WO2018032642A1 - 行车碰撞预警方法及装置 - Google Patents

行车碰撞预警方法及装置 Download PDF

Info

Publication number
WO2018032642A1
WO2018032642A1 PCT/CN2016/106373 CN2016106373W WO2018032642A1 WO 2018032642 A1 WO2018032642 A1 WO 2018032642A1 CN 2016106373 W CN2016106373 W CN 2016106373W WO 2018032642 A1 WO2018032642 A1 WO 2018032642A1
Authority
WO
WIPO (PCT)
Prior art keywords
local
remote
vehicle
driving
trajectory
Prior art date
Application number
PCT/CN2016/106373
Other languages
English (en)
French (fr)
Inventor
刘均
李旭鹏
Original Assignee
深圳市元征科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元征科技股份有限公司 filed Critical 深圳市元征科技股份有限公司
Publication of WO2018032642A1 publication Critical patent/WO2018032642A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the invention relates to the field of intelligent transportation systems and automobile safety technologies, and in particular to a method and device for warning of traffic collision.
  • ADAS Advanced Driver Assistance Systems
  • Assistance Systems the system uses image recognition to judge the vehicle's driving safety status and timely warning to avoid traffic accidents.
  • the scope of the camera's view makes the system unable to effectively alert.
  • the main object of the present invention is to provide a method and device for warning of collision of a vehicle, which aims to solve the problem of safety warning of a vehicle that cannot enter the range of the camera, so as to improve road traffic safety.
  • the present invention provides a driving collision early warning method, the driving collision early warning method comprising the steps of: acquiring location information and driving information of a local vehicle, and receiving location information of a remote vehicle broadcasting within a preset distance of the local vehicle. And driving information, wherein the location information and the driving information of the local vehicle are respectively used as the local location information and the local driving information, and the location information and the driving information of the remote vehicle are respectively used as the remote location information and the remote driving information;
  • the preset collision warning information is output.
  • the present invention also provides a driving collision early warning device, and the driving collision early warning device:
  • the information acquisition module is configured to acquire location information and driving information of the local vehicle, and receive location information and driving information of the remote vehicle broadcast within the preset distance of the local vehicle, where the location information and the driving information of the local vehicle are respectively used as the local location information. And local driving information, the remote vehicle location information and driving information are respectively used as remote location information and remote driving information;
  • a first trajectory generating module configured to generate, according to local location information and local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • a second trajectory generating module configured to generate, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • a judging module configured to determine whether a local predicted driving trajectory and a remote predicted driving trajectory have a trajectory intersection
  • the early warning output module is configured to output preset collision warning information when the local predicted driving trajectory and the remote predicted driving trajectory have intersections of the trajectories.
  • the invention predicts the driving trajectory within the preset time length of the local vehicle and the remote vehicle within the preset distance by acquiring the local vehicle, the local vehicle preset position information and the driving information within the preset distance, if the local vehicle and the preset distance
  • the remote vehicle has a track intersection point to output preset collision warning information; since the process of acquiring location information and driving information is not limited by the field of view range, and the information obtained by the invention has high accuracy and low cost, it can form a real-time effective Early warning to improve road traffic safety.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for warning of collision of a vehicle according to the present invention
  • FIG. 2 is a schematic diagram showing a refinement flow of a step of outputting preset collision warning information when a local predicted driving trajectory intersects with a remote predicted driving trajectory in a second embodiment of the driving collision warning method of the present invention
  • FIG. 3 is a comparison between the first time length and the second time length in the third embodiment of the method for warning of the collision of the vehicle according to the present invention.
  • the difference between the first time length and the second time length is less than the preset time threshold, the step of outputting the preset collision warning information is fine.
  • FIG. 4 is a schematic diagram showing a detailed process of determining whether a local predicted driving trajectory and a remote predicted driving trajectory have a trajectory intersection step in the fourth embodiment of the driving collision warning method of the present invention
  • FIG. 5 is a schematic diagram of a scene in which the remote vehicle and the local vehicle are not in the same preset sea wave range according to the present invention.
  • FIG. 6 is a schematic flowchart of a step of determining whether a local predicted driving trajectory and a remote predicted driving trajectory have a trajectory intersection point in the fifth embodiment of the driving collision warning method according to the present invention
  • FIG. 7 is a schematic diagram of a scene where a predicted trajectory of a remote vehicle and a local vehicle has a trajectory intersection;
  • FIG. 8 is a schematic diagram of functional modules of a first embodiment of a driving collision warning device according to the present invention.
  • FIG. 9 is a schematic diagram of a refinement function module of an early warning output module in a second embodiment of the vehicle collision warning device according to the present invention.
  • FIG. 10 is a schematic diagram of a refinement function module of a judging module in a fourth embodiment of the driving collision warning device of the present invention.
  • FIG. 11 is a schematic diagram of the refinement function module of the judging module in the fifth embodiment of the driving collision warning device of the present invention.
  • the invention provides a driving collision early warning method.
  • the driving collision early warning method comprises:
  • Step S10 acquiring location information and driving information of the local vehicle, and receiving location information and driving information of the remote vehicle broadcasting within the preset distance of the local vehicle, wherein the local vehicle location information and the driving information are respectively used as local location information and local driving.
  • Information, the location information and the driving information of the remote vehicle are respectively used as remote location information and remote driving information;
  • the local location information includes historical location information of the local vehicle, the azimuth angle, and the like, and the historical location information of the local vehicle may be composed of a plurality of historical location coordinate points of the local vehicle, and the plurality of historical location coordinate points of the local vehicle may be located by different types of historical locations of the local vehicle.
  • the coordinate composition includes local vehicle GPS coordinates, Big Dipper positioning coordinates, etc.; remote location information includes historical location information of the remote vehicle, azimuth, etc., and historical location information of the remote vehicle may be composed of multiple historical position coordinate points of the remote vehicle, and the remote vehicle
  • the plurality of historical position coordinate points may be composed of different types of historical positioning coordinates of the remote vehicle, including remote vehicle GPS coordinates, Big Dipper positioning coordinates, and the like.
  • the local driving information includes the speed of the local vehicle, the historical trajectory, etc., the historical trajectory of the local vehicle is generated by the historical location information of the local vehicle;
  • the remote driving information includes the speed of the remote vehicle, the historical trajectory, etc., and the historical trajectory of the remote vehicle is the history of the remote vehicle.
  • Location information is generated.
  • Step S20 Generate, according to the local location information and the local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • the local trajectory of the local vehicle is generated by using the local location information, and the local trajectory within the set time of the current time is predicted by using the historical trajectory, azimuth, and speed of the local vehicle, and using the extrapolation method in mathematics to perform interpolation.
  • the extrapolation method in mathematics can use polynomial interpolation and trend prediction, and perform 2nd or 3rd order polynomial interpolation according to the historical trajectory coordinates of the local vehicle.
  • the historical trajectory coordinate point selects the position coordinates of the 4-8 points closest to the current time in time.
  • the calculation method of the fitting is the minimum quadratic method; the time extrapolation is performed according to the fitted polynomial to obtain the position of the local vehicle coordinate point within the preset time period from the current time, thereby obtaining the local predicted driving trajectory within the preset time period from the current time. .
