WO2018135869A1 - 지능형 운전자 보조 시스템을 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법 - Google Patents
지능형 운전자 보조 시스템을 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법 Download PDFInfo
- Publication number
- WO2018135869A1 WO2018135869A1 PCT/KR2018/000826 KR2018000826W WO2018135869A1 WO 2018135869 A1 WO2018135869 A1 WO 2018135869A1 KR 2018000826 W KR2018000826 W KR 2018000826W WO 2018135869 A1 WO2018135869 A1 WO 2018135869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- collision
- camera system
- control
- ecu
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 98
- 230000015654 memory Effects 0.000 claims abstract description 68
- 238000004891 communication Methods 0.000 claims abstract description 42
- 238000012545 processing Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 64
- 230000008859 change Effects 0.000 claims description 31
- 230000006870 function Effects 0.000 claims description 31
- 230000002265 prevention Effects 0.000 claims description 16
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 230000000116 mitigating effect Effects 0.000 claims description 6
- 108091033322 FsrA Proteins 0.000 claims description 2
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 claims 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 claims 1
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 46
- 230000001276 controlling effect Effects 0.000 description 36
- 239000000725 suspension Substances 0.000 description 22
- 230000008569 process Effects 0.000 description 16
- 238000004422 calculation algorithm Methods 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- MTLMVEWEYZFYTH-UHFFFAOYSA-N 1,3,5-trichloro-2-phenylbenzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1C1=CC=CC=C1 MTLMVEWEYZFYTH-UHFFFAOYSA-N 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000003466 anti-cipated effect Effects 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000013439 planning Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- VTLYHLREPCPDKX-UHFFFAOYSA-N 1,2-dichloro-3-(2,3-dichlorophenyl)benzene Chemical compound ClC1=CC=CC(C=2C(=C(Cl)C=CC=2)Cl)=C1Cl VTLYHLREPCPDKX-UHFFFAOYSA-N 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 210000000887 face Anatomy 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002650 habitual effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/02—Rear-view mirror arrangements
- B60R1/04—Rear-view mirror arrangements mounted inside vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/04—Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18163—Lane change; Overtaking manoeuvres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/147—Details of sensors, e.g. sensor lenses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/143—Alarm means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4041—Position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/801—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/802—Longitudinal distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/805—Azimuth angle
Definitions
- the present invention relates to an Advanced Driving Assistance System (ADAS), and more particularly, to a camera system, and a driver assistance system and method for ADAS.
- ADAS Advanced Driving Assistance System
- ADAS Advanced Driving Assistance System
- ADAS Advanced Driving Assistance System
- the ADAS sensor device detects a vehicle ahead and recognizes a lane. Then, when the target lane, the target speed, and the target in front of the target are determined, the vehicle's electric stability control (ESC), engine management system (EMS), motor driven power steering (MDPS), and the like are controlled.
- ESC electric stability control
- EMS engine management system
- MDPS motor driven power steering
- ADAS may be implemented as an automatic parking system, a low speed downtown driving assistance system, a blind spot warning system, or the like.
- the sensor device for sensing the situation in front of the ADAS is a GPS sensor, a laser scanner, a front radar, and a Lidar.
- the most representative one is a front camera for photographing the front of the vehicle.
- a first embodiment according to the present invention aims to provide voltage logic and memory logic that can be used in a front camera system for ADAS.
- the second embodiment of the present invention is to prevent the collision between the vehicle intervening in the side lane and the collision of the own vehicle by controlling one or more of the speed, braking and steering of the own vehicle when changing the lane of the side lane vehicle It is an object of the present invention to provide a system and method.
- the technical problem of the third embodiment of the present invention is to provide a driving assistance system for changing lanes to a left turning lane for turning left.
- the technical problem of the third embodiment of the present invention is to provide a driving assistance system that performs a left turn by controlling the steering of the vehicle after the vehicle enters the left turn lane.
- a fourth embodiment of the present invention is to provide an emergency braking system and method that can control the entry point of emergency braking according to the degree of sliding of the road.
- a fourth embodiment of the present invention is to provide an emergency braking system and method that can advance the emergency braking entry time when it is determined that the slippery road is determined.
- the technical problem of the fifth embodiment of the present invention is to provide a traveling assistance system for preventing a collision with a vehicle that is interrupted in front of the own vehicle.
- a sixth embodiment of the present invention is to provide an intersection collision avoidance system and method that detects the risk of collision between the own vehicle and the surrounding vehicle at the intersection, and can warn the driver of the risk of collision according to the level of the collision risk. do.
- the sixth embodiment of the present invention detects the danger of collision between the own vehicle and the surrounding vehicle at the intersection, and prevents the intersection collision that can perform the steering control of the vehicle together with the warning of the collision risk to the driver according to the level of the collision risk It is an object of the present invention to provide a system and method.
- a seventh embodiment of the present invention aims to implement automatic emergency braking based on a longitudinal TTC and a transverse TTC between a host vehicle and another vehicle in a front camera system for ADAS.
- the technical problem of the eighth embodiment of the present invention is to provide a driving assistance system for determining a possibility of collision between a host vehicle and a surrounding vehicle and warning the driver of the collision.
- the technical problem of the ninth embodiment of the present invention is to provide a driving assistance system for preventing collision between vehicles by determining an estimated time of collision between vehicles at an intersection.
- the priority of the CTA control is determined through communication between neighboring vehicles, and according to the determined CTA priority, a plurality of vehicles organically perform CAT control at the intersection. It is an object of the present invention to provide an intersection prevention system and method.
- the tenth embodiment of the present invention provides an intersection collision prevention system and method that can prevent the collision by performing CTA control after detecting the vehicle or pedestrian protruding in the lateral direction when the vehicle enters the intersection. For that purpose.
- An eleventh embodiment of the present invention provides a vehicle control apparatus for detecting an intersection using a camera and a radar disposed in the own vehicle, and detecting the side of the own vehicle at the detected intersection to determine whether the own vehicle and the target vehicle collide with each other. It is an object to provide a method.
- the eleventh embodiment of the present invention provides a vehicle control apparatus and method for generating an alarm to the driver and emergency braking of the own vehicle when it is determined that the collision between the own vehicle and the target vehicle is determined based on the collision between the own vehicle and the target vehicle. It aims to provide.
- the technical problem of the twelfth embodiment of the present invention is to provide a driving assistance system that can observe a direction other than the direction of the driver's gaze with the camera system and control the vehicle through this.
- a vehicle camera system comprising: a lens (10) for photographing the front of a vehicle; A lens barrel (15) for accommodating the lens in the inner space; A lens holder 20 coupled to the lens barrel; An image sensor 31 for sensing an image captured by the lens; An image processor (41) for receiving and processing image data from the image sensor; And a camera MCU 42 in communication with the image processor to receive data processed by the image processor.
- the vehicle camera system includes: a first converter unit 521 for receiving an ignition voltage 510 and outputting at least one voltage; And a regulator unit 523 receiving the voltage output from the first converter unit 521 and outputting at least one voltage.
- the camera MCU 42 receives a first voltage 511 from the first converter unit 521 as an operating power source, and the image processor 41 receives a first voltage from the first converter unit 521 as an operating power source. Receive voltage 511.
- the first voltage 511 output from the first converter unit 521 is 3.3.
- the image processor 41 receives the second voltage 512 from the first converter unit 521, the image sensor 31 receives the fifth voltage 515 from the regulator unit 523, The second voltage 512 and the fifth voltage 515 are equal to each other.
- the second voltage and the fifth voltage 515 is 1.8 V.
- the image sensor 31 receives a sixth voltage 516 from the regulator unit 523 as a core power source, and the sixth voltage 516 is 2.8V.
- the first converter unit 521 is configured to include at least one DC-DC converter, and the regulator unit 523 is configured to include at least one low drop out (LDO).
- LDO low drop out
- the camera MCU 42 communicates with a first memory 531.
- the image processor 41 is in communication with a second memory 532 and a third memory 533.
- the capacity of the second memory 532 is determined according to the number of ADAS functions supported by the vehicle camera system.
- the camera system may include Road Boundary Departure Prevention Systems (RCDPS), Cooperative Adaptive Cruise Control Systems (CACC), Vehicle / roadway warning systems, Partially Automated Parking Systems (PAPS), Partially Automated Lane Change Systems (PALS), and C-FVBWS (C-FVBWS).
- RDPS Road Boundary Departure Prevention Systems
- CACC Cooperative Adaptive Cruise Control Systems
- PAPS Partially Automated Parking Systems
- PAPS Partially Automated Lane Change Systems
- C-FVBWS C-FVBWS
- LWS Cooperative Forward Vehicle Emergency Brake Warning Systems
- LWS Lane Departure Warning Systems
- PDCMS Pedestrian Detection and Collision Mitigation Systems
- CSWS Curve Speed Warning Systems
- LKAS Lane Keeping Assistance Systems
- ACC Adaptive Cruise Control Systems
- FVCWS Forward Vehicle Collision Warning Systems
- MALSO Manoeuvring Aids for Low Speed Operation systems
- LDF Lane Change Decision Aid Systems
- LSF Low Speed Following systems
- FSRA Full Speed Range Adaptive cruise control systems
- FVCMS Forward Vehicle Collision Mitigation Systems
- ERBA Cooperative Intersection Signal Information and Violation Warning Systems
- TIWS Traffic Impediment Warning Systems
- the lens barrel further includes a flange, and a groove is formed on a lower surface of the flange of the lens barrel.
- the groove may be formed of at least one of a single circular shape, a double circular shape, a cross lattice shape, and a zigzag shape.
- Grooves are formed on the upper surface of the lens holder.
- the groove may be formed of at least one of a single circular shape, a double circular shape, a cross lattice shape, and a zigzag shape.
- An anti-collision system includes a camera system for generating image data of front, rear, left and right sides of a host vehicle, and a radar for an object of the front, rear, left and right sides of the subject vehicle.
- a radar system that generates data, and analyzes the image data and the radar data to detect a target vehicle from surrounding vehicles, and if the collision between the host vehicle and the target vehicle is determined, the speed, braking, At least one of the steering is controlled to include an electronic control unit (ECU).
- ECU electronice control unit
- the ECU transmits a control signal to at least one of a vehicle attitude control controller, a steering controller, an engine control controller, a suspension controller, and a brake controller disposed in the host vehicle. do.
- the ECU may control the steering controller to change the driving direction of the own vehicle when the collision with the target vehicle in front of the vehicle is anticipated and there is no risk of collision with the vehicle being driven in the side lane, or the vehicle may be in the side lane.
- the engine control controller and the brake controller is controlled when there is a risk of collision with the vehicle driving in the vehicle.
- the ECU may control the steering controller to change the driving direction of the host vehicle or to control the engine control controller and the brake controller when the collision with the target vehicle intervening in the side road is expected. To control the speed.
