确定所述驾驶员处于一级疲劳驾驶状态,触发一级指令模块;并对下一里程数据进行比较;如果车辆行驶里程大于或等于里程阈值,则触发第二确定模块,确定驾驶员处于二级疲劳状态等级。
参见图5,首先通过发动机的运行状态来判断发动机是否处于运行状态,若发动机处于运行状态,则调用两个判断参数,一个是参数是车辆的连续运行时间,另一个是车辆的行驶里程,如果上述两个参数中,车辆的连续运行时间满足设定的时间阈值条件,车辆的行驶里程不满足设定的里程阈值条件,则确定驾驶员处于一级疲劳驾驶状态,如果上述两个参数均满足各自的阈值条件,则确定驾驶员处于二级疲劳驾驶状态;若发动机处于停止状态,则判断车辆的停止时间是否大于预设时长,如果是,无论此时的车辆行驶里程与车辆连续运行时间是否超过各自的阈值,都认为驾驶员得到了充分的休息,对车辆的连续运行时间及行驶里程清零;如果车辆的停止时间不大于预设时长,则连续对发动机的运行状态进行监控。
上述的判断流程首先从判断发动机的状态入手,分别把车辆的连续运行时间和车辆的行驶里程作为两个方面的参考方面,车辆的连续运行时间反应了驾驶员的连续驾驶时间,时间越长,越容易疲劳;在知道车辆的连续运行时间的基础上,再加上车辆的行驶里程能够从侧面反应驾驶员高速驱车的时间,高速驱车需要驾驶员精神高度集中,易于疲惫,也是疲劳驾驶的主要原因之一,如果平均时速在120公里/小时以上,连续驾车5小时与平均时速在40公里/小时左右,连续驾车5小时,可想而知,肯定前者驾驶员易于疲劳,本方案就是综合考虑了上述因素,基于上述的判断流程,能够更加真实的反应驾驶员的疲劳状态,提高了预警方法的准确性。
具体地,如图6所示,本发明实施例提供的疲劳驾驶预警方法具体实施过程如下:
步骤1,智能车载单元采集车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
车辆速度可通过设置在车辆上的速度传感器对车轮的转速进行检测,并由车辆半径最终获得车辆速度,这个计算过程可由集成在速度传感器内部的电路通过运行程序完成;发动机的运行状态也可由传感器感测,当发动机处于运行状态时,传感器输出高电平信号,当发动机处于熄火状态时,传感器输出低电平信号,记时电路通过对传感器输出高电平信号期间进行记时能获得车辆的连续运行时间。
智能车载单元侧,通过采集模块定时与所述的传感器建立通信连接,采集来自于传感器的脉冲信号;这里的采集模块具体包括接口电路、时钟电路、振荡器等;接口电路可以是个有线或无线网络接口,被配置为将智能移动终端侧连接到网络的接口;采集模块还可以通过CAN线获得包含车辆连续运行时间、车辆速度及发动机运行状态等这些信息。
步骤2,智能车载单元对上述信息进行处理后向云端服务器发送;
然后智能车载单元通过发送模块借助上述的网络接口连接到网络,以将包含车辆连续运行时间、车辆速度及发动机运行状态信息的疲劳状态请求打包发送给云端服务器;发送模块具体为数据传送(I/O)接口;
步骤10,云端服务器接收所述智能车载单元发出的包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
云端服务器侧借助远程接口接收包括车辆连续运行时间、车辆速度及发动机运行状态信息的疲劳状态判定请求的数据;并将上述数据存储于存储器内;
步骤20,云端服务器根据上述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定所述驾驶员的疲劳驾驶状态等级;
对数据进行相应的降噪过滤和分析处理,最终将能够可靠反应车辆运行状态的信息的数据作为有效数据被判断模块调用;
步骤30,所述云端服务器向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令;这里的指令可以是预警指令,还可以是控制指令。
所述步骤30进一步的包括:
步骤301,当确定驾驶员当前处于一级疲劳驾驶状态,则向智能移动终端发送预警指令;
步骤302,当确定驾驶员当前处于二级疲劳驾驶状态,则向智能车载单元发送控制指令。
这里一级指令模块可以在所述驾驶员处于一级疲劳驾驶状态时,向智能移动终端发送预警指令;二级指令模块可以在所述驾驶员处于二级疲劳驾驶状态时;则向智能车载单元发送熄火控制指令。
首先从车辆连续运行时间上进行首次判断,例如当车辆连续运行时间达到4小时(时间阈值为4小时,当然也不限于一个值,也可以是一个时间段)以上,则认定驾驶员处于疲劳驾驶状态,进一步进行二次判断,如果连续4小时平均时速较低,车辆行驶里程达不到里程阈值,则认为驾驶员当前处于一级疲劳驾驶状态,需要提示驾驶员休息,云端服务器通过一级指令模块向智能移动终端发送预警指令;若连续4小时高速行驶,例如时速在120公里/小时以上,里程达到500公里(里程阈值),若此时发动机还处于运行状态,则认定驾驶员当前处于二级疲劳驾驶状态,需要强制发动机熄火;云端服务器通过二级指令模块向智能车载单元发送熄火控制指令。
