WO2020040324A1 - 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법 - Google Patents

이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법 Download PDF

Info

Publication number
WO2020040324A1
WO2020040324A1 PCT/KR2018/009653 KR2018009653W WO2020040324A1 WO 2020040324 A1 WO2020040324 A1 WO 2020040324A1 KR 2018009653 W KR2018009653 W KR 2018009653W WO 2020040324 A1 WO2020040324 A1 WO 2020040324A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile
station
channel
vehicle
message
Prior art date
Application number
PCT/KR2018/009653
Other languages
English (en)
French (fr)
Inventor
박용수
김인환
안동균
이정주
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2018/009653 priority Critical patent/WO2020040324A1/ko
Priority to US16/242,174 priority patent/US11072340B2/en
Publication of WO2020040324A1 publication Critical patent/WO2020040324A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present invention relates to a mobile ITS station and a method of operating the mobile ITS station, and more particularly, to a method for determining a message transmission / reception state in a dedicated short range communication (DSRC) interface and controlling the mobile ITS station based thereon. It is about.
  • DSRC dedicated short range communication
  • the vehicle traditionally functions as a user's means of transportation, but for the convenience of the user, the vehicle is provided with various sensors and electronic devices to provide driving convenience for the user.
  • ADAS Advanced Driver Assistance System
  • Autonomous Vehicle autonomous vehicle
  • WAVE Wireless Access for the Vehicular Environment
  • DSRC Dedicated Short-Range Communication
  • VTX Video Transmitter
  • the present invention is intended to propose a criterion and a risk avoidance method for measuring and determining the reliability of the safety application service due to communication interference is lowered.
  • VTX module that may be a problem for DSRC V2X transmission has been recently discovered, and thus, a mobile ITS station is subject to a communication disturbance attack.
  • the conventional DSRC V2X message transmission uses a broadcasting method, it does not receive an ACK after the message is transmitted and does not check the transmission status, and measures only the CBR (Channel Busy Ratio) measured for congestion control. After that, it is used for CCA (Clear Channel Assessment).
  • CBR Channel Busy Ratio
  • the method for determining a message transmission and reception state in a dedicated short range communication (DSRC) interface, and controlling a mobile intelligent transport system (ITS) station based on the DSRC interface It is determined whether the power of the signal received in the first channel of exceeds the threshold, and if the time or the number of times that the power of the received signal exceeds the threshold exceeds the first predetermined value, the first channel
  • DSRC dedicated short range communication
  • ITS mobile intelligent transport system
  • the threshold value is characterized in that the Clear Channel Assessment (CCA) threshold value.
  • CCA Clear Channel Assessment
  • the method may further include determining a validity of the received signal through a cyclic redundancy check (CRC) of the received signal.
  • CRC cyclic redundancy check
  • the determining method may further include determining that the message transmission on the first channel is impossible if the received signal is not valid.
  • the method may further include monitoring the number of packets accumulated in the transmission buffer of the mobile ITS station, and determining that transmission of a message in the first channel is impossible when the number of packets exceeds a second predetermined value. It may include.
  • the determining method may measure an IPG (Inter Packet Gap) in consideration of a type of a signal received from another mobile ITS station around the mobile ITS station and a sequence number (SN), and the measured IPG is determined as a third predetermined value. When the value is exceeded, the method may further include determining that message transmission on the first channel is impossible.
  • IPG Inter Packet Gap
  • the mobile ITS station transmits a basic safety message (BSM) to a neighboring mobile ITS station through the first channel, and if it is determined that transmission of the BSM on the first channel is impossible, the second channel of the DSRC interface It may include transmitting the BSM to the network node using.
  • BSM basic safety message
  • the mobile ITS station may transmit a basic safety message (BSM) to at least one other mobile ITS station through the first channel, and if it is determined that transmission of the BSM on the first channel is impossible, And transmitting the BSM to a network node using another communication interface.
  • BSM basic safety message
  • the BSM may also be delivered to the at least one other mobile ITS station via the network node.
  • controlling method may estimate the relative position and distance of the interference object from the mobile ITS station by using the power of the received signal, and the mobile ITS station may be moved to a position where communication is possible through a first channel. And controlling the mobile ITS station.
  • controlling method may be performed when the mobile ITS station is clustered by using at least one other mobile ITS station and the first channel, if it is determined that transmission of the message on the first channel is impossible. And transmitting the message using a second channel of the DSRC interface previously set as a service channel.
  • the method of controlling the mobile ITS provides a service provided by the Advanced Driver-Assistance Systems (ADAS) of the mobile ITS station through the DSRC interface in the service list. It may include switching to a service provided through at least one sensor provided in the station.
  • ADAS Advanced Driver-Assistance Systems
  • controlling method may include performing activation and sensitivity adjustment of the at least one sensor to provide a service through at least one sensor provided in the mobile ITS station.
  • the controlling method may include performing at least one of a control for increasing the threshold value or a control for increasing the message transmission power of the mobile ITS station if it is determined that message transmission on the first channel is impossible. Can be.
  • the controlling method may further include operating a timer set to a fourth predetermined value if it is determined that message transmission on the first channel is impossible, and power of a signal received in the first channel before the fourth predetermined value expires.
  • the CCA threshold value is less than or equal to, the message stored in the transmission buffer of the mobile ITS station, and if the fourth predetermined value expires may include deleting the message accumulated in the transmission buffer of the mobile ITS station.
  • An aspect of the present invention proposes a method of determining a message transmission / reception state in a dedicated short range communication (DSRC) interface and controlling a mobile intelligent transport system (ITS) station based thereon.
  • DSRC dedicated short range communication
  • ITS mobile intelligent transport system
  • FIG. 1 is a view showing the appearance of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a view of the vehicle according to an embodiment of the present invention from various angles from the outside.
  • 3 to 4 are views showing the interior of a vehicle according to an embodiment of the present invention.
  • 5 to 6 are views referred to for describing an object according to an embodiment of the present invention.
  • FIG. 7 is a block diagram referred to describe a vehicle according to an embodiment of the present invention.
  • FIG. 8 shows a frequency band used by a DSRC interface and an amateur radio.
  • CCA Clear Channel Assessment
  • FIG. 10 illustrates a method in which a processor of a mobile ITS station determines a failure of a message transmission according to Embodiment 1 of the present invention.
  • FIG. 11 illustrates another method of determining, by the processor of a mobile ITS station, failure to transmit a message according to Embodiment 1 of the present invention.
  • FIG. 12 illustrates another method of determining, by the processor of a mobile ITS station, that a message failed to be transmitted, according to Embodiment 1 of the present invention.
  • FIG. 13 illustrates a method for controlling a mobile ITS station according to Embodiment 2 of the present invention when a message transmission fails.
  • FIG. 14 illustrates another control method of a mobile ITS station according to Embodiment 2 of the present invention when message transmission fails.
  • 15 and 16 illustrate another control method of a mobile ITS station according to Embodiment 2 of the present invention when message transmission fails.
  • FIG. 17 illustrates another control method of a mobile ITS station according to Embodiment 2 of the present invention when a message transmission fails.
  • FIG. 18 illustrates another control method of a mobile ITS station according to Embodiment 2 of the present invention when message transmission fails.
  • FIG. 19 illustrates another control method of a mobile ITS station according to Embodiment 2 of the present invention when message transmission fails.
  • FIG. 20 illustrates another control method of a mobile ITS station according to Embodiment 2 of the present invention when a message transmission fails.
  • the vehicle 100 may include a wheel that rotates by a power source and a steering input device 510 for adjusting a traveling direction of the vehicle 100.
  • the vehicle 100 may be an autonomous vehicle.
  • the vehicle 100 may be switched to an autonomous driving mode or a manual mode based on a user input.
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on the received user input through the user interface device 200.
  • the vehicle 100 may be switched to the autonomous driving mode or the manual mode based on the driving situation information.
  • the driving situation information may include at least one of object information, navigation information, and vehicle state information outside the vehicle.
  • the vehicle 100 may be switched from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on the driving situation information generated by the object detecting apparatus 300.
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on the driving situation information received through the communication device 400.
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on information, data, and signals provided from an external device.
  • the autonomous vehicle 100 may be driven based on the driving system 700.
  • the autonomous vehicle 100 may be driven based on information, data, or signals generated by the driving system 710, the parking system 740, and the parking system 750.
  • the autonomous vehicle 100 may receive a user input for driving through the driving manipulation apparatus 500.
  • the vehicle 100 may be driven based on a user input received through the driving manipulation apparatus 500.
  • the overall length is the length from the front to the rear of the vehicle 100
  • the width is the width of the vehicle 100
  • the height is the length from the bottom of the wheel to the roof.
  • the full-length direction L is a direction in which the full-length measurement of the vehicle 100 is a reference
  • the full-width direction W is a direction in which the full-width measurement of the vehicle 100 is a reference
  • the total height direction H is a vehicle. It may mean the direction that is the basis of the height measurement of (100).
  • the vehicle 100 includes a user interface device 200, an object detecting device 300, a communication device 400, a driving manipulation device 500, a vehicle driving device 600, and a traveling system. 700, a navigation system 770, a sensing unit 120, an interface unit 130, a memory 140, a control unit 170, and a power supply unit 190 may be included.
  • the vehicle 100 may further include other components in addition to the components described herein, or may not include some of the components described.
  • the sensing unit 120 may include a state of the vehicle. Can sense.
  • the sensing unit 120 may include an attitude sensor (eg, a yaw sensor, a roll sensor, a pitch sensor), a collision sensor, a wheel sensor, a speed sensor, and an inclination.
  • the sensing unit 120 includes vehicle attitude information, vehicle collision information, vehicle direction information, vehicle position information (GPS information), vehicle angle information, vehicle speed information, vehicle acceleration information, vehicle tilt information, vehicle forward / reverse information, battery Acquire sensing signals for information, fuel information, tire information, vehicle lamp information, vehicle internal temperature information, vehicle internal humidity information, steering wheel rotation angle, vehicle external illumination, pressure applied to the accelerator pedal, pressure applied to the brake pedal, and the like. can do.
  • the sensing unit 120 may further include an accelerator pedal sensor, a pressure sensor, an engine speed sensor, an air flow sensor (AFS), an intake temperature sensor (ATS), a water temperature sensor (WTS), and a throttle position sensor. (TPS), TDC sensor, crank angle sensor (CAS), and the like.
  • AFS air flow sensor
  • ATS intake temperature sensor
  • WTS water temperature sensor
  • TPS throttle position sensor
  • TDC crank angle sensor
  • CAS crank angle sensor
  • the sensing unit 120 may generate vehicle state information based on the sensing data.
  • the vehicle state information may be information generated based on data sensed by various sensors provided in the vehicle.
  • the vehicle state information may include vehicle attitude information, vehicle speed information, vehicle tilt information, vehicle weight information, vehicle direction information, vehicle battery information, vehicle fuel information, vehicle tire pressure information
  • the vehicle may include steering information of the vehicle, vehicle interior temperature information, vehicle interior humidity information, pedal position information, vehicle engine temperature information, and the like.
  • the interface unit 130 may serve as a path to various types of external devices connected to the vehicle 100.
  • the interface unit 130 may include a port connectable with the mobile terminal, and may connect with the mobile terminal through the port. In this case, the interface unit 130 may exchange data with the mobile terminal.
  • the interface unit 130 may serve as a path for supplying electrical energy to the connected mobile terminal.
  • the interface unit 130 may provide the mobile terminal with electrical energy supplied from the power supply unit 190.
  • the memory 140 is electrically connected to the controller 170.
  • the memory 140 may store basic data for the unit, control data for controlling the operation of the unit, and input / output data.
  • the memory 140 may be various storage devices such as a ROM, a RAM, an EPROM, a flash drive, a hard drive, and the like, in hardware.
  • the memory 140 may store various data for overall operation of the vehicle 100, such as a program for processing or controlling the controller 170.
  • the memory 140 may be integrally formed with the controller 170 or implemented as a subcomponent of the controller 170.
  • the controller 170 may control the overall operation of each unit in the vehicle 100.
  • the controller 170 may be referred to as an electronic control unit (ECU).
  • the power supply unit 190 may supply power required for the operation of each component under the control of the controller 170.
  • the power supply unit 190 may receive power from a battery in a vehicle.
  • One or more processors and the controller 170 included in the vehicle 100 may include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and field programmable (FPGAs). It may be implemented using at least one of gate arrays, processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable
  • the vehicle driving apparatus 600, the driving system 700, and the navigation system 770 may have separate processors or may be integrated into the controller 170.
  • the user interface device 200 is a device for communicating with the vehicle 100 and a user.
  • the user interface device 200 may receive a user input and provide the user with information generated by the vehicle 100.
  • the vehicle 100 may implement user interfaces (UI) or user experience (UX) through the user interface device 200.
  • UI user interfaces
  • UX user experience
  • the user interface device 200 may include an input unit 210, an internal camera 220, a biometric detector 230, an output unit 250, and a processor 270. Each component of the user interface apparatus 200 may be structurally and functionally separated or integrated with the interface unit 130 described above.
  • the user interface device 200 may further include other components in addition to the described components, or may not include some of the described components.
  • the input unit 210 is for receiving information from a user, and the data collected by the input unit 210 may be analyzed by the processor 270 and processed as a user's control command.
  • the input unit 210 may be disposed in the vehicle.
  • the input unit 210 may include one area of a steering wheel, one area of an instrument panel, one area of a seat, one area of each pillar, and a door. one area of the door, one area of the center console, one area of the head lining, one area of the sun visor, one area of the windshield or of the window It may be disposed in one area or the like.
  • the input unit 210 may include a voice input unit 211, a gesture input unit 212, a touch input unit 213, and a mechanical input unit 214.
  • the voice input unit 211 may convert a voice input of the user into an electrical signal.
  • the converted electrical signal may be provided to the processor 270 or the controller 170.
  • the voice input unit 211 may include one or more microphones.
  • the gesture input unit 212 may convert a user's gesture input into an electrical signal.
  • the converted electrical signal may be provided to the processor 270 or the controller 170.
  • the gesture input unit 212 may include at least one of an infrared sensor and an image sensor for detecting a user's gesture input.
  • the gesture input unit 212 may detect a 3D gesture input of a user.
  • the gesture input unit 212 may include a light output unit or a plurality of image sensors that output a plurality of infrared light.
  • the gesture input unit 212 may detect a user's 3D gesture input through a time of flight (TOF) method, a structured light method, or a disparity method.
  • TOF time of flight
  • the touch input unit 213 may convert a user's touch input into an electrical signal.
  • the converted electrical signal may be provided to the processor 270 or the controller 170.
  • the touch input unit 213 may include a touch sensor for detecting a user's touch input.
  • the touch input unit 213 may be integrally formed with the display unit 251 to implement a touch screen. Such a touch screen may provide an input interface and an output interface between the vehicle 100 and the user.
  • the mechanical input unit 214 may include at least one of a button, a dome switch, a jog wheel, and a jog switch.
  • the electrical signal generated by the mechanical input unit 214 may be provided to the processor 270 or the controller 170.
  • the mechanical input unit 214 may be disposed on a steering wheel, a center fascia, a center console, a cockpit module, a door, or the like.
  • the processor 270 starts the learning mode of the vehicle 100 in response to user inputs to at least one of the voice input unit 211, the gesture input unit 212, the touch input unit 213, and the mechanical input unit 214 described above. can do.
  • the vehicle 100 may perform driving path learning and surrounding environment learning of the vehicle 100. The learning mode will be described in detail later in relation to the object detecting apparatus 300 and the driving system 700.
  • the internal camera 220 may acquire a vehicle interior image.
  • the processor 270 may detect a state of the user based on the vehicle interior image.
  • the processor 270 may acquire the gaze information of the user from the vehicle interior image.
  • the processor 270 may detect the gesture of the user in the vehicle interior image.
  • the biometric detector 230 may acquire biometric information of the user.
  • the biometric detector 230 may include a sensor capable of acquiring biometric information of the user, and may acquire fingerprint information, heartbeat information, etc. of the user using the sensor. Biometric information may be used for user authentication.
  • the output unit 250 is for generating output related to visual, auditory or tactile.
  • the output unit 250 may include at least one of the display unit 251, the audio output unit 252, and the haptic output unit 253.
  • the display unit 251 may display graphic objects corresponding to various pieces of information.
  • the display unit 251 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). display, a 3D display, and an e-ink display.
  • the display unit 251 forms a layer structure or is integrally formed with the touch input unit 213 to implement a touch screen.
  • the display unit 251 may be implemented as a head up display (HUD).
  • the display unit 251 may include a projection module to output information through an image projected on a wind shield or a window.
  • the display unit 251 may include a transparent display. The transparent display can be attached to the wind shield or window.
  • the transparent display may display a predetermined screen while having a predetermined transparency.
  • Transparent display in order to have transparency, transparent display is transparent thin film electroluminescent (TFEL), transparent organic light-emitting diode (OLED), transparent liquid crystal display (LCD), transparent transparent display, transparent light emitting diode (LED) display It may include at least one of. The transparency of the transparent display can be adjusted.
  • the user interface device 200 may include a plurality of display units 251a to 251g.
  • the display unit 251 may include one region of the steering wheel, one region 251a, 251b, and 251e of the instrument panel, one region 251d of the seat, one region 251f of each pillar, and one region of the door ( 251g), one area of the center console, one area of the head lining, and one area of the sun visor, or may be implemented in one area 251c of the wind shield and one area 251h of the window.
  • the sound output unit 252 converts an electrical signal provided from the processor 270 or the controller 170 into an audio signal and outputs the audio signal. To this end, the sound output unit 252 may include one or more speakers.
  • the haptic output unit 253 generates a tactile output.