  • Step S30 generating, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • the extrapolation in mathematics can use polynomial interpolation and trend prediction, and perform 2nd or 3rd order polynomial interpolation according to the historical trajectory coordinates of the remote vehicle.
  • the historical trajectory coordinate point of the remote vehicle selects the position coordinates of the 4-8 points closest to the current time in time.
  • the calculation method of the fitting is the minimum quadratic method; the time extrapolation is performed according to the fitted polynomial, and the position of the remote vehicle coordinate point within the preset time period from the current time is obtained, thereby obtaining the remote predicted driving trajectory within the preset time period from the current time. .
  • Step S40 determining whether there is a track intersection point between the local predicted driving track and the remote predicted driving track
  • step S50 when there is a track intersection point between the local predicted driving track and the remote predicted driving track, the preset collision warning information is output.
  • the preset collision warning information is output. When there is no intersection of the local predicted driving trajectory and the remote predicted driving trajectory, the preset collision warning information is not output.
  • the local predicted driving trajectory of the local vehicle is generated based on the local location information and the local driving information
  • the remote predicted driving trajectory of the remote vehicle is generated based on the remote location information and the remote driving information
  • the driving trajectory is predicted locally.
  • the preset collision warning information is output, without relying on the camera device whose field of view is limited, to avoid the traffic accident caused by the incomplete framing image and the timely warning, thereby avoiding the collision
  • the early warning is inaccurate due to the limitation of the scope of vision, forming a real-time effective and timely warning of traffic collision and improving road traffic safety.
  • the imaging device is not needed, and only the positioning device conventionally configured in the vehicle is needed, thereby reducing the cost of the collision warning of the collision.
  • step S50 includes:
  • Step S51 acquiring a first duration of the local vehicle arrival trajectory intersection according to the local predicted driving trajectory and the local driving speed, and acquiring a second duration of the remote vehicle arrival trajectory intersection according to the remote predicted driving trajectory and the remote driving speed;
  • the distance between the local vehicle reaching the intersection of the local predicted driving trajectory and the remote predicted driving trajectory can be obtained, and then the first time length of the local vehicle arrival trajectory intersection is obtained according to the local driving speed, and can be obtained according to the remote predicted driving trajectory.
  • the remote vehicle arrives at the intersection of the local predicted driving trajectory and the remote predicted driving trajectory trajectory, and then obtains the second duration of the remote vehicle arrival trajectory intersection according to the remote driving speed, and obtains the first time duration of the local vehicle reaching the trajectory intersection point, and the remote vehicle arrives at the trajectory.
  • the second time of the intersection is not only the distance between the local vehicle and the remote vehicle to reach the intersection of the trajectory. The driver will have a more intuitive and clear understanding of when and where the collision occurred, which is beneficial to the driver to avoid collision in time.
  • step S52 the first duration and the second duration are compared. When the difference between the first duration and the second duration is less than the preset time threshold, the preset collision warning information is output.
  • the preset time threshold can be set by the driver according to his own driving habits. For example, in the process of manipulating the local vehicle, the driver wants to avoid collision warnings that are unlikely to occur, and can set a shorter preset time threshold when the first time is long. When the difference between the second time and the second time is less than the preset time threshold, the difference between the first time and the second time is smaller because the preset time threshold is shorter, and the difference between the first time and the second time is small, indicating the possibility of collision. The sex is greater. At this time, the preset collision warning information is output, so that the predicted collision warning is a large possibility, and the collision warning that is unlikely to occur is avoided.
  • the first time length of the local vehicle arrival trajectory intersection is obtained, and the second time length of the remote vehicle arrival trajectory intersection is obtained according to the remote predicted driving trajectory and the remote driving speed, and the comparison is performed.
  • the first duration and the second duration when the difference between the first duration and the second duration is less than the preset time threshold, outputting the preset collision warning information; when the difference between the first duration and the second duration is less than the preset time threshold,
  • the preset collision warning information is output only when the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection point, and the difference between the first duration and the second duration that may collide is compared to the local driver during the local vehicle driving process.
  • the distance between the current time of the vehicle and the intersection of the local predicted driving trajectory and the remote predicted driving trajectory will be more accustomed and better intuitive, and the time threshold can be preset according to its own situation, so that the collision warning is applicable to different drivers. Expanded the application range of collision warning.
  • step S52 includes:
  • Step S521 Obtain a difference between each first duration and each second duration, and use the difference as a duration difference;
  • the remote vehicles having a trajectory intersection with the local vehicle within the preset distance, and the time of the intersection of the local vehicle to the remote vehicle at each preset distance is the first time duration.
  • the time when the remote vehicle reaches the intersection of the trajectory in each preset distance is each second duration, and the difference between each first duration and each second duration is a duration difference, and thus there are also multiple duration differences.
  • Step S522 comparing all the time difference values with the preset time threshold, selecting a time difference value that is less than the preset time threshold, and using the selected time difference value as the standby time difference value;
  • the probability that the collision threat is less than the preset time threshold is small, and the probability of collision is small.
  • the difference of the duration less than the preset time threshold indicates that the collision threat may occur or the probability of collision threat is large. .
  • step S523 according to the difference in the length of the inactive period, the time difference value is used to output the preset collision warning information corresponding to the remote vehicle.
  • the time difference is more than one and less than the preset time threshold
  • the value is from small to large, and the time difference value is used to correspond to the remote vehicle output.
  • the preset collision warning information warning is to evaluate the threat level of all the vehicles in turn. If there are multiple vehicles that need security warning, the first time is The smaller the difference, the higher-level threat is used for early warning. When the high-level threat is released, other low-level threat warnings are performed. This is beneficial for the driver to first evade the highest level of threat according to the actual situation, and then avoid the low-level threat. Improve the effectiveness and practicality of early warnings to improve road safety.
  • the difference is used as the duration difference, and all the duration differences and the preset time threshold are compared, and the duration less than the preset time threshold is selected.
  • the difference value, the selected time difference value is used as the waiting time difference value, according to the waiting time difference value from small to large, and the time difference value is used to correspond to the remote vehicle output preset collision warning information;
  • the smaller the threat level the higher the threat level can directly output all the preset warning time.
  • the driver may first evade the remote vehicle with a small threat level without timely evading the vehicle with a high threat level, or the driver only evades.
  • One of the vehicles with collision threats ignores other remote vehicles that are also threatened to cause a collision accident. This embodiment well avoids such a situation and improves road safety.
  • the local location information includes the local location of the local vehicle.
  • the remote location information includes remote altitude information of the location of the remote vehicle
  • step S40 includes:
  • Step S41 Determine, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range.