若此时发动机处于停止状态,则判断发送机的停止时间,若发动机已停止的时间大于或等于预设时长,认为驾驶员得到了足够的时间休息,则车辆连续运行时间和连续行驶里程清零,如果已停止的时间小于预设时长,认为驾驶员没有得到足够的时间休息,则继续累加车辆连续运行时间和连续行驶里程,并在发动机再次运行时确定所述驾驶员处于二级疲劳驾驶状态,需要强制发动机熄火;云端服务器通过二级指令模块向智能车载单元发送熄火控制指令。
还可以通过其他判断流程对疲劳驾驶状态进行确定:例如可首先判断车辆速度,当车辆速度达到120公里/小时以上,则对连续运行时间进行监控,若时间达到4小时以上,发动机还处于工作状态,则认定驾驶员处于二级疲劳驾驶状态,强制发动机熄火,让驾驶员休息;若车辆速度低于120公里/小时,则对连续运行时间进行监控,若时间达到4小时以上,发动机还处于工作状态,则认定驾驶员处于一级疲劳驾驶状态,发出预警指令提示驾驶员休息;如果发动机持续处于工作状态,则对车辆行驶里程监控,例如达到800公里以上,认定驾驶员处于二级疲劳驾驶状态,发动机还处于工作状态,则认定驾驶员处于二级疲劳驾驶状态,强制发动机熄火,让驾驶员休息。
当然也不排除通过对车辆连续运行时间、车辆速度及发动机运行状态信息进行分析判断的其他具体流程。
步骤3,所述智能车载单元接收并传送所述指令,或所述智能移动终端接收并执行所述指令;
这里根据驾驶员当前所处的不同疲劳状态等级,由不同的设备对接收的指令进行相应的处理;
具体,当驾驶员当前处于一级疲劳驾驶状态时,由一级指令模块通过无线网络向智能移动终端发送预警指令;智能移动终端接收该预警指令后,可通过智能移动终端自身的显示单元显示所述预警指令,所述预警指令例如可以是文字或图片动画信息,还可以是声光报警信号,可借助智能移动终端自身的声光单元发出声光报警,此外,智能移动终端还可以通过云端服务器获取车辆的当前行驶状态参数,并在现实单元上显示所述车辆连续运行时间、与车辆速度相对应的里程、发动机运行状态等信息。
当驾驶员当前处于二级疲劳驾驶状态时,由二级指令模块通过无线网络向智能车载单元发送控制指令,智能车载单元接收该控制指令后,可通过与智能车载单元通过CAN总线连接的车载系统的显示单元进行显示,所述控制指令例如可以以文字或图片动画信息的形式显示,并同时通过智能车载单元借助CAN总线向车辆控制器发送控制指令,以控制发动机停止运行,此外,智能车载单元还可以通过云端服务器获取车辆的当前行驶状态参数,并在现实单元上显示所述车辆连续运行时间、与车辆速度相对应的里程、发动机运行状态等信息。
同样借助上述的网络接口连接到网络,通过网络及输入输出(I/O)接口接收来自云端服务器的反馈,反馈信息中包含控制指令,控制指令是根据驾驶员的疲劳状态得出的,驾驶员的疲劳状态根据驾驶员当前体征信息进行判断得出的;在云端服务器侧进行详细说明。
本发明一实施例还提供一种云端服务器,参见图7,该云端服务器4包括远程接收端口41、判断模块42及指令模块43;
远程接收端口41用于接收智能车载单元发送的车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;远程接收端口可以是网络接口或输入输出(I/O)接口等,与智能车载单元之间通过无线网络传输数据。
判断模块42根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级;判断模块按照预设的程序对上述信息进行逻辑运算,最终确定疲劳驾驶状态等级。
指令模块43用于向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令。
云端服务器,通过远程接收端口41及网络与智能移动终端建立通信,从智能车载单元2侧获取包含车辆连续运行时间、车辆速度及发动机运行状态的信息数据;对上述数据处理,并按照预设的程序运行和判断,最终确定驾驶员的疲劳驾驶状态等级;云端服务器4会根据不同的疲劳驾驶状态等级形成不同的指令,向智能移动终端发送,或向智能车载单元发送。
优选地,所述判断模块42包括第一确定模块104和第二确定模块204;其中第一确定模块104用于根据所述发动机运行状态的信息判断所述发动机是否处于运行状态;第二确定模块204用于在所述发动机处于运行状态时,根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级。
优选地,所述判断模块42进一步包括:
第三确定模块304,用于在所述发动机处于非运行状态,且在所述发动机处于非运行状态的时长大于预设时长时,确定所述驾驶员处于非疲劳驾驶状态,将所述车辆连续运行时间归零。