  • the haptic output unit 253 may vibrate the steering wheel, the seat belt, and the seats 110FL, 110FR, 110RL, and 110RR so that the user may recognize the output.
  • the processor 270 may control the overall operation of each unit of the user interface device 200.
  • the user interface device 200 may include a plurality of processors 270 or may not include the processor 270.
  • the user interface device 200 may be operated under the control of the processor or the controller 170 of another device in the vehicle 100.
  • the user interface device 200 may be referred to as a vehicle display device.
  • the user interface device 200 may be operated under the control of the controller 170.
  • the object detecting apparatus 300 is a device for detecting an object located outside the vehicle 100.
  • the object detecting apparatus 300 may generate object information based on the sensing data.
  • the object information may include information about the presence or absence of an object, location information of the object, distance information between the vehicle 100 and the object, and relative speed information between the vehicle 100 and the object.
  • the object may be various objects related to the driving of the vehicle 100.
  • the object O includes a lane OB10, another vehicle OB11, a pedestrian OB12, a two-wheeled vehicle OB13, traffic signals OB14, OB15, light, a road, a structure, Speed bumps, features, animals and the like can be included.
  • the lane OB10 may be a driving lane, a lane next to the driving lane, and a lane in which an opposite vehicle travels.
  • Lane OB10 may be a concept including left and right lines forming a lane.
  • the other vehicle OB11 may be a vehicle that is driving around the vehicle 100.
  • the other vehicle may be a vehicle located within a predetermined distance from the vehicle 100.
  • the other vehicle OB11 may be a vehicle that precedes or follows the vehicle 100.
  • the pedestrian OB12 may be a person located near the vehicle 100.
  • the pedestrian OB12 may be a person located within a predetermined distance from the vehicle 100.
  • the pedestrian OB12 may be a person located on a sidewalk or a roadway.
  • the two-wheeled vehicle OB13 may be a vehicle that is positioned around the vehicle 100 and moves using two wheels.
  • the motorcycle OB13 may be a vehicle having two wheels located within a predetermined distance from the vehicle 100.
  • the motorcycle OB13 may be a motorcycle or a bicycle located on a sidewalk or a roadway.
  • the traffic signal may include a traffic light OB15, a traffic sign OB14, a pattern or text drawn on a road surface.
  • the light may be light generated by a lamp provided to another vehicle.
  • the light can be light generated from the street light.
  • the light may be sunlight.
  • the road may include road surfaces, curves, uphill slopes, and downhill slopes.
  • the structure may be an object located around a road and fixed to the ground.
  • the structure may include a street lamp, a roadside tree, a building, a power pole, a traffic light, a bridge.
  • the features may include mountains, hills, and the like.
  • the object may be classified into a moving object and a fixed object.
  • the moving object may be a concept including another vehicle and a pedestrian.
  • the fixed object may be a concept including a traffic signal, a road, and a structure.
  • the object detecting apparatus 300 may include a camera 310, a radar 320, a lidar 330, an ultrasonic sensor 340, an infrared sensor 350, and a processor 370. Each component of the object detecting apparatus 300 may be structurally and functionally separated or integrated with the sensing unit 120 described above.
  • the object detecting apparatus 300 may further include other components in addition to the described components, or may not include some of the described components.
  • the camera 310 may be located at a suitable place outside the vehicle to acquire an image outside the vehicle.
  • the camera 310 may be a mono camera, a stereo camera 310a, an around view monitoring (AVM) camera 310b, or a 360 degree camera.
  • AVM around view monitoring
  • the camera 310 may acquire location information of the object, distance information with respect to the object, or relative speed information with the object by using various image processing algorithms.
  • the camera 310 may obtain distance information and relative speed information with respect to the object based on the change in the object size over time in the acquired image.
  • the camera 310 may acquire distance information and relative velocity information with respect to an object through a pin hole model, road surface profiling, or the like.
  • the camera 310 may obtain distance information and relative speed information with respect to the object based on the disparity information in the stereo image acquired by the stereo camera 310a.
  • the camera 310 may be disposed in close proximity to the front windshield in the interior of the vehicle in order to acquire an image in front of the vehicle.
  • the camera 310 may be disposed around the front bumper or the radiator grille.
  • the camera 310 may be disposed in close proximity to the rear glass in the interior of the vehicle to acquire an image of the rear of the vehicle.
  • the camera 310 may be disposed around the rear bumper, the trunk, or the tail gate.
  • the camera 310 may be disposed in close proximity to at least one of the side windows in the interior of the vehicle to acquire an image of the vehicle side.
  • the camera 310 may be arranged around the side mirror, fender or door.
  • the camera 310 may provide the obtained image to the processor 370.
  • the radar 320 may include an electromagnetic wave transmitter and a receiver.
  • the radar 320 may be implemented in a pulse radar method or a continuous wave radar method in terms of radio wave firing principle.
  • the radar 320 may be implemented by a frequency modulated continuous wave (FSCW) method or a frequency shift keying (FSK) method according to a signal waveform among continuous wave radar methods.
  • FSCW frequency modulated continuous wave
  • FSK frequency shift keying
  • the radar 320 detects an object based on a time of flight (TOF) method or a phase-shift method based on electromagnetic waves, and detects the position of the detected object, the distance to the detected object, and the relative velocity. Can be detected.
  • TOF time of flight
  • phase-shift method based on electromagnetic waves
  • the radar 320 may be disposed at an appropriate location outside the vehicle to detect an object located in front, rear, or side of the vehicle.
  • the lidar 330 may include a laser transmitter and a receiver.
  • the lidar 330 may be implemented in a time of flight (TOF) method or a phase-shift method.
  • TOF time of flight
  • the lidar 330 may be implemented as driven or non-driven. When implemented in a driven manner, the lidar 330 may be rotated by a motor and detect an object around the vehicle 100. When implemented in a non-driven manner, the lidar 330 may detect an object located within a predetermined range with respect to the vehicle 100 by optical steering.
  • the vehicle 100 may include a plurality of non-driven lidars 330.
  • the lidar 330 detects an object based on a time of flight (TOF) method or a phase-shift method using laser light, and detects an object, a position of the detected object, a distance from the detected object, and Relative speed can be detected.
  • the lidar 330 may be disposed at an appropriate position outside the vehicle to detect an object located in front, rear, or side of the vehicle.
  • the ultrasonic sensor 340 may include an ultrasonic transmitter and a receiver.
  • the ultrasonic sensor 340 may detect an object based on the ultrasonic wave, and detect a position of the detected object, a distance to the detected object, and a relative speed.
  • the ultrasonic sensor 340 may be disposed at an appropriate position outside the vehicle to detect an object located in front, rear, or side of the vehicle.
  • the infrared sensor 350 may include an infrared transmitter and a receiver.
  • the infrared sensor 340 may detect an object based on infrared light, and detect a position of the detected object, a distance to the detected object, and a relative speed.
  • the infrared sensor 350 may be disposed at an appropriate position outside the vehicle to detect an object located in front, rear, or side of the vehicle.
  • the processor 370 may control overall operations of each unit of the object detecting apparatus 300.
  • the processor 370 compares the data sensed by the camera 310, the radar 320, the lidar 330, the ultrasonic sensor 340, and the infrared sensor 350 with previously stored data to detect or classify an object. can do.
  • the processor 370 may detect and track the object based on the obtained image.
  • the processor 370 may perform operations such as calculating a distance to an object and calculating a relative speed with the object through an image processing algorithm.
  • the processor 370 may obtain distance information and relative speed information with respect to the object based on the change in the object size over time in the obtained image.
  • the processor 370 may obtain distance information and relative velocity information with respect to the object through a pin hole model, road surface profiling, or the like.
  • the processor 370 may obtain distance information and relative speed information with the object based on the disparity information in the stereo image acquired by the stereo camera 310a.
  • the processor 370 may detect and track the object based on the reflected electromagnetic wave reflected by the transmitted electromagnetic wave to the object.
  • the processor 370 may perform an operation such as calculating a distance from the object, calculating a relative speed with the object, and the like based on the electromagnetic waves.
  • the processor 370 may detect and track the object based on the reflected laser light reflected by the transmitted laser back to the object.
  • the processor 370 may perform operations such as calculating a distance to an object, calculating a relative speed with the object, and the like based on the laser light.
  • the processor 370 may detect and track the object based on the reflected ultrasound, in which the transmitted ultrasound is reflected back to the object.
  • the processor 370 may perform an operation such as calculating a distance from the object, calculating a relative speed with the object, and the like based on the ultrasound.
  • the processor 370 may detect and track the object based on the reflected infrared light from which the transmitted infrared light is reflected back to the object.
  • the processor 370 may perform an operation such as calculating a distance to the object, calculating a relative speed with the object, and the like based on the infrared light.
  • the processor 370 may include a camera 310, a radar 320, a lidar 330, and an ultrasonic sensor.
  • the data sensed by the 340 and the infrared sensor 350 may be stored in the memory 140.
  • the object detecting apparatus 300 may include
  • the processor 370 may or may not include the processor 370.
  • each of the camera 310, the radar 320, the lidar 330, the ultrasonic sensor 340, and the infrared sensor 350 may individually include a processor.
  • the object detecting apparatus 300 may be operated under the control of the processor or the controller 170 of the apparatus in the vehicle 100.
  • the object detecting apparatus 300 may be operated under the control of the controller 170.
  • the communication device 400 is a device for performing communication with an external device.
  • the external device may be another vehicle, a mobile terminal or a server.
  • the communication device 400 may include at least one of a transmit antenna, a receive antenna, a radio frequency (RF) circuit capable of implementing various communication protocols, and an RF element to perform communication.
  • RF radio frequency
  • the communication device 400 includes a short range communication unit 410, a location information unit 420, a V2X communication unit 430, an optical communication unit 440, a broadcast transmitting and receiving unit 450, an ITS (Intelligent Transport Systems) communication unit 460, and a processor. 470 may include. According to an embodiment, the communication device 400 may further include other components in addition to the described components, or may not include some of the described components.
  • the short range communication unit 410 is a unit for short range communication.
  • the short range communication unit 410 may include Bluetooth TM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, Near Field Communication (NFC), and Wi-Fi (Wireless).
  • Local area communication may be supported using at least one of Fidelity, Wi-Fi Direct, and Wireless Universal Serial Bus (Wireless USB) technologies.
  • the local area communication unit 410 may form local area wireless networks to perform local area communication between the vehicle 100 and at least one external device.
  • the location information unit 420 is a unit for obtaining location information of the vehicle 100.
  • the location information unit 420 may include a Global Positioning System (GPS) module or a Differential Global Positioning System (DGPS) module.
  • GPS Global Positioning System
  • DGPS Differential Global Positioning System
  • the V2X communication unit 430 is a unit for performing wireless communication with a server (V2I: Vehicle to Infra), another vehicle (V2V: Vehicle to Vehicle), or a pedestrian (V2P: Vehicle to Pedestrian).
  • the V2X communication unit 430 may include an RF circuit capable of implementing communication with infrastructure (V2I), inter-vehicle communication (V2V), and communication with pedestrians (V2P).
  • the optical communication unit 440 is a unit for communicating with an external device via light.
  • the optical communication unit 440 may include an optical transmitter for converting an electrical signal into an optical signal and transmitting the external signal to the outside, and an optical receiver for converting the received optical signal into an electrical signal.
  • the light emitting unit may be formed to be integrated with the lamp included in the vehicle 100.
  • the broadcast transceiver 450 is a unit for receiving a broadcast signal from an external broadcast management server or transmitting a broadcast signal to a broadcast management server through a broadcast channel.
  • the broadcast channel may include a satellite channel and a terrestrial channel.
  • the broadcast signal may include a TV broadcast signal, a radio broadcast signal, and a data broadcast signal.
  • the ITS communication unit 460 may exchange information, data, or signals with the traffic system.
  • the ITS communication unit 460 may provide the obtained information and data to the traffic system.
  • the ITS communication unit 460 may be provided with information, data, or a signal from a traffic system.
  • the ITS communication unit 460 may receive road traffic information from the traffic system and provide the road traffic information to the control unit 170.
  • the ITS communication unit 460 may receive a control signal from a traffic system and provide the control signal to a processor provided in the controller 170 or the vehicle 100.
  • the processor 470 may control the overall operation of each unit of the communication device 400.
  • the communication device 400 may include a plurality of processors 470 or may not include the processor 470.
  • the communication device 400 may be operated under the control of the processor or the controller 170 of another device in the vehicle 100.
  • the communication device 400 may implement a vehicle display device together with the user interface device 200.
  • the vehicle display device may be called a telematics device or an audio video navigation (AVN) device.
  • the communication device 400 may be operated under the control of the controller 170.
  • the driving operation apparatus 500 is a device that receives a user input for driving. In the manual mode, the vehicle 100 may be driven based on a signal provided by the driving manipulation apparatus 500.
  • the driving manipulation apparatus 500 may include a steering input apparatus 510, an acceleration input apparatus 530, and a brake input apparatus 570.
  • the steering input device 510 may receive a driving direction input of the vehicle 100 from the user.
  • the steering input device 510 is preferably formed in a wheel shape to enable steering input by rotation.
  • the steering input device may be formed in the form of a touch screen, a touch pad, or a button.
  • the acceleration input device 530 may receive an input for accelerating the vehicle 100 from a user.
  • the brake input device 570 may receive an input for deceleration of the vehicle 100 from a user.
  • the acceleration input device 530 and the brake input device 570 are preferably formed in the form of a pedal.
  • the acceleration input device or the brake input device may be formed in the form of a touch screen, a touch pad, or a button.
  • the driving manipulation apparatus 500 may be operated under the control of the controller 170.
  • the vehicle drive device 600 is a device that electrically controls the driving of various devices in the vehicle 100.
  • the vehicle driving apparatus 600 may include a power train driving unit 610, a chassis driving unit 620, a door / window driving unit 630, a safety device driving unit 640, a lamp driving unit 650, and an air conditioning driving unit 660. Can be.
  • the vehicle driving apparatus 600 may further include other components in addition to the described components, or may not include some of the described components.
  • the vehicle driving device 600 may include a processor. Each unit of the vehicle driving apparatus 600 may each include a processor individually.
  • the power train driver 610 may control the operation of the power train device.
  • the power train driver 610 may include a power source driver 611 and a transmission driver 612.
  • the power source driver 611 may control the power source of the vehicle 100.
  • the power source driver 610 may perform electronic control of the engine. Thereby, the output torque of an engine, etc. can be controlled.
  • the power source drive unit 611 can adjust the engine output torque under the control of the control unit 170.
  • the power source driver 610 may control the motor.
  • the power source driver 610 may adjust the rotational speed, torque, and the like of the motor under the control of the controller 170.
  • the transmission driver 612 may control the transmission.
  • the transmission driver 612 can adjust the state of the transmission.
  • the transmission drive part 612 can adjust the state of a transmission to forward D, backward R, neutral N, or parking P.
  • the transmission drive unit 612 can adjust the bite state of the gear in the forward D state.
  • the chassis driver 620 may control the operation of the chassis device.
  • the chassis driver 620 may include a steering driver 621, a brake driver 622, and a suspension driver 623.
  • the steering driver 621 may perform electronic control of a steering apparatus in the vehicle 100.
  • the steering driver 621 may change the traveling direction of the vehicle.
  • the brake driver 622 may perform electronic control of a brake apparatus in the vehicle 100. For example, the speed of the vehicle 100 may be reduced by controlling the operation of the brake disposed on the wheel.
  • the brake drive unit 622 can individually control each of the plurality of brakes.
  • the brake driver 622 may differently control the braking force applied to the plurality of wheels.
  • the suspension driver 623 may perform electronic control of the suspension apparatus in the vehicle 100. For example, when there is a curvature on the road surface, the suspension driver 623 may control the suspension device to control the vibration of the vehicle 100 to be reduced. Meanwhile, the suspension driver 623 may individually control each of the plurality of suspensions.
  • the door / window driver 630 may perform electronic control of a door apparatus or a window apparatus in the vehicle 100.
  • the door / window driver 630 may include a door driver 631 and a window driver 632.
  • the door driver 631 may control the door apparatus.
  • the door driver 631 may control opening and closing of the plurality of doors included in the vehicle 100.
  • the door driver 631 may control the opening or closing of a trunk or a tail gate.
  • the door driver 631 may control the opening or closing of the sunroof.
  • the window driver 632 may perform electronic control of the window apparatus.
  • the opening or closing of the plurality of windows included in the vehicle 100 may be controlled.
  • the safety device driver 640 may perform electronic control of various safety devices in the vehicle 100.
  • the safety device driver 640 may include an airbag driver 641, a seat belt driver 642, and a pedestrian protection device driver 643.
  • the airbag driver 641 may perform electronic control of an airbag apparatus in the vehicle 100.
  • the airbag driver 641 may control the airbag to be deployed when the danger is detected.
  • the seat belt driver 642 may perform electronic control of a seatbelt apparatus in the vehicle 100.
  • the seat belt driver 642 may control the passengers to be fixed to the seats 110FL, 110FR, 110RL, and 110RR by using the seat belt when detecting a danger.
  • the pedestrian protection device driver 643 may perform electronic control of the hood lift and the pedestrian airbag. For example, the pedestrian protection device driver 643 may control the hood lift up and the pedestrian airbag to be deployed when the collision with the pedestrian is detected.
  • the lamp driver 650 may perform electronic control of various lamp apparatuses in the vehicle 100.
  • the air conditioning driver 660 may perform electronic control of an air conditioner in the vehicle 100. For example, when the temperature inside the vehicle is high, the air conditioning driving unit 660 may control the air conditioner to operate so that cold air is supplied into the vehicle.
  • the vehicle driving apparatus 600 may include a processor. Each unit of the vehicle driving apparatus 600 may each include a processor individually. The vehicle driving apparatus 600 may be operated under the control of the controller 170.
  • the travel system 700 is a system for controlling various travels of the vehicle 100.
  • the navigation system 700 can be operated in an autonomous driving mode.
  • the travel system 700 may include a travel system 710, a parking system 740, and a parking system 750.
  • the navigation system 700 may further include other components in addition to the described components, or may not include some of the described components.
  • the driving system 700 may include a processor.
  • Each unit of the navigation system 700 may each include a processor individually.
  • the driving system 700 may control the driving of the autonomous driving mode based on the learning.
  • the learning mode and the operation mode on the premise that learning is completed may be performed.