  • Local vehicles are not only on the ground, but also on viaducts, overpasses, etc.
  • Local location information needs to include local altitude information.
  • Remote location information needs to include remote altitude information. It is necessary to judge that local vehicles and remote vehicles need to be at the same preset altitude range.
  • the local vehicle can also use the GPS altitude information in the positioning system and the image recognition method, such as camera framing, to comprehensively judge whether the local vehicle and the remote vehicle are in the same preset altitude range.
  • Step S42 when the local vehicle and the remote vehicle are in the same preset altitude range, determine whether there is a track intersection between the local predicted driving track and the remote predicted driving track.
  • the embodiment determines whether the local vehicle and the remote vehicle are in the same preset altitude range, and when the local vehicle and the remote vehicle are in the same preset altitude range, the local predicted driving trajectory and the remote location are determined. Predicting whether there is a trajectory intersection of the driving trajectory, the embodiment avoids the erroneous judgment that the remote vehicle within the preset distance between the local vehicle and the local vehicle is judged to have the trajectory intersection because the trajectory intersection point is not in the same altitude range, and the trajectory is improved. The accuracy of the judgment improves the road safety, and the remote vehicles that do not have the intersection point do not need to be in the corresponding early warning, thereby saving the cost.
  • the embodiment may also be based on the second embodiment of the driving collision warning method, and the optional embodiment of the driving collision warning method includes the following steps:
  • Step S10 acquiring location information and driving information of the local vehicle, and receiving location information and driving information of the remote vehicle broadcasting within the preset distance of the local vehicle, wherein the local vehicle location information and the driving information are respectively used as local location information and local driving.
  • Information, the location information and the driving information of the remote vehicle are respectively used as remote location information and remote driving information;
  • Step S20 Generate, according to the local location information and the local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • Step S30 generating, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • Step S41 determining, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range;
  • Step S42 when the local vehicle and the remote vehicle are in the same preset altitude range, determine whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection;
  • Step S51 acquiring a first duration of the local vehicle arrival trajectory intersection according to the local predicted driving trajectory and the local driving speed, and acquiring a second duration of the remote vehicle arrival trajectory intersection according to the remote predicted driving trajectory and the remote driving speed;
  • step S52 the first duration and the second duration are compared. When the difference between the first duration and the second duration is less than the preset time threshold, the preset collision warning information is output.
  • the embodiment may also be based on the third embodiment of the driving collision warning method, and the optional embodiment of the driving collision warning method includes the following steps:
  • Step S10 acquiring location information and driving information of the local vehicle, and receiving location information and driving information of the remote vehicle broadcasting within the preset distance of the local vehicle, wherein the local vehicle location information and the driving information are respectively used as local location information and local driving.
  • Information, the location information and the driving information of the remote vehicle are respectively used as remote location information and remote driving information;
  • Step S20 Generate, according to the local location information and the local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • Step S30 generating, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • Step S41 determining, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range;
  • Step S42 when the local vehicle and the remote vehicle are in the same preset altitude range, determine whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection;
  • Step S51 acquiring a first duration of the local vehicle arrival trajectory intersection according to the local predicted driving trajectory and the local driving speed, and acquiring a second duration of the remote vehicle arrival trajectory intersection according to the remote predicted driving trajectory and the remote driving speed;
  • Step S521 Obtain a difference between each first duration and each second duration, and use the difference as a duration difference;
  • Step S522 comparing all the time difference values with the preset time threshold, selecting a time difference value that is less than the preset time threshold, and using the selected time difference value as the standby time difference value;
  • step S523 according to the difference in the length of the inactive period, the time difference value is used to output the preset collision warning information corresponding to the remote vehicle.
  • the local location information includes the local location of the local vehicle. Azimuth, local historical location information, remote location information including remote azimuth of the location of the remote vehicle, remote historical location information, local driving information including local vehicle local driving speed, remote driving information including remote vehicle remote driving speed; step S40 includes:
  • Step S43 determining whether the local vehicle and the remote vehicle are traveling in the direction according to the local azimuth of the local vehicle, the local historical location information, the local driving speed, the remote azimuth of the remote vehicle, the remote historical location information, and the long-distance driving speed.
  • the local historical location information generates a local historical trajectory
  • the remote historical location information generates a remote historical trajectory.
  • the local historical trajectory, the local azimuth, the local driving speed can determine the driving trajectory within the preset time of the local vehicle, according to the remote historical trajectory, the remote orientation Angle, the remote driving speed can judge the driving trajectory within the preset time of the remote vehicle, according to the driving trajectory within the preset time of the local vehicle, the driving trajectory within the preset time of the remote vehicle, as shown in FIG. 7, the local vehicle is judged Whether it is facing the remote vehicle.
  • Step S44 When the local vehicle and the remote vehicle satisfy the direction of the relative travel of the intersection, it is determined whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection.
  • the driving trajectory within the preset duration of the remote vehicle determines whether there is a trajectory intersection.
  • step S41 and the step S42 in the fourth embodiment of the driving collision warning method of the present invention can be combined with the step S43 and the step S44 in the fifth embodiment.
  • the specific implementation manner is as follows:
  • Step S41 determining, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range;
  • Step S45 when the local vehicle and the remote vehicle are in the same preset altitude range, according to the local azimuth of the local vehicle, local historical location information, local driving speed, remote azimuth of the remote vehicle, remote historical location information, and far-distance driving speed. , to determine whether the local vehicle and the remote vehicle are driving in opposite directions;
  • Step S46 when the local vehicle and the remote vehicle satisfy the direction of the intersection relative to the driving, it is determined whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection.
  • the present invention provides a traffic collision early warning device.
  • the traffic collision early warning device includes:
  • the information acquiring module 10 is configured to acquire location information and driving information of the local vehicle, and receive location information and driving information of the remote vehicle broadcast within the preset distance of the local vehicle, where the location information and the driving information of the local vehicle are respectively used as the local location.
  • Information and local driving information, the remote vehicle location information and driving information are respectively used as remote location information and remote driving information;
  • the first trajectory generating module 20 is configured to generate, according to the local location information and the local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • the second trajectory generating module 30 is configured to generate, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • the second trajectory generating module 30 is configured to generate a historical trajectory of the remote vehicle by using the remote location information, and use the historical trajectory, azimuth, and speed of the remote vehicle to perform interpolation by using an extrapolation method in mathematics to predict the current time setting. Local driving trajectory within the duration.
  • the determining module 40 determines whether there is a track intersection point between the locally predicted driving track and the remote predicted driving track;