发动机的运行状态信息包括运行和熄火两种状态,可以通过采集传感器信息的方式获得,传感器可以是感知发动机机启动或熄火的传感器,例如,在发动机由熄火转为启动时,则传感器的感应端发送变化,信息输出端的信息随之发生变化,则信息采集端据此能够判断出发送机的运行状态由熄火转为启动。如果发动机处于运行状态,则触发第一确定模块或第二确定模块;如果发送机处于熄火状态,则触发第三确定模块。
时间阈值时根据实验获得的数据,这里可以首先将时间阈值作为第一层次划分界限,车辆连续运行时间低于时间阈值的界定为非疲劳驾驶状态;达到或超过时间阈值的界定为疲劳驾驶状态;只有当驾驶员处于疲劳驾驶状态时,才进行疲劳驾驶状态等级的判定。
这里可将里程阈值或车辆速度作为第二层次划分界限;位于时间阈值与里程阈值之间的地带为一级疲劳驾驶状态;位于里程阈值以上作为二级疲劳驾驶状态;这里的车辆行驶里程可以根据车辆的连续运行时间和车辆的运行速度计算获得,也可以从车辆的里程计直接获取。
当所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,可确定所述驾驶员处于一级疲劳驾驶状态;当所述车辆连续运行时间大于或等于时间阈值,车辆行驶里程达到里程阈值时,确定所述驾驶员处于二级疲劳驾驶状态。
如果发动机处于停止即熄火状态,则认为驾驶员处于休息状态,如果休息时间达到预设时长,则认为驾驶员得到了充分的休息,就对车辆连续运行时间清零,车辆再次启动时,车辆连续运行时间重新计算;如果休息时间没有达到预设时长,则认为驾驶员没有得到充分的休息,就不会对车辆连续运行时间清零,车辆再次启动时,车辆连续运行时间在原来的基础上继续累计。
优选地,所述第二确定模块204包括比较模块204a、一级疲劳模块204b、二级疲劳模块204c、非疲劳模块204d;其中:
比较模块,用于利用所述车辆速度和所述车辆连续运行时间获得车辆行驶里程,比较所述车辆行驶里程与里程阈值,及比较所述车辆连续运行时间与时间阈值;
车辆速度可以是平均速度,也可以是瞬时速度;如果车辆速度是平均速度V,车辆连续运行时间为t;则由S=V*t,获得车辆行驶里程S;如果车辆速度是瞬时速度Vi,则由S= 获得车辆行驶里程S;车辆速度可由速度传感器检测获得,对瞬时速度求平均值可获得车辆在一段时间内的平均速度;车辆行驶里程还可以通过计数器对车轮的转数进行计数,最后由车轮的周长与车轮的总转数乘积获得,这里比较两个参数,第一比较车辆行驶里程S与里程阈值,第二比较车辆连续运行时间t与时间阈值,分别作为两级疲劳驾驶状态的界限。
一级疲劳模块204b,用于在所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,确定所述驾驶员处于一级疲劳驾驶状态;
二级疲劳模块204c,用于在所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程达到里程阈值时,确定所述驾驶员处于二级疲劳驾驶状态;
非疲劳模块204d,用于在所述车辆连续运行时间小于时间阈值时,确定所述驾驶员处于非疲劳驾驶状态。
比较模块首先调用车辆连续运行时间参数,比较车辆连续运行时间与时间阈值,只要车辆处于运行状态,这个时间就会持续增加,如果车辆连续运行时间小于时间阈值,则判断驾驶员处于非疲劳驾驶状态,并对下一轮车辆连续运行时间数据进行比较;当累计到预设的时间阈值,再根据车辆行驶里程确定驾驶员的疲劳状态等级;
如果车辆行驶里程小于里程阈值,确定所述驾驶员处于一级疲劳驾驶状态,触发一级指令模块;并对下一里程数据进行比较;如果车辆行驶里程大于或等于里程阈值,则触发第二确定模块,确定驾驶员处于二级疲劳状态等级。
首先从车辆连续运行时间上进行首次判断,例如当车辆连续运行时间达到4小时(时间阈值为4小时,当然也不限于一个值,也可以是一个时间段)以上,则认定驾驶员处于疲劳驾驶状态,进一步进行二次判断,如果连续4小时平均时速较低,车辆行驶里程达不到里程阈值,则认为驾驶员当前处于一级疲劳驾驶状态,需要提示驾驶员休息,云端服务器通过一级指令模块向智能移动终端发送预警指令;若连续4小时高速行驶,例如时速在120公里/小时以上,里程达到500公里(里程阈值),若此时发动机还处于运行状态,则认定驾驶员当前处于二级疲劳驾驶状态,需要强制发动机熄火;云端服务器通过二级指令模块向智能车载单元发送熄火控制指令。
若此时发动机处于停止状态,则判断发送机的停止时间,若发动机已停止的时间大于预设时长,认为驾驶员得到了足够的时间休息,则车辆连续运行时间和连续行驶里程清零,如果已停止的时间小于预设时长,认为驾驶员没有得到足够的时间休息,则继续累加车辆连续运行时间和连续行驶里程,并在发动机再次运行时确定所述驾驶员处于二级疲劳驾驶状态,云端服务器通过二级指令模块向智能车载单元发送熄火控制指令,强制发动机熄火。