- the image data of the front, rear, left and right sides of the own vehicle is generated, and the radar data of the objects of the front, rear, left and right sides of the own vehicle is generated.
- Detecting a target vehicle among neighboring vehicles by analyzing the image data and the radar data; determining a collision between the host vehicle and the target vehicle; and if the collision is determined, the host vehicle At least one of the speed, braking, steering.
- steering is controlled to change the driving direction of the own vehicle or when there is a risk of collision with the vehicle driving in the side lane. To control the speed.
- steering is controlled to change the traveling direction of the host vehicle or to control the speed of the host vehicle.
- the driving assistance system includes a camera system, and includes an electronic control unit (ECU) for controlling the vehicle through state information around the vehicle detected by the vehicle camera system, and the ECU receives the state information to receive the vehicle.
- the steering of the vehicle is controlled to change the lane of the vehicle to the left turning lane.
- the state information includes at least one of a road mark and a widening branch lane.
- the camera system detects first information in front of the vehicle, and the ECU receives the first information to control the speed and brake of the vehicle.
- the first information includes at least one of data about a front vehicle, data about a front lane, a distance from a front vehicle, data about a traffic sign of an intersection, and signal data of an intersection.
- the ECU determines and controls whether the vehicle is stopped based on the second information around the vehicle received from the vehicle camera system. It includes stop line of intersection, presence or absence of vehicle ahead and signal data of intersection.
- the ECU controls the driver warning controller to inform the driver of whether the vehicle can turn left based on the state information.
- the apparatus may further include a GPS device that notifies whether the left turn is possible at the intersection and whether the left turn lane is branched ahead of the road, and the ECU receives and processes data transmitted by the GPS device.
- An emergency braking system includes a camera system for recognizing a road surface condition or a traffic sign in front of a road, a speed of a own vehicle, and a relative speed of the own vehicle and a target vehicle.
- a navigation processor and an electronic control unit (ECU) which calculates an entry point of emergency braking control by calculating a collision point based on the relative speed, and advances an entry point of emergency braking control when it is determined that the vehicle is driving on a slippery road. do.
- the emergency braking system further includes a navigation system for recognizing the weather information of the currently driving road, and the ECU is configured to generate a slippery road based on the weather information of the currently running road. If it is determined that the vehicle is driving, the time for entering the emergency braking control is advanced.
- the ECU of the emergency braking system determines that the vehicle is driving on a slippery road when the wiper operates for a predetermined time, and advances the entry time of the emergency braking control.
- the ECU of the emergency braking system according to the fourth embodiment of the present invention applies a weight of 30% to 70% when calculating the entry point of the emergency braking control to advance the entry point of the emergency braking control.
- the driving assistance system further includes an electronic control unit (ECU) for determining a risk of collision with another vehicle and controlling the host vehicle based on the position of the host vehicle in the first lane through which the host vehicle proceeds, wherein the camera system Detects the presence and position of the other vehicle that intercepts the front of the host vehicle, and the ECU controls the host vehicle based on the lateral position of the host vehicle and the other vehicle.
- ECU electronice control unit
- the camera system when the other vehicle does not exist in the second lane which is a lane in a direction opposite to the direction in which the other vehicle is intersecting the first lane, the ECU is the ECU Control steering to change lanes to the second lane
- the ECU determines that the host vehicle has the first lane. Change the speed of the vehicle while maintaining.
- the apparatus further comprises a radar device for detecting a distance between the host vehicle and the other vehicle, wherein the camera system detects a lateral position of the host vehicle and the other vehicle.
- the ECU controls the vehicle to accelerate the speed of the host vehicle so as to overtake the vehicle before the vehicle enters the first lane.
- the ECU controls the speed of the own vehicle to be decelerated to prevent collision with the other vehicle.
- the apparatus further comprises a radar device for detecting a longitudinal distance between the host vehicle and the other vehicle, wherein the camera system detects a lateral distance between the host vehicle and the other vehicle, and the ECU In order to prevent a collision between the host vehicle and the other vehicle, control of the host vehicle in the longitudinal direction and the transverse direction is performed.
- the camera system detects the first lane in front of the host vehicle, and the ECU is in the first lane of the host vehicle through the obtained first lane information of the camera system.
- the position is calculated to control the steering and speed of the vehicle.
- an electronic control unit for judging a risk of collision with a neighboring vehicle based on whether the own vehicle is stopped or driven at an intersection and whether the steering wheel is operated
- a driver warning controller which warns of a risk of collision between the host vehicle and the surrounding vehicle in a video and / or audio manner based on the collision risk determination result of the ECU.
- the ECU determines that the first vehicle is at risk of collision between the own vehicle and the surrounding vehicle.
- the driver warning controller warns of a risk of collision of the first level in the video manner when the risk of collision of the first level is occurred.
- the ECU determines that the second vehicle is at risk of collision between the own vehicle and the surrounding vehicle when the steering wheel for left turn, right turn or u-turn is made while the own vehicle starts to travel.
- the driver warning controller warns of the risk of collision at the second level in the video and audio manner when the risk of collision at the second level is prevented.
- the intersection collision avoidance system includes a steering controller that performs control of an electric power steering system (MPDS) that drives a steering wheel.
- MPDS electric power steering system
- the ECU determines that the third-level collision is dangerous when the steering wheel for avoiding the collision is not operated even when there is a risk of collision with the surrounding vehicle when the left vehicle, the right turn or the U-turn of the host vehicle is driven.
- the driver warning controller warns of the danger of collision at the third level in the video and audio manner when the danger of collision at the third level is prevented.
- the steering controller controls steering to avoid collision between the host vehicle and the surrounding vehicle when the third level collision risk occurs.
- An image processor is configured to calculate a longitudinal TTC (TTC x ) and a transverse TTC (TTC y ) between a host vehicle and another vehicle located in front; And based on the relationship between the longitudinal TTC and the transverse TTC, to determine whether to execute an automatic emergency brake (AEB).
- TTC x longitudinal TTC
- TTC y transverse TTC
- the image processor determines to execute AEB if the absolute value of the difference between the longitudinal TTC and the transverse TTC is less than a preset threshold TTC th .
- the predetermined threshold value may be determined based on at least one of the longitudinal TTC, the transverse TTC, a road surface state, a slope of a road surface, and a temperature.
- the driving assistance system includes a camera system, an electronic control unit (ECU) for determining a risk of collision with surrounding vehicles based on the state of the own vehicle at an intersection, a rear radar installed in the own vehicle, and recognizing the surrounding vehicle; And a driver warning controller that warns of a risk of collision between the host vehicle and the surrounding vehicle based on a result of the collision risk determination of the ECU, wherein the camera system recognizes a signal such as a traffic light in front of the subject vehicle and transmits it to the ECU. do.
- ECU electronice control unit
- the camera system recognizes that the driving signal of the traffic light changes from a yellow signal or a red signal.
- the ECU calculates the presence or absence of the surrounding vehicle, the distance from the surrounding vehicle, the speed of the surrounding vehicle, and the traveling angle of the surrounding vehicle using the data measured by the rear radar. Determine the risk of collision with the vehicle.
- the ECU when the rear radar recognizes that the surrounding vehicle is traveling at an acceleration or constant speed when the driving signal of the traffic light is changed into a yellow signal or a red signal, the ECU sends a driver warning controller to the driver. Warns of the risk of collision
- the driver alert controller alerts the driver in at least one of video, audio and handle vibrations.
- a driving assistance system including a camera system, comprising: an ECU (electronic control unit) for controlling a vehicle by determining a risk of collision with a neighboring vehicle based on a traveling path of the own vehicle at an intersection and at the intersection And a sensor for detecting the surrounding vehicle, wherein the surrounding vehicle proceeds in a direction crossing the traveling direction of the own vehicle, and the ECU calculates an estimated collision time based on the speed of the own vehicle and the speed of the surrounding vehicle.
- an ECU electronic control unit
- the camera system measures the position of the surrounding vehicle
- the sensor measures the distance between the host vehicle and the surrounding vehicle
- the ECU is the data measured by the camera system and the sensor Calculate the estimated collision time through.
- the ECU calculates the first collision estimated time of the host vehicle and the surrounding vehicle by combining the data measured by the camera system and the sensor and the mold path, and the first collision estimated time. Later, a vehicle control time point for calculating a second collision estimated time by recalculating a collision probability between the host vehicle and the surrounding vehicle is calculated, and the second collision estimated time is smaller than the first collision estimated time at the vehicle control time point. In this case, the ECU controls the host vehicle.
- the vehicle control timing includes a first vehicle control timing and a second vehicle control timing that is determined to be later than the first vehicle control timing, and at the first vehicle control timing, the ECU alerts. It generates and warns the driver, and at the second vehicle control time point, the ECU controls steering and brake of the vehicle to avoid a collision.
- An intersection collision avoidance system includes a camera system for generating image data of front, rear, left and right sides of a host vehicle, and radar of front, rear, left and right sides of the subject vehicle.
- a radar system generating data and analyzing the image data and the radar data when the host vehicle enters an intersection to determine a collision between the subject vehicle and surrounding vehicles or pedestrians, and when the collision is determined, the subject vehicle and the surrounding vehicle Includes an electronic control unit (ECU) that prioritizes intersection collision avoidance (CTA) control.
- ECU electronice control unit
- the ECU transmits a control signal to at least one of a vehicle attitude control controller, a steering controller, an engine control controller, a suspension controller, and a brake controller disposed in the host vehicle.
- the ECU when a collision is determined on the intersection, the ECU generates a CTA control signal of the own vehicle and transmits the CTA control signal to the surrounding vehicles.
- the CTA control signal of the surrounding vehicle is received from the surrounding vehicles, and the priority of the intersection collision prevention (CTA) control is set by comparing the CTA control signal of the own vehicle and the CTA control signal of the surrounding vehicle.
- CTA intersection collision prevention
- an apparatus for controlling a vehicle may include an image generator configured to photograph a front of a subject vehicle and generate a front image, and a first information generator to detect the front of the subject vehicle and generate first sensing information. And a second information generator configured to detect the side of the own vehicle but to detect the intersection based on the front image and the first sensing information, and to generate the second sensing information by increasing the sensing amount of the side of the own vehicle. And a controller configured to select the target vehicle based on the determination, determine whether the target vehicle collides with the host vehicle, and control braking of the host vehicle.
- the second information generator generates the second sensing information by increasing the width of the side sensing area of the host vehicle after the intersection detection, rather than the width of the side sensing area of the subject vehicle before the intersection sensing.
- the second information generator may generate the second sensing information by increasing the length of the side sensing area of the own vehicle after the intersection detection rather than the length of the side sensing area of the own vehicle before the intersection sensing.