  • the warning output module 50 outputs preset collision warning information when the local predicted driving trajectory and the remote predicted driving trajectory have intersections with the trajectory.
  • the imaging device is not needed, and only the positioning device conventionally configured in the vehicle is needed, thereby reducing the cost of the collision warning of the collision.
  • the early warning output module 50 includes:
  • the time length obtaining unit 51 obtains the first time length of the local vehicle arrival track intersection according to the local predicted driving track and the local driving speed, and acquires the second time length of the remote vehicle arrival track intersection according to the remote predicted driving track and the remote driving speed;
  • the warning output unit 52 compares the first duration and the second duration. When the difference between the first duration and the second duration is less than the preset time threshold, the preset collision warning information is output.
  • the preset collision warning information is output, because the driver is in the During the local vehicle driving process, the difference between the first duration and the second duration of the possible collision is more accustomed and better understood than the distance between the current time of the local vehicle and the intersection of the local predicted driving trajectory and the remote predicted driving trajectory. And according to its own situation, it can preset the time threshold by itself, so that the collision warning is applicable to different drivers, and the scope of collision warning is expanded.
  • a third embodiment of the driving collision warning method is provided.
  • the third embodiment
  • the early warning output unit 52 is further configured to:
  • the difference between the time and the length is used to correspond to the collision warning information of the remote vehicle output.
  • the time difference value corresponding to the remote vehicle is used to output the preset collision warning information, and the smaller the time difference is, the higher the threat level is. If the threat level is not differentiated, all preset warning times are directly output. It is possible for the driver to evade a remote vehicle with a small threat level without promptly evading a vehicle with a high threat level, or the driver can only avoid one of the vehicles with a collision threat and ignore other remote vehicles with the same threat to cause a collision accident. The embodiment is very good in avoiding such a situation and improving road safety.
  • the determining module 40 includes:
  • the first determining unit 41 is configured to determine, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range;
  • the second determining unit 42 is configured to determine whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection when the local vehicle and the remote vehicle are in the same preset altitude range.
  • the erroneous judgment situation that the remote vehicle within the preset distance between the local vehicle and the local vehicle is determined to have the intersection of the trajectory due to the absence of the trajectory intersection point is avoided, and the accuracy of the judgment is improved.
  • the road safety is improved, and the long-distance vehicles that do not have the intersection point do not need to be correspondingly warned, thereby saving costs.
  • the embodiment may also be based on the second embodiment of the driving collision warning device, and the optional embodiment of the collision warning device includes:
  • the information acquiring module 10 is configured to acquire location information and driving information of the local vehicle, and receive location information and driving information of the remote vehicle broadcast within the preset distance of the local vehicle, where the location information and the driving information of the local vehicle are respectively used as the local location.
  • Information and local driving information, the remote vehicle location information and driving information are respectively used as remote location information and remote driving information;
  • the first trajectory generating module 20 is configured to generate, according to the local location information and the local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • the second trajectory generating module 30 generates, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • the first determining unit 41 is configured to determine, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range;
  • the second determining unit 42 is configured to determine, when the local vehicle and the remote vehicle are in the same preset altitude range, whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection;
  • the time length obtaining unit 51 obtains the first time length of the local vehicle arrival track intersection according to the local predicted driving track and the local driving speed, and acquires the second time length of the remote vehicle arrival track intersection according to the remote predicted driving track and the remote driving speed;
  • the warning output unit 52 compares the first duration and the second duration. When the difference between the first duration and the second duration is less than the preset time threshold, the preset collision warning information is output.
  • the embodiment may also be based on the third embodiment of the traffic collision warning device, and the optional embodiment of the collision collision warning device includes:
  • the information acquiring module 10 is configured to acquire location information and driving information of the local vehicle, and receive location information and driving information of the remote vehicle broadcast within the preset distance of the local vehicle, where the location information and the driving information of the local vehicle are respectively used as the local location.
  • Information and local driving information, the remote vehicle location information and driving information are respectively used as remote location information and remote driving information;
  • the first trajectory generating module 20 is configured to generate, according to the local location information and the local driving information, a local predicted driving trajectory within a preset time period of the local vehicle from the current time;
  • the second trajectory generating module 30 is configured to generate, according to the remote location information and the remote driving information, a remote predicted driving trajectory within a preset time period of the remote vehicle from the current time;
  • the first determining unit 41 is configured to determine, according to the local altitude information and the remote altitude information, whether the local vehicle and the remote vehicle are in the same preset altitude range;
  • the second determining unit 42 is configured to determine, when the local vehicle and the remote vehicle are in the same preset altitude range, whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection;
  • the time length obtaining unit 51 is configured to acquire a first duration of the local vehicle arrival trajectory intersection according to the local predicted driving trajectory and the local driving speed, and acquire a second duration of the remote vehicle arrival trajectory intersection according to the remote predicted driving trajectory and the remote driving speed;
  • the warning output unit 52 is configured to obtain a difference between each first duration and each second duration, and use the difference as the duration difference; compare all the duration differences with the preset time threshold, and select a duration that is less than the preset time threshold.
  • the difference value, the selected time difference value is taken as the waiting time difference value; according to the waiting time difference value from small to large, the time difference value is treated one by one corresponding to the remote vehicle output preset collision warning information.
  • the determining module 40 includes:
  • the third determining unit 43 is configured to determine whether the local vehicle and the remote vehicle are traveling according to the local azimuth of the local vehicle, the local historical position information, the local driving speed, the remote azimuth of the remote vehicle, the remote historical position information, and the local driving speed. ;
  • the fourth determining unit 44 is configured to determine whether the local predicted driving trajectory and the remote predicted driving trajectory have a trajectory intersection when the local vehicle and the remote vehicle satisfy the direction of the intersection relative to the driving.
  • the collision vehicle since the collision vehicle is in a collision, the collision force is greater, the destructiveness is stronger, and the risk is higher. Therefore, it is determined whether the remote vehicle in the local vehicle and the preset distance are relatively driven, and the relative driving Whether the vehicle will collide, so as to determine whether to issue preset warning information, can effectively issue preset warning information to the collision of relatively strong and dangerous intersections, and then remind the driver to avoid these possible collisions and improve road safety.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种行车碰撞预警方法和装置,该方法包括:获取本地车辆的位置信息和行车信息,并接收其预设距离内远程车辆广播的位置信息和行车信息(S10);根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹(S20);根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹(S30);判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点(S40);当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息(S50)。该方法获取位置信息和行车信息过程不受视野范围的限制,获取的信息准确率高,成本低,能形成实时有效的预警,提高道路交通安全。