  • a method of performing a learning mode and an operating mode by the processor of the driving system 700 will be described below.
  • the learning mode may be performed in the manual mode described above.
  • the processor of the driving system 700 may perform driving path learning and surrounding environment learning of the vehicle 100.
  • the driving route learning may include generating map data on a route on which the vehicle 100 travels.
  • the processor of the driving system 700 may generate map data based on information detected by the object detecting apparatus 300 while the vehicle 100 travels from the starting point to the destination.
  • the surrounding environment learning may include storing and analyzing information about the surrounding environment of the vehicle 100 in the driving process and the parking process of the vehicle 100.
  • the processor of the driving system 700 may detect information detected by the object detecting apparatus 300 during the parking process of the vehicle 100, for example, location information of the parking space, size information, fixed (or not fixed). Information about the surrounding environment of the vehicle 100 may be stored and analyzed based on information such as obstacle information.
  • the operation mode may be performed in the autonomous driving mode described above.
  • the operation mode will be described on the premise that the driving path learning or the surrounding environment learning is completed through the learning mode.
  • the operation mode may be performed in response to a user input through the input unit 210 or may be automatically performed when the vehicle 100 reaches a driving path and a parking space where learning is completed.
  • the operating mode is a semi-autonomous operating mode which requires some user's manipulation of the drive manipulator 500 and a full-autonomous operation requiring no user's manipulation of the drive manipulator 500 at all. It may include a fully autonomous operating mode.
  • the processor of the driving system 700 may control the driving system 710 in the operation mode to drive the vehicle 100 along the driving path where learning is completed.
  • the processor of the driving system 700 may control the parking system 740 in the operation mode to release the parked vehicle 100 from the parking space where the learning is completed.
  • the processor of the driving system 700 may control the parking system 750 in the operation mode to park the vehicle 100 from the current location to the parking space where the learning is completed.
  • the driving system 700 may be a sub concept of the controller 170.
  • the driving system 700 may include a user interface device 270, an object detecting device 300, a communication device 400, a driving manipulation device 500, a vehicle driving device 600, and a navigation system.
  • the sensing unit 120, and the control unit 170 may include a concept including at least one.
  • the traveling system 710 may perform driving of the vehicle 100.
  • the driving system 710 may receive navigation information from the navigation system 770, provide a control signal to the vehicle driving apparatus 600, and perform driving of the vehicle 100.
  • the driving system 710 may receive object information from the object detecting apparatus 300 and provide a control signal to the vehicle driving apparatus 600 to perform driving of the vehicle 100.
  • the driving system 710 may receive a signal from an external device through the communication device 400, provide a control signal to the vehicle driving device 600, and perform driving of the vehicle 100.
  • the traveling system 710 includes a user interface device 270, an object detection device 300 and a communication device 400, a driving manipulation device 500, a vehicle driving device 600, a navigation system 770, and a sensing unit ( At least one of the 120 and the controller 170 may be a system concept for driving the vehicle 100.
  • a driving system 710 may be referred to as a vehicle driving control device.
  • the taking-out system 740 may perform taking out of the vehicle 100.
  • the taking-off system 740 may receive the navigation information from the navigation system 770, provide a control signal to the vehicle driving apparatus 600, and perform take-out of the vehicle 100.
  • the taking-out system 740 may receive the object information from the object detecting apparatus 300, provide a control signal to the vehicle driving apparatus 600, and perform take-out of the vehicle 100.
  • the taking-out system 740 may receive a signal from an external device through the communication device 400, provide a control signal to the vehicle driving apparatus 600, and perform take-out of the vehicle 100.
  • the car leaving system 740 may include a user interface device 270, an object detecting device 300, and a communication device 400, a driving control device 500, a vehicle driving device 600, a navigation system 770, and a sensing unit ( Including at least one of the 120 and the controller 170, the concept may be a system for carrying out the vehicle 100.
  • Such a car leaving system 740 may be referred to as a vehicle parking control device.
  • the parking system 750 may perform parking of the vehicle 100.
  • the parking system 750 may receive navigation information from the navigation system 770, provide a control signal to the vehicle driving apparatus 600, and perform parking of the vehicle 100.
  • the parking system 750 may receive the object information from the object detecting apparatus 300, provide a control signal to the vehicle driving apparatus 600, and perform parking of the vehicle 100.
  • the parking system 750 may receive a signal from an external device through the communication device 400, provide a control signal to the vehicle driving device 600, and perform parking of the vehicle 100.
  • the parking system 750 includes a user interface device 270, an object detection device 300 and a communication device 400, a driving operation device 500, a vehicle driving device 600, a navigation system 770, and a sensing unit ( At least one of the 120 and the controller 170 may be a system concept for parking the vehicle 100.
  • Such a parking system 750 may be referred to as a vehicle parking control device.
  • the navigation system 770 may provide navigation information.
  • the navigation information may include at least one of map information, set destination information, route information according to the destination setting, information on various objects on the route, lane information, and current location information of the vehicle.
  • the navigation system 770 may include a memory and a processor.
  • the memory may store navigation information.
  • the processor may control the operation of the navigation system 770.
  • the navigation system 770 may receive information from an external device through the communication device 400 and update the pre-stored information. According to an embodiment, the navigation system 770 may be classified as a subcomponent of the user interface device 200.
  • FIG. 9 illustrates a portion of a medium access control (MAC) layer and a physical (PHY) layer document of IEEE 802.11p that are the basis of a DSRC interface.
  • MAC medium access control
  • PHY physical
  • the station determines whether a medium is idle by performing a clear channel assessment (CCA).
  • CCA clear channel assessment
  • the station transmits data using medium when the measured value of the received power during the sensing period (eg, DIFS 58 us) is below the CCA threshold, and waits for transmission when the CCA threshold is exceeded. do.
  • Received power above the CCA threshold is detected, indicating that there are other stations around the station that compete for medium.
  • the present invention proposes a method for more accurately determining a communication incapacity state through the first embodiment, and a method for controlling a mobile ITS station in a communication incapacity state through the second embodiment.
  • the vehicle may further include a controller area network bus (CAN-BUS) and a telematics control unit (TCU).
  • CAN-BUS acts as an internal communication bridge between the vehicle's internal electronic control units, and the TCU can connect CAN-BUS to external systems.
  • the object detecting apparatus 300 of FIG. 7 may process information around the vehicle using the lidar 330, the radar 320, the ultrasonic sensor 340, or the camera 310, and the V2X communication unit of FIG. 7 ( 430 may perform communication in the above-described DSRC / 3GPP-based V2X scheme.
  • the 'processor' of the mobile ITS station may be a configuration of a station carried separately by the vehicle occupant, or may be the aforementioned TCU or CPU (not shown).
  • the 'transmission module', 'reception module' or 'transmission / reception module' of the mobile ITS station may be a configuration of a station carried separately by the vehicle occupant, or may be the aforementioned V2X communication unit 430.
  • an aspect of the present invention proposes a method of more effectively determining a communication inability due to jamming of a drone or the like in a DSRC interface and controlling a mobile ITS station accordingly.
  • the mobile ITS station determines whether the power of the signal received in the first channel of the DSRC interface exceeds the threshold, and the time when the power of the received signal exceeds the threshold Or, if the exceeded number of times meets the first predetermined value, it is proposed to determine that the message transmission in the first channel is impossible.
  • FIG. 10 illustrates a method in which a processor of a mobile ITS station determines a failure of a message transmission according to Embodiment 1 of the present invention.
  • the processor of the mobile ITS station senses the received power during the sensing period through the transmission module. Subsequently, the processor determines that it is impossible to transmit a message on the corresponding channel when the received power exceeds the CCA threshold and the number of times exceeds the predetermined value.
  • Numerical values and CCA thresholds in the above description with reference to FIG. 10 are exemplary and are not to be construed as limiting the scope of the present invention.
  • the processor of the mobile ITS station monitors the number of message packets that failed to transmit.
  • the monitoring may be periodic, but may be aperiodic monitoring by predetermined triggering.
  • a predetermined value for example, five
  • FIG. 12 illustrates another method in which a processor of a mobile ITS station determines a failure of a message transmission according to Embodiment 1 of the present invention.
  • the processor of the mobile ITS station may further determine the validity of the received signal through the cyclic redundancy check (CRC) as well as the reception power described above. This is to further determine whether the received signal is a jamming of a drone or a valid V2X message transmitted from another vehicle.
  • CRC cyclic redundancy check
  • the last field of the IEEE 802.11 MAC frame format shown in FIG. 12 relates to the CRC required for message decoding.
  • the mobile ITS station determines that the received message is valid when the message decoding is successful using the CRC.
  • the processor may determine that message transmission on the corresponding channel is impossible. Alternatively, if the power of the received signal is higher than the CCA threshold and the message decoding succeeds (CRC OK), the processor does not determine that the message transmission is impossible on the corresponding channel.
  • the validity of the message is further determined through the CRC as well as the received power, so that the inability to transmit the message in the corresponding channel can be determined more accurately and quickly. have.
  • the processor of the mobile ITS station measures the IPG in consideration of the type and sequence number (SN) of signals received from other mobile ITS stations around the mobile ITS station, and if the measured IPG exceeds a predetermined value, a message on the corresponding channel. It can be determined that transmission is impossible.
  • SN type and sequence number
  • the other vehicle receiving the message sent by the mobile ITS station measures the IPG and SN, which means the message reception interval, and if it exceeds the SN difference and the expected interval (e.g. 1 second), the message 'stop sending messages from the surrounding vehicle' is reached. It can be judged as
  • another vehicle may predict the packet reception interval (IPG) through the difference between the type of packet and the SN when receiving the message. Subsequently, when the IPG is out of a certain range (eg, 100 ms + tolerance), the vehicle receiving the message may determine that the transmission time of the mobile ITS station is delayed.
  • IPG packet reception interval
  • Embodiment 2 relates to a countermeasure when the mobile ITS station determines that transmission of a message on a corresponding channel is impossible through the above-described Embodiment 1.
  • FIG. 13 illustrates a method for controlling a mobile ITS station according to Embodiment 2 of the present invention when a message transmission fails. Specifically, FIG. 13 illustrates a method of delivering a warning message to surrounding vehicles using an infrastructure (or a network node) when the mobile ITS station determines that message transmission is impossible. It is assumed that the host vehicle (HV) of FIG. 13 is a mobile ITS station according to the present invention, and the remote vehicle (RV) is assumed to be a surrounding vehicle.
  • HV host vehicle
  • RV remote vehicle
  • Embodiment 2 of the present invention proposes the following two methods for controlling a mobile ITS station.
  • the HV may send the BSM to the infrastructure via a second channel (different from the first channel) of the DSRC interface.
  • the HV can transmit the BSM to the network node using a communication interface different from the DSRC interface.
  • the communication interface different from the DSRC interface may be an ITS-G5 interface, a 3GPP LTE sidelink interface or an eV2X interface of NR (New RAT).
  • the network node receiving the BSM may transmit the BSM or the alert message to the RV1 and the RV2.
  • the frequency band of the DSRC interface is 5.855 GHz to 5.925 GHz, and is divided into SCH 172, SCH 174, SCH 176, CCH 178, SCH 180, SCH 182, and SCH 184 according to the purpose of use. have. Since the BSM is generally transmitted on the default channel SCH 172, the first channel may be SCH 172. If it is determined that message transmission through the first channel is impossible due to jamming of the drone, the HV may transmit the BSM to the infrastructure through the second channel, for example, CCH 178.
  • the mobile ITS station estimates the relative position and distance of the interfering object from the mobile ITS station by using the power of the received signal, and moves to a position where communication through the first channel is possible.
  • Mobile ITS stations can be controlled.
  • the control may be acceleration, deceleration, path regeneration of the vehicle.
  • the processor of the mobile ITS station may provide the driver with the speed of the vehicle, the regenerated path, the jammer indicator, and the like so that the mobile ITS station can escape to a position where communication through the first channel is possible. Can be.
  • a group of vehicles operated while keeping a continuous vehicle close by the vehicle spacing control is called platooning.
  • the group running mobile ITS station receives the movement and potential abnormality information of other vehicles in the cluster through inter-vehicle communication, and maintains the distance from other vehicles through the control accordingly.
  • the following vehicles simply follow the preceding vehicle (or leader vehicle), which is a threat to the safety of the following vehicles if the preceding vehicle suddenly deviates from the group driving path or there is interference from drones, For example, the situation shown in FIG. 15 may occur.
  • Embodiment 2 of the present invention proposes a method of using the service channel when a separate service channel is set in advance in order to solve such a problem and the preceding vehicle suddenly leaves the cluster driving path.
  • the main channel and the service channel may be any one of SCH 172, SCH 174, SCH 176, CCH 178, SCH 180, SCH 182, and SCH 184 described with reference to FIG. 1.
  • the preceding vehicle When an attempt is made to send a message to a subsequent vehicle by a drone jammer that suddenly leaves the crowded driving path, the preceding vehicle preferentially transmits the message using the main channel, but the main channel is unavailable.
  • the message can be transmitted using.
  • the preceding vehicle may continue to transmit the message using the service channel.
  • the subsequent vehicle may switch to the service channel to continue receiving the message.
  • the BSM is transmitted between vehicles through the SCH 172.
  • Embodiment 2 of the present invention proposes that a mobile ITS station uses CCH 178 when the SCH 172 cannot be used due to jamming or the like. Unlike other channels, CCH 178 is a control channel with high reliability and is a channel that other mobile ITS stations receive by default. Therefore, Embodiment 2 of the present invention proposes a method of directly transmitting BSM using CCH 178. .
  • Embodiment 2 of the present invention transmits a message to transmit a BSM through a channel other than the CCH 178 using the CCH 178, and also proposes a method of transmitting the BSM through the other channel.
  • Embodiment 2 of the present invention proposes a method of increasing a CCA threshold and increasing a transmission power of a message.
  • the two control may be performed independently.
  • the mobile ITS station if it is determined that the message transmission on the first channel is impossible, the mobile ITS station according to the second embodiment of the present invention increases the message transmission power of the control or mobile ITS station that increases the CCA threshold. Can be controlled.
  • the mobile ITS station may determine that the channel is idle and transmit a message through the corresponding channel. . Furthermore, the message transmission power can be increased to the maximum transmission power to efficiently transmit the message to the surrounding vehicles.
  • the mobile ITS station according to the second embodiment of the present invention retransmits by utilizing another available communication interface when it is determined that the transmission impossible state is caused by the interference.
  • the mobile ITS station may retransmit a message that fails to transmit to the ITS server (V2X application server) or the MEC server (Mobile Edge Computing server) using the LTE Uu interface.
  • the mobile ITS station may retransmit a message that fails to transmit to the ITS server (V2X application server) or the MEC server utilizing the 5G NR Uu interface.
  • the mobile ITS station may retransmit a message that fails to transmit to another vehicle or RSU (Road Side Unit) using the 3GPP LTE sidelink interface.
  • RSU Raad Side Unit
  • FIG. 19 illustrates a method for controlling a mobile ITS station according to Embodiment 2 of the present invention when message transmission fails.
  • the safety service provided by the mobile ITS station may include a service associated with a V2X (eg, a DSRC interface) and an ADAS (Advanced Driver-Assistance Systems) service associated with at least one sensor provided in the mobile ITS station.
  • V2X eg, a DSRC interface
  • ADAS Advanced Driver-Assistance Systems
  • the processor of the mobile ITS station may switch the V2X linkage service provided through the DSRC interface to the ADAS service provided through at least one sensor provided in the mobile ITS station. Can be. Furthermore, the processor may perform activation and sensitivity adjustment of at least one sensor for such service switching.
  • the Forward Collision Warning (FCW) service may be provided as a V2X linkage service or may be provided as an ADAS linkage service.
  • the processor of the mobile ITS station can activate a deactivated camera or increase the sensitivity of an already activated camera to switch from a V2X linked service to an ADAS linked service when a DSRC shutdown (V2X disabled) is detected.
  • FCW service is exemplary
  • the second embodiment of the present invention described above is Adaptive Cruise Control (ACC), Glare-free high beam, Adaptive light control, Automatic parking, Automotive night vision, Blind spot monitor, Collision avoidance system, It can be applied to various ADAS linkage services such as Driver Monitoring System, Intersection assistant, Intelligent speed adaptation, Lane departure warning system, Lane change assistance, Pedestrian protection system, Traffic sign recognition.
  • ACC Adaptive Cruise Control
  • Glare-free high beam Adaptive light control
  • Automatic parking Automotive night vision
  • Blind spot monitor Blind spot monitor
  • Collision avoidance system It can be applied to various ADAS linkage services such as Driver Monitoring System, Intersection assistant, Intelligent speed adaptation, Lane departure warning system, Lane change assistance, Pedestrian protection system, Traffic sign recognition.
  • ADAS linkage services such as Driver Monitoring System, Intersection assistant, Intelligent speed adaptation, Lane departure warning system, Lane change assistance, Pedestrian protection system, Traffic sign recognition.
  • FIG. 20 illustrates a method for controlling a mobile ITS station according to Embodiment 2 of the present invention when message transmission fails.
  • Embodiment 2 of the present invention proposes a method of flushing a message accumulated in a transmission buffer in order to solve the above problem.
  • the processor of the mobile ITS station when the processor of the mobile ITS station is determined to be unable to transmit a message on the first channel, the processor operates a timer set to a predetermined value, and the power of the signal received on the first channel before the predetermined value expires is the CCA threshold.
  • the processor operates a timer set to a predetermined value, and the power of the signal received on the first channel before the predetermined value expires is the CCA threshold.
  • the value is less than the value, the message stored in the transmission buffer of the mobile ITS station may be transmitted, and when the predetermined value expires, the message accumulated in the transmission buffer of the mobile ITS station may be deleted.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명은 DSRC (Dedicated Short Range Communication) 인터페이스에서 메시지 송수신 상태를 판단하고, 그에 기초한 동작을 수행하는 이동 ITS 스테이션에 관한 것이다. 본 발명에 따른 이동 ITS 스테이션은 송수신 모듈; 및 프로세서를 포함하고, 상기 프로세서는 상기 DSRC 인터페이스의 제 1 채널에서 수신된 신호의 전력이 문턱 값을 초과하는 지 판단하고, 상기 수신된 신호의 전력이 상기 문턱 값을 초과한 시간 또는 초과한 횟수가 제 1 소정 값을 만족하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단한다.