还可以通过其他判断流程对疲劳驾驶状态进行确定:例如可首先判断车辆速度,当车辆速度达到120公里/小时以上,则对连续运行时间进行监控,若时间达到4小时以上,发动机还处于工作状态,则认定驾驶员处于二级疲劳驾驶状态,强制发动机熄火,让驾驶员休息;若车辆速度低于120公里/小时,则对连续运行时间进行监控,若时间达到4小时以上,发动机还处于工作状态,则认定驾驶员处于一级疲劳驾驶状态,发出预警指令提示驾驶员休息;如果发动机持续处于工作状态,则对车辆行驶里程监控,例如达到800公里以上,认定驾驶员处于二级疲劳驾驶状态,发动机还处于工作状态,则认定驾驶员处于二级疲劳驾驶状态,强制发动机熄火,让驾驶员休息。
当然也不排除通过对车辆连续运行时间、车辆速度及发动机运行状态信息进行分析判断的其他具体流程。
优选地,所述指令模块43进一步包括一级指令模块431和二级指令模块432;所述一级指令模块431用于在所述驾驶员处于一级疲劳驾驶状态时,向智能移动终端3发送预警指令;所述二级指令模块432用于在所述驾驶员处于二级疲劳驾驶状态时;则向智能车载单元2发送熄火控制指令。
参见图1,本发明实施例中疲劳驾驶预警系统包括信息采集单元1、智能车载单元2、智能移动终端3、云端服务器4;其中,信息采集单元1安装在车上,用于连续生成包含车辆连续运行时间、车辆速度及发动机运行状态信息的数据;信息采集单元1与智能车载单元2之间通过蓝牙或WIFI模块实现无线通讯;
智能车载单元2具有采集模块21、发送模块22、接收模块23;云端服务器4具备远程接收端口41、判断模块42和指令模块43;智能车载单元2与云端服务器4之间通过无线网络或接口协议进行数据传输;
采集模块21用于采集车辆行驶的状态信息,车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息具体可以是采集器,以预设的频率采集信息数据;
发送模块22用于向云端服务器4发送包含该车辆连续运行时间、车辆速度及发动机运行状态的信息;远程接收端口41用于接收包含车辆连续运行时间、车辆速度及发动机运行状态的信息;发送模块22与远程接收端口41可理解为数据传输接口;
判断模块42用于根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级;指令模块43用于并向智能移动终端3或智能车载单元2发送与所述驾驶员的疲劳驾驶状态等级对应的指令;接收模块23用于接收并向智能车载单元2传送所述指令。
在上述实施例的基础上,疲劳驾驶预警系统进一步地包括显示模块和报警模块;显示模块显示所述车辆连续运行时间、与车辆速度相对应的里程、发动机运行状态信息及预警指令;报警模块执行所述预警指令。显示模块和报警模块均可集成于智能车载单元上,或与车载系统的显示器或报警器公用,方便驾驶员观测及得到提醒。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (14)

  1. 一种疲劳驾驶预警方法,其特征在于,包括以下步骤:
    接收智能车载单元发送的车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
    根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级;
    向智能移动终端或所述智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令。
  2. 如权利要求1所述的疲劳驾驶预警方法,其特征在于,所述根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级的步骤包括:
    根据所述发动机运行状态的信息判断所述发动机是否处于运行状态;
    若所述发动机处于运行状态,则根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级。
  3. 如权利要求2所述的疲劳驾驶预警方法,其特征在于,所述根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级的步骤包括:
    利用所述车辆速度和所述车辆连续运行时间获得车辆行驶里程,比较所述车辆行驶里程与里程阈值,及比较所述车辆连续运行时间与时间阈值;
    当所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,确定所述驾驶员处于一级疲劳驾驶状态;
    当所述车辆连续运行时间大于或等于时间阈值,车辆行驶里程达到里程阈值,确定所述驾驶员处于二级疲劳驾驶状态;
    当所述车辆连续运行时间小于时间阈值,则确定所述驾驶员处于非疲劳驾驶状态。
  4. 如权利要求2所述的疲劳驾驶预警方法,其特征在于,所述根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级还包括:
    若所述发动机处于非运行状态,则在所述发动机处于非运行状态的时长大于预设时长时,确定所述驾驶员处于非疲劳驾驶状态,将所述车辆连续运行时间归零。
  5. 如权利要求1所述的疲劳驾驶预警方法,其特征在于,所述向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令的步骤包括:
    当所述驾驶员处于一级疲劳驾驶状态时,则向智能移动终端发送预警指令;
    当所述驾驶员处于二级疲劳驾驶状态时,则向智能车载单元发送熄火控制指令。
  6. 如权利要求2所述的疲劳驾驶预警方法,其特征在于,所述向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令的步骤包括:
    当所述驾驶员处于一级疲劳驾驶状态时,则向智能移动终端发送预警指令;
    当所述驾驶员处于二级疲劳驾驶状态时,则向智能车载单元发送熄火控制指令。
  7. 如权利要求3所述的疲劳驾驶预警方法,其特征在于,所述向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令的步骤包括:
    当所述驾驶员处于一级疲劳驾驶状态时,则向智能移动终端发送预警指令;
    当所述驾驶员处于二级疲劳驾驶状态时,则向智能车载单元发送熄火控制指令。
  8. 如权利要求4所述的疲劳驾驶预警方法,其特征在于,所述向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令的步骤包括:
    当所述驾驶员处于一级疲劳驾驶状态时,则向智能移动终端发送预警指令;
    当所述驾驶员处于二级疲劳驾驶状态时,则向智能车载单元发送熄火控制指令。
  9. 一种云端服务器,其特征在于,包括:
    远程接收端口,用于接收智能车载单元发送的车辆行驶的状态信息,所述车辆行驶的状态信息包含车辆连续运行时间、车辆速度及发动机运行状态的信息;
    判断模块,用于根据所述车辆连续运行时间、车辆速度及发动机运行状态的信息,确定驾驶员的疲劳驾驶状态等级;
    所述指令模块,用于向智能移动终端或智能车载单元发送与所述驾驶员的疲劳驾驶状态等级对应的指令。
  10. 根据利要求9所述的云端服务器,其特征在于,所述判断模块包括:
    第一确定模块,用于根据所述发动机运行状态的信息判断所述发动机是否处于运行状态;
    第二确定模块,用于在所述发动机处于运行状态时,根据所述车辆连续运行时间及车辆速度确定所述驾驶员的疲劳驾驶状态等级。
  11. 根据利要求10所述的云端服务器,其特征在于,所述第二确定模块包括:
    比较模块,用于利用所述车辆速度和所述车辆连续运行时间获得车辆行驶里程,比较所述车辆行驶里程与里程阈值,及比较所述车辆连续运行时间与时间阈值;
    一级疲劳模块,用于在所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程小于里程阈值时,确定所述驾驶员处于一级疲劳驾驶状态;
    二级疲劳模块,用于在所述车辆连续运行时间大于或等于时间阈值,且车辆行驶里程达到里程阈值,确定所述驾驶员处于二级疲劳驾驶状态;
    非疲劳模块,用于在所述车辆连续运行时间小于时间阈值时,确定所述驾驶员处于非疲劳驾驶状态。
  12. 根据利要求10所述的云端服务器,其特征在于,所述判断模块进一步包括:
    第三确定模块,用于在所述发动机处于非运行状态,且在所述发动机处于非运行状态的时长大于预设时长时,确定所述驾驶员处于非疲劳驾驶状态,将所述车辆连续运行时间归零。
  13. 根据利要求11所述的云端服务器,其特征在于,所述指令模块包括:
    所述一级指令模块,用于在所述驾驶员处于一级疲劳驾驶状态时,向智能移动终端发送预警指令;
    所述二级指令模块,用于在所述驾驶员处于二级疲劳驾驶状态时;则向智能车载单元发送熄火控制指令。
  14. 根据利要求12所述的云端服务器,其特征在于,所述指令模块包括:
    所述一级指令模块,用于在所述驾驶员处于一级疲劳驾驶状态时,向智能移动终端发送预警指令;
    所述二级指令模块,用于在所述驾驶员处于二级疲劳驾驶状态时;则向智能车载单元发送熄火控制指令。
PCT/CN2016/111539 2016-08-12 2016-12-22 疲劳驾驶预警方法及云端服务器 WO2018028115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610662978.3 2016-08-12