- the second information generation unit may further reduce the detection period detected in the side detection area of the own vehicle after the intersection detection and increase the number of detections for a predetermined time rather than the detection period detected in the side detection area of the own vehicle before the intersection detection. Generate detection information.
- the controller selects, as the target vehicle, a vehicle close to the host vehicle and a vehicle approaching the host vehicle based on the second detection information.
- the controller may determine whether the target vehicle collides with the host vehicle, and if it is determined that the target vehicle collides with the host vehicle, the controller controls the driver to alert the driver or to brake the host vehicle.
- a step of sensing an intersection by photographing and detecting the front of the own vehicle, and when detecting the intersection, increases the amount of detection of the side of the own vehicle so that the side of the own vehicle is important. Selecting a target to be detected and intensively sensing the target vehicle, and selecting a target vehicle based on the detected result, and determining a collision between the target vehicle and the host vehicle and controlling the host vehicle.
- the width of the side sensing region of the host vehicle after the intersection detection is increased rather than the width of the side sensing region of the host vehicle before the intersection detection.
- the length of the side sensing region of the host vehicle after the intersection detection is increased rather than the length of the side sensing region of the subject vehicle before the intersection detection.
- the number of detections for a certain time is reduced by reducing the detection period to detect in the side detection area of the own vehicle after the intersection detection rather than the period of detection in the side detection region of the own vehicle before the intersection detection. Increase.
- the target vehicle is selected as a vehicle that is close to the host vehicle and a vehicle that is approaching the host vehicle based on the detected result.
- the collision between the target vehicle and the host vehicle is determined by the collision between the target vehicle and the host vehicle, the collision is alerted to the driver or the vehicle is braked.
- the driving assistance system includes a camera system, an electronic control unit (ECU) for controlling a vehicle by determining a risk of collision with a surrounding vehicle based on a traveling route of the own vehicle at an intersection, and a first direction watched by a driver at an intersection. Further comprising a driver monitoring camera for detecting, wherein the ECU controls the vehicle camera system to detect a second direction that is different from the first direction.
- ECU electronice control unit
- the ECU when the vehicle camera system detects an object approaching the host vehicle in the second direction, the ECU generates an alarm.
- the ECU controls at least one or more of steering or braking of the host vehicle when there is a possibility of collision between the object located in the second direction and the host vehicle.
- the driver monitoring camera detects a direction in which the driver looks by detecting a direction in which the driver's face faces or a direction in which the driver's eyes look.
- the first direction is a driver control range and the second direction is a system control range
- the ECU generates an alarm when there is a possibility of collision in the driver control range and a possibility of collision in the system control range. If present, control at least one of alarm generation and steering and braking of the vehicle.
- the ECU determines the possibility of collision risk step by step based on the distance between the own vehicle and another vehicle which may possibly collide, and the collision risk level in the system range and the driver control range. Are equal, the ECU determines that the collision risk in the system control range is higher.
- voltage logic and memory logic that can be used in the front camera system for ADAS can be implemented.
- a manner in which the lens barrel and the lens holder can be combined in the front camera system for the ADAS can be provided.
- a manner in which the lens barrel and the lens holder can be combined in the front camera system for the ADAS can be provided.
- the steering of the own vehicle can be controlled to avoid collision with the target vehicle.
- the collision of the target vehicle can be avoided by controlling the speed of the own vehicle.
- one or more of the speed, braking, and steering of the own vehicle may be controlled to avoid collision between the vehicle intervening in the side road and the own vehicle.
- the vehicle may be controlled to automatically enter the vehicle traveling in the one lane using the state information acquired through the camera system into the branch lane.
- the possibility of collision with another vehicle can be reduced through the first and second information obtained by the camera system.
- the vehicle after the vehicle enters the branch lane, it is possible to determine whether it is possible to turn left based on the second information acquired by the camera system, thereby controlling the steering of the vehicle.
- the emergency braking entry point when it is determined that the driving of the slippery road is determined, the emergency braking entry point can be advanced, and a collision / collision accident due to the increase of the braking distance can be prevented.
- the collision between the own vehicle and the other vehicle can be prevented by detecting the other vehicle entering the front of the own vehicle through the camera system for detecting the front of the own vehicle.
- the lane in front of the own vehicle and the other vehicle entering into the front of the own vehicle can be sensed using the camera system, and the position of the own vehicle in the lane can be determined. With this information, it is possible to prevent the collision between the own vehicle and the other vehicle through the deceleration, acceleration and steering control of the own vehicle.
- intersection collision prevention system and method may detect a collision risk between a host vehicle and a surrounding vehicle at an intersection and warn a driver of a collision risk according to the level of the collision risk. In addition, it is possible to avoid the collision by performing the steering control of the vehicle together with the warning of the collision risk according to the level of the collision risk.
- automatic emergency braking can be implemented based on the longitudinal TTC and the transverse TTC between the host vehicle and the other vehicle in the front camera system for the ADAS.
- data about the surrounding situation of the own vehicle can be acquired through the camera system and the rear radar, and the ECU can determine the risk of collision between the own vehicle and the surrounding vehicle through the data.
- the ECU may warn the driver to avoid the collision. This can prevent accidents that may occur when entering the intersection.
- the ninth embodiment of the present invention it is possible to calculate the anticipated collision time between the own vehicle and the surrounding vehicle and to control the steering and the brake of the own vehicle. Through this, collision between the own vehicle and the surrounding vehicle can be avoided.
- the priority of the CTA control is determined through communication between neighboring vehicles, and according to the determined CTA priority, a plurality of vehicles organically perform CAT control at the intersection. can do.
- the collision when the own vehicle enters the intersection, the collision may be prevented by detecting the vehicle or the pedestrian protruding in the lateral direction and then performing the CTA control.
- the vehicle control apparatus and method according to the eleventh embodiment of the present invention can detect the side of the host vehicle at an intersection to determine whether the host vehicle collides with the target vehicle.
- an alarm may be generated and an emergency braking of the own vehicle may be prevented.
- the camera system may observe a direction other than the direction of the driver's attention, thereby preventing collision between the own vehicle and the other vehicle.
- the ECU may control the own vehicle through the information obtained by the camera system to prevent a collision between the own vehicle and the other vehicle.
- FIG. 1 is an exploded perspective view schematically showing a camera system according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing that the camera system according to the first embodiment of the present invention is mounted on an automobile.
- FIG. 3 is a diagram illustrating components of a vehicle to which a camera system according to a first embodiment of the present invention is mounted.
- FIG. 4A is a diagram illustrating components of a camera system according to a first embodiment of the present invention.
- 4B is a diagram illustrating components of a camera system according to a first embodiment of the present invention.
- FIG. 5 is an exploded perspective view illustrating a coupling relationship between a lens barrel and a lens holder according to a first exemplary embodiment of the present invention.
- FIG. 6 is a view for explaining the active alignment of the lens barrel and the lens holder according to the first embodiment of the present invention.
- FIG. 7A to 7E are views showing the lens holder 20 according to the first embodiment of the present invention.
- 8A to 8E show the lens barrel 15 according to the first embodiment of the present invention.
- FIG. 9 is a view showing a collision avoidance system according to a second embodiment of the present invention.
- FIG. 10 is a diagram illustrating a method of detecting a target vehicle at risk of collision according to a second exemplary embodiment of the present invention.
- FIG. 11 is a diagram illustrating a method of avoiding collision with a target vehicle by controlling the speed and steering of the own vehicle according to the second embodiment of the present invention.
- FIG. 12 is a view showing a collision avoidance method according to a second embodiment of the present invention.
- FIG. 13 is a diagram of control of a vehicle according to a third embodiment of the present invention.
- FIG. 14 is a flowchart showing a procedure of controlling a vehicle according to a third embodiment of the present invention.
- 15 is a flowchart showing a procedure of controlling a vehicle according to a third embodiment of the present invention.
- 16 is a diagram illustrating recognizing a slippery road sign using a camera system according to a fourth embodiment of the present invention.
- 17 is a diagram illustrating changing the emergency braking entry time according to the slipperiness of the road in the emergency braking system according to the fourth embodiment of the present invention.
- FIG. 18 is a view showing an emergency braking method according to a fourth embodiment of the present invention.
- 19A to 19C are views for explaining lateral control of a vehicle according to a fifth embodiment of the present invention.
- 20A to 20C are diagrams for describing longitudinal control of a vehicle according to a fifth embodiment of the present invention.
- 21 is a flowchart illustrating control of a vehicle according to a fifth embodiment of the present invention.
- FIG. 22A is a diagram illustrating that a collision risk is not warned when there is no manipulation of a steering wheel in a state where a vehicle is stopped at an intersection according to a sixth embodiment of the present invention.
- FIG. 22B is a diagram illustrating warning of a danger of collision to a first level when there is operation of a steering wheel in a state where the own vehicle is stopped at an intersection according to the sixth embodiment of the present invention.
- FIG. 23A is a diagram illustrating warning of a collision risk to a second level when a collision with a neighboring vehicle is expected in a state where driving of the own vehicle is started at an intersection according to a sixth embodiment of the present invention.
- FIG. 23B is a view illustrating a third risk of collision when a collision with a surrounding vehicle is expected in a state where driving of the own vehicle is started at an intersection according to a sixth embodiment of the present invention, and there is no manipulation of a steering wheel for braking or collision avoidance;
- 24 is a view for explaining the host vehicle, the other vehicle and the TTC according to the seventh embodiment of the present invention.
- 25 is a diagram for explaining an AEB control algorithm according to a seventh embodiment of the present invention.
- FIG. 26 is a diagram illustrating that a host vehicle recognizes a surrounding situation at an intersection according to an eighth embodiment of the present invention.
- FIG. 27 is a flowchart illustrating a warning to a driver according to a surrounding situation of a host vehicle according to an eighth embodiment of the present invention.
- FIG. 28 is a diagram illustrating positions of a host vehicle and a surrounding vehicle at an intersection according to a ninth embodiment of the present invention.
- 29 is a diagram illustrating two-dimensional coordinates of surrounding vehicles on the basis of a host vehicle according to a ninth embodiment of the present invention.
- FIG. 30 is a flowchart showing a procedure of controlling the own vehicle according to the ninth embodiment of the present invention.
- FIG. 31 illustrates a cross traffic assist (CTA) system according to a tenth embodiment of the present invention.
- FIG. 32 is a diagram illustrating the controller and controllers controlled for collision avoidance shown in FIG. 31.
- FIG. 33 is a diagram illustrating detecting surrounding vehicles by a camera system and a radar system disposed in a host vehicle.
- CTA intersection collision prevention
- 35 is a diagram showing the configuration of a control apparatus for a vehicle according to an eleventh embodiment of the present invention.
- 36 is a diagram illustrating a sensing area of a first information generating unit and a second information generating unit before intersection detection.