Description

이동 ITS 스테이션 및 상기 이동 ITS 스테이션의 동작 방법
본 발명은 이동 ITS 스테이션 및 상기 이동 ITS 스테이션의 동작 방법에 관한 것으로, 보다 상세하게는, DSRC (Dedicated Short Range Communication) 인터페이스에서 메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법에 대한 것이다.
차량은 전통적으로 사용자의 이동 수단으로 기능하지만, 사용자의 편의를 위해 각종 센서와 전자 장치 등을 구비하여 사용자의 운전 편의를 제공하고 있다. 특히 사용자의 운전 편의를 위한 운전자 보조 시스템(ADAS: Advanced Driver Assistance System) 및 더 나아가 자율주행차량(Autonomous Vehicle)에 대한 개발이 활발하게 이루어지고 있다.
IEEE에서는 2010년 WAVE (Wireless Access for the Vehicular Environment)를 개발하였으며, 이는 IEEE 802.11p의 형태로 차량통신을 위한 물리계층과 MAC계층에 대한 기술 규정과, IEEE 1609의 형태로 보안, 네트워크 관리 등을 기술하는 것을 포함하는 개념이다. 이러한 IEEE 802.11p, IEEE 1609 기술에 기반하여 개발된 DSRC (Dedicated Short-Range Communication) 인터페이스는 도로 안전과 관련된 ITS (Intelligent Transport System)에 대한 어플리케이션이다.
한편, 최근 아마추어 라디오 (Amateur Radio)를 활용하는 VTX (Video Transmitter) 모듈을 장착한 드론 (Drone)이 많이 이용되고 있다. 특히, 도 8에 도시된 것과 같이 DSRC 인터페이스가 주로 사용하는 5.8 GHz 내지 5.9 GHz 대역에서 200mW 내지 600mW의 송신 전력 (transmit power)으로 비디오 컨텐츠를 전송하는 드론이 최근 발견되고 있다.
도 8로부터 예측되는 것과 같이, VTX 모듈에 의한 전파 방해는 DSRC 인터페이스가 지원하는 안전 어플리케이션에 심각한 문제를 일으킬 수 있다. 특히, VTX 모듈이 주로 사용하는 5.860GHz 대역은 DSRC 인터페이스에서 안전에 관한 메시지가 송수신되는 SCH 172로 사용되는 대역이기 때문에 큰 문제가 될 수 있다. 따라서, 본 발명은 통신 방해로 인한 안전 어플리케이션 서비스의 신뢰성이 낮아지므로 이를 측정하고 판단하는 기준과 위험 회피 방법을 제안하고자 한다.
전술한 바와 같이 최근 DSRC V2X 전송에 문제가 될 수 있는 VTX 모듈이 발견되어 이동 ITS 스테이션이 통신 방해 공격을 받는 문제가 있다. 다만, 종래의 DSRC V2X 메시지 전송은 Broadcasting 방법을 이용하고 있기 때문에 메시지 전송 후 ACK을 받지 않고 전송 상황에 대해 확인하지 않으며, 혼잡 제어 (Congestion control)를 위해 측정되는 CBR(Channel Busy Ratio)만을 측정한 후 CCA (Clear Channel Assessment)에 이용하고 있는 상황이다.
본 발명에서 이루고자 하는 기술적 과제는 이러한 종래 기술의 문제를 해결하는 것이다. 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에서는 DSRC (Dedicated Short Range Communication) 인터페이스에서 메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS (Intelligent Transport System) 스테이션을 제어하는 방법에 있어서, 상기 DSRC 인터페이스의 제 1 채널에서 수신된 신호의 전력이 문턱 값을 초과하는 지 판단하고, 상기 수신된 신호의 전력이 상기 문턱 값을 초과한 시간 또는 초과한 횟수가 제 1 소정 값을 만족하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 방법을 제안한다.
또한, 상기 문턱 값은 CCA (Clear Channel Assessment) 문턱 값인 것을 특징으로 한다.
또한, 상기 판단하는 방법은 상기 수신된 신호의 CRC (Cyclic Redundancy Check)를 통해 상기 수신된 신호의 유효성(validity)을 판단하는 것을 더 포함할 수 있다.
또한, 상기 판단하는 방법은 상기 수신된 신호가 유효하지 않으면, 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 더 포함할 수 있다.
또한, 상기 판단하는 방법은 상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 패킷의 개수를 모니터링 하고, 상기 패킷의 개수가 제 2 소정 값을 초과하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 더 포함할 수 있다.
또한, 상기 판단하는 방법은 상기 이동 ITS 스테이션 주변의 다른 이동 ITS 스테이션으로부터 수신된 신호의 종류와 SN (Sequence Number)을 고려하여 IPG (Inter Packet Gap)을 측정하고, 상기 측정된 IPG가 제 3 소정 값을 초과하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 더 포함할 수 있다.
또한, 상기 이동 ITS 스테이션은 상기 제 1 채널을 통해 주변 이동 ITS 스테이션에 BSM (Basic Safety Message)를 전송하고, 상기 제 1 채널 에서의 상기 BSM 송신이 불가능한 것으로 판단되면, 상기 DSRC 인터페이스의 제 2 채널을 이용하여 네트워크 노드에 상기 BSM를 송신하는 것을 포함할 수 있다.
또한, 상기 이동 ITS 스테이션은 상기 제 1 채널을 통해 적어도 하나의 다른 이동 ITS 스테이션에 BSM (Basic Safety Message)를 전송하고, 상기 제 1 채널 에서의 상기 BSM 송신이 불가능한 것으로 판단되면, 상기 DSRC 인터페이스와 다른 통신 인터페이스를 이용하여 네트워크 노드에 상기 BSM을 송신하는 것을 포함할 수 있다.
또한, 상기 BSM은 상기 네트워크 노드를 경유하여 상기 적어도 하나의 다른 이동 ITS 스테이션에 전달될 수 있다.
또한, 상기 제어하는 방법은 상기 수신된 신호의 전력을 이용하여 상기 이동 ITS 스테이션으로부터의 간섭 물체의 상대적인 위치 및 거리를 추정하고, 제 1 채널을 통한 통신이 가능한 위치로 상기 이동 ITS 스테이션이 벗어날 수 있도록 이동 ITS 스테이션을 제어하는 것을 포함할 수 있다.
또한, 상기 제어하는 방법은 상기 이동 ITS 스테이션이 적어도 하나의 다른 이동 ITS 스테이션과 상기 제 1 채널을 이용하여 군집 주행 중인 경우, 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면, 군집 주행 차량간에 서비스 채널로 사전에 설정된 상기 DSRC 인터페이스의 제 2 채널을 이용하여 상기 메시지를 송신하는 것을 포함할 수 있다.
또한, 상기 제어하는 방법은 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면, 상기 이동 ITS 스테이션의 ADAS (Advanced Driver-Assistance Systems)가 서비스 목록 중 상기 DSRC 인터페이스를 통해 제공하는 서비스를 상기 이동 ITS 스테이션에 구비되는 적어도 하나의 센서를 통해 제공하는 서비스로 전환하는 것을 포함할 수 있다.
또한, 상기 제어하는 방법은 상기 이동 ITS 스테이션에 구비되는 적어도 하나의 센서를 통해 서비스를 제공하기 위해, 상기 적어도 하나의 센서의 활성화 및 감도 조절을 수행하는 것을 포함할 수 있다.
또한, 상기 제어하는 방법은 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면, 상기 문턱 값을 증가시키는 제어 또는 상기 이동 ITS 스테이션의 메시지 송신 전력을 증가시키는 제어 중 적어도 하나를 수행하는 것을 포함할 수 있다.
또한, 상기 제어하는 방법은 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면 제 4 소정 값으로 설정된 타이머를 동작시키고, 상기 제 4 소정 값이 만료되기 전에 상기 제 1 채널에서 수신된 신호의 전력이 상기 CCA 문턱 값 이하가 되면, 상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 메시지를 전송하고, 상기 제 4 소정 값이 만료되면 상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 메시지를 삭제하는 것을 포함할 수 있다.
본 발명의 일 측면에서는 DSRC (Dedicated Short Range Communication) 인터페이스에서 메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS (Intelligent Transport System) 스테이션을 제어하는 방법을 제안한다.
이를 통해, 첫 째, 손쉬운 전파 공격에 대비할 수 있어 안전 어플리케이션 서비스의 신뢰성이 증가한다. 둘 째, 통신 중단에 의한 위험 상황을 차량의 운전자가 알 수 있어 운전에 주의 할 수 있다. 셋 째, 자율 주행 중 위험 상황을 판단해 자율 주행 레벨을 낮추거나 수동 주행 등으로 변경하는 것이 가능하다. 넷 째, 통신 중단 이후 발생할 수 있는 문제들을 해결하는 것이 가능하다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 실시예에 따른 차량의 외관을 도시한 도면이다.
도 2는 본 발명의 실시예에 따른 차량을 외부의 다양한 각도에서 본 도면이다.
도 3 내지 도 4는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 5 내지 도 6은 본 발명의 실시예에 따른 오브젝트를 설명하는데 참조되는 도면이다.
도 7은 본 발명의 실시예에 따른 차량을 설명하는데 참조되는 블록도이다.
도 8은 DSRC 인터페이스 및 아마추어 라디오 (Amateur radio)가 이용하는 주파수 대역을 나타낸다.
도 9는 CCA (Clear Channel Assessment) 동작을 설명하기 위한 도면이다.
도 10은 본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 방법을 나타낸다.
도 11은 본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 다른 방법을 나타낸다.
도 12는 본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 또 다른 방법을 나타낸다.
도 13은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 제어 방법을 나타낸다.
도 14는 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 다른 제어 방법을 나타낸다.
도 15 및 도 16은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 또 다른 제어 방법을 나타낸다.
도 17은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 또 다른 제어 방법을 나타낸다.
도 18은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 또 다른 제어 방법을 나타낸다.
도 19는 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 또 다른 제어 방법을 나타낸다.
도 20은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 또 다른 제어 방법을 나타낸다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
도 1 내지 도 7을 참조하면, 차량(100)은 동력원에 의해 회전하는 바퀴, 차량(100)의 진행 방향을 조절하기 위한 조향 입력 장치(510)를 포함할 수 있다.
차량(100)은 자율 주행 차량일 수 있다. 차량(100)은, 사용자 입력에 기초하여, 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다. 예를 들면, 차량(100)은, 사용자 인터페이스 장치(200)를 통해, 수신되는 사용자 입력에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)은, 주행 상황 정보에 기초하여, 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다. 주행 상황 정보는, 차량 외부의 오브젝트 정보, 내비게이션 정보 및 차량 상태 정보 중 적어도 어느 하나를 포함할 수 있다.
예를 들면, 차량(100)은, 오브젝트 검출 장치(300)에서 생성되는 주행 상황 정보에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다. 예를 들면, 차량(100)은, 통신 장치(400)를 통해 수신되는 주행 상황 정보에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)은, 외부 디바이스에서 제공되는 정보, 데이터, 신호에 기초하여 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)이 자율 주행 모드로 운행되는 경우 자율 주행 차량(100)은 운행 시스템(700)에 기초하여 운행될 수 있다. 예를 들면, 자율 주행 차량(100)은, 주행 시스템(710), 출차 시스템(740), 주차 시스템(750)에서 생성되는 정보, 데이터 또는 신호에 기초하여 운행될 수 있다.
차량(100)이 메뉴얼 모드로 운행되는 경우, 자율 주행 차량(100)은, 운전 조작 장치(500)를 통해 운전을 위한 사용자 입력을 수신할 수 있다. 운전 조작 장치(500)를 통해 수신되는 사용자 입력에 기초하여, 차량(100)은 운행될 수 있다.
전장(overall length)은 차량(100)의 앞부분에서 뒷부분까지의 길이, 전폭(width)은 차량(100)의 너비, 전고(height)는 바퀴 하부에서 루프까지의 길이를 의미한다. 이하의 설명에서, 전장 방향(L)은 차량(100)의 전장 측정의 기준이 되는 방향, 전폭 방향(W)은 차량(100)의 전폭 측정의 기준이 되는 방향, 전고 방향(H)은 차량(100)의 전고 측정의 기준이 되는 방향을 의미할 수 있다.
도 7에 예시된 바와 같이, 차량(100)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(300), 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 운행 시스템(700), 내비게이션 시스템(770), 센싱부(120), 인터페이스부(130), 메모리(140), 제어부(170) 및 전원 공급부(190)를 포함할 수 있다.
실시예에 따라, 차량(100)은, 본 명세서에서 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.센싱부(120)는, 차량의 상태를 센싱할 수 있다. 센싱부(120)는, 자세 센서(예를 들면, 요 센서(yaw sensor), 롤 센서(roll sensor), 피치 센서(pitch sensor)), 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 자이로 센서(gyro sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 핸들 회전에 의한 스티어링 센서, 차량 내부 온도 센서, 차량 내부 습도 센서, 초음파 센서, 조도 센서, 가속 페달 포지션 센서, 브레이크 페달 포지션 센서, 등을 포함할 수 있다.
센싱부(120)는, 차량 자세 정보, 차량 충돌 정보, 차량 방향 정보, 차량 위치 정보(GPS 정보), 차량 각도 정보, 차량 속도 정보, 차량 가속도 정보, 차량 기울기 정보, 차량 전진/후진 정보, 배터리 정보, 연료 정보, 타이어 정보, 차량 램프 정보, 차량 내부 온도 정보, 차량 내부 습도 정보, 스티어링 휠 회전 각도, 차량 외부 조도, 가속 페달에 가해지는 압력, 브레이크 페달에 가해지는 압력 등에 대한 센싱 신호를 획득할 수 있다.
센싱부(120)는, 그 외, 가속페달센서, 압력센서, 엔진 회전 속도 센서(engine speed sensor), 공기 유량 센서(AFS), 흡기 온도 센서(ATS), 수온 센서(WTS), 스로틀 위치 센서(TPS), TDC 센서, 크랭크각 센서(CAS), 등을 더 포함할 수 있다.
센싱부(120)는, 센싱 데이터를 기초로, 차량 상태 정보를 생성할 수 있다. 차량 상태 정보는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다.
예를 들면, 차량 상태 정보는, 차량의 자세 정보, 차량의 속도 정보, 차량의 기울기 정보, 차량의 중량 정보, 차량의 방향 정보, 차량의 배터리 정보, 차량의 연료 정보, 차량의 타이어 공기압 정보, 차량의 스티어링 정보, 차량 실내 온도 정보, 차량 실내 습도 정보, 페달 포지션 정보 및 차량 엔진 온도 정보 등을 포함할 수 있다.
인터페이스부(130)는, 차량(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행할 수 있다. 예를 들면, 인터페이스부(130)는 이동 단말기와 연결 가능한 포트를 구비할 수 있고, 상기 포트를 통해, 이동 단말기와 연결할 수 있다. 이 경우, 인터페이스부(130)는 이동 단말기와 데이터를 교환할 수 있다.
한편, 인터페이스부(130)는 연결된 이동 단말기에 전기 에너지를 공급하는 통로 역할을 수행할 수 있다. 이동 단말기가 인터페이스부(130)에 전기적으로 연결되는 경우, 제어부(170)의 제어에 따라, 인터페이스부(130)는 전원 공급부(190)에서 공급되는 전기 에너지를 이동 단말기에 제공할 수 있다.
메모리(140)는, 제어부(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기 일 수 있다. 메모리(140)는 제어부(170)의 처리 또는 제어를 위한 프로그램 등, 차량(100) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 실시예에 따라, 메모리(140)는, 제어부(170)와 일체형으로 형성되거나, 제어부(170)의 하위 구성 요소로 구현될 수 있다.
제어부(170)는, 차량(100) 내의 각 유닛의 전반적인 동작을 제어할 수 있다. 제어부(170)는 ECU(Electronic Control Unit)로 명명될 수 있다. 전원 공급부(190)는, 제어부(170)의 제어에 따라, 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다. 특히, 전원 공급부(190)는, 차량 내부의 배터리 등으로부터 전원을 공급받을 수 있다.
차량(100)에 포함되는 하나 이상의 프로세서 및 제어부(170)는 ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
또한, 센싱부(120), 인터페이스부(130), 메모리(140) 전원 공급부(190), 사용자 인터페이스 장치(200), 오브젝트 검출 장치(300), 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 운행 시스템(700) 및 내비게이션 시스템(770)은 개별적인 프로세서를 갖거나 제어부(170)에 통합될 수 있다.