CN201610662978.3A CN106228755A (zh) 2016-08-12 2016-08-12 疲劳驾驶预警方法及云端服务器

Publications (1)

Publication Number Publication Date
WO2018028115A1 true WO2018028115A1 (zh) 2018-02-15

Family

ID=57547453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111539 WO2018028115A1 (zh) 2016-08-12 2016-12-22 疲劳驾驶预警方法及云端服务器

Country Status (2)

Country Link
CN (1) CN106228755A (zh)
WO (1) WO2018028115A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109849929A (zh) * 2019-03-29 2019-06-07 长安大学 一种基于驾驶员状态的可变车道偏离和前车碰撞预警算法
CN111152794A (zh) * 2018-11-06 2020-05-15 阿里巴巴集团控股有限公司 一种疲劳驾驶的确定方法及装置
CN111382883A (zh) * 2018-12-29 2020-07-07 北京嘀嘀无限科技发展有限公司 网约车接单权限控制方法、装置及设备
CN111546889A (zh) * 2020-04-24 2020-08-18 湖北七纵八横网络科技有限公司 一种防疲劳驾驶的装置和方法及安装有该装置的车
CN111899517A (zh) * 2020-06-24 2020-11-06 浙江浩腾电子科技股份有限公司 一种高速公路疲劳驾驶违法行为判定方法
CN112053549A (zh) * 2020-09-10 2020-12-08 南京世博电控技术有限公司 一种无人车辆车队调度系统及方法
CN112164210A (zh) * 2020-09-16 2021-01-01 南京领行科技股份有限公司 一种基于对象的预警方法、装置、存储介质及电子设备
CN113034895A (zh) * 2021-02-04 2021-06-25 招商局公路网络科技控股股份有限公司 一种etc门架系统、高速公路疲劳驾驶预警方法及装置
CN113888840A (zh) * 2021-09-26 2022-01-04 中原大易科技有限公司 监测网络货运司机运输行为的方法、装置及电子设备
CN117672003A (zh) * 2023-11-23 2024-03-08 北京悟空出行科技有限公司 一种租车公司用车辆远程监控系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106228755A (zh) * 2016-08-12 2016-12-14 深圳市元征科技股份有限公司 疲劳驾驶预警方法及云端服务器
CN107226093A (zh) * 2017-05-19 2017-10-03 长安大学 一种货车司机疲劳驾驶判断方法
CN108022451A (zh) * 2017-12-06 2018-05-11 驾玉科技(上海)有限公司 一种基于云端的驾驶员状态预警上报及分发系统
CN108312964A (zh) * 2018-03-21 2018-07-24 华南理工大学 一种疲劳驾驶状态识别预警系统及方法
CN110493296A (zh) * 2018-05-15 2019-11-22 上海博泰悦臻网络技术服务有限公司 疲劳驾驶提醒方法及云端服务器
CN109572704B (zh) * 2018-12-04 2021-03-16 歌尔科技有限公司 一种疲劳驾驶的提醒方法及装置
CN112319482B (zh) * 2019-08-01 2022-04-01 上海擎感智能科技有限公司 车辆及其疲劳驾驶预警方法、系统、介质、及车载终端
CN110466495B (zh) * 2019-09-02 2024-04-09 浙江鸿吉智能控制有限公司 一种智能自动矢量驾驶执行系统及控制方法
CN111322143B (zh) * 2020-02-26 2021-08-20 潍柴动力股份有限公司 柴油机颗粒捕集器的诊断方法、云端服务器及车载终端
CN111696313A (zh) * 2020-05-25 2020-09-22 一汽奔腾轿车有限公司 一种驾驶员注意力提醒系统及设计方法
CN111866115A (zh) * 2020-07-14 2020-10-30 杭州卡欧科技有限公司 一种行车安全辅助方法
CN111930098A (zh) * 2020-07-28 2020-11-13 上海元城汽车技术有限公司 一种车辆监测频率诊断方法及系统