Description

行车碰撞预警方法及装置
技术领域
本发明涉及智能交通系统与汽车安全技术领域,尤其涉及一种行车碰撞预警方法及装置。
背景技术
随着交通业的飞速发展,道路车辆数目激增,交通安全形势日趋严峻,尤其在交通情况复杂的路口,驾驶员存在视觉盲点,其行车碰撞率往往更高,给驾驶员,乘客的人身安全造成极大威胁。
近年来,随着通信技术的发展,出现高级驾驶辅助系统(ADAS,Advanced Driver Assistance Systems),该系统采用图像识别的方式,进行车辆行驶安全状态判断,并及时预警,从而避免交通事故,然而,由于摄像头的安装位置以及车速等因素的影响,从侧面行驶过来的车辆往往无法进入摄像头的取景范围,致使系统不能有效的预警。
发明内容
本发明的主要目的在于提供一种行车碰撞预警方法及装置,旨在解决无法进入摄像头取景范围内车辆的安全预警问题,以提高道路交通安全。
为实现上述目的,本发明提供一种行车碰撞预警方法,所述行车碰撞预警方法包括以下步骤:获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
根据远程位置信息和本地行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。
此外,为实现上述目的,本发明还提供一种行车碰撞预警装置,所述行车碰撞预警装置:
信息获取模块,用于获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
第一轨迹生成模块,用于根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
第二轨迹生成模块,用于根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
判断模块,用于判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
预警输出模块,用于当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。
本发明通过获取本地车辆,本地车辆预设距离内的远程车辆的位置信息和行车信息,对本地车辆与预设距离内的远程车辆预测预设时长内的行车轨迹,若本地车辆与预设距离内的远程车辆存在轨迹交点则输出预设的碰撞预警信息;由于获取位置信息和行车信息过程不受视野范围的限制,且本发明获取的信息准确率高,成本低,因而能形成实时有效的预警,提高道路交通安全。
附图说明
图1为本发明行车碰撞预警方法第一实施例的流程示意图;
图2为本发明行车碰撞预警方法第二实施例中当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息步骤的细化流程示意图;
图3为本发明行车碰撞预警方法第三实施例中比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息步骤的细化流程示意图;
图4为本发明行车碰撞预警方法第四实施例中判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点步骤的细化流程示意图;
图5为本发明中远程车辆和本地车辆不在同一预设海波范围的场景示意图;
图6为本发明行车碰撞预警方法第五实施例中判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点步骤的细化流程示意图;
图7为本发明远程车辆和本地车辆的预测行车轨迹存在轨迹交点的场景示意图;
图8为本发明行车碰撞预警装置第一实施例的功能模块示意图;
图9为本发明行车碰撞预警装置第二实施例中预警输出模块的细化功能模块示意图;
图10为本发明行车碰撞预警装置第四实施例中判断模块的细化功能模块示意图;
图11为本发明行车碰撞预警装置第五实施例中判断模块的细化功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种行车碰撞预警方法,在本发明行车碰撞预警方法的第一实施例中,参照图1,该行车碰撞预警方法包括:
步骤S10,获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
本地位置信息包括本地车辆的历史位置信息、方位角等,本地车辆的历史位置信息可由本地车辆的多个历史位置坐标点构成,本地车辆的多个历史位置坐标点可由本地车辆的不同类型历史定位坐标构成,包括本地车辆GPS坐标、北斗星定位坐标等;远程位置信息包括远程车辆的历史位置信息、方位角等,远程车辆的历史位置信息可由远程车辆的多个历史位置坐标点构成,远程车辆的多个历史位置坐标点可由远程车辆的不同类型历史定位坐标构成,包括远程车辆GPS坐标、北斗星定位坐标等。
本地行车信息包括本地车辆的速度、历史轨迹等,本地车辆的历史轨迹由本地车辆的历史位置信息生成;远程行车信息包括远程车辆的速度、历史轨迹等,远程车辆的历史轨迹由远程车辆的历史位置信息生成。
步骤S20,根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
利用本地位置信息生成本地车辆的历史轨迹,利用本地车辆的历史轨迹,方位角,速度,利用数学中的外推法,进行插值,预测出距离当前时刻设定时长内的本地行车轨迹。为辅助理解上述内容,用以具体实施例解释说明,例如数学中的外推法可采用多项式插值并向外进行趋势预测,根据本地车辆的历史轨迹坐标点进行2阶或3阶多项式插值拟合,历史轨迹坐标点选取时间上距离当前时刻最近的4-8个点的位置坐标。拟合的计算方法为最小二次法;根据拟合的多项式进行时间外推,得到距离当前时刻预设时长内本地车辆坐标点的位置,进而得到距离当前时刻预设时长内的本地预测行车轨迹。
步骤S30,根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
利用远程位置信息生成远程车辆的历史轨迹,利用远程车辆的历史轨迹,方位角,速度,利用数学中的外推法,进行插值,预测出距离当前时刻设定时长内的本地行车轨迹。为辅助理解上述内容,用以具体实施例解释说明,例如数学中的外推法可采用多项式插值并向外进行趋势预测,根据远程车辆的历史轨迹坐标点进行2阶或3阶多项式插值拟合,远程车辆的历史轨迹坐标点选取时间上距离当前时刻最近的4-8个点的位置坐标。拟合的计算方法为最小二次法;根据拟合的多项式进行时间外推,得到距离当前时刻预设时长内远程车辆坐标点的位置,进而得到距离当前时刻预设时长内的远程预测行车轨迹。
步骤S40,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
步骤S50,当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。
判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点,当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。当本地预测行车轨迹与远程预测行车轨迹不存在轨迹交点,则预设的碰撞预警信息不会输出。
在本实施例中,通过基于本地位置信息和本地行车信息,生成本地车辆的本地预测行车轨迹,以及基于远程位置信息和远程行车信息,生成远程车辆的远程预测行车轨迹,在本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,才输出预设的碰撞预警信息,而无需依靠视野范受到限制的摄像装置,避免因不完整的取景图像而未能及时预警而造成交通事故,从而避免行车碰撞预警因视野范围的限制而不准确,形成实时有效、及时的行车碰撞预警,提高道路交通安全。同时,本实施例中无需摄像装置,只需车辆中常规配置的定位装置,从而降低了行车碰撞预警的成本。
进一步地,在本发明行车碰撞预警方法的第一实施例的基础上,提供行车碰撞预警方法第二实施例,在第二实施例中,参照图2,步骤S50包括:
步骤S51,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
根据本地预测行车轨迹,能够获取本地车辆到达本地预测行车轨迹与远程预测行车轨迹轨迹交点的距离,再根据本地行车速度,得到本地车辆到达轨迹交点的第一时长,根据远程预测行车轨迹,能够获取远程车辆到达本地预测行车轨迹与远程预测行车轨迹轨迹交点的距离,再根据远程行车速度,得到远程车辆到达轨迹交点的第二时长,通过获取本地车辆到达轨迹交点的第一时长,远程车辆到达轨迹交点的第二时长,不仅仅是本地车辆与远程车辆到达轨迹交点的距离,驾驶员会更直观清楚了解碰撞何时何地发生,有益于驾驶员及时规避碰撞。
步骤S52,比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息。
预设时间阈值可由驾驶员按照自身驾驶习惯自行设定,如驾驶员在操控本地车辆的过程中,希望规避不太可能发生的碰撞预警,可设置较短的预设时间阈值,当第一时长和第二时长之差小于预设时间阈值时,由于预设时间阈值较短,第一时长和第二时长之差会更小,第一时长和第二时长之差很小时,说明碰撞的可能性更大,此时输出预设的碰撞预警信息,从而预测的都是可能性大的碰撞预警,规避了不太可能发生的碰撞预警。
在本实施例中,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长,比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息;以第一时长和第二时长之差小于预设时间阈值时而不仅仅是本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时输出预设的碰撞预警信息,由于驾驶员在本地车辆行车过程中,对可能发生碰撞的第一时长和第二时长之差比对本地车辆当前时刻与本地预测行车轨迹与远程预测行车轨迹轨迹交点的距离会更加习惯与更好的直观了解,且能够根据自身的情况,自行预设时间阈值,从而使碰撞预警适用于不同驾驶员,拓展了碰撞预警的应用范围。
进一步地,在本发明行车碰撞预警方法的第二实施例的基础上,提供行车碰撞预警方法第三实施例,在第三实施例中,参照图3,步骤S52包括:
步骤S521,获取各个第一时长与各个第二时长的差值,将该差值作为时长差值;
由于在交通道路上,交通情况复杂,预设距离内的与本地车辆存在轨迹交点的远程车辆可能为多个,本地车辆到各个预设距离内远程车辆的轨迹交点的时间为各个第一时长,各个预设距离内远程车辆达到轨迹交点的时间为各个第二时长,各个第一时长与各个第二时长的差值为时长差值,因而也存在多个时长差值。
步骤S522,比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值;
时长差值为多个时,大于预设时间阈值的则不存在发生碰撞威胁或发生碰撞威胁概率很小,小于预设时间阈值的时长差值则表明可能发生碰撞威胁或发生碰撞威胁概率很大。
步骤S523,按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息。
时长差值为多个且均小于预设时间阈值时,由于时长差值越小,则本地车辆与远程车辆同时达到轨迹交点的概率就就越大,越有可能发生碰撞,按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息预警即是对周围所有车依次进行威胁等级的评定,如果有多辆车都需要安全预警,则首先对时长差值越小的即最高等级的威胁进行预警,当高等级威胁解除后再进行其它低等级的威胁预警,这有益于驾驶员根据实际情况首先规避最高等级的威胁,再规避低等级的威胁,提高预警的有效性与实用性,从而提高道路安全。
在本实施例中,根据获取各个第一时长与各个第二时长的差值,将该差值作为时长差值,比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值,按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息;由于时长差值越小,威胁等级就越高,如果不区分威胁等级直接输出所有的预设预警时间,驾驶员有可能先规避威胁等级小的远程车辆而没有及时规避威胁等级大的车辆,或者驾驶员只规避其中一辆具有碰撞威胁的车辆而忽视其它同样具有威胁的远程车辆而造成碰撞事故,本实施例很好的避免了这样的情况,提高了道路安全。
进一步地,在本发明行车碰撞预警方法的第一实施例的基础上,提供行车碰撞预警方法第四实施例,在第四实施例中,参照图4,本地位置信息包括本地车辆所在位置的本地海拔信息,远程位置信息包括远程车辆所在位置的远程海拔信息,步骤S40包括:
步骤S41,根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围。
本地车辆不止在平地,还会在高架桥,立交桥等处行车,本地位置信息需包括本地海拔信息,远程位置信息需包括远程海拔信息,需判断本地车辆和远程车辆需在同一预设海拔范围处,本地车辆还可以采用定位系统中的GPS海拔信息与图像识别的方式如摄像头取景相结合综合判断判断本地车辆和远程车辆是否在同一预设海拔范围。
步骤S42,当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点,
只有当本地车辆和远程车辆在同一预设海拔范围时,才需要判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点,如图5中立交桥上下的车辆因为不在同一预设海拔范围,根本不存在碰撞威胁,则不需要判断,此实施例规避了可能存在的错误判断情况,提高了判断的准确性,也不需要进一步的预警从而节约了成本。
在本实施例中,根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围,当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点,本实施例避免了由于本地车辆与本地车辆预设距离内的远程车辆由于不在同一海拔范围,不存在轨迹交点而被判断成存在轨迹交点的错误判断情况,提高了判断的准确性,提高了道路安全性,对这些不存在轨迹交点的远程车辆不需在进行相应的预警,从而节约了成本。
此外,本实施例也可基于行车碰撞预警方法的第二实施例,行车碰撞预警方法可选实施例包括以下步骤:
步骤S10,获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
步骤S20,根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
步骤S30,根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
步骤S41,根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
步骤S42,当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
步骤S51,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
步骤S52,比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息。
此外,本实施例也可基于行车碰撞预警方法的第三实施例,行车碰撞预警方法可选实施例包括以下步骤:
步骤S10,获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
步骤S20,根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
步骤S30,根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
步骤S41,根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
步骤S42,当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
步骤S51,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
步骤S521,获取各个第一时长与各个第二时长的差值,将该差值作为时长差值;
步骤S522,比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值;
步骤S523,按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息。
进一步地,在本发明行车碰撞预警方法的第一实施例的基础上,提供行车碰撞预警方法第五实施例,在第五实施例中,参照图6,本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;步骤S40包括:
步骤S43:根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远车行车速度,判断本地车辆和远程车辆是否相向行驶,
本地历史位置信息生成本地历史轨迹,远程历史位置信息生成远程历史轨迹,根据本地历史轨迹,本地方位角,本地行车速度可判断本地车辆预设时长内的的行车轨迹,根据远程历史轨迹,远程方位角,远程行车速度可判断远程车辆预设时长内的的行车轨迹,根据本地车辆预设时长内的的行车轨迹,远程车辆预设时长内的的行车轨迹,如图7所示,判断本地车辆和远程车辆是否相向行驶。
步骤S44:当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
当本地车辆和远程车辆满足交叉路口相对行驶的方向时,根据本地车辆预设时长内的的行车轨迹,远程车辆预设时长内的的行车轨迹,判断是否存在轨迹交点。
在本实施例中,根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,本地行车速度,判断本地车辆和预设距离内远程车辆是否相向行驶,当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。由于相向行驶的车辆在发生碰撞时,碰撞的力度更大,破坏性更强,危险性更高,因而判断本地车辆和预设距离内远程车辆是否相对行驶,相对行驶的车辆是否会发生碰撞,从而确定是否发出预设预警信息,能有效的对可能产生破坏性强,危险性高的相对路口碰撞发出预设预警信息,进而提醒驾驶员规避这些可能存在的碰撞,提高道路安全。
此外,本发明行车碰撞预警方法第四实施例中的步骤S41、步骤S42与第五实施例中的步骤S43、步骤S44可结合,具体实施方式如下:
步骤S41,根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
步骤S45,当本地车辆和远程车辆在同一预设海拔范围时,根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远车行车速度,判断本地车辆和远程车辆是否相向行驶;
步骤S46,当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
本发明提供一种行车碰撞预警装置,在本发明一种行车碰撞预警装置的第一实施例中,参照图8,该行车碰撞预警装置包括:
信息获取模块10,用于获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
第一轨迹生成模块20,用于根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
第二轨迹生成模块30,用于根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
第二轨迹生成模块30,用于利用远程位置信息生成远程车辆的历史轨迹,利用远程车辆的历史轨迹,方位角,速度,利用数学中的外推法,进行插值,预测出距离当前时刻设定时长内的本地行车轨迹。
判断模块40,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
预警输出模块50,当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。
本发明行车碰撞预警装置的具体说明书拓展部分可参照上述行车碰撞预警方法第一实施例对应部分内容,在此不做累述。
在本实施例中,无需依靠视野范受到限制的摄像装置,避免因不完整的取景图像而未能及时预警而造成交通事故,从而避免行车碰撞预警因视野范围的限制而不准确,形成实时有效、及时的行车碰撞预警,提高道路交通安全。同时,本实施例中无需摄像装置,只需车辆中常规配置的定位装置,从而降低了行车碰撞预警的成本。
进一步地,在本发明行车碰撞预警装置第一实施例的基础上,提供行车碰撞预警装置的第二实施例,在第二实施例中,参照图9,预警输出模块50包括:
时长获取单元51,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
预警输出单元52,比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息,
本发明行车碰撞预警装置的具体说明书拓展部分可参照上述行车碰撞预警方法第二实施例对应部分内容,在此不做累述。
在本实施例中,以第一时长和第二时长之差小于预设时间阈值时而不仅仅是本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时输出预设的碰撞预警信息,由于驾驶员在本地车辆行车过程中,对可能发生碰撞的第一时长和第二时长之差比对本地车辆当前时刻与本地预测行车轨迹与远程预测行车轨迹轨迹交点的距离会更加习惯与更好的直观了解,且能够根据自身的情况,自行预设时间阈值,从而使碰撞预警适用于不同驾驶员,拓展了碰撞预警的范围。
进一步地,在本发明行车碰撞预警方法的第二实施例的基础上,提供行车碰撞预警方法第三实施例,在第三实施例中,
所述预警输出单元52还用于:
获取各个第一时长与各个第二时长的差值,将该差值作为时长差值;
比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值;
按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息。
本发明行车碰撞预警装置的具体说明书拓展部分可参照上述行车碰撞预警方法第三实施例对应部分内容,在此不做累述。
在本实施例中,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息,由于时长差值越小,威胁等级就越高,如果不区分威胁等级直接输出所有的预设预警时间,驾驶员有可能先规避威胁等级小的远程车辆而没有及时规避威胁等级大的车辆,或者驾驶员只规避其中一辆具有碰撞威胁的车辆而忽视其它同样具有威胁的远程车辆而造成碰撞事故,本实施例很好的避免了这样的情况,提高了道路安全。
进一步地,在本发明行车碰撞预警装置的第一实施例的基础上,提供行车碰撞预警装置的第四实施例,在第四实施例中,参照图10,所述判断模块40包括:
第一判断单元41用于根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
第二判断单元42用于当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
本发明行车碰撞预警装置的具体说明书拓展部分可参照上述行车碰撞预警方法第四实施例对应部分内容,在此不做累述。
在本实施例中,避免了由于本地车辆与本地车辆预设距离内的远程车辆由于不在同一海拔范围,不存在轨迹交点而被判断成存在轨迹交点的错误判断情况,提高了判断的准确性,提高了道路安全性,对这些不存在轨迹交点的远程车辆不需在进行相应的预警,从而节约了成本。
此外,本实施例也可基于行车碰撞预警装置的第二实施例,行车碰撞预警装置可选实施例包括:
信息获取模块10,用于获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
第一轨迹生成模块20,用于根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
第二轨迹生成模块30,根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
第一判断单元41用于根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
第二判断单元42用于当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
时长获取单元51,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
预警输出单元52,比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息,
此外,本实施例也可基于行车碰撞预警装置的第三实施例,行车碰撞预警装置可选实施例包括:
信息获取模块10,用于获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
第一轨迹生成模块20,用于根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
第二轨迹生成模块30,用于根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
第一判断单元41用于根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
第二判断单元42用于当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
时长获取单元51,用于根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
预警输出单元52,用于获取各个第一时长与各个第二时长的差值,将该差值作为时长差值;比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值;按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息。
进一步地,在本发明行车碰撞预警方法的第一实施例的基础上,提供行车碰撞预警方法第五实施例,在第五实施例中,参照图11,判断模块40包括:
第三判断单元43,用于根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,本地行车速度,判断本地车辆和远程车辆是否相向行驶;
第四判断单元44,用于当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
本发明行车碰撞预警装置的具体说明书拓展部分可参照上述行车碰撞预警方法第五实施例对应部分内容,在此不做累述。
在本实施例中,由于相向行驶的车辆在发生碰撞时,碰撞的力度更大,破坏性更强,危险性更高,因而判断本地车辆和预设距离内远程车辆是否相对行驶,相对行驶的车辆是否会发生碰撞,从而确定是否发出预设预警信息,能有效的对可能产生破坏性强,危险性高的相对路口碰撞发出预设预警信息,进而提醒驾驶员规避这些可能存在的碰撞,提高道路安全。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种行车碰撞预警方法,其特征在于,所述行车碰撞预警方法包括以下步骤:
    获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
    根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
    根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
    判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
    当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。
  2. 如权利要求1所述的行车碰撞预警方法,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点的步骤包括:
    根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度判断本地车辆和远程车辆是否相向行驶;
    当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  3. 如权利要求1所述的行车碰撞预警方法,其特征在于,所述本地行车信息包括本地车辆的本地行车速度,所述远程车辆信息包括远程车辆的远程行车速度,
    所述当本地预测行车轨迹和远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息的步骤包括:
    当本地预测行车轨迹和远程预测行车轨迹存在轨迹交点时,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
    比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息。
  4. 如权利要求3所述的行车碰撞预警方法,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点的步骤包括:
    根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度判断本地车辆和远程车辆是否相向行驶;
    当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  5. 如权利要求3所述的行车碰撞预警方法,其特征在于:当所述远程车辆为多个时,所述比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息包括:
    获取各个第一时长与各个第二时长的差值,将该差值作为时长差值;
    比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值;
    按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息。
  6. 如权利要求5所述的行车碰撞预警方法,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点的步骤包括:
    根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度判断本地车辆和远程车辆是否相向行驶;
    当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  7. 如权利要求1所述的行车碰撞预警方法,其特征在于,所述本地位置信息包括本地车辆所在位置的本地海拔信息,所述远程位置信息包括远程车辆所在位置的远程海拔信息,
    所述判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点的步骤包括:
    根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
    当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  8. 如权利要求7所述的行车碰撞预警方法,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点的步骤包括:
    根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度判断本地车辆和远程车辆是否相向行驶;
    当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  9. 一种行车碰撞预警装置,其特征在于,所述行车碰撞预警装置包括:
    信息获取模块,用于获取本地车辆的位置信息和行车信息,并接收本地车辆预设距离内的远程车辆广播的位置信息和行车信息,其中将本地车辆的位置信息和行车信息分别作为本地位置信息和本地行车信息,将远程车辆的位置信息和行车信息分别作为远程位置信息和远程行车信息;
    第一轨迹生成模块,用于根据本地位置信息和本地行车信息,生成本地车辆距离当前时刻预设时长内的本地预测行车轨迹;
    第二轨迹生成模块,用于根据远程位置信息和远程行车信息,生成远程车辆距离当前时刻预设时长内的远程预测行车轨迹;
    判断模块,用于判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点;
    预警输出模块,用于当本地预测行车轨迹与远程预测行车轨迹存在轨迹交点时,输出预设的碰撞预警信息。
  10. 如权利要求9所述的行车碰撞预警装置,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断模块包括:
    第三判断单元,用于根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度,判断本地车辆和远程车辆是否相向行驶,
    第四判断单元,用于当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  11. 如权利要求9所述的行车碰撞预警装置,其特征在于,所述本地行车信息包括本地车辆的本地行车速度,所述远程车辆信息包括远程车辆的远程行车速度,
    所述预警输出模块包括:
    时长获取单元,用于当本地预测行车轨迹和远程预测行车轨迹存在轨迹交点时,根据本地预测行车轨迹和本地行车速度,获取本地车辆到达轨迹交点的第一时长,并根据远程预测行车轨迹和远程行车速度,获取远程车辆到达轨迹交点的第二时长;
    预警输出单元,用于比较第一时长和第二时长,当第一时长和第二时长之差小于预设时间阈值时,输出预设的碰撞预警信息。
  12. 如权利要求11所述的行车碰撞预警装置,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断模块包括:
    第三判断单元,用于根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度,判断本地车辆和远程车辆是否相向行驶,
    第四判断单元,用于当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  13. 如权利要求11所述的行车碰撞预警装置,其特征在于:当所述远程车辆为多个时,所述预警输出单元还用于:
    获取各个第一时长与各个第二时长的差值,将该差值作为时长差值;
    比较所有时长差值与预设时间阈值,选出小于预设时间阈值的时长差值,将该选出的时长差值作为待用时长差值;
    按照待用时长差值由小到大,逐个对待用时长差值对应远程车辆输出预设的碰撞预警信息。
  14. 如权利要求13所述的行车碰撞预警装置,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断模块包括:
    第三判断单元,用于根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度,判断本地车辆和远程车辆是否相向行驶,
    第四判断单元,用于当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  15. 如权利要求9所述的行车碰撞预警装置,其特征在于,所述本地位置信息包括本地车辆所在位置的本地海拔信息,所述远程位置信息包括远程车辆所在位置的远程海拔信息,
    所述判断模块包括
    第一判断单元,用于根据本地海拔信息和远程海拔信息,判断本地车辆和远程车辆是否在同一预设海拔范围;
    第二判断单元,用于当本地车辆和远程车辆在同一预设海拔范围时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
  16. 如权利要求15所述的行车碰撞预警装置,其特征在于,所述本地位置信息包括本地车辆所在位置的本地方位角,本地历史位置信息,所述远程位置信息包括远程车辆所在位置的远程方位角,远程历史位置信息,本地行车信息包括本地车辆本地行车速度,远程行车信息包括远程车辆远程行车速度;
    所述判断模块包括:
    第三判断单元,用于根据本地车辆的本地方位角,本地历史位置信息,本地行车速度,远程车辆的远程方位角,远程历史位置信息,远程行车速度,判断本地车辆和远程车辆是否相向行驶,
    第四判断单元,用于当本地车辆和远程车辆满足交叉路口相对行驶的方向时,判断本地预测行车轨迹与远程预测行车轨迹是否存在轨迹交点。
PCT/CN2016/106373 2016-08-19 2016-11-18 行车碰撞预警方法及装置 WO2018032642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610696407.1 2016-08-19
CN201610696407.1A CN106251699A (zh) 2016-08-19 2016-08-19 行车碰撞预警方法及装置