사용자 인터페이스 장치(200)는, 차량(100)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(100)에서 생성된 정보를 제공할 수 있다. 차량(100)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interfaces) 또는 UX(User Experience)를 구현할 수 있다.
사용자 인터페이스 장치(200)는, 입력부(210), 내부 카메라(220), 생체 감지부(230), 출력부(250) 및 프로세서(270)를 포함할 수 있다. 사용자 인터페이스 장치(200)의 각 구성요소는 전술한 인터페이스부(130)와 구조적, 기능적으로 분리되거나 통합될 수 있다.
실시예에 따라, 사용자 인터페이스 장치(200)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수도 있다.
입력부(210)는, 사용자로부터 정보를 입력받기 위한 것으로, 입력부(210)에서 수집한 데이터는, 프로세서(270)에 의해 분석되어, 사용자의 제어 명령으로 처리될 수 있다.
입력부(210)는, 차량 내부에 배치될 수 있다. 예를 들면, 입력부(210)는, 스티어링 휠(steering wheel)의 일 영역, 인스투루먼트 패널(instrument panel)의 일 영역, 시트(seat)의 일 영역, 각 필러(pillar)의 일 영역, 도어(door)의 일 영역, 센타 콘솔(center console)의 일 영역, 헤드 라이닝(head lining)의 일 영역, 썬바이저(sun visor)의 일 영역, 윈드 쉴드(windshield)의 일 영역 또는 윈도우(window)의 일 영역 등에 배치될 수 있다.
입력부(210)는, 음성 입력부(211), 제스쳐 입력부(212), 터치 입력부(213) 및 기계식 입력부(214)를 포함할 수 있다.
음성 입력부(211)는, 사용자의 음성 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 음성 입력부(211)는, 하나 이상의 마이크로 폰을 포함할 수 있다.
제스쳐 입력부(212)는, 사용자의 제스쳐 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 제스쳐 입력부(212)는, 사용자의 제스쳐 입력을 감지하기 위한 적외선 센서 및 이미지 센서 중 적어도 어느 하나를 포함할 수 있다.
실시예에 따라, 제스쳐 입력부(212)는, 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 이를 위해, 제스쳐 입력부(212)는, 복수의 적외선 광을 출력하는 광출력부 또는 복수의 이미지 센서를 포함할 수 있다. 제스쳐 입력부(212)는, TOF(Time of Flight) 방식, 구조광(Structured light) 방식 또는 디스패러티(Disparity) 방식을 통해 사용자의 3차원 제스쳐 입력을 감지할 수 있다.
터치 입력부(213)는, 사용자의 터치 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 터치 입력부(213)는, 사용자의 터치 입력을 감지하기 위한 터치 센서를 포함할 수 있다. 실시예에 따라, 터치 입력부(213)는 디스플레이부(251)와 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한, 터치 스크린은, 차량(100)과 사용자 사이의 입력 인터페이스 및 출력 인터페이스를 함께 제공할 수 있다.
기계식 입력부(214)는, 버튼, 돔 스위치(dome switch), 조그 휠 및 조그 스위치 중 적어도 어느 하나를 포함할 수 있다. 기계식 입력부(214)에 의해 생성된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 기계식 입력부(214)는, 스티어링 휠(steering wheel), 센터페시아(center fascia), 센터 콘솔(center console), 콕핏 모듈(cockpit module), 도어 등에 배치될 수 있다.
프로세서(270)는 앞서 설명한 음성 입력부(211), 제스쳐 입력부(212), 터치 입력부(213) 및 기계식 입력부(214) 중 적어도 하나에 대한 사용자 입력에 반응하여, 차량(100)의 학습 모드를 개시할 수 있다. 학습 모드에서 차량(100)은 차량(100)의 주행 경로 학습 및 주변 환경 학습을 수행할 수 있다. 학습 모드에 관해서는 이하 오브젝트 검출 장치(300) 및 운행 시스템(700)과 관련된 부분에서 상세히 설명하도록 한다.
내부 카메라(220)는, 차량 내부 영상을 획득할 수 있다. 프로세서(270)는, 차량 내부 영상을 기초로, 사용자의 상태를 감지할 수 있다. 프로세서(270)는, 차량 내부 영상에서 사용자의 시선 정보를 획득할 수 있다. 프로세서(270)는, 차량 내부 영상에서 사용자의 제스쳐를 감지할 수 있다.
생체 감지부(230)는, 사용자의 생체 정보를 획득할 수 있다. 생체 감지부(230)는, 사용자의 생체 정보를 획득할 수 있는 센서를 포함하고, 센서를 이용하여, 사용자의 지문 정보, 심박동 정보 등을 획득할 수 있다. 생체 정보는 사용자 인증을 위해 이용될 수 있다.
출력부(250)는, 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것이다. 출력부(250)는, 디스플레이부(251), 음향 출력부(252) 및 햅틱 출력부(253) 중 적어도 어느 하나를 포함할 수 있다.
디스플레이부(251)는, 다양한 정보에 대응되는 그래픽 객체를 표시할 수 있다. 디스플레이부(251)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
디스플레이부(251)는 터치 입력부(213)와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 디스플레이부(251)는 HUD(Head Up Display)로 구현될 수 있다. 디스플레이부(251)가 HUD로 구현되는 경우, 디스플레이부(251)는 투사 모듈을 구비하여 윈드 쉴드 또는 윈도우에 투사되는 이미지를 통해 정보를 출력할 수 있다. 디스플레이부(251)는, 투명 디스플레이를 포함할 수 있다. 투명 디스플레이는 윈드 쉴드 또는 윈도우에 부착될 수 있다.
투명 디스플레이는 소정의 투명도를 가지면서, 소정의 화면을 표시할 수 있다. 투명 디스플레이는, 투명도를 가지기 위해, 투명 디스플레이는 투명 TFEL(Thin Film Electroluminescent), 투명 OLED(Organic Light-Emitting Diode), 투명 LCD(Liquid Crystal Display), 투과형 투명디스플레이, 투명 LED(Light Emitting Diode) 디스플레이 중 적어도 하나를 포함할 수 있다. 투명 디스플레이의 투명도는 조절될 수 있다.
한편, 사용자 인터페이스 장치(200)는, 복수의 디스플레이부(251a 내지 251g)를 포함할 수 있다.
디스플레이부(251)는, 스티어링 휠의 일 영역, 인스투루먼트 패널의 일 영역(251a, 251b, 251e), 시트의 일 영역(251d), 각 필러의 일 영역(251f), 도어의 일 영역(251g), 센타 콘솔의 일 영역, 헤드 라이닝의 일 영역, 썬바이저의 일 영역에 배치되거나, 윈드 쉴드의 일영역(251c), 윈도우의 일영역(251h)에 구현될 수 있다.
음향 출력부(252)는, 프로세서(270) 또는 제어부(170)로부터 제공되는 전기 신호를 오디오 신호로 변환하여 출력한다. 이를 위해, 음향 출력부(252)는, 하나 이상의 스피커를 포함할 수 있다.
햅틱 출력부(253)는, 촉각적인 출력을 발생시킨다. 예를 들면, 햅틱 출력부(253)는, 스티어링 휠, 안전 벨트, 시트(110FL, 110FR, 110RL, 110RR)를 진동시켜, 사용자가 출력을 인지할 수 있게 동작할 수 있다.
프로세서(270)는, 사용자 인터페이스 장치(200)의 각 유닛의 전반적인 동작을 제어할 수 있다. 실시예에 따라, 사용자 인터페이스 장치(200)는, 복수의 프로세서(270)를 포함하거나, 프로세서(270)를 포함하지 않을 수도 있다.
사용자 인터페이스 장치(200)에 프로세서(270)가 포함되지 않는 경우, 사용자 인터페이스 장치(200)는, 차량(100)내 다른 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다. 한편, 사용자 인터페이스 장치(200)는, 차량용 디스플레이 장치로 명명될 수 있다. 사용자 인터페이스 장치(200)는, 제어부(170)의 제어에 따라 동작될 수 있다.
오브젝트 검출 장치(300)는, 차량(100) 외부에 위치하는 오브젝트를 검출하기 위한 장치이다. 오브젝트 검출 장치(300)는, 센싱 데이터에 기초하여, 오브젝트 정보를 생성할 수 있다.
오브젝트 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(100)과 오브젝트와의 거리 정보 및 차량(100)과 오브젝트와의 상대 속도 정보를 포함할 수 있다. 오브젝트는, 차량(100)의 운행과 관련된 다양한 물체들일 수 있다.
도 5 내지 도 6을 참조하면, 오브젝트(O)는, 차선(OB10), 타 차량(OB11), 보행자(OB12), 이륜차(OB13), 교통 신호(OB14, OB15), 빛, 도로, 구조물, 과속 방지턱, 지형물, 동물 등을 포함할 수 있다.
차선(Lane)(OB10)은, 주행 차선, 주행 차선의 옆 차선, 대향되는 차량이 주행하는 차선일 수 있다. 차선(Lane)(OB10)은, 차선(Lane)을 형성하는 좌우측 선(Line)을 포함하는 개념일 수 있다.
타 차량(OB11)은, 차량(100)의 주변에서 주행 중인 차량일 수 있다. 타 차량은, 차량(100)으로부터 소정 거리 이내에 위치하는 차량일 수 있다. 예를 들면, 타 차량(OB11)은, 차량(100)보다 선행 또는 후행하는 차량일 수 있다.
보행자(OB12)는, 차량(100)의 주변에 위치한 사람일 수 있다. 보행자(OB12)는, 차량(100)으로부터 소정 거리 이내에 위치하는 사람일 수 있다. 예를 들면, 보행자(OB12)는, 인도 또는 차도상에 위치하는 사람일 수 있다.
이륜차(OB13)는, 차량(100)의 주변에 위치하고, 2개의 바퀴를 이용해 움직이는 탈것을 의미할 수 있다. 이륜차(OB13)는, 차량(100)으로부터 소정 거리 이내에 위치하는 2개의 바퀴를 가지는 탈 것일 수 있다. 예를 들면, 이륜차(OB13)는, 인도 또는 차도상에 위치하는 오토바이 또는 자전거일 수 있다.
교통 신호는, 교통 신호등(OB15), 교통 표지판(OB14), 도로 면에 그려진 문양 또는 텍스트를 포함할 수 있다. 빛은, 타 차량에 구비된 램프에서 생성된 빛일 수 있다. 빛은, 가로등에서 생성된 빛을 수 있다. 빛은 태양광일 수 있다. 도로는, 도로면, 커브, 오르막, 내리막 등의 경사 등을 포함할 수 있다. 구조물은, 도로 주변에 위치하고, 지면에 고정된 물체일 수 있다. 예를 들면, 구조물은, 가로등, 가로수, 건물, 전봇대, 신호등, 다리를 포함할 수 있다. 지형물은, 산, 언덕, 등을 포함할 수 있다.
한편, 오브젝트는, 이동 오브젝트와 고정 오브젝트로 분류될 수 있다. 예를 들면, 이동 오브젝트는, 타 차량, 보행자를 포함하는 개념일 수 있다. 예를 들면, 고정 오브젝트는, 교통 신호, 도로, 구조물을 포함하는 개념일 수 있다.
오브젝트 검출 장치(300)는, 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340), 적외선 센서(350) 및 프로세서(370)를 포함할 수 있다. 오브젝트 검출 장치(300)의 각 구성요소는 전술한 센싱부(120)와 구조적, 기능적으로 분리되거나 통합될 수 있다.
실시예에 따라, 오브젝트 검출 장치(300)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
카메라(310)는, 차량 외부 영상을 획득하기 위해, 차량의 외부의 적절한 곳에 위치할 수 있다. 카메라(310)는, 모노 카메라, 스테레오 카메라(310a), AVM(Around View Monitoring) 카메라(310b) 또는 360도 카메라일 수 있다.
카메라(310)는, 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 스테레오 카메라(310a)에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다.
예를 들면, 카메라(310)는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다.
예를 들면, 카메라(310)는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
카메라(310)는, 획득된 영상을 프로세서(370)에 제공할 수 있다.
레이다(320)는, 전자파 송신부, 수신부를 포함할 수 있다. 레이다(320)는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다(320)는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keying) 방식으로 구현될 수 있다.
레이다(320)는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
레이다(320)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
라이다(330)는, 레이저 송신부, 수신부를 포함할 수 있다. 라이다(330)는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다.
라이다(330)는, 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다(330)는, 모터에 의해 회전되며, 차량(100) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다(330)는, 광 스티어링에 의해, 차량(100)을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(100)은 복수의 비구동식 라이다(330)를 포함할 수 있다.
라이다(330)는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 라이다(330)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
초음파 센서(340)는, 초음파 송신부, 수신부를 포함할 수 있다. 초음파 센서(340)은, 초음파를 기초로 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 초음파 센서(340)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
적외선 센서(350)는, 적외선 송신부, 수신부를 포함할 수 있다. 적외선 센서(340)는, 적외선 광을 기초로 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 적외선 센서(350)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
프로세서(370)는, 오브젝트 검출 장치(300)의 각 유닛의 전반적인 동작을 제어할 수 있다. 프로세서(370)는, 카메라(310, 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350)에 의해 센싱된 데이터와 기 저장된 데이터를 비교하여, 오브젝트를 검출하거나 분류할 수 있다.
프로세서(370)는, 획득된 영상에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 영상 처리 알고리즘을 통해, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
예를 들면, 프로세서(370)는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 프로세서(370)는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 프로세서(370)는, 스테레오 카메라(310a)에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
프로세서(370)는, 송신된 전자파가 오브젝트에 반사되어 되돌아오는 반사 전자파에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 전자파에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 레이저가 오브젝트에 반사되어 되돌아오는 반사 레이저 광에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 레이저 광에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 초음파가 오브젝트에 반사되어 되돌아오는 반사 초음파에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 초음파에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 적외선 광이 오브젝트에 반사되어 되돌아오는 반사 적외선 광에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 적외선 광에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
앞서 설명한 바와 같이, 입력부(210)에 대한 사용자 입력에 반응하여 차량(100)의 학습 모드가 개시되면, 프로세서(370)는 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350)에 의해 센싱된 데이터를 메모리(140)에 저장할 수 있다.
저장된 데이터의 분석을 기초로 한 학습 모드의 각 단계와 학습 모드에 후행하는 동작 모드에 대해서는 이하 운행 시스템(700)과 관련된 부분에서 상세히 설명하도록 한다.실시예에 따라, 오브젝트 검출 장치(300)는, 복수의 프로세서(370)를 포함하거나, 프로세서(370)를 포함하지 않을 수도 있다. 예를 들면, 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350) 각각은 개별적으로 프로세서를 포함할 수 있다.
오브젝트 검출 장치(300)에 프로세서(370)가 포함되지 않는 경우, 오브젝트 검출 장치(300)는, 차량(100)내 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다. 오브젝트 검출 장치(300)는, 제어부(170)의 제어에 따라 동작될 수 있다.
통신 장치(400)는, 외부 디바이스와 통신을 수행하기 위한 장치이다. 여기서, 외부 디바이스는, 타 차량, 이동 단말기 또는 서버일 수 있다. 통신 장치(400)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
통신 장치(400)는, 근거리 통신부(410), 위치 정보부(420), V2X 통신부(430), 광통신부(440), 방송 송수신부(450), ITS(Intelligent Transport Systems) 통신부(460) 및 프로세서(470)를 포함할 수 있다. 실시예에 따라, 통신 장치(400)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