CN112141119B (zh) * 2020-09-23 2022-03-11 上海商汤临港智能科技有限公司 智能驾驶控制方法及装置、车辆、电子设备和存储介质
CN113159513B (zh) * 2021-03-22 2024-05-31 广州宸祺出行科技有限公司 一种基于驾驶行为的司机身心状态判断方法及装置
CN113421001A (zh) * 2021-06-30 2021-09-21 中国航空油料有限责任公司 一种加油员疲劳度的确定方法、装置、电子设备及介质
CN113525028A (zh) * 2021-07-09 2021-10-22 珠海格力电器股份有限公司 一种汽车空调控制方法、处理器、存储介质及汽车空调
CN116030595A (zh) * 2021-10-26 2023-04-28 上海擎感智能科技有限公司 一种疲劳驾驶警示方法、装置及系统
CN114140986A (zh) * 2021-11-23 2022-03-04 奇瑞汽车股份有限公司 疲劳驾驶预警方法、系统、存储介质
CN114132331B (zh) * 2021-12-31 2024-05-14 阿维塔科技(重庆)有限公司 驾驶员状态信息确认方法、装置及计算机可读存储介质
CN116092267A (zh) * 2023-01-29 2023-05-09 浙江吉利控股集团有限公司 车辆疲劳驾驶提醒方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191830A (ja) * 1984-03-12 1985-09-30 Jeco Co Ltd 連続運転防止装置
US20040032334A1 (en) * 2002-08-13 2004-02-19 Ataul Haq Doze-off early warning system for automotives and other applications
CN202686224U (zh) * 2012-06-15 2013-01-23 浙江吉利汽车研究院有限公司杭州分公司 疲劳驾驶报警装置
CN105196866A (zh) * 2015-09-29 2015-12-30 成都艾维拓思科技有限公司 防止长时间连续驾驶的监控系统
CN105336105A (zh) * 2015-11-30 2016-02-17 宁波力芯科信息科技有限公司 一种预防疲劳驾驶的方法、智能设备及系统
CN106228755A (zh) * 2016-08-12 2016-12-14 深圳市元征科技股份有限公司 疲劳驾驶预警方法及云端服务器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509418B (zh) * 2011-10-11 2013-11-13 东华大学 一种多传感信息融合的疲劳驾驶评估预警方法及装置
CN102542728A (zh) * 2011-12-29 2012-07-04 广西卫通汽车信息技术有限公司 疲劳驾驶检测的方法及系统
CN102717765B (zh) * 2012-07-09 2015-02-11 湖南赛格导航技术研究有限公司 疲劳驾驶检测方法及防疲劳驾驶辅助装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191830A (ja) * 1984-03-12 1985-09-30 Jeco Co Ltd 連続運転防止装置
US20040032334A1 (en) * 2002-08-13 2004-02-19 Ataul Haq Doze-off early warning system for automotives and other applications
CN202686224U (zh) * 2012-06-15 2013-01-23 浙江吉利汽车研究院有限公司杭州分公司 疲劳驾驶报警装置
CN105196866A (zh) * 2015-09-29 2015-12-30 成都艾维拓思科技有限公司 防止长时间连续驾驶的监控系统
CN105336105A (zh) * 2015-11-30 2016-02-17 宁波力芯科信息科技有限公司 一种预防疲劳驾驶的方法、智能设备及系统
CN106228755A (zh) * 2016-08-12 2016-12-14 深圳市元征科技股份有限公司 疲劳驾驶预警方法及云端服务器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152794A (zh) * 2018-11-06 2020-05-15 阿里巴巴集团控股有限公司 一种疲劳驾驶的确定方法及装置