Publications (1)

Publication Number Publication Date
WO2018032642A1 true WO2018032642A1 (zh) 2018-02-22

Family

ID=57592550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106373 WO2018032642A1 (zh) 2016-08-19 2016-11-18 行车碰撞预警方法及装置

Country Status (2)

Country Link
CN (1) CN106251699A (zh)
WO (1) WO2018032642A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111046709A (zh) * 2018-10-15 2020-04-21 广州汽车集团股份有限公司 车辆车道级定位方法、系统、车辆及存储介质
CN111832597A (zh) * 2019-08-01 2020-10-27 北京嘀嘀无限科技发展有限公司 一种车辆类型的判定方法及装置
CN112114315A (zh) * 2020-09-25 2020-12-22 长城汽车股份有限公司 防碰撞警示方法及装置
CN113672845A (zh) * 2020-05-14 2021-11-19 阿波罗智联(北京)科技有限公司 一种车辆轨迹的预测方法、装置、设备及存储介质
CN114078326A (zh) * 2020-08-19 2022-02-22 北京万集科技股份有限公司 碰撞检测方法、装置、视觉传感器和存储介质
CN115273550A (zh) * 2022-07-29 2022-11-01 郑州工程技术学院 一种基于车联网的车辆碰撞预警方法及系统
CN115346370A (zh) * 2022-08-10 2022-11-15 重庆大学 基于智能交通的路口防碰撞系统及方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740475A (zh) * 2016-12-26 2017-05-31 深圳市元征科技股份有限公司 车辆起步安全预警方法及装置
CN106740463B (zh) * 2016-12-26 2020-02-28 深圳市元征科技股份有限公司 车辆起步安全预警方法及装置
CN108257418A (zh) * 2016-12-28 2018-07-06 上海汽车集团股份有限公司 车辆碰撞预警方法及装置
CN108437986B (zh) * 2017-02-16 2020-07-03 上海汽车集团股份有限公司 车辆驾驶辅助系统及辅助方法
CN107221195B (zh) * 2017-05-26 2020-03-17 重庆长安汽车股份有限公司 汽车车道预测方法及车道级地图
CN107240298A (zh) * 2017-06-22 2017-10-10 广州世盟电子科技有限公司 一种智能驾驶安全辅助系统和方法
CN109703456B (zh) * 2017-10-25 2022-04-05 上海汽车集团股份有限公司 一种防止汽车碰撞的警示方法、装置及汽车控制器
CN107941222B (zh) * 2017-11-13 2021-02-02 Oppo广东移动通信有限公司 导航方法和装置、计算机设备、计算机可读存储介质
CN107993487B (zh) * 2017-12-11 2021-06-25 东软集团股份有限公司 避让紧急车辆的方法及装置
CN108196544A (zh) * 2018-01-02 2018-06-22 联想(北京)有限公司 一种信息处理方法及信息处理设备
CN108382392A (zh) * 2018-02-08 2018-08-10 长沙智能驾驶研究院有限公司 车辆转弯防碰撞方法、设备及可读存储介质
CN108538088B (zh) * 2018-02-11 2020-06-05 江苏金海星导航科技有限公司 基于定位的船舶碰撞预测方法及装置
CN108983787B (zh) * 2018-08-09 2021-09-10 北京智行者科技有限公司 道路行驶方法
CN109064746A (zh) * 2018-08-31 2018-12-21 努比亚技术有限公司 一种信息处理方法、终端和计算机可读存储介质
CN109799508A (zh) * 2019-01-29 2019-05-24 肇庆奥迪威传感科技有限公司 车辆盲区监测装置、方法及系统
CN110299006B (zh) * 2019-06-28 2021-01-19 浙江吉利控股集团有限公司 一种车辆碰撞告警方法、装置及设备
CN110738871A (zh) * 2019-09-29 2020-01-31 北京浪潮数据技术有限公司 一种提示方法及系统
CN110718094A (zh) * 2019-10-29 2020-01-21 北京汽车集团有限公司 碰撞预警方法、装置和设备
CN111025297A (zh) * 2019-12-24 2020-04-17 京东数字科技控股有限公司 一种车辆监测方法、装置、电子设备及存储介质
CN113022488A (zh) * 2019-12-25 2021-06-25 北京宝沃汽车股份有限公司 车辆及其控制方法与装置
CN111210661A (zh) * 2020-01-16 2020-05-29 北京汽车集团有限公司 交叉路口车辆防碰撞方法及装置
CN111815985A (zh) * 2020-06-28 2020-10-23 王海峰 一种交通数据处理方法、装置、电子设备及存储介质
CN111665852B (zh) * 2020-06-30 2022-09-06 中国第一汽车股份有限公司 一种障碍物避让方法、装置、车辆及存储介质
CN113494925B (zh) * 2021-03-25 2024-02-06 北京星云互联科技有限公司 一种确定目标车辆的方法、装置、车辆及存储介质
CN113596780B (zh) * 2021-09-28 2021-12-21 禾多科技(北京)有限公司 车辆交互信息生成方法、装置、设备和计算机可读介质
CN113593241B (zh) * 2021-09-28 2022-03-01 禾多科技(北京)有限公司 车辆交互信息校验方法、装置、电子设备和可读介质
CN115273546A (zh) * 2022-07-25 2022-11-01 深圳市元征软件开发有限公司 一种风险提示方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728617B2 (en) * 2002-07-23 2004-04-27 Ford Global Technologies, Llc Method for determining a danger zone for a pre-crash sensing system in a vehicle having a countermeasure system
CN104537889A (zh) * 2014-12-30 2015-04-22 四川九洲电器集团有限责任公司 一种不同车况下的防撞方法和系统
CN104680838A (zh) * 2013-11-28 2015-06-03 三星电子(中国)研发中心 用于汽车的安全辅助方法和系统
CN104882025A (zh) * 2015-05-13 2015-09-02 东华大学 一种基于车联网技术的碰撞检测预警方法
CN105303886A (zh) * 2014-06-17 2016-02-03 中国移动通信集团公司 交通信息的预警处理方法、装置、终端及预警服务器
CN105427669A (zh) * 2015-12-04 2016-03-23 重庆邮电大学 一种基于dsrc车车通信技术的防撞预警方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198552B (zh) * 2013-03-15 2015-09-09 重庆大学 一种获取加气站等候车辆队列信息的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728617B2 (en) * 2002-07-23 2004-04-27 Ford Global Technologies, Llc Method for determining a danger zone for a pre-crash sensing system in a vehicle having a countermeasure system
CN104680838A (zh) * 2013-11-28 2015-06-03 三星电子(中国)研发中心 用于汽车的安全辅助方法和系统
CN105303886A (zh) * 2014-06-17 2016-02-03 中国移动通信集团公司 交通信息的预警处理方法、装置、终端及预警服务器
CN104537889A (zh) * 2014-12-30 2015-04-22 四川九洲电器集团有限责任公司 一种不同车况下的防撞方法和系统
CN104882025A (zh) * 2015-05-13 2015-09-02 东华大学 一种基于车联网技术的碰撞检测预警方法
CN105427669A (zh) * 2015-12-04 2016-03-23 重庆邮电大学 一种基于dsrc车车通信技术的防撞预警方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111046709A (zh) * 2018-10-15 2020-04-21 广州汽车集团股份有限公司 车辆车道级定位方法、系统、车辆及存储介质
CN111046709B (zh) * 2018-10-15 2021-02-09 广州汽车集团股份有限公司 车辆车道级定位方法、系统、车辆及存储介质
CN111832597A (zh) * 2019-08-01 2020-10-27 北京嘀嘀无限科技发展有限公司 一种车辆类型的判定方法及装置
CN111832597B (zh) * 2019-08-01 2024-06-11 北京嘀嘀无限科技发展有限公司 一种车辆类型的判定方法及装置
CN113672845A (zh) * 2020-05-14 2021-11-19 阿波罗智联(北京)科技有限公司 一种车辆轨迹的预测方法、装置、设备及存储介质
CN114078326A (zh) * 2020-08-19 2022-02-22 北京万集科技股份有限公司 碰撞检测方法、装置、视觉传感器和存储介质
CN112114315A (zh) * 2020-09-25 2020-12-22 长城汽车股份有限公司 防碰撞警示方法及装置
CN115273550A (zh) * 2022-07-29 2022-11-01 郑州工程技术学院 一种基于车联网的车辆碰撞预警方法及系统
CN115273550B (zh) * 2022-07-29 2023-10-24 郑州工程技术学院 一种基于车联网的车辆碰撞预警方法及系统
CN115346370A (zh) * 2022-08-10 2022-11-15 重庆大学 基于智能交通的路口防碰撞系统及方法
CN115346370B (zh) * 2022-08-10 2023-11-03 重庆大学 基于智能交通的路口防碰撞系统及方法

Also Published As

Publication number Publication date
CN106251699A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018032642A1 (zh) 行车碰撞预警方法及装置
WO2018076558A1 (zh) 行车方法及系统
WO2018036086A1 (zh) 车辆监测方法及装置
WO2017219588A1 (zh) 基于无人机的环境探测方法和系统
WO2018058856A1 (zh) 路面积水检测方法及装置
WO2018135869A1 (ko) 지능형 운전자 보조 시스템을 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법
WO2020085540A1 (en) Augmented reality method and apparatus for driving assistance
WO2020019930A1 (zh) 一种自动泊车方法及装置
WO2020050498A1 (ko) 이미지 세그멘테이션을 이용한 주변 환경 감지 방법 및 장치
WO2018016689A1 (ko) 차량용 라이다 장치
WO2017213313A1 (ko) 차량용 라이다 장치 및 차량
WO2018208006A1 (en) User interface apparatus for vehicle and vehicle
WO2015099465A1 (ko) 차량 운전 보조 장치 및 이를 구비한 차량
WO2016182275A1 (en) Autonomous driving apparatus and vehicle including the same
EP3545380A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
WO2018028115A1 (zh) 疲劳驾驶预警方法及云端服务器
WO2017148195A1 (zh) 基于车载智能终端的汽车安全控制方法及装置
WO2016186355A1 (ko) 디스플레이장치 및 이의 동작 방법
WO2018079919A1 (ko) 자율 주행 차량 및 자율 주행 차량의 동작 방법
WO2020082776A1 (zh) 一种自动泊车的安全距离警示方法及车载终端
WO2020133987A1 (zh) 一种车辆的车道保持控制方法及系统
EP3538409A1 (en) Vehicle control device mounted on vehicle and method for controlling the vehicle
WO2022092686A1 (ko) 최소 위험 조작을 수행하기 위한 차량 및 상기 차량의 작동 방법
WO2015110014A1 (en) Method, apparatus, and terminal device for determining user activity range
WO2014048231A1 (zh) 触摸屏智能设备文字处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913397

Country of ref document: EP

Kind code of ref document: A1