근거리 통신부(410)는, 근거리 통신(Short range communication)을 위한 유닛이다. 근거리 통신부(410)는, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다. 근거리 통신부(410)는, 근거리 무선 통신망(Wireless Area Networks)을 형성하여, 차량(100)과 적어도 하나의 외부 디바이스 사이의 근거리 통신을 수행할 수 있다.
위치 정보부(420)는, 차량(100)의 위치 정보를 획득하기 위한 유닛이다. 예를 들면, 위치 정보부(420)는, GPS(Global Positioning System) 모듈 또는 DGPS(Differential Global Positioning System) 모듈을 포함할 수 있다.
V2X 통신부(430)는, 서버(V2I : Vehicle to Infra), 타 차량(V2V : Vehicle to Vehicle) 또는 보행자(V2P : Vehicle to Pedestrian)와의 무선 통신 수행을 위한 유닛이다. V2X 통신부(430)는, 인프라와의 통신(V2I), 차량간 통신(V2V), 보행자와의 통신(V2P) 프로토콜이 구현 가능한 RF 회로를 포함할 수 있다.
광통신부(440)는, 광을 매개로 외부 디바이스와 통신을 수행하기 위한 유닛이다. 광통신부(440)는, 전기 신호를 광 신호로 전환하여 외부에 발신하는 광발신부 및 수신된 광 신호를 전기 신호로 전환하는 광수신부를 포함할 수 있다. 실시예에 따라, 광발신부는, 차량(100)에 포함된 램프와 일체화되게 형성될 수 있다.
방송 송수신부(450)는, 방송 채널을 통해, 외부의 방송 관리 서버로부터 방송 신호를 수신하거나, 방송 관리 서버에 방송 신호를 송출하기 위한 유닛이다. 방송 채널은, 위성 채널, 지상파 채널을 포함할 수 있다. 방송 신호는, TV 방송 신호, 라디오 방송 신호, 데이터 방송 신호를 포함할 수 있다.
ITS 통신부(460)는, 교통 시스템과 정보, 데이터 또는 신호를 교환할 수 있다. ITS 통신부(460)는, 교통 시스템에 획득한 정보, 데이터를 제공할 수 있다. ITS 통신부(460)는, 교통 시스템으로부터, 정보, 데이터 또는 신호를 제공받을 수 있다. 예를 들면, ITS 통신부(460)는, 교통 시스템으로부터 도로 교통 정보를 수신하여, 제어부(170)에 제공할 수 있다. 예를 들면, ITS 통신부(460)는, 교통 시스템으로부터 제어 신호를 수신하여, 제어부(170) 또는 차량(100) 내부에 구비된 프로세서에 제공할 수 있다.
프로세서(470)는, 통신 장치(400)의 각 유닛의 전반적인 동작을 제어할 수 있다. 실시예에 따라, 통신 장치(400)는, 복수의 프로세서(470)를 포함하거나, 프로세서(470)를 포함하지 않을 수도 있다. 통신 장치(400)에 프로세서(470)가 포함되지 않는 경우, 통신 장치(400)는, 차량(100)내 다른 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다.
한편, 통신 장치(400)는, 사용자 인터페이스 장치(200)와 함께 차량용 디스플레이 장치를 구현할 수 있다. 이 경우, 차량용 디스플레이 장치는, 텔레 매틱스(telematics) 장치 또는 AVN(Audio Video Navigation) 장치로 명명될 수 있다. 통신 장치(400)는, 제어부(170)의 제어에 따라 동작될 수 있다.
운전 조작 장치(500)는, 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(100)은, 운전 조작 장치(500)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(500)는, 조향 입력 장치(510), 가속 입력 장치(530) 및 브레이크 입력 장치(570)를 포함할 수 있다.
조향 입력 장치(510)는, 사용자로부터 차량(100)의 진행 방향 입력을 수신할 수 있다. 조향 입력 장치(510)는, 회전에 의해 조향 입력이 가능하도록 휠 형태로 형성되는 것이 바람직하다. 실시예에 따라, 조향 입력 장치는, 터치 스크린, 터치 패드 또는 버튼 형태로 형성될 수도 있다.
가속 입력 장치(530)는, 사용자로부터 차량(100)의 가속을 위한 입력을 수신할 수 있다. 브레이크 입력 장치(570)는, 사용자로부터 차량(100)의 감속을 위한 입력을 수신할 수 있다. 가속 입력 장치(530) 및 브레이크 입력 장치(570)는, 페달 형태로 형성되는 것이 바람직하다. 실시예에 따라, 가속 입력 장치 또는 브레이크 입력 장치는, 터치 스크린, 터치 패드 또는 버튼 형태로 형성될 수도 있다.
운전 조작 장치(500)는, 제어부(170)의 제어에 따라 동작될 수 있다.
차량 구동 장치(600)는, 차량(100)내 각종 장치의 구동을 전기적으로 제어하는 장치이다. 차량 구동 장치(600)는, 파워 트레인 구동부(610), 샤시 구동부(620), 도어/윈도우 구동부(630), 안전 장치 구동부(640), 램프 구동부(650) 및 공조 구동부(660)를 포함할 수 있다. 실시예에 따라, 차량 구동 장치(600)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다. 한편, 차량 구동 장치(600)는 프로세서를 포함할 수 있다. 차량 구동 장치(600)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
파워 트레인 구동부(610)는, 파워 트레인 장치의 동작을 제어할 수 있다. 파워 트레인 구동부(610)는, 동력원 구동부(611) 및 변속기 구동부(612)를 포함할 수 있다.
동력원 구동부(611)는, 차량(100)의 동력원에 대한 제어를 수행할 수 있다. 예를 들면, 화석 연료 기반의 엔진이 동력원인 경우, 동력원 구동부(610)는, 엔진에 대한 전자식 제어를 수행할 수 있다. 이에 의해, 엔진의 출력 토크 등을 제어할 수 있다. 동력원 구동부(611)는, 제어부(170)의 제어에 따라, 엔진 출력 토크를 조정할 수 있다.
예를 들면, 전기 에너지 기반의 모터가 동력원인 경우, 동력원 구동부(610)는, 모터에 대한 제어를 수행할 수 있다. 동력원 구동부(610)는, 제어부(170)의 제어에 따라, 모터의 회전 속도, 토크 등을 조정할 수 있다.
변속기 구동부(612)는, 변속기에 대한 제어를 수행할 수 있다. 변속기 구동부(612)는, 변속기의 상태를 조정할 수 있다. 변속기 구동부(612)는, 변속기의 상태를, 전진(D), 후진(R), 중립(N) 또는 주차(P)로 조정할 수 있다. 한편, 엔진이 동력원인 경우, 변속기 구동부(612)는, 전진(D) 상태에서, 기어의 물림 상태를 조정할 수 있다.
샤시 구동부(620)는, 샤시 장치의 동작을 제어할 수 있다. 샤시 구동부(620)는, 조향 구동부(621), 브레이크 구동부(622) 및 서스펜션 구동부(623)를 포함할 수 있다.
조향 구동부(621)는, 차량(100) 내의 조향 장치(steering apparatus)에 대한 전자식 제어를 수행할 수 있다. 조향 구동부(621)는, 차량의 진행 방향을 변경할 수 있다.
브레이크 구동부(622)는, 차량(100) 내의 브레이크 장치(brake apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 바퀴에 배치되는 브레이크의 동작을 제어하여, 차량(100)의 속도를 줄일 수 있다.
한편, 브레이크 구동부(622)는, 복수의 브레이크 각각을 개별적으로 제어할 수 있다. 브레이크 구동부(622)는, 복수의 휠에 걸리는 제동력을 서로 다르게 제어할 수 있다.
서스펜션 구동부(623)는, 차량(100) 내의 서스펜션 장치(suspension apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 서스펜션 구동부(623)는 도로 면에 굴곡이 있는 경우, 서스펜션 장치를 제어하여, 차량(100)의 진동이 저감되도록 제어할 수 있다. 한편, 서스펜션 구동부(623)는, 복수의 서스펜션 각각을 개별적으로 제어할 수 있다.
도어/윈도우 구동부(630)는, 차량(100) 내의 도어 장치(door apparatus) 또는 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다. 도어/윈도우 구동부(630)는, 도어 구동부(631) 및 윈도우 구동부(632)를 포함할 수 있다.
도어 구동부(631)는, 도어 장치에 대한 제어를 수행할 수 있다. 도어 구동부(631)는, 차량(100)에 포함되는 복수의 도어의 개방, 폐쇄를 제어할 수 있다. 도어 구동부(631)는, 트렁크(trunk) 또는 테일 게이트(tail gate)의 개방 또는 폐쇄를 제어할 수 있다. 도어 구동부(631)는, 썬루프(sunroof)의 개방 또는 폐쇄를 제어할 수 있다.
윈도우 구동부(632)는, 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다. 차량(100)에 포함되는 복수의 윈도우의 개방 또는 폐쇄를 제어할 수 있다.
안전 장치 구동부(640)는, 차량(100) 내의 각종 안전 장치(safety apparatus)에 대한 전자식 제어를 수행할 수 있다. 안전 장치 구동부(640)는, 에어백 구동부(641), 시트벨트 구동부(642) 및 보행자 보호 장치 구동부(643)를 포함할 수 있다.
에어백 구동부(641)는, 차량(100) 내의 에어백 장치(airbag apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 에어백 구동부(641)는, 위험 감지시, 에어백이 전개되도록 제어할 수 있다.
시트벨트 구동부(642)는, 차량(100) 내의 시트벨트 장치(seatbelt apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 시트벨트 구동부(642)는, 위험 감지 시, 시트 벨트를 이용해 탑승객이 시트(110FL, 110FR, 110RL, 110RR)에 고정되도록 제어할 수 있다.
보행자 보호 장치 구동부(643)는, 후드 리프트 및 보행자 에어백에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 보행자 보호 장치 구동부(643)는, 보행자와의 충돌 감지 시, 후드 리프트 업 및 보행자 에어백 전개되도록 제어할 수 있다.
램프 구동부(650)는, 차량(100) 내의 각종 램프 장치(lamp apparatus)에 대한 전자식 제어를 수행할 수 있다.
공조 구동부(660)는, 차량(100) 내의 공조 장치(air conditioner)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 공조 구동부(660)는, 차량 내부의 온도가 높은 경우, 공조 장치가 동작하여, 냉기가 차량 내부로 공급되도록 제어할 수 있다.
차량 구동 장치(600)는, 프로세서를 포함할 수 있다. 차량 구동 장치(600)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다. 차량 구동 장치(600)는, 제어부(170)의 제어에 따라 동작될 수 있다.
운행 시스템(700)은, 차량(100)의 각종 운행을 제어하는 시스템이다. 운행 시스템(700)은, 자율 주행 모드에서 동작될 수 있다.
운행 시스템(700)은, 주행 시스템(710), 출차 시스템(740) 및 주차 시스템(750)을 포함할 수 있다. 실시예에 따라, 운행 시스템(700)은, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다. 한편, 운행 시스템(700)은, 프로세서를 포함할 수 있다. 운행 시스템(700)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
한편, 운행 시스템(700)은 학습에 기초한 자율 주행 모드의 운행을 제어할 수 있다. 이러한 경우에는 학습 모드 및 학습이 완료됨을 전제로 한 동작 모드가 수행될 수 있다. 운행 시스템(700)의 프로세서가 학습 모드(learning mode) 및 동작 모드(operating mode)를 수행하는 방법에 대하여 이하 설명하도록 한다.
학습 모드는 앞서 설명한 메뉴얼 모드에서 수행될 수 있다. 학습 모드에서 운행 시스템(700)의 프로세서는 차량(100)의 주행 경로 학습 및 주변 환경 학습을 수행할 수 있다.
주행 경로 학습은 차량(100)이 주행하는 경로에 대한 맵 데이터를 생성하는 단계를 포함할 수 있다. 특히, 운행 시스템(700)의 프로세서는 차량(100)이 출발지로부터 목적지까지 주행하는 동안 오브젝트 검출 장치(300)를 통해 검출된 정보에 기초하여 맵 데이터를 생성할 수 있다.
주변 환경 학습은 차량(100)의 주행 과정 및 주차 과정에서 차량(100)의 주변 환경에 대한 정보를 저장하고 분석하는 단계를 포함할 수 있다. 특히, 운행 시스템(700)의 프로세서는 차량(100)의 주차 과정에서 오브젝트 검출 장치(300)를 통해 검출된 정보, 예를 들면 주차 공간의 위치 정보, 크기 정보, 고정된(또는 고정되지 않은) 장애물 정보 등과 같은 정보에 기초하여 차량(100)의 주변 환경에 대한 정보를 저장하고 분석할 수 있다.
동작 모드는 앞서 설명한 자율 주행 모드에서 수행될 수 있다. 학습 모드를 통하여 주행 경로 학습 또는 주변 환경 학습이 완료된 것을 전제로 동작 모드에 대하여 설명한다.
동작 모드는 입력부(210)를 통한 사용자 입력에 반응하여 수행되거나, 학습이 완료된 주행 경로 및 주차 공간에 차량(100)이 도달하면 자동으로 수행될 수 있다.
동작 모드는 운전 조작 장치(500)에 대한 사용자의 조작을 일부 요구하는 반-자율 동작 모드(semi autonomous operating mode) 및 운전 조작 장치(500)에 대한 사용자의 조작을 전혀 요구하지 않는 완전-자율 동작 모드(fully autonomous operating mode)를 포함할 수 있다.
한편, 실시예에 따라 운행 시스템(700)의 프로세서는 동작 모드에서 주행 시스템(710)을 제어하여 학습이 완료된 주행 경로를 따라 차량(100)을 주행시킬 수 있다.
한편, 실시예에 따라 운행 시스템(700)의 프로세서는 동작 모드에서 출차 시스템(740)을 제어하여 학습이 완료된 주차 공간으로부터 주차된 차량(100)을 출차 시킬 수 있다.
한편, 실시예에 따라 운행 시스템(700)의 프로세서는 동작 모드에서 주차 시스템(750)을 제어하여 현재 위치로부터 학습이 완료된 주차 공간으로 차량(100)을 주차 시킬 수 있다.한편, 실시예에 따라, 운행 시스템(700)이 소프트웨어적으로 구현되는 경우, 제어부(170)의 하위 개념일 수도 있다.
한편, 실시예에 따라, 운행 시스템(700)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하는 개념일 수 있다.
주행 시스템(710)은, 차량(100)의 주행을 수행할 수 있다. 주행 시스템(710)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다. 주행 시스템(710)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하여, 차량(100)의 주행을 수행하는 시스템 개념일 수 있다. 이러한, 주행 시스템(710)은, 차량 주행 제어 장치로 명명될 수 있다.
출차 시스템(740)은, 차량(100)의 출차를 수행할 수 있다. 출차 시스템(740)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하여, 차량(100)의 출차를 수행하는 시스템 개념일 수 있다.
이러한, 출차 시스템(740)은, 차량 출차 제어 장치로 명명될 수 있다.
주차 시스템(750)은, 차량(100)의 주차를 수행할 수 있다. 주차 시스템(750)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하여, 차량(100)의 주차를 수행하는 시스템 개념일 수 있다.
이러한, 주차 시스템(750)은, 차량 주차 제어 장치로 명명될 수 있다.
내비게이션 시스템(770)은, 내비게이션 정보를 제공할 수 있다. 내비게이션 정보는, 맵(map) 정보, 설정된 목적지 정보, 상기 목적지 설정 따른 경로 정보, 경로 상의 다양한 오브젝트에 대한 정보, 차선 정보 및 차량의 현재 위치 정보 중 적어도 어느 하나를 포함할 수 있다.
내비게이션 시스템(770)은, 메모리, 프로세서를 포함할 수 있다. 메모리는 내비게이션 정보를 저장할 수 있다. 프로세서는 내비게이션 시스템(770)의 동작을 제어할 수 있다.
실시예에 따라, 내비게이션 시스템(770)은, 통신 장치(400)를 통해, 외부 디바이스로부터 정보를 수신하여, 기 저장된 정보를 업데이트 할 수 있다. 실시예에 따라, 내비게이션 시스템(770)은, 사용자 인터페이스 장치(200)의 하위 구성 요소로 분류될 수도 있다.
종래 기술
도 9는 DSRC 인터페이스의 기초가 되는 IEEE 802.11p 의 MAC (Medium Access Control) 레이어 및 Physical (PHY) 레이어 문서의 일부를 나타낸다.
구체적으로, 도 9에서 스테이션은 CCA (Clear Channel Assessment)를 수행하여 미디엄 (medium)의 아이들 (idle) 여부를 결정한다. CCA를 수행함에 있어서, 스테이션은 수신 파워 (received power)를 센싱 구간 (e.g., DIFS 58 us) 동안 측정한 값이 CCA threshold 이하이면 미디엄을 이용하여 데이터를 전송하고, CCA threshold를 초과하면 전송을 대기한다. CCA threshold를 초과하는 수신 파워가 감지되었다는 것은 스테이션의 주변에 미디엄을 놓고 경쟁하는 다른 스테이션이 존재함을 의미한다.
이를 IEEE 802.11p 기반의 DSRC 인터페이스에서 적용하여 설명한다. 드론의 통신 방해로 인해 이동 ITS 스테이션이 측정한 수신 파워가 CCA threshold를 초과하여 안전 어플리케이션에 관한 서비스를 제공할 수 없는 경우 위험한 상황이 발생할 수 있다. 특히, DSRC 인터페이스 기반의 V2X는 기본적으로 broadcast 방식을 이용하고 있어 ACK/NACK을 보내지 않기 때문에 통신 불능 상태에서 더욱 취약한 문제점을 갖고 있다.
따라서, 본 발명은 이하 실시예 1을 통해 보다 정확히 통신 불능 상태를 판단하는 방법을 제안하고, 실시예 2를 통해 통신 불능 상태에 있는 이동 ITS 스테이션을 제어하는 방법을 제안하고자 한다.
한편, 도 7에 도시되지는 않았으나 본 발명의 일 실시예에 따른 차량은 CAN-BUS (Controller Area Network BUS), TCU (Telematics Control Unit) 을 더 포함할 수 있다. CAN-BUS는 차량 내부 전자제어유닛들 사이의 내부 통신 브릿지 역할을 수행하며, TCU는 CAN-BUS를 외부 시스템과 연결할 수 있다. 도 7의 오브젝트 검출 장치(300)는 라이다(330), 레이다(320), 초음파 센서(340) 또는 카메라(310)를 이용하여 차량 주위의 정보를 처리할 수 있으며, 도 7의 V2X 통신부(430)는 상술한 DSRC/3GPP 기반의 V2X 방식으로 통신을 수행할 수 있다.