- FIG. 37 is a view illustrating a width change of a detection area of the second information generator after intersection detection.
- 38 is a view illustrating a change in the length of a sensing area of the second information generating unit after detecting an intersection.
- 39 is a flowchart illustrating a control method of a vehicle according to an eleventh embodiment of the present invention.
- 40A and 40B are views for explaining driving of the driving assistance system when turning left according to a twelfth embodiment of the present invention.
- FIG. 41 is a view for explaining driving of the travel assistance system when turning to the right according to a twelfth embodiment of the present invention.
- portion When a portion is referred to as being “above” another portion, it may be just above the other portion or may be accompanied by another portion in between. In contrast, when a part is mentioned as “directly above” another part, no other part is involved between them.
- first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
- FIG. 1 is an exploded perspective view schematically showing a camera system according to a first embodiment of the present invention.
- the camera system 1 is coupled to the lens 10, the lens holder 20 on which the lens 10 is installed, and the lens holder 20 to sense an image of a subject photographed by the lens 10. It comprises an image sensor 31.
- the image sensor 31 is disposed on the image PCB 30 and includes an image array sensor composed of pixels.
- the image sensor 31 includes a CMOS photosensor array or a CCD photosensor array. This image sensor 31 is arranged to be parallel to the lens 10.
- the lens 10 and the lens holder 20 may be coupled to each other in an active alignment method.
- the camera system 1 includes a main PCB 40 and an image processor 41 and a camera micro control unit (MCU) 42 are disposed on the main PCB 40.
- the image processor 41 receives image data from the image sensor 31, and the image processor 41 and the image sensor 31 may be connected through a connector (not shown).
- the connector can be fabricated with a flexible PCB (FPCB) to maximize the internal space utilization of the camera system. Through such a connector, an electrical signal, a power supply, a control signal, and the like may be transmitted and received.
- the communication scheme between the image processor 41 and the image sensor 31 may be, for example, I2C.
- the camera MCU 42 and the image processor 41 communicate with each other, and the communication scheme may be, for example, a universal asynchronous receiver / transmitter (UART) or a serial peripheral interface (SPI).
- UART universal asynchronous receiver / transmitter
- SPI serial peripheral interface
- the camera MCU 42 may receive image data processed by the image processor 41 and may transmit the image data to an electrical control unit (ECU) (not shown) in a vehicle.
- the communication scheme between the camera MCU 42 and the ECU of the vehicle may be, for example, a Chassis controller area network (CAN).
- the camera MCU 42 receives data processed by the image processor 41, and the data may be, for example, data about the vehicle ahead, data about the lane ahead, data about the cyclist ahead, and traffic signs.
- Data for the active high beam control (AHBC) data for wheel detection (e.g., data for faster vehicle recognition through vehicle wheel recognition for Close Cut-in vehicles entering the camera FOV)
- Data about traffic lights, road markings e.g.
- VD VD at any angle
- road profile For example, to recognize the shape of the road ahead (bending, speed bumps or holes) to improve ride comfort through suspension control.
- Data for data data for semantic free space (e.g. boundary labeling), data for general objects (side vehicles, etc.), data for advanced path planning (e.g. no lanes
- odometry for example, data for recognizing driving road landmarks and combining them with GPS recognition information
- the camera system 1 also includes a housing 50 and the housing 50 includes an upper housing 52 and a lower housing 54. Specifically, a predetermined accommodation space is formed inside the housing 50 in which the upper housing 52 and the lower housing 54 are coupled, and the lens 10, the lens holder 20, and the image PCB 30 are formed in the accommodation space. ) And main PCB 40 are housed.
- the lens holder 20 may be coupled to the image PCB 30 after the lens 10 is installed in the lens holder 20.
- the lens holder 20 and the image PCB 30 may be coupled via a screw 23.
- the upper housing 52 may be coupled while the lens holder 20 and the image PCB 30 are coupled to each other.
- the upper housing 52 and the lens holder 20 may be coupled by a screw 25.
- the number of lenses 10 used may vary depending on the type of camera system 10, the number of pixels of an image sensor, or the requirements of a function implemented by the camera system 10.
- the lens may be, for example, 52 deg when 1.3 MP is required or 100 deg when 1.7 MP is required.
- two lenses 10 may be used.
- three lenses 10 are used, three imager sensors 31 are required and the lenses may be 28 deg, 52 deg, 150 deg or 50 deg, 100 deg, 150 deg, respectively.
- the type of the camera system 10 is determined according to the number or type of ADAS functions supported by the camera system 10. For example, if only some of the ADAS functions are supported (the data processed by the image processor 41 may include data about the vehicle ahead, data about the lane ahead, data about the cyclist ahead, data about traffic signs, and active high beam control). (AHBC) data, wheel detection data (e.g., data for faster vehicle identification through vehicle wheel recognition for Close Cut-in vehicles entering the camera FOV), data about traffic lights, etc. In the case of data on road marking (e.g.
- VD Data about at any angle data to recognize the vehicle in all directions or angles of the front vehicle
- Data about a profile e.g., data to improve ride quality through suspension control by recognizing forward road shape (bends, speed bumps or holes)
- semantic free space e.g.
- boundary labeling Data for general objects (side vehicles, etc.), advanced path planning (e.g., for predicting vehicle travel paths with deep learning through the environment even in laneless or contaminated roads) Data), three lenses may be used in the case of data about odometry (for example, data for recognizing driving road landmarks and fusing them with recognition information of GPS).
- odometry for example, data for recognizing driving road landmarks and fusing them with recognition information of GPS.
- FIG. 2 is a diagram showing that the camera system 1 according to the first embodiment of the present invention is mounted on a motor vehicle.
- the camera system 1 may be mounted inside the vehicle under the windshield 220 in the vehicle and may be mounted in the vicinity of the room mirror 210. Accordingly, it is used to photograph a field of view in front of the vehicle of the camera system 1 and to recognize an object present in the field of view in front of it.
- the camera system 1 in preparation for a rainy or dusty situation, is mounted inside the vehicle in response to an area cleaned by a wiper driven outside of the windshield 220. It is preferable to be.
- the position in which the camera system 1 is mounted is not limited to this.
- the camera system 1 may be installed at other positions for photographing the front, side and rear of the vehicle.
- a Radar device which is a sensor device using electromagnetic waves to measure the distance, speed, and angle of an object, may be typically located on the front grill of the vehicle to cover the front lower portion of the vehicle.
- the reason why the Radar device is placed on the front grill, that is, the outside of the vehicle, in other words, the reason for not transmitting or receiving through the windshield 220 of the vehicle is due to the decrease in sensitivity when passing through the glass due to the nature of electromagnetic waves. to be.
- electromagnetic waves do not pass through the windshield.
- the Radar device is configured to transmit and receive electromagnetic waves through an opening provided at the top of the windshield 220.
- a cover is disposed at a position corresponding to the opening for the Radar device. This cover is intended to prevent loss due to the opening (eg, ingress of air, etc.).
- the cover is preferably made of a material that is easy to penetrate against electromagnetic waves of the frequency used by the Radar device.
- the Radar device is located inside the vehicle but transmits and receives electromagnetic waves through an opening provided in the windshield 220, and a cover is provided corresponding to the opening to prevent loss due to the opening, and the electromagnetic wave is transmitted and received through the cover.
- Such a radar device may use beam aiming, beam selection, digital beam forming, and digital beam steering.
- the Radar device may also include an array antenna or a phased array antenna.
- the above-described camera system 1 and the Radar device may be interlocked with each other in order to improve the performance of detecting an object in front of the camera system 1.
- the image processor 41 and the Radar processor may cooperate with each other to enlarge or focus the front object of interest.
- the image sensor 31 and the radar device may be disposed on the same substrate (eg, the image PCB 30).
- a device or system for sensing an object in front of the field of view such as a camera system 1 or a Radar device (not shown), may be used for ADAS technology such as Adaptive Cruise Control (ACC). It may also be used to recognize potential dangerous situations ahead and for example to recognize other vehicles ahead, people in front, animals in front.
- an apparatus or system for detecting an object in a forward field of view such as a camera system 1 or a radar device (not shown), may be a lane departure warning system or an object detection system. Traffic sign recognition system, lane keeping assistance system, lane change assistance system, blind spot warning system, automatic headlamp control system (automatic headlamp control system), collision avoidance system (collision avoidance system).
- FIG 3 is a diagram showing the components of a motor vehicle on which the camera system 1 according to the first embodiment of the present invention is mounted.
- Car components can be divided into MCU level, ECU level, and controller level.
- MCUs 42 At the MCU level, there are camera MCUs 42, including Lidar MCUs, Radar MCUs, GPS MCUs, navigation MCUs, and V2X MCUs.
- MCUs belonging to the MCU level control a sensing device connected to the device or a device (eg, a processor) connected to the sensing device, and receive data from the sensing device or a device connected to the sensing device.
- an image sensor 31 senses an image of a subject photographed through the lens 10, and the image processor 41 receives the data from the image sensor 31 for processing.
- the camera MCU 42 receives the data from the image processor 41.
- the camera MCU 42 controls the image sensor 31, the image processor 41, and such control is, for example, power supply control, reset control, clock (CLK) control, data communication control, power control, memory control, and the like.
- the image processor 41 may process data sensed and output by the image sensor 31, and the processing may include enlarging an object in front of the sensed object or focusing on the object's area in the entire field of view. .
- the Lidar MCU 311 is connected to the Lidar device that is a sensor.
- Lidar device may be composed of a laser transmission module, a laser detection module, a signal acquisition and processing module, a data transmission and reception module, the light source of the laser is a laser light source having a wavelength or variable wavelength in the wavelength range of 250 nm to 11 ⁇ m Used.
- the Lidar device is classified into a time of flight (TOF) method and a phase shift method according to a signal modulation method.
- TOF time of flight
- the Lidar MCU 311 controls the Lidar device and other devices connected to the Lidar device (eg, a Lidar processor (not shown) that processes the Lidar sensing output).
- Such control includes, for example, power supply control, reset control, clock (CLK) control, data communication control, memory control, and the like.
- Lidar devices are used to sense the front area of a vehicle.
- the Lidar device is located under the inside of the vehicle, specifically, under the windshield 220, and transmits and receives a laser light source through the windshield.
- Radar MCU 312 is connected to a Radar device that is a sensor.
- Radar devices are sensor devices that use electromagnetic waves to measure distances, speeds, and angles of objects.
- FMCW frequency modulation carrier wave
- Pulse Carrier pulse carrier wave
- the Radar MCU 312 controls the Radar device and other devices connected to the Radar device (eg, a Radar processor (not shown) that processes the Radar sensing output).
- control includes, for example, power supply control, reset control, clock (CLK) control, data communication control, memory control, and the like.