CN111382883A (zh) * 2018-12-29 2020-07-07 北京嘀嘀无限科技发展有限公司 网约车接单权限控制方法、装置及设备
CN109849929A (zh) * 2019-03-29 2019-06-07 长安大学 一种基于驾驶员状态的可变车道偏离和前车碰撞预警算法
CN111546889A (zh) * 2020-04-24 2020-08-18 湖北七纵八横网络科技有限公司 一种防疲劳驾驶的装置和方法及安装有该装置的车
CN111546889B (zh) * 2020-04-24 2023-10-10 东莞市海湾石油化工有限公司 一种防疲劳驾驶的装置和方法及安装有该装置的车
CN111899517A (zh) * 2020-06-24 2020-11-06 浙江浩腾电子科技股份有限公司 一种高速公路疲劳驾驶违法行为判定方法
CN112053549A (zh) * 2020-09-10 2020-12-08 南京世博电控技术有限公司 一种无人车辆车队调度系统及方法
CN112164210A (zh) * 2020-09-16 2021-01-01 南京领行科技股份有限公司 一种基于对象的预警方法、装置、存储介质及电子设备
CN113034895A (zh) * 2021-02-04 2021-06-25 招商局公路网络科技控股股份有限公司 一种etc门架系统、高速公路疲劳驾驶预警方法及装置
CN113888840A (zh) * 2021-09-26 2022-01-04 中原大易科技有限公司 监测网络货运司机运输行为的方法、装置及电子设备
CN117672003A (zh) * 2023-11-23 2024-03-08 北京悟空出行科技有限公司 一种租车公司用车辆远程监控系统
CN117672003B (zh) * 2023-11-23 2024-05-14 北京悟空出行科技有限公司 一种租车公司用车辆远程监控系统

Also Published As

Publication number Publication date
CN106228755A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018028115A1 (zh) 疲劳驾驶预警方法及云端服务器
WO2017148195A1 (zh) 基于车载智能终端的汽车安全控制方法及装置
WO2018058856A1 (zh) 路面积水检测方法及装置
WO2018076558A1 (zh) 行车方法及系统
WO2017219588A1 (zh) 基于无人机的环境探测方法和系统
WO2018032642A1 (zh) 行车碰撞预警方法及装置
WO2014189200A1 (ko) 영상표시장치 및 영상표시장치의 동작방법
WO2016085198A1 (ko) 전자기기 및 그것의 제어방법
KR101475578B1 (ko) 타이어 상태 판정 장치
WO2018036086A1 (zh) 车辆监测方法及装置
WO2019151575A1 (ko) 차량 단말기 및 그것을 포함하는 운송 시스템의 제어방법
US20140210604A1 (en) Control system for controlling display device
WO2020040324A1 (ko) 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법
WO2018032622A1 (zh) 蓝牙的切换方法及装置
WO2020226192A1 (ko) 자율 주행 차량을 위한 보험 안내 시스템 및 방법
KR20120016881A (ko) 차량 실내 침입 감지 시스템 및 이의 제어 방법
JPH11321382A (ja) スイッチポジション表示装置
WO2014101817A9 (zh) 智能座椅系统
CN111007959B (zh) 触控显示装置
JP2002245558A (ja) 盗難検知装置
WO2022060090A1 (ko) 사용자 위치 감지 방법, 그를 수행하는 차량용 전자 기기, 및 그를 수행하는 모바일 기기
JP2003107156A (ja) 障害物検出装置及び記録媒体
WO2017010824A1 (ko) 헤드서포트 및 헤드서포트 시스템
KR20030044124A (ko) 차량 거리 탐지 장치 및 방법
CN107111666A (zh) 人体活动监测与指导方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912569

Country of ref document: EP

Kind code of ref document: A1