이하의 설명에서 이동 ITS 스테이션의 '프로세서'는 차량 탑승자가 별도로 휴대한 스테이션의 구성일 수도, 전술한 TCU 또는 CPU(미도시)일 수 있다. 또한, 이하의 설명에서 이동 ITS 스테이션의 '전송 모듈', '수신 모듈' 또는 '송수신 모듈'은 차량 탑승자가 별도로 휴대한 스테이션의 구성일 수도, 전술한 V2X 통신부(430)일 수도 있다.
상술한 바와 같이, 본 발명의 일 측면에서는 DSRC 인터페이스에서 드론 등의 전파 방해에 따른 통신 불능 상태를 보다 효율적으로 판단하고 그에 따라 이동 ITS 스테이션을 제어하는 방법을 제안한다. 이를 위해 본 발명의 일 실시예에 따른 이동 ITS 스테이션은 DSRC 인터페이스의 제 1 채널에서 수신된 신호의 전력이 문턱 값을 초과하는 지 판단하고, 상기 수신된 신호의 전력이 상기 문턱 값을 초과한 시간 또는 초과한 횟수가 제 1 소정 값을 만족하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 제안한다.
실시예 1 (판단 방법)
1.1 sensing 된 power 및 메시지 QoS 로 판단
도 10은 본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 방법을 나타낸다.
구체적으로, 이동 ITS 스테이션의 프로세서는 전송 모듈을 통해 센싱 구간 동안 수신 파워 (received power)를 센싱한다. 이어서, 프로세서는 수신 파워가 CCA 문턱 값을 초과한 시간, 초과한 횟수가 소정 값을 만족하면 해당 채널에서의 메시지 송신이 불가능한 것으로 판단한다.
CCA 문턱 값이 -65dBm 이라고 가정하고, 도 10의 n (ms) 내지 n+5 (ms) 을 관찰해 보면, 수신 전력이 CCA 문턱 값을 초과한 '채널 busy' 상태가 2회 검출되어 프로세서는 Count = 1을 기록한다. 이후, 수신 전력이 CCA 문턱 값 이하인 '채널 idle' 상태가 1회 검출되고, 다시 '채널 busy' 상태가 2회 검출된다. 따라서, 프로세서는 Count = 2를 기록하고, 전술한 소정 값을 만족한 것으로 판단하여, 결론적으로, 해당 채널에서의 메시지 송신이 불가능한 것으로 판단하다. 앞서 도 10을 참조한 설명에서의 수치 및 CCA 문턱 값은 예시적인 것으로, 본 발명의 권리범위를 제한하는 것으로 해석되는 것은 아니다.
1.2 전송 buffer 에 쌓인 packet의 개수로 판단
도 11은 본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 다른 방법을 나타낸다. 구체적으로, 도 11은 각각의 메시지 패킷에 대응하는 전송 큐 (transmit queues)가 ACI = n (n=0, 1, 2, 3) 으로 표현되는 버퍼에 쌓인 것을 나타낸다.
이동 ITS 스테이션의 프로세서는 전송에 실패한 메시지 패킷의 수를 모니터링 한다. 모니터링은 주기적일 수도 있으나, 소정의 트리거링에 의한 비 주기적인 모니터링일 수 있다. 모니터링 결과, 버퍼에 쌓인 패킷의 개수가 소정 값 (예를 들면, 5개) 을 초과하면, 이동 ITS 스테이션의 프로세서는 해당 채널 에서의 메시지 송신이 불가능한 것으로 판단한다.
1.3 Sensing level 과 받은 메시지의 유효성 여부로 판단
도 12는 본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 다른 방법을 나타낸다.
구체적으로, 이동 ITS 스테이션의 프로세서는 앞서 설명한 수신 전력뿐만 아니라 CRC (Cyclic Redundancy Check)를 통해 수신된 신호의 유효성 (validity)을 더 판단할 수 있다. 이는 수신된 신호가 드론에 의한 전파 방해인지, 다른 차량으로부터 전송된 유효한 V2X 메시지인지 여부를 더 판단하기 위함이다.
도 12에 도시된 IEEE 802.11 MAC 프레임 포멧의 마지막 필드는 메시지 디코딩에 필요한 CRC에 관한 것이다. 이동 ITS 스테이션은 CRC를 이용하여 메시지 디코딩에 성공할 경우 수신된 메시지가 유효한 것으로 판단한다.
따라서, 수신된 신호의 전력이 CCA 문턱 값보다 높음이 확인되고, CRC 실패 (fail)가 계속 발생하는 경우, 프로세서는 해당 채널에서의 메시지 송신이 불가능하다고 판단할 수 있다. 또는, 수신된 신호의 전력이 CCA 문턱 값보다 높으면서 메시지 디코딩 (decoding)에 성공 (CRC OK)할 경우 프로세서는 해당 채널에서의 메시지 송신이 불가능한 상태로 판단하지 않는다.
도 12에 도시된 본 발명의 실시예 1에 다른 이동 ITS 스테이션에 따르면, 수신 전력뿐만 아니라 CRC를 통해 메시지의 유효성을 더 판단하므로, 보다 정확하고 빠르게 해당 채널에서의 메시지 송신 불능 상태를 판단할 수 있다.
1.4 주위 차량의 IPG(Inter packet Gap) 를 측정하여 전송 중단 상태 판단
본 발명의 실시예 1에 따라 이동 ITS 스테이션의 프로세서가 메시지의 전송 실패를 판단하는 다른 방법으로, 주위 차량의 IPG (Inter Packet Gap)를 측정하는 것에 대하여 설명하도록 한다.
이동 ITS 스테이션의 프로세서는 이동 ITS 스테이션 주변의 다른 이동 ITS 스테이션으로부터 수신된 신호의 종류와 SN (Sequence Number)을 고려하여 IPG 를 측정하고, 상기 측정된 IPG가 소정 값을 초과하면 해당 채널 에서의 메시지 송신이 불가능한 것으로 판단할 수 있다.
이동 ITS 스테이션이 전송한 메시지를 수신한 다른 차량은 메시지 수신 간격을 의미하는 IPG와 SN를 측정하여 SN 차이와 예상 간격 (예를 들면, 1초)을 넘으면, '주위 차량의 메시지 전송 중단' 상태로 판단할 수 있다.
구체적으로, 이동 ITS 스테이션이 메시지를 전송할 때마다 SN이 증가하기 때문에, 다른 차량은 메시지를 수신할 때 packet의 종류와 SN의 차이를 통해 패킷 수신 간격(IPG)을 예측할 수 있다. 계속하여, IPG가 일정 범위 (예를 들면, 100ms + tolerance) 를 벗어나는 경우 메시지를 수신한 차량은 이동 ITS 스테이션의 전송 시간이 지연 되는 것으로 판단할 수 있다.
이하의 실시예 2는 전술한 실시예 1을 통해 이동 ITS 스테이션이 해당 채널에서의 메시지 송신이 불가능한 것으로 판단한 경우의 대처 방법에 관한 것이다.
실시예 2 (제어 방법)
2.1 Infrastructure를 활용한 warning message 전달
도 13은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 제어 방법을 나타낸다. 구체적으로, 도 13은 이동 ITS 스테이션이 메시지 송신이 불가능한 것으로 판단한 경우, infrastructure (또는 네트워크 노드)를 이용하여 주변 차량에 warning message를 전달하는 방법을 나타낸다. 도 13의 HV (Host Vehicle)를 본 발명에 따른 이동 ITS 스테이션으로 가정하고, RV (Remote Vehicle)를 주변 차량으로 가정하고 설명하도록 한다.
전파 방해가 없는 일반적인 상황에서 HV는 DSRC 인터페이스의 제 1 채널을 통해 BSM (Basic Safety Message)을 RV1 및 RV2에 전송한다. 한편, 드론에 의한 전파 방해가 발생하여 HV가 RV1 및 RV2에게 제 1 채널을 통해 BSM을 송신하는 것이 불가능하다고 판단할 수 있다. 이러한 가정 하에, 본 발명의 실시예 2는 이동 ITS 스테이션의 제어 방법으로 다음의 2 가지를 제안한다.
첫 째, HV는 DSRC 인터페이스의 제 2 채널 (제 1 채널과 다른)을 통해 infrastructure 에 상기 BSM을 송신할 수 있다. 둘 째, HV는 DSRC 인터페이스와 다른 통신 인터페이스를 이용하여 네트워크 노드에 상기 BSM을 송신할 수 있다. DSRC 인터페이스와 다른 통신 인터페이스는 ITS-G5 인터페이스, 3GPP LTE sidelink 인터페이스 또는 NR (New RAT)의 eV2X 인터페이스일 수 있다. 마지막으로, 전술한 두 가지 제어 방법 중 어느 하나에 따라 BSM을 수신한 네트워크 노드는 상기 BSM 또는 경고 메시지를 RV1 및 RV2에 전달할 수 있다.
HV가 제 1 채널과 다른 제 2 채널을 통해 BSM을 전송하는 방법에 대해 구체적으로 설명하도록 한다. 도 8을 참조하면, DSRC 인터페이스의 주파수 대역은 5.855GHz 부터 5.925GHz 이고, 사용 목적에 따라 SCH 172, SCH 174, SCH 176, CCH 178, SCH 180, SCH 182 및 SCH 184 로 구분되어 있음을 알 수 있다. BSM은 일반적으로 디폴트 채널인 SCH 172를 통해 전송되므로, 제 1 채널은 SCH 172일 수 있다. 드론의 전파 방해로 인해 제 1 채널을 통한 메시지 송신이 불가능하다고 판단할 경우, HV는 제 2 채널, 예를 들면, CCH 178을 통해 BSM을 infrastructure에 송신할 수 있다.
2.2 차량과 interference 간 거리 확보를 통한 전송 불능 상태 방지
도 14는 본 발명의 실시예 2에 따라, 이동 ITS 스테이션이 제 1 채널을 통한 통신이 불가능하다고 판단한 경우의 제어 방법을 나타낸다.
도 14의 위 순서도를 참조하면, 이동 ITS 스테이션은 수신된 신호의 전력을 이용하여 이동 ITS 스테이션으로부터의 간섭 물체의 상대적인 위치 및 거리를 추정하고, 제 1 채널을 통한 통신이 가능한 위치로 벗어날 수 있도록 이동 ITS 스테이션을 제어할 수 있다. 상기 제어는 차량의 가속, 감속, 경로 재생성일 수 있다.
나아가, 도 14의 아래 도면과 같이, 제 1 채널을 통한 통신이 가능한 위치로 이동 ITS 스테이션이 벗어날 수 있도록 이동 ITS 스테이션의 프로세서는 운전자에게 차량의 속도, 재생성된 경로, 전파 방해 인디케이터 등을 제공할 수 있다.
2.3 가용주파수 판단하여 사용 가능 channel 로 BSM 메시지 전송변경
차량간격 제어를 통하여 연속되는 차량을 가깝게 유지시킨 채로 운영되는 차량들의 그룹을 군집 주행 (Platooning) 이라고 한다. 군집 주행 중인 이동 ITS 스테이션은 군집 내 다른 차량들의 움직임 및 잠재적인 이상 상황 정보를 차량간 통신을 통하여 수신하고, 그에 따른 제어를 통하여 다른 차량들과의 거리를 유지하게 된다.
군집 주행 중에는 일반적으로 선행 차량 (또는 리더 차량)을 후속 차량들이 단순히 추종하는데, 선행 차량이 갑작스럽게 군집 주행 경로를 이탈하거나 드론에 의한 전파 방해가 발생하는 경우 후속 차량에게 안전에 위협이 되는 상황, 예를 들면 도 15에 도시된 상황이 발생할 수 있다.
본 발명의 실시예 2는 이러한 문제를 해결하기 위해 별도의 service channel을 사전에 설정하고, 선행 차량이 갑작스럽게 군집 주행 경로를 이탈하는 경우, 상기 service channel을 이용하는 방법을 제안한다.
즉, 군집 주행을 위한 그룹을 형성할 때, 차량들 간에 main channel 및 service channel을 사전에 설정하는 것이 가능하다. main channel 및 service channel은 도 1을 통해 설명한 SCH 172, SCH 174, SCH 176, CCH 178, SCH 180, SCH 182 및 SCH 184 중 어느 하나일 수 있다.
드론에 의한 전파 방해가 발생하여 갑작스럽게 군집 주행 경로를 이탈한다는 메시지를 후속 차량에 보내고자 할 때, 선행 차량은 main channel을 우선적으로 이용하여 상기 메시지를 전송하되, main channel이 이용 불가능한 경우 service channel을 이용하여 상기 메시지를 전송할 수 있다.
예를 들면, 도 16에서 드론에 의한 전파 방해로 인해 선행 차량 (가장 오른쪽)에서 main channel을 통한 메시지 송신이 불가능해지면, 선행 차량은 service channel을 이용하여 메시지를 계속 송신할 수 있다. 또는, 선행 차량으로부터 main channel을 통한 메시지 수신이 중단된 것을 후속 차량이 인지하면 후속 차량이 service channel로 전환하여 메시지를 계속 수신할 수 있다.
일반적으로 BSM은 SCH 172를 통해 차량간에 전송된다. 본 발명의 실시예 2는 SCH 172가 전파 방해 등으로 사용할 수 없는 경우, 이동 ITS 스테이션이 CCH 178을 이용하는 것을 제안한다. 다른 채널들과 달리 CCH 178은 전송의 신뢰도가 높은 제어 채널로서, 다른 이동 ITS 스테이션들이 디폴트로 수신하는 채널이기 때문에 본 발명의 실시예 2는 CCH 178을 이용해서 바로 BSM을 전송하는 방법을 제안한다.
또한, 본 발명의 실시예 2는 CCH 178을 이용해서 CCH 178 이외의 다른 채널을 통해 BSM을 전송하겠다는 메시지를 전송하고, 상기 다른 채널을 통해 BSM을 전송하는 방법도 제안한다.
2.4 transmit power가변 or CCA threshold값 변경
이동 ITS 스테이션에서 드론으로부터 수신된 전력이 지속적으로 CCA 문턱 값 이상이면 메시지 전송 또한 지속적으로 불가능해 지는 문제가 있다. 이를 해결하기 위해 본 발명의 실시예 2는 CCA 문턱 값을 증가시키고, 메시지의 송신 전력을 증가시키는 방법을 제안한다. 한편, 상기 두 가지 제어는 독립적으로 수행될 수도 있다.
구체적으로 도 17을 참조하면, 본 발명의 실시예 2에 따른 이동 ITS 스테이션은 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면, CCA 문턱 값을 증가시키는 제어 또는 이동 ITS 스테이션의 메시지 송신 전력을 증가시키는 제어를 할 수 있다.
본 발명의 실시예 2에 따른 제어 방법을 이용하여 CCA 문턱 값을 증가시키면 수신된 전력이 CCA 문턱 값보다 낮아지기 때문에, 이동 ITS 스테이션은 channel idle 상태로 판단하여 해당 채널을 통해 메시지를 송신할 수 있다. 나아가, 메시지 송신 전력을 최대 송신 전력까지 증가시켜 주변 차량에 효율적으로 메시지를 송신할 수 있다.
2.5 Radio access technology를 변경하여 재전송하는 방법
도 18은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 제어 방법을 나타낸다. 즉, 본 발명의 실시예 2에 따른 이동 ITS 스테이션은 Interference 에 의한 전송 불능 상태가 판단되면 가용한 다른 통신 인터페이스를 활용하여 재전송한다.
예를 들면, 이동 ITS 스테이션은 LTE Uu 인터페이스를 활용하여 ITS server (V2X application server) 또는 MEC server (Mobile Edge Computing server)로 전송에 실패한 메시지를 재전송할 수 있다. 또는, 이동 ITS 스테이션은 5G NR Uu 인터페이스를 활용하여 ITS server (V2X application server) 또는 MEC server로 전송에 실패한 메시지를 재전송할 수 있다. 또는, 이동 ITS 스테이션은 3GPP LTE sidelink 인터페이스를 활용하여 다른 차량이나 RSU (Road Side Unit)등에 전송에 실패한 메시지를 재전송할 수 있다.
2.6 ADAS와 연계하여 서비스를 계속 제공
도 19는 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 제어 방법을 나타낸다.
이동 ITS 스테이션이 제공하는 안전 서비스에는 V2X (예를 들면, DSRC 인터페이스)와 연계된 서비스와 이동 ITS 스테이션에 구비되는 적어도 하나의 센서와 연계된 ADAS (Advanced Driver-Assistance Systems) 서비스가 있을 수 있다.
한편, 드론의 전파 방해로 인해 V2X 통신 중단 상태가 확인되면 이동 ITS 스테이션의 프로세서는 DSRC 인터페이스를 통해 제공하던 V2X 연계 서비스를 이동 ITS 스테이션에 구비되는 적어도 하나의 센서를 통해 제공하는 ADAS 서비스로 전환할 수 있다. 나아가, 프로세서는 이러한 서비스 전환을 위해 적어도 하나의 센서의 활성화 및 감도 조절을 수행할 수 있다.
예를 들면, FCW (Forward Collision Warning) 서비스는 V2X 연계 서비스로 제공될 수도 있고, ADAS 연계 서비스로 제공될 수도 있다. 이동 ITS 스테이션의 프로세서는 DSRC shutdown (V2X 불능)이 감지되면 V2X 연계 서비스에서 ADAS 연계 서비스로 전환하기 위해, 비활성화 되어있던 카메라를 활성화하거나 이미 활성화 되어 있던 카메라의 감도를 높일 수 있다.
한편, FCW 서비스는 예시적인 것이며, 전술한 본 발명의 실시예 2는 Adaptive Cruise Control (ACC), Glare-free high beam, Adaptive light control, Automatic parking, Automotive night vision, Blind spot monitor, Collision avoidance system, Driver Monitoring System, Intersection assistant, Intelligent speed adaptation, Lane departure warning system, Lane change assistance, Pedestrian protection system, Traffic sign recognition 등 다양한 ADAS 연계 서비스에 적용될 수 있다.
2.7 중단된 packet의 (재)전송으로 인한 channel 혼잡 방지
도 20은 메시지 전송 실패 시 본 발명의 실시예 2에 따른 이동 ITS 스테이션의 제어 방법을 나타낸다.
드론의 전파 방해로 인해 메시지 전송 불능 상태에 빠지게 되면 전송 버퍼 (transmission buffer)에는 전송에 실패한 메시지가 지속적으로 쌓이게 된다. 그에 따라, 이동 ITS 스테이션이 전파 방해의 영향권을 벗어나게 되면 전송 버퍼에 쌓인 메시지들이 한번에 전송되어 채널 혼잡 현상이 발생하는 문제가 있다.
본 발명의 실시예 2는 상술한 문제를 해결하기 위해 전송 버퍼에 쌓인 메시지를 플러싱 (flushing) 하는 방법을 제안한다. 구체적으로, 이동 ITS 스테이션의 프로세서는 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면 소정 값으로 설정된 타이머를 동작시키고, 소정 값이 만료되기 전에 상기 제 1 채널에서 수신된 신호의 전력이 상기 CCA 문턱 값 이하가 되면, 이동 ITS 스테이션의 전송 버퍼에 쌓인 메시지를 전송하고, 소정 값이 만료되면 상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 메시지를 삭제할 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 이상에서는 본 명세서의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 명세서의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 명세서의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
그리고 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수 있다.
발명의 실시를 위한 다양한 형태가 상기 발명의 실시를 위한 최선의 형태에서 설명되었다.
상기 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명의 실시예들은 IEEE/3GPP 기반의 V2X가 활용되는 시스템을 예를 들어 설명되었으나, 동일한 원리가 적용되는 V2X 응용 시스템에 다양하게 활용될 수 있다.