- Radar devices typically use a 77 GHz band radar or other suitable band and sense the front area of the vehicle.
- the information obtained from the Radar device can be used for ADAS technology such as Adaptive Cruise Control (ACC).
- the Radar processor may process data sensed and output by the Radar device, and the processing may include enlarging an object in front of the sensed object or focusing on the object's area of the entire field of view.
- the GPS MCU 313 is connected to a GPS device which is a sensor.
- GPS devices are devices that can measure the position, speed, and time of a car by communicating with satellites.
- the GPS device is a device that measures the delay time of radio waves emitted from the satellite and obtains the current position at a distance from the orbit.
- the GPS MCU 313 controls the GPS device and other devices connected to the GPS device (eg, a GPS processor (not shown) that processes the GPS sensing output).
- control includes, for example, power supply control, reset control, clock (CLK) control, data communication control, memory control, and the like.
- navigation MCU 314 is connected to a navigation device that is a sensor.
- the navigation device is a device that displays map information through a display device installed in the front of the vehicle interior. Specifically, the map information is stored in the memory device and displays the current location of the car measured by the GPS device in the map data.
- the navigation MCU 314 controls the navigation device and other devices coupled to the navigation device (eg, a navigation processor (not shown) that processes the navigation sensing output).
- control includes, for example, power supply control, reset control, clock (CLK) control, data communication control, memory control, and the like.
- V2X MCU 315 is connected to a V2X device that is a sensor.
- the V2X device is a device that performs car-to-car communication (V2V), car-to-infrastructure communication (V2I), and car-to-mobile communication (V2N).
- the V2X MCU 315 controls the V2X device and other devices connected to the V2X device (eg, a V2X processor (not shown) that processes the V2X sensing output).
- control includes, for example, power supply control, reset control, clock (CLK) control, data communication control, memory control, and the like.
- An electrical control unit (ECU) 320 belonging to the ECU level is a device for integrally controlling a plurality of electronic devices used in an automobile.
- the ECU 320 may control both MCUs belonging to the MCU level and controllers belonging to the controller level.
- the ECU 320 receives sensing data from the MCUs, generates a control command for controlling the controller according to a situation, and transmits the control command to the controllers.
- the ECU level is described as a level higher than the MCU level, but one MCU among MCUs belonging to the MCU level may serve as an ECU, and the two MCUs may be combined to It can also act as an ECU.
- the controller level includes a driver warning controller 331, a head lamp controller 332, a vehicle attitude control controller 333, a steering controller 334, an engine control controller 335, a suspension controller 336, a brake controller 337, and the like. There is this.
- the controller controls the components of the vehicle based on control commands received from the ECU 320 or MCUs at the MCU level.
- the driver warning controller 331 generates an audio, video or haptic warning signal to warn the driver of a specific dangerous situation.
- the driver warning controller 331 may output a warning sound using a sound system of the vehicle.
- the driver warning controller 331 may output the warning message through the HUD display or the side mirror display to display the warning message.
- the driver warning controller 331 may operate the vibration motor mounted on the handle to generate warning vibration.
- the head lamp controller 332 controls the head lamp which is located in front of the vehicle and secures the driver's view of the front of the vehicle at night.
- the head lamp controller 332 performs uplight control, downlight control, left and right auxiliary light control, adaptive headlamp control, and the like.
- the vehicle attitude control controller 333 is referred to as vehicle dynamic control (VDC) or electrical stability control (ESP).
- VDC vehicle dynamic control
- ESP electrical stability control
- the vehicle attitude control controller 333 Distributes the braking force of each wheel using the brake lock prevention function (ABS) and the like.
- ABS brake lock prevention function
- steering controller 334 performs control of an electric power steering system (MPDS) that drives the steering wheel. For example, when a vehicle is expected to crash, the steering controller 334 controls the steering of the vehicle in a direction that can avoid collision or minimize damage.
- MPDS electric power steering system
- the engine control controller 335 For example, when the ECU 32 receives data from an oxygen sensor, an air mass sensor, and a manifold absolute pressure sensor, the engine control controller 335 injects, throttles, It controls the configuration of the spark plug.
- the suspension controller 336 is a device for performing motor-based active suspension control. Specifically, the suspension controller 336 variably controls the damping force of the shock absorber to give a smooth ride feeling when driving in general, and gives a hard ride feeling at high speed driving and posture change to secure ride comfort and driving stability. In addition to the damping force control, the suspension controller 336 may also perform the garage control, the attitude control, and the like.
- the brake controller 337 controls whether the brake of the vehicle is operated and controls the pedal effort of the brake. For example, when a forward collision is expected, the brake controller 337 controls to automatically activate the emergency brake according to the control command of the ECU 320 regardless of whether the driver has operated the brake.
- the MCU, the ECU, and the controller are described as independent components, but it should be understood that the present invention is not limited thereto.
- Two or more MCUs can be integrated into one MCU, two or more MCUs can work together, two or more MCUs and ECUs can be integrated into one device, and two or more controllers can be integrated into one controller
- the two or more controllers can be integrated with each other, and the two or more controllers and the ECU can be integrated into one device.
- the Radar processor processes the output of the Radar device
- the image processor 41 processes the output of the image sensor 31, the output of the Radar device and the output of the image sensor 31 are one processor (Radar).
- the Radar processor processes the data sensed and output by the Radar device, and based on the information about the object in front of the processing result, the image processor 41 senses and outputs the image sensor 31. You can perform processing to zoom in or focus on a piece of data.
- the image processor 41 processes the data sensed and outputted by the image sensor 31 and based on the information on the object in front of the processing result, the Radar processor senses and outputs the data output by the Radar device.
- the Radar MCU may control to perform beam aiming or beam selection on the Radar device.
- the Radar processor may perform digital beam forming or digital beam steering in an array antenna or a phased array antenna system.
- the image sensor 31 and the radar device may be disposed on the same substrate (eg, the image PCB 30).
- 4A is a diagram showing components of the camera system 1 according to the first embodiment of the present invention.
- the camera system 1 includes a lens 10, an image sensor 31, an image processor 41, and a camera MCU 42.
- the camera system 1 receives the ignition voltage 410 and converts the first converter 421 and the third voltage into a first voltage 411, a second voltage 412, and a third voltage 413.
- the second converter unit 422 receiving the 413 and converting it into the fourth voltage 414, and the regulator unit receiving the first voltage 411 and converting it into the fifth voltage 415 and the sixth voltage 416. (423).
- the first converter unit 421 may be composed of one 3ch DC-DC converter as shown in FIG. 4A, but is not limited thereto, and may be configured as a 1ch DC-DC converter and a 2ch DC-DC converter. It can be configured with one 1ch DC-DC converter.
- the regulator unit 423 may be configured as a 2ch LDO (Low Drop Out) as shown in FIG. 4A, but is not limited thereto and may be configured as two 1ch LDOs.
- LDO Low Drop Out
- the reason why the regulator unit 423 is implemented by LDO is that the current level required by the image sensor 31 is not large.
- the ignition voltage 410 is a voltage generated when a driver manually starts a vehicle by turning a key or starts a vehicle by a button type, and may be generally 14V.
- the first voltage 411 may be 3.3V as the first converter 421 receives and converts the ignition voltage 410.
- the first voltage 411 may be input to the camera MCU 42 to be used as an operating power source of the camera MCU 42.
- the first voltage 411 may be used as an operating power source of the monitoring module 441 and the first memory 431.
- the first voltage 411 may be used as an operating power source of the image processor 41.
- the first voltage 411 which is the same operating power source, is applied to the camera MCU 42 and the image processor 41 in order to match the communication level (IO voltage) between two communication components.
- the second voltage 412 may be 1.8V as the first converter 421 receives and converts the ignition voltage 410. Meanwhile, as described below, a fifth voltage (for example, 1.8V) is applied to the image sensor 31, and this voltage is the same as the second voltage.
- the second voltage 412 applied to the image processor 41 and the fifth voltage 215 applied to the image sensor 31 are the same because the communication level between the image processor 41 and the image sensor 31 ( IO voltage).
- the third voltage 413 may be 5V as the voltage that the first converter 421 receives and converts the ignition voltage 410.
- the third voltage 413 may be applied to the second converter unit 422, and the second converter unit 422 may output the fourth voltage 414.
- the fourth voltage 414 is applied to the image processor 41 to operate as a core power source of the image processor 41.
- the fourth voltage 414 may be 1.2V.
- the first converter unit 421 may directly output the fourth voltage 414, the first converter unit 421 outputs the third voltage 413 and the third voltage 413.
- the reason why the second converter unit 422 outputs the fourth voltage 414 is to satisfy the allowable current required by the image processor 41.
- the reason is for the third voltage 413 to be used as an operating power source in another component (eg, HS-CAN TRx, etc.).
- the first voltage 411 is applied to the regulator unit 423, and the regulator unit 423 outputs the fifth voltage 415 and the sixth voltage 416.
- the fifth voltage 415 may be 1.8V
- the sixth voltage 416 may be 2.8V.
- the fifth voltage 415 is applied to the image sensor 31 to operate for adjusting the communication level with the image processor 41.
- the sixth voltage 416 is applied to the image sensor 31 to operate as a core power source of the image sensor 31.
- the camera MCU 42 and the image processor 41 match the communication level with the first voltage 411, and the image processor 41 and the image sensor 31 have a fifth voltage equal to the second voltage 412 and the second voltage.
- the voltage 415 adjusts the communication level.
- the camera system 1 receives the first voltage 411 and includes a first memory 431 connected to the camera MCU 42, a second memory 432 connected to the image processor 41, and an image processor ( A third memory 433 connected to 41 and a fourth memory 434 connected to the image processor 41.
- the first memory 431 may be an EEPROM
- the second memory 432 may be an LPDDR2
- the third memory 433 may be an LPDDR2
- the fourth memory 434 may be a Flash memory.
- the first memory 431 is connected to the camera MCU 42 and the MCU logic data (algorithm for controlling the controller), MCU basic software (start-up algorithm for driving the image processor 41, the image sensor 31, etc.) Save).
- the second memory 432 is connected to the image processor 41 and executes a function implementation algorithm stored in the fourth memory 434 according to the command of the image processor 41.
- the third memory 433 is connected to the image processor 41 and executes a function implementation algorithm stored in the fourth memory 434 according to the command of the image processor 41.
- the fourth memory 434 is connected to the image processor 41 and stores algorithm data (eg, LD, PD, VD, TSR, etc.) for implementing functions in the image processor 41. Meanwhile, the capacity of the second memory 432 and the third memory 433 may be determined according to the number of functions supported by the camera system 1.
- the data processed by the image processor 41 may include data about the vehicle ahead, data about the lane ahead, data about the cyclist ahead, data about traffic signs, and active high beam control) AHBC) data, wheel detection data (e.g., data for faster vehicle recognition through vehicle wheel recognition for Close Cut-in vehicles entering the camera FOV), data about traffic lights,
- the second memory 432 and the third memory 433 may each be 128 MB, and in the case of supporting more functions (the image processor 41).
- the data processed by the user may include data about VD at any angle (recognizing the vehicle with respect to the entire driving direction or angle of the front vehicle) Data), data about a road profile (e.g., data to improve ride quality through suspension control by recognizing the shape of the road ahead (curve, speed bump or hole)), semantic free space (e.g. boundary labeling) Data for, general objects (side vehicles, etc.), advanced path planning (e.g., predicted vehicle travel with deep learning through the environment, even on laneless or contaminated roads) Data for estimating the data) and data for odometry (for example, data for recognizing driving road landmarks and fusing them with GPS recognition information).
- a road profile e.g., data to improve ride quality through suspension control by recognizing the shape of the road ahead (curve, speed bump or hole)
- semantic free space e.g. boundary labeling
- advanced path planning e.g., predicted vehicle travel with deep learning through the environment,
- the second memory 432 and the third memory 33 may be 256 MB, respectively, and the second memory 432 and the third memory 33 may be integrated into one memory according to the number of lenses 10.
- a total of two memories (for example, 2 ⁇ 218 MB) of the second memory 432 and the third memory 433 may be used, and the two lenses 10 may be used.
- one memory e.g., 1 X 512 MB
- two large memories eg, 2 ⁇ 512 MB
- the number and capacity of the second memory 432 and the third memory 433 may be changed according to the number of lenses.
- the camera system 1 includes a surveillance module 441 connected to the camera MCU 42, a high-speed transceiver (HS-CAN_TRx) 442 connected to the camera MCU 42 and performing chassis CAN communication, and a camera.
- HS-CAN_TRx high-speed transceiver
- Fast-can transceiver 443 connected to MCU 42 to perform local CAN communication
- external input 444 to camera MCU 42 to receive a wiper operation input and connected to camera MCU 42
- the reason why the camera MCU 42 receives the wiper operation input is that when the wiper ON signal is received, it is raining and the recognition of the front through the camera system 1 is deteriorated, so the operation of the camera MCU 42 is turned off. This is because it is necessary to turn off or turn off a specific function of the camera MCU 42.
- 4B is a diagram showing components of the camera system 1 according to the first embodiment of the present invention.
- the camera system 1 includes a lens 10, an image sensor 31, an image processor 41, and a camera MCU 42.
- the camera system 1 receives the ignition voltage 510 and converts the first voltage 511, the second voltage 512, the third voltage 513, and the fourth voltage 514 into a first converter unit. And a regulator 523 that receives the first voltage 511 and converts it into a fifth voltage 515, a sixth voltage 516, and a seventh voltage 517.
- the first converter unit 521 may be configured as one 4ch DC-DC converter, but is not limited thereto.
- the first converter unit 521 may be configured as a 1ch DC-DC converter and a 3ch DC-DC converter. It may consist of two 2ch DC-DC converters or may consist of four 1ch DC-DC converters.
- the first converter unit 521 may be configured as a 4ch PMIC (Power Management Integrated Circuit). In case of using PMIC, it has many buck regulators, boost regulator, USB function, and I2C function for power setting.
- the regulator unit 523 may be configured as a 3ch LDO (Low Drop Out) as shown in FIG. 4B, but is not limited thereto and may include three 1ch LDOs. The reason why the regulator unit 523 is implemented as an LDO is that the current level required by the image sensor 31 is not large.
- the ignition voltage 510 is a voltage generated when a driver manually starts a vehicle by turning a key or starts a vehicle by a button type, and may be generally 14V.
- the first voltage 511 may be 3.3V as the first converter 521 receives and converts the ignition voltage 510.
- the first voltage 511 may be input to the camera MCU 42 to be used as an operating power source of the camera MCU 42.
- the first voltage 511 may be used as an operating power source of the monitoring module 541 and the first memory 531.
- the first voltage 511 may be used as an operating power source of the image processor 41.
- the first voltage 511 which is the same operating power source, is applied to the camera MCU 42 and the image processor 41 in order to match the communication level (IO voltage) between two communication components.
- the second voltage 512 may be 1.8V as the first converter 521 receives and converts the ignition voltage 510. Meanwhile, as described below, a fifth voltage 515 (for example, 1.8V) is applied to the image sensor 31, which is the same as the second voltage 512. The reason why the second voltage 512 applied to the image processor 41 and the fifth voltage 515 applied to the image sensor 31 are the same is because the communication level between the image processor 41 and the image sensor 31 ( IO voltage).
- the third voltage 513 may be 5V as the voltage that the first converter 521 receives, converts, and outputs the ignition voltage 510.
- the third voltage 513 may be used as a driving power source for components (eg, S-CAN communication module, C-CAN communication module, and high side driver) that the camera MCU 42 uses for communication.
- the fourth voltage 514 may be 2.8 V as a voltage that the first converter 521 receives, converts, and outputs the ignition voltage 510.
- the fourth voltage 514 may be converted to 1.1V through the converter and applied to the image processor 41.
- the 1.1V voltage acts as the core power source of the image processor 41.
- the first converter unit 521 may directly output the core power source (1.1V) of the image processor
- the fourth voltage 514 (2.8V) may be converted to the core power source (1.1V) through a separate converter. The reason for the lowering of) is to satisfy the allowable current required by the image processor 41.
- the first voltage 511 is applied to the regulator unit 523, and the regulator unit 523 outputs the fifth voltage 515, the sixth voltage 516, and the seventh voltage 517.
- the fifth voltage 515 may be 1.8V
- the sixth voltage 516 may be 2.8V
- the seventh voltage 517 may be 1.2V.
- the fifth voltage 515 is applied to the image sensor 31 to operate for adjusting the communication level with the image processor 41.
- the sixth voltage 516 is applied to the image sensor 31 to operate as a core power source of the image sensor 31.
- the camera MCU 42 and the image processor 41 match the communication level with the first voltage 511, and the image processor 41 and the image sensor 31 have a fifth voltage equal to the second voltage 512 and the second voltage.
- the communication level is adjusted to the voltage 515.
- the camera system 1 receives the first voltage 511 and receives a first memory 531 connected to the camera MCU 42, a second memory 532 connected to the image processor 41, and an image processor ( And a third memory 533 connected to 41).
- the first memory 531 may be an EEPROM
- the second memory 532 may be an LPDDR4
- the third memory 533 may be a Flash memory.
- the first memory 531 is connected to the camera MCU 42 and the MCU logic data (algorithm for controlling the controller), MCU basic software (start-up algorithm for driving the image processor 41, the image sensor 31, etc.) Save).
- the second memory 532 is connected to the image processor 41 and executes a function implementing algorithm stored in the third memory 533 according to a command of the image processor 41.
- the third memory 533 is connected to the image processor 41 and stores algorithm data (eg, LD, PD, VD, TSR, etc.) for implementing functions in the image processor 41. Meanwhile, the capacity of the second memory 532 may be determined according to the number of functions supported by the camera system 1.
- algorithm data eg, LD, PD, VD, TSR, etc.
- the data processed by the image processor 41 may include data about the vehicle ahead, data about the lane ahead, data about the cyclist ahead, data about traffic signs, and active high beam control) AHBC) data, wheel detection data (e.g., data for faster vehicle recognition through vehicle wheel recognition for Close Cut-in vehicles entering the camera FOV), data about traffic lights,
- the second memory 532 may be 128 MB in the case of the data on the road marking (for example, the arrow on the road), and in the case of supporting more functions (the data processed by the image processor 41 is the example described above).
- Data about a profile e.g., data to improve ride quality through suspension control by recognizing forward road shape (bends, speed bumps or holes)
- data about semantic free space e.g. boundary labeling
- Data for general objects side vehicles, etc.
- advanced path planning e.g., for predicting vehicle travel paths with deep learning through the environment even in laneless or contaminated roads
- data about odometry for example, data for recognizing driving road landmarks and fusion with GPS recognition information
- odometry for example, data for recognizing driving road landmarks and fusion with GPS recognition information
- the camera system 1 includes a surveillance module 541 connected to the camera MCU 42, a high-speed transceiver (HS-CAN_TRx) 542 connected to the camera MCU 42 to perform chassis CAN communication, and a camera.
- High-speed CAN transceiver 543 connected to the MCU 42 to perform local CAN communication
- High Side Driver 544 to the camera MCU 42 to output LED signals
- An external input 545 for receiving the off switching input.
- an external input receiver (not shown) connected to the camera MCU 42 to receive a wire input may be included.
- the reason why the camera MCU 42 receives the wiper operation input may include a case where a wiper ON signal is received. This is because it is necessary to turn off the operation of the camera MCU 42 or to turn off a specific function of the camera MCU 42 because the recognition of the front through the camera system 1 deteriorates due to the rain.
- the aforementioned camera system 1 includes Road Boundary Departure Prevention Systems (RCDPS), Cooperative Adaptive Cruise Control Systems (CACC), Vehicle / roadway warning systems, Partially Automated Parking Systems (PAPS), Partially Automated Lane Change Systems (PALS), C Cooperative Forward Vehicle Emergency Brake Warning Systems (FVBWS), Lane Departure Warning Systems (LDWS), Pedestrian Detection and Collision Mitigation Systems (PDCMS), Curve Speed Warning Systems (CSWS), Lane Keeping Assistance Systems (LKAS), Adaptive Cruise Control systems (FVCWS), Forward Vehicle Collision Warning Systems (FVCWS), Manoeuvring Aids for Low Speed Operation systems (MALSO), Lane Change Decision Aid Systems (LCDAS), Low Speed Following systems (LSF), Full Speed Range Adaptive cruise control systems ), Forward Vehicle Collision Mitigation Systems (FVCMS), Extended Range Backing Aids systems (ERBA), Cooperative Intersection Signal Information and Violation Warning Systems (TIWS), Traffic Impediment Warning Systems (TIWS) It
- FIG. 5 is an exploded perspective view illustrating a coupling relationship between a lens barrel and a lens holder according to a first exemplary embodiment of the present invention.
- the lens 10 according to the invention is inserted into the lens barrel 15, and the lens barrel 15 comprises a flange 15-1.
- the lens barrel 15 and the lens holder 20 are coupled to each other in such a manner that the body of the lens barrel 15 including the lens 10 and the flange 15-1 is inserted into the lens holder 20.
- the lens barrel 15 and the lens holder 20 are coupled to each other in an active alignment method, which will be described later with reference to FIG. 6.
- FIG. 6 is a view for explaining the active alignment of the lens barrel and the lens holder according to the first embodiment of the present invention.
- Active alignment is used to couple the lens barrel 15 to the lens holder 20.
- the active alignment is an adhesive between the flange 15-1 of the lens barrel 15 and the upper surface 25 of the lens holder 20.
- the adhesive material 600 may be deformed before curing, and an epoxy having strong adhesiveness may be used after curing.
- both the lower surface 15-2 of the flange 15-1 and the upper surface 25 of the lens holder 15 that come into contact with the adhesive material 600 have a flat shape. According to this conventional method, there is no problem in adhering the lens barrel 15 and the lens holder 20 to each other, but in the event of an impact on the camera or an extreme situation in terms of temperature, the adhesive material ( The problem that the lens barrel 15 and the lens holder 20 are separated due to deterioration of the adhesive force of 600 is found.
- FIGS. 7A to 7E are views showing the lens holder 20 according to the first embodiment of the present invention.
- FIG. 7A is a perspective view of the lens holder 20
- FIGS. 7B-7E show the top surface 25 of the lens holder 20 as a top view of the lens holder 20.
- grooves 27 may be formed on the upper surface 25 of the lens holder 20.
- the shape of the grooves 27 may be a single circular groove (FIG. 7B), a double circular groove (FIG. 7C), a cross lattice groove (FIG. 7D), and a zigzag groove (FIG. 7E).
- Such groove 27 may be formed using a laser.
- the surface roughness of the upper surface 25 of the lens holder 20 is increased due to the groove 27, thereby maximizing the contact area with the adhesive material 600, thereby deriving an adhesive force or an effect that is maximized.
- FIG. 8A to 8E show the lens barrel 15 according to the first embodiment of the present invention.
- FIG. 8A is a perspective view of the lens barrel 15
- FIGS. 8B to 8E are bottom views 15-2 of the flange 15-1 of the lens barrel 15 as bottom views of the lens barrel 15. Illustrated.
- grooves 15-3 may be formed on the bottom surface 15-2 of the flange 15-1 of the lens barrel 15.
- the shape of the groove 15-3 may be a single circular groove (FIG. 8B), a double circular groove (FIG. 8C), a cross lattice groove (FIG. 8D), and a zigzag groove (FIG. 8B). 8e).
- These grooves 15-3 may be formed using a laser.
- the groove 15-3 increases the surface roughness of the lower surface 15-2 of the flange 15-1 of the lens barrel 15, thereby maximizing the contact area with the adhesive material 600, thereby maximizing adhesion or maximization. Can be derived.
- the second embodiment of the present invention is a camera system for the ADAS that can determine the collision risk with the surrounding vehicle to detect a target vehicle with a collision risk, and to avoid the collision with the target vehicle by controlling the speed and steering of the own vehicle And a collision avoidance system and method.
- FIG. 9 is a view showing a collision avoidance system according to a second embodiment of the present invention.
- a collision avoidance system includes a camera system 1, a radar system 2-2, an ECU 2-320, a vehicle attitude control controller 2-333, A steering controller 2-334, an engine control controller 2-335, a suspension controller 2-336, and a brake controller 2-3-337.
- Each of the controllers 2-2-333, 2-334, 2-335, 2-336, 2-337 controls the components of the vehicle based on the control command received from the ECU 2-320.
- the camera system 1 includes one or more cameras, an image processor 41 and a camera MCU 42.
- the camera system 1 generates image data of the front, rear, left and right sides of the host vehicle, and transmits the generated image data to the ECU 2-320.
- Radar system 2-2 includes one or more radars and a Radar MCU 2-312.
- the radar system 2-2 radiates radio waves to the front, rear, left, and right sides, and then receives reflected waves to detect an object located at 150m forward, rear, left, and right sides in a horizontal angle of 30 degrees.
- the radar system 2-2 detects an object using a frequency modulation carrier wave (FMCW) or a pulse carrier (Pulse Carrier), and radar data including the object detection result is ECU-2320. To send).
- FMCW frequency modulation carrier wave
- Pulse Carrier pulse carrier
- the ECU 2-320 detects the target vehicle among the surrounding vehicles based on the image data input from the camera system 1 and the radar data input from the radar system 2-2, and detects the target vehicle from the host vehicle and the target vehicle. Determine the risk of collision.
- the image data transmitted from the camera system 1 to the ECU 2-320 includes lane recognition information, front vehicle recognition information, rear vehicle recognition information, left side vehicle identification information, and right side vehicle identification information.
- the radar data transmitted from the radar system 2-2 to the ECU 2-320 includes front vehicle identification information, rear vehicle identification information, left side vehicle identification information, and right side vehicle identification information.
- the steering controller 2-334, the engine control controller 2-335, and the brake controller 2-337 can be controlled to avoid collision with the target vehicle.
- the vehicle's attitude control controller (2-333) and the suspension controller (2-336) are controlled together to avoid collision due to a sudden speed change or steering change of the own vehicle and to prevent an accident due to driver's posture anxiety. Secure stability
- FIG. 10 is a diagram illustrating a method of detecting a target vehicle at risk of collision according to a second exemplary embodiment of the present invention.
- the ECU 2-320 corrects signals of image data input from the camera system 1 and radar data input from the radar system 2-2 (lateral offset, angle, target lateral velocity). do.
- the ECU 2-320 detects, as the target vehicle B, a vehicle having a portion that overlaps with the host vehicle A more than a predetermined value among the surrounding vehicles. For example, a vehicle having a portion overlapping with the host vehicle A in 50% or more can be detected as the target vehicle B.
- FIG. 1 a vehicle having a portion overlapping with the host vehicle A in 50% or more can be detected as the target vehicle B.
- the ECU 2-320 detects, as the target vehicle B, a vehicle whose difference between the traveling angle of the host vehicle A and the traveling angle of the surrounding vehicle is equal to or less than a predetermined value. For example, when the angle difference between the host vehicle A and the surrounding vehicle is 0 to 30%, the target vehicle B may be detected.
- the surrounding vehicle (or an object) overlapping the host vehicle A by a predetermined value or more or the angle difference between the host vehicle A and the host vehicle A is a predetermined value or less as the target vehicle B. Detect.
- the detection of the target vehicle B has been described. However, since the collision with the pedestrian or the object as well as the vehicle should be avoided, the target object (including the target vehicle) is detected and the collision with the target object is avoided.
- the host vehicle A is controlled. That is, when an object (including a vehicle and a pedestrian) is detected in the path in the traveling direction of the host vehicle A, it is detected as a target object.
- the driving route of the own vehicle A may be set based on a lane, and a virtual lane may be generated on a road without a lane, and a target object may be detected on the driving route based on the position of the surrounding vehicle and the virtual lane. Can be. In particular, when an object that did not exist on the travel path intervenes, the object is detected as a target object (target vehicle).
- FIG. 11 is a diagram illustrating a method of avoiding collision with a target vehicle by controlling the speed and steering of the own vehicle according to the second embodiment of the present invention.
- the collision risk is calculated based on the lateral offset of the host vehicle and the target vehicle as described in Equation 1 below.
- the ECU 2-320 calculates the heading angle and the lateral offset and then updates it.
- the curvature and curvature derivatives of the lanes maintain their existing values.
- the ECU 2-320 When the collision risk between the own vehicle and the target vehicle exceeds a preset reference value, the ECU 2-320 generates an avoidance path in consideration of an expected heading angle (HA) and calculates the speed and steering of the own vehicle. To control. At this time, the steering avoidance path may be generated based on the 3D lane-based model.
- HA expected heading angle
- C0l means Lateral Offset (Lane Mark Position)
- C1l means Line Heading Angle (Lane Mark Heading Angle)
- 2C2l means Line Curvature (Lane Mark Model A)
- 6C3l means Line Curvature Derivative (Lane Mark Model d (A)).
- the ECU 2-320 transmits a control signal to the steering controller 2-334 to control steering of the host vehicle A.
- FIG. when controlling steering of the host vehicle A to avoid collision with the target vehicle B, collision with the surrounding vehicle approaching from the rear may occur.
- the risk of collision with the vehicle approaching from the rear and the vehicle driving in the left or right lane is determined.
- Steering of the own vehicle A is controlled so that collision with the target vehicle B is avoided when there is no risk of collision with the vehicle driving behind and no vehicle running in the left or right lane or there is no risk of collision. do.
- the ECU 2-320 may steer the steering of the own vehicle A. By controlling, the collision with the target vehicle B can be avoided.
- the ECU 2-320 When collision is avoided through the speed control, the ECU 2-320 transmits a control signal to the engine control controller 2-335 and the brake controller 2-337 to reduce the speed of the own vehicle A. .
- the ECU 2-320 determines a collision risk with a vehicle that is driving in a left or right lane when steering avoidance is expected when a collision with the target vehicle B in front is expected. If it is determined that the collision with the vehicle running in the left or right lane during steering avoidance, the host vehicle A is decelerated to avoid the collision with the target vehicle B.
- the ECU 2-320 may remove the own vehicle A. By slowing down, collision with the target vehicle B can be avoided.
- a method of preventing a collision when a vehicle driving in a side lane enters (interrupts) a driving path of its own vehicle will be described.
- the camera system 1 analyzes image data photographing the vehicles driving in the side lane in the ECU 2-320, and detects the willingness to change lanes of the vehicles driving in the side lane. By detecting the direction indicators (blinking) of the surrounding vehicles, it is possible to detect that the vehicle running in the side lane enters (interrupts) the traveling route of the own vehicle A.
- the camera system 1 analyzes the image data photographing the vehicles driving in the side lane in the ECU 2-320, and detects the willingness to change lanes of the vehicles driving in the side lane. By detecting the direction of the tires of the surrounding vehicles, it is possible to detect that the vehicle running on the side road enters (interrupts) the traveling path of the own vehicle A.
- the image data of the vehicles traveling in the side lane in the camera system 1 and the radar data in which the vehicles in the side lane are detected in the radar system 2-2 are outputted from the ECU 2-320. Analyze In this way, the willingness to change lanes of vehicles running in the side lane is detected. By detecting the lateral acceleration and the direction of the surrounding vehicles, it is possible to detect that the vehicle running on the side road enters (interrupts) the traveling path of the own vehicle A.
- Own vehicle acceleration Relative speed with vehicle in the next lane ⁇ V Longitudinal distance from vehicle in side lane ⁇ Y Lateral distance from the vehicle in the next lane ⁇ X Own vehicle deceleration Vehicle speed in the side lane ⁇ Own vehicle speed + ⁇ Longitudinal distance from vehicle by side car> Y Lateral distance from the vehicle by the side road> X Own vehicle braking Speed of own vehicle> Speed of vehicle by side car Longitudinal distance from vehicle in side lane ⁇ Y Lateral distance from the vehicle in the next lane ⁇ X Own Vehicle Steering Avoidance Own vehicle speed> Speed of vehicle by side car Longitudinal distance from vehicle by side car ⁇ Y X1 ⁇ transverse distance from vehicle to side car ⁇ X2 If there are no vehicles in the side lane Crossing distance from lane to avoid is more than a certain value
- the ECU 2-320 determines the control mode of the host vehicle A.
- FIG. The ECU 2-320 may combine the control mode with one or two of the acceleration, deceleration, braking, and steering control modes to avoid collision between the host vehicle A and the surrounding vehicle. For example, collision may be avoided by accelerating, decelerating, and braking the host vehicle A, or performing steering control.
- acceleration and steering control of the host vehicle A may be performed together
- acceleration and steering control of the host vehicle A may be performed together
- braking and steering control of the host vehicle A may be performed together.
- FIG. 12 is a view showing a collision avoidance method according to a second embodiment of the present invention.
- the ECU 2-320 receives image data generated by the camera system 1 and radar data generated by the radar system 2-2 (S2-10).
- the ECU 2-320 corrects the signals of the image data and the radar data. That is, the sensor signal is corrected (S2-20).
- the ECU 2-320 detects the target vehicle from the surrounding vehicles based on the image data and the radar data (S2-30).
- the ECU 2-320 detects, as the target vehicle B, a vehicle having a portion that overlaps with the host vehicle A more than a predetermined value among the surrounding vehicles. For example, a vehicle having a portion overlapping with the host vehicle A in 50% or more can be detected as the target vehicle B.
- the ECU 320 detects, as the target vehicle B, a vehicle in which the difference between the traveling angle of the own vehicle A and the traveling angle of the surrounding vehicle is equal to or less than a predetermined value.
- the target vehicle B may be detected.
- the target vehicle B may be configured not to distinguish between the stationary state or the driving state of the surrounding vehicle, but to overlap the vehicle A with a predetermined value or more, or the peripheral vehicle (or an object) whose angle difference between the vehicle and the vehicle A is equal to or less than a predetermined value. Detects with
- the ECU 2-320 determines a risk of collision between the host vehicle and the target vehicle based on the lateral offset of the host vehicle and the target vehicle (S2-40).
- the ECU 2-320 determines the control mode of the own vehicle, and according to the determined control mode, the vehicle attitude control controller 2-333 and the steering controller 2. -334), the control signal is transmitted to the engine control controller 2-335, the suspension controller 2-336, and the brake controller 2-3-337. In this way, the attitude, speed and steering of the own vehicle are controlled to avoid collision between the target vehicle and the own vehicle.
- steering of the own vehicle can be controlled to avoid collision with the target vehicle.
- the speed of the own vehicle can be controlled to avoid collision with the target vehicle.
- one or more of the speed, braking and steering of the own vehicle can be controlled to avoid collision between the vehicle intervening in the side road and the own vehicle.
- a vehicle requires a control system for preventing a collision of the vehicle and various sensors for detecting a collision.
- a third embodiment of the invention relates to a travel assistance system for controlling a vehicle using a camera system for ADAS.
- FIG. 13 is a diagram of control of a vehicle according to a third embodiment of the present invention.
- the camera system 1 and / or the GPS processor 3-313 may detect that the vehicle 3-1000 enters an intersection.
- the camera system 1 may detect the traffic light 3-1100 of the intersection and detect that the vehicle 3-1000 enters the intersection.
- the GPS processor 3-313 may measure the location of the vehicle 3-1000 through communication with a satellite and compare the previously stored map information to determine whether the vehicle 3-1000 enters an intersection. Can be.
- the camera system 1 may photograph the state information, the first information, and the second information around the vehicle 3-1000 and transmit it to the ECU 3-320.
- the ECU 3-320 may display the state information, the first information, and the second information.
- the steering of the vehicle 3-1000 may be controlled based on the first information and the second information.
- the status information may include at least one of widening branch lanes and road marks 3-1210 and 3-1230.
- the first information may include at least one of data about a front vehicle, data about a front lane, a distance from a front vehicle, data about a traffic sign of an intersection, and signal data of an intersection.
- the second information may include the left turn road marking 3-1250 of the branch lane 3-1130, the stop line 3-1270 of the intersection, the presence or absence of the front vehicle, and the signal data of the intersection.
- the widening branch lane 3-1130 may mean a lane into which the vehicle 3-1000, which proceeds through the first lane (the lane disposed at the leftmost in the direction in which the vehicle travels, 3-1110), enters to make a left turn. Can be. That is, the branching lane 3-1130 that is widened may mean a lane newly created on the left side of the existing first lane 3-1110.
- the first information may be information detected by the camera system 1 before and while the vehicle 3-1000 enters the branch lane 3-1130, and the second information may be information about the vehicle 3-1000. The information may be detected by the camera system 1 after entering the branch lane 3-1130.
- the camera system 1 may detect the presence or absence of a branch lane by photographing the front of the vehicle 3-1000 or sensing the road marks 3-1210 and 3-1230 existing in front of the vehicle 3-1000.
- the road marks 3-1210 and 3-1230 may include a safety zone mark 3-1210 displayed on the road for a diverging lane and a guide mark 3-1230 indicating a driving direction of the vehicle.
- the guide display 3-1230 may indicate that the vehicle 3-1000 may enter the branch lane 3-1130.
- the camera system 1 may determine whether the lane in front of the vehicle 3-1000 is empty before and while the vehicle 3-1000 enters the branch lane 3-1130, and whether another vehicle is in front of the vehicle 3-1000. The presence and distance of the vehicle ahead can be detected. Through this, when the vehicle 3-1000 enters the branch lane 3-1130, a collision with the front vehicle can be avoided.
- the camera system 1 is configured for the left turn road mark 3-1250, the intersection of the stop line 3-1270, and the traffic sign of the intersection after the vehicle 3-1000 enters the branch lane 3-1130. Data and signal data at intersections can be detected.
- the ECU 3-320 may control some of the controller level components based on the state information, the first information, and the second information. For example, the ECU 3-320 may control the steering of the vehicle 3-1000 by controlling the steering controller 3-334 using the state information. Through information on the diverging lanes and road markings 3-1210 and 3-1230 that are widened, the ECU 3-320 causes the vehicle 3-1000 to proceed to the first lane 3-1110 to branch lanes. Steering may be controlled to enter (3-1130). In addition, the ECU 3-320 may control the speed and the brake of the vehicle 3-1000 using the first information. At this time, the ECU 3-320 may control the engine control controller 3-335, the suspension controller 3-336, the brake controller 3-337, and the like.
- the ECU 3-320 may provide first information including data about the vehicle ahead, data about the vehicle ahead, and a distance from the vehicle ahead. It can be used to prevent a collision with the vehicle ahead. For example, when the distance to the front vehicle is closer than the preset distance or the speed of the front vehicle is slow, the ECU 3-320 may reduce the speed of the vehicle 3-1000 or operate the brake.
- the ECU 3-320 may turn to the left turn road mark 3-1250, the stop line 3-1270 of the intersection, and the traffic of the intersection.
- the second information including the data on the sign and the signal data of the intersection may determine whether to stop or turn left at the intersection and control the vehicle 3-1000.
- the camera system 1 recognizes the signal data of the intersection and the left turn load mark 3-1250, and the ECU 3-320 is the camera system 1.
- the vehicle 3-1000 located in the branch lane 3-1130 may be controlled to turn left.
- the ECU 3-320 controls the vehicle 3-1000 to stop before the stop line 3-1270 of the intersection, or another vehicle in front of the vehicle 3-1000. It can be controlled to stop at a distance.
- the ECU 3-320 may control the steering controller 3-334, the engine control controller 3-335, the suspension controller 3-336, the brake controller 3-337, and the like.
- the control of the vehicle 3-1000 through the ECU 3-320 may not be limited to the above example.
- data about the front vehicle, data about the front lane, and the distance to the room vehicle may be detected through Lidar and Radar.
- the camera system 1 may interwork with Lidar and Radar to detect information around the vehicle and transmit it to the ECU 3-320.
- the ECU 3-320 controls the driver warning controller 3-331 to determine whether the vehicle 3-1000 can enter the branch lane 3-1130 and whether the vehicle can turn left in the branch lane 3-1130. You can let them know.
- the driver warning controller 331 may display the video notification message or the notification image to the driver through the HUD display or the side mirror display, and notify the driver in an audio manner. The driver may directly change the steering of the vehicle 3-1000 or control the overall configuration of the vehicle 3-1000 through the information provided by the driver warning controller 3-331.
- FIG. 14 is a flowchart illustrating a procedure of controlling a vehicle according to a third embodiment of the present invention.
- the ECU 3-320 approaches the intersection based on the information of the intersection and the location information of the vehicle 3-1000 using a GPS device. You can determine whether you are doing. In addition, the ECU 3-320 may determine whether the vehicle 3-1000 is near the intersection by detecting the traffic light 3-1100 of the intersection using the camera system 1 (S3-10). ).
- the camera system 1 may detect state information around the vehicle.
- the state information may include at least one of widening branch lanes and road marks 3-1210 and 3-1230 (S3-20).
- the camera system 1 may additionally detect first information that is information in front of the vehicle 3-1000.
- the first information may include at least one of data about a front vehicle, data about a front lane, a distance from a front vehicle, data about a traffic sign at an intersection, and signal data at an intersection (S3-30). ).
- the camera system 1 may transmit the status information and the first information to the ECU 3-320, and the ECU 3-320 is a first lane of the vehicle 3-1000 based on the status information and the first information.
- operation 3-1110 it may be determined whether the lane change is possible to the branch lane 3-1130.
- the ECU 3-320 may determine whether the branch lane 3-1130 is present based on the state information, and, when it is determined that the branch lane 3-1130 is present, the vehicle based on the first information. (3-1000) A possibility of collision with another vehicle ahead can be determined.
- the ECU 3-320 controls steering of the vehicle 3-1000.
- the lane may be changed to a lane that can be turned left, that is, a branch lane 3-1130.
- the ECU 3-320 may control the vehicle 3-1000 to prevent collision with another vehicle in consideration of the first information.
- the ECU 3-320 may not enter the branch lane 3-1130, and the camera system 1 again detects the first information. And transmits to the ECU 3-320, and the ECU 3-320 may again determine the possibility of collision with the vehicle ahead (S3-45, S3-50).
- the ECU 3-320 may determine that the vehicle 3-1000 is not present. May not control the steering. That is, the ECU 3-320 may control the vehicle 3-1000 such that the vehicle 3-1000 does not enter the branch lane 3-1130.
- 15 is a flowchart illustrating a procedure of controlling a vehicle according to a third embodiment of the present invention.
- the camera system 1 may detect second information in front of the vehicle 3-1000 in which the lane is changed to a left turning lane.
- the second information may include a left turn road marking 3-1250 of the branch lane 3-1130, a stop line 3-1270 of the intersection, the