Claims (20)

  1. DSRC (Dedicated Short Range Communication) 인터페이스에서 메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS (Intelligent Transport System) 스테이션을 제어하는 방법에 있어서,
    상기 DSRC 인터페이스의 제 1 채널에서 수신된 신호의 전력이 문턱 값을 초과하는 지 판단하고,
    상기 수신된 신호의 전력이 상기 문턱 값을 초과한 시간 또는 초과한 횟수가 제 1 소정 값을 만족하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  2. 제 1 항에 있어서,
    상기 문턱 값은 CCA (Clear Channel Assessment) 문턱 값인 것을 특징으로 하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  3. 제 2 항에 있어서,
    상기 수신된 신호의 CRC (Cyclic Redundancy Check)를 통해 상기 수신된 신호의 유효성(validity)을 판단하는 것을 더 포함하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  4. 제 3 항에 있어서,
    상기 수신된 신호가 유효하지 않으면, 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 더 포함하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  5. 제 2 항에 있어서,
    상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 패킷의 개수를 모니터링 하고,
    상기 패킷의 개수가 제 2 소정 값을 초과하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 더 포함하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  6. 제 2 항에 있어서,
    상기 이동 ITS 스테이션 주변의 다른 이동 ITS 스테이션으로부터 수신된 신호의 종류와 SN (Sequence Number)을 고려하여 IPG (Inter Packet Gap)을 측정하고,
    상기 측정된 IPG가 제 3 소정 값을 초과하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는 것을 더 포함하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  7. 제 2 항에 있어서,
    상기 이동 ITS 스테이션은 상기 제 1 채널을 통해 주변 이동 ITS 스테이션에 BSM (Basic Safety Message)를 전송하고,
    상기 제 1 채널 에서의 상기 BSM 송신이 불가능한 것으로 판단되면, 상기 DSRC 인터페이스의 제 2 채널을 이용하여 네트워크 노드에 상기 BSM를 송신하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  8. 제 2 항에 있어서,
    상기 이동 ITS 스테이션은 상기 제 1 채널을 통해 적어도 하나의 다른 이동 ITS 스테이션에 BSM (Basic Safety Message)를 전송하고,
    상기 제 1 채널 에서의 상기 BSM 송신이 불가능한 것으로 판단되면, 상기 DSRC 인터페이스와 다른 통신 인터페이스를 이용하여 네트워크 노드에 상기 BSM을 송신하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  9. 제 7 항에 있어서,
    상기 BSM은 상기 네트워크 노드를 경유하여 상기 적어도 하나의 다른 이동 ITS 스테이션에 전달되는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  10. 제 2 항에 있어서,
    상기 수신된 신호의 전력을 이용하여 상기 이동 ITS 스테이션으로부터의 간섭 물체의 상대적인 위치 및 거리를 추정하고,
    제 1 채널을 통한 통신이 가능한 위치로 상기 이동 ITS 스테이션이 벗어날 수 있도록 이동 ITS 스테이션을 제어하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  11. 제 2 항에 있어서,
    상기 이동 ITS 스테이션이 적어도 하나의 다른 이동 ITS 스테이션과 상기 제 1 채널을 이용하여 군집 주행 중인 경우,
    상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면, 군집 주행 차량간에 서비스 채널로 사전에 설정된 상기 DSRC 인터페이스의 제 2 채널을 이용하여 상기 메시지를 송신하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  12. 제 2 항에 있어서,
    상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면,
    상기 이동 ITS 스테이션의 ADAS (Advanced Driver-Assistance Systems)가 서비스 목록 중 상기 DSRC 인터페이스를 통해 제공하는 서비스를 상기 이동 ITS 스테이션에 구비되는 적어도 하나의 센서를 통해 제공하는 서비스로 전환하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  13. 제 12 항에 있어서,
    상기 이동 ITS 스테이션에 구비되는 적어도 하나의 센서를 통해 서비스를 제공하기 위해, 상기 적어도 하나의 센서의 활성화 및 감도 조절을 수행하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  14. 제 2 항에 있어서,
    상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면,
    상기 문턱 값을 증가시키는 제어 또는 상기 이동 ITS 스테이션의 메시지 송신 전력을 증가시키는 제어 중 적어도 하나를 수행하는,
    메시지 송수신 상태를 판단하고, 그에 기초하여 이동 ITS 스테이션을 제어하는 방법.
  15. DSRC (Dedicated Short Range Communication) 인터페이스에서 메시지 송수신 상태를 판단하고, 그에 기초한 동작을 수행하는 이동 ITS 스테이션에 있어서,
    송수신 모듈; 및
    프로세서를 포함하고,
    상기 프로세서는,
    상기 DSRC 인터페이스의 제 1 채널에서 수신된 신호의 전력이 문턱 값을 초과하는 지 판단하고,
    상기 수신된 신호의 전력이 상기 문턱 값을 초과한 시간 또는 초과한 횟수가 제 1 소정 값을 만족하면 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는,
    이동 ITS 스테이션.
  16. 제 15 항에 있어서,
    상기 문턱 값은 CCA (Clear Channel Assessment) 문턱 값인 것을 특징으로 하는,
    이동 ITS 스테이션.
  17. 제 16 항에 있어서,
    상기 프로세서는,
    상기 수신된 신호의 CRC (Cyclic Redundancy Check)를 통해 상기 수신된 신호의 유효성(validity)을 판단하고,
    상기 수신된 신호가 유효하지 않으면, 상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단하는,
    이동 ITS 스테이션.
  18. 제 16 항에 있어서,
    상기 프로세서는,
    상기 이동 ITS 스테이션은 상기 제 1 채널을 통해 주변 이동 ITS 스테이션에 BSM (Basic Safety Message)를 전송하고,
    상기 제 1 채널 에서의 상기 BSM 송신이 불가능한 것으로 판단되면, 상기 DSRC 인터페이스의 제 2 채널을 이용하여 네트워크 노드에 상기 BSM를 송신하는,
    이동 ITS 스테이션.
  19. 제 16 항에 있어서,
    상기 프로세서는,
    상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면,
    상기 문턱 값을 증가시키는 제어 또는 상기 이동 ITS 스테이션의 메시지 송신 전력을 증가시키는 제어 중 적어도 하나를 수행하는,
    이동 ITS 스테이션.
  20. 제 16 항에 있어서,
    상기 프로세서는,
    상기 제 1 채널 에서의 메시지 송신이 불가능한 것으로 판단되면 제 4 소정 값으로 설정된 타이머를 동작시키고,
    상기 제 4 소정 값이 만료되기 전에 상기 제 1 채널에서 수신된 신호의 전력이 상기 CCA 문턱 값 이하가 되면, 상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 메시지를 전송하고,
    상기 제 4 소정 값이 만료되면 상기 이동 ITS 스테이션의 전송 버퍼에 쌓인 메시지를 삭제하는,
    이동 ITS 스테이션.
PCT/KR2018/009653 2018-08-22 2018-08-22 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법 WO2020040324A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/009653 WO2020040324A1 (ko) 2018-08-22 2018-08-22 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법
US16/242,174 US11072340B2 (en) 2018-08-22 2019-01-08 Mobile ITS station and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/009653 WO2020040324A1 (ko) 2018-08-22 2018-08-22 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법

Publications (1)

Publication Number Publication Date
WO2020040324A1 true WO2020040324A1 (ko) 2020-02-27

Family

ID=69584334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009653 WO2020040324A1 (ko) 2018-08-22 2018-08-22 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법

Country Status (2)

Country Link
US (1) US11072340B2 (ko)
WO (1) WO2020040324A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10909866B2 (en) * 2018-07-20 2021-02-02 Cybernet Systems Corp. Autonomous transportation system and methods
KR102610748B1 (ko) * 2018-12-07 2023-12-08 현대자동차주식회사 차량의 군집 주행을 위한 사용자 인터페이스 제공 장치 및 방법
JP7184930B2 (ja) * 2019-01-31 2022-12-06 本田技研工業株式会社 車載用制御装置及び車両、車両制御方法及び車両制御システム
US11475774B2 (en) * 2020-04-03 2022-10-18 Verizon Patent And Licensing Inc. Systems and methods for machine learning based collision avoidance
US11997544B2 (en) * 2020-08-18 2024-05-28 Qualcomm Incorporated Reusing sidelink resources
US11696099B2 (en) * 2021-05-21 2023-07-04 Qualcomm Incorporated Virtual sensing via sensor sharing for C-V2X scheduling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044645A (ja) * 2007-08-10 2009-02-26 Denso Corp 通信用車載器
KR20170080565A (ko) * 2014-11-03 2017-07-10 삼성전자주식회사 전력 제어, 보고 및 상향링크 전송을 위한 장치 및 방법
JP2018019442A (ja) * 2017-11-02 2018-02-01 関西電力株式会社 通信装置、データ送信方法、及び、データ送信プログラム
KR20180041024A (ko) * 2016-10-13 2018-04-23 엘지전자 주식회사 차량 운전 보조장치 및 이를 포함하는 차량
KR20180042244A (ko) * 2015-08-19 2018-04-25 퀄컴 인코포레이티드 단거리 전용 통신 (dsrc) 에서의 안전 이벤트 메시지 송신 타이밍
KR101870751B1 (ko) * 2017-03-16 2018-06-27 엘지전자 주식회사 차량 제어 장치를 구비한 차량 및 차량의 제어방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103065B1 (en) * 1998-10-30 2006-09-05 Broadcom Corporation Data packet fragmentation in a cable modem system
US8874477B2 (en) * 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method
US20100066587A1 (en) * 2006-07-14 2010-03-18 Brian Masao Yamauchi Method and System for Controlling a Remote Vehicle
US8060271B2 (en) * 2008-06-06 2011-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Detecting principal directions of unknown environments
US8655513B2 (en) * 2010-03-12 2014-02-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Methods of real time image enhancement of flash LIDAR data and navigating a vehicle using flash LIDAR data
US8897280B2 (en) * 2011-03-29 2014-11-25 Qualcomm Incorporated System and method for clear channel assessment that supports simultaneous transmission by multiple wireless protocols
US8818609B1 (en) * 2012-11-15 2014-08-26 Google Inc. Using geometric features and history information to detect features such as car exhaust in point maps
CN103856993B (zh) * 2012-12-06 2016-08-31 腾讯科技(深圳)有限公司 一种无线通信方法和装置
US9368936B1 (en) * 2013-09-30 2016-06-14 Google Inc. Laser diode firing system
US10476615B2 (en) * 2014-07-16 2019-11-12 Qualcomm Incorporated Techniques for scaling bandwidth of an unlicensed radio frequency spectrum band
EP3437407B1 (en) * 2016-03-30 2021-11-17 Interdigital Patent Holdings, Inc. Method and apparatuses for scheduling in uu-based vehicle-to-vehicle communication
EP3399780B1 (en) * 2017-05-02 2022-03-16 Nxp B.V. Adjusting an intelligent transportation system (its) broadcast transmission parameter
US11152675B2 (en) * 2017-10-20 2021-10-19 Waymo Llc Communication system for LIDAR sensors used in a vehicle comprising a rotary joint with a bearing waveguide for coupling signals with communication chips
US10522887B2 (en) * 2017-10-20 2019-12-31 Waymo Llc Communication system for a vehicle comprising a dual channel rotary joint coupled to a plurality of interface waveguides for coupling electromagnetic signals between plural communication chips
EP3490290B1 (en) * 2017-11-23 2020-12-16 Nxp B.V. Intelligent transportation system station, host processor, vehicle and method therefor
CN110557843B (zh) * 2018-05-31 2023-06-16 华为技术有限公司 一种无线局域网数据传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044645A (ja) * 2007-08-10 2009-02-26 Denso Corp 通信用車載器
KR20170080565A (ko) * 2014-11-03 2017-07-10 삼성전자주식회사 전력 제어, 보고 및 상향링크 전송을 위한 장치 및 방법
KR20180042244A (ko) * 2015-08-19 2018-04-25 퀄컴 인코포레이티드 단거리 전용 통신 (dsrc) 에서의 안전 이벤트 메시지 송신 타이밍
KR20180041024A (ko) * 2016-10-13 2018-04-23 엘지전자 주식회사 차량 운전 보조장치 및 이를 포함하는 차량
KR101870751B1 (ko) * 2017-03-16 2018-06-27 엘지전자 주식회사 차량 제어 장치를 구비한 차량 및 차량의 제어방법
JP2018019442A (ja) * 2017-11-02 2018-02-01 関西電力株式会社 通信装置、データ送信方法、及び、データ送信プログラム

Also Published As

Publication number Publication date
US20200062270A1 (en) 2020-02-27
US11072340B2 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2020040324A1 (ko) 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법
WO2017039047A1 (ko) 차량 및 그 제어방법
WO2017003052A1 (ko) 차량 운전 보조 방법 및 차량
WO2020226258A1 (ko) 자율 주행 차량과 이를 이용한 보행자 안내 시스템 및 방법
WO2017150768A1 (ko) 디스플레이 장치 및 이를 포함하는 차량
WO2017061653A1 (ko) 음주운전 방지 방법 및 이를 제공하는 차량 보조 장치
WO2018009038A1 (ko) 차량 운전 보조 장치 및 이를 포함하는 주차 관제 시스템
WO2021141142A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021090971A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021040060A1 (ko) 차량용 전자 장치 및 그의 동작 방법
WO2020105751A1 (ko) 탑승자 모니터링 방법 및 이를 위한 장치
WO2020004767A1 (ko) 차량에 구비되는 텔레매틱스 시스템 및 이를 제어하는 방법
WO2020235714A1 (ko) 자율 주행 차량과 이를 이용한 주행 제어 시스템 및 방법
WO2017119541A1 (ko) 차량 운전 보조장치 및 이를 포함하는 차량
WO2020071564A1 (ko) 이동 its 스테이션 및 상기 이동 its 스테이션의 메시지 송수신 방법
WO2020080566A1 (ko) 전자 제어 장치 및 통신 장치
WO2020166749A1 (ko) 차량을 이용한 정보 표시 방법 및 시스템
WO2021157760A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2018139708A1 (ko) 차량용 전자 디바이스 해킹 테스트 장치
WO2020145432A1 (ko) Multi soc 시스템을 통해 차량을 제어하는 방법
WO2017104888A1 (ko) 차량 운전 보조장치 및 이의 차량 운전 보조방법
WO2021040057A1 (ko) 차량용 전자 장치 및 차량용 전자 장치의 동작 방법
WO2021045256A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020213772A1 (ko) 차량 제어 장치 및 그 장치의 제어 방법
WO2020017677A1 (ko) 영상 출력 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930527

Country of ref document: EP

Kind code of ref document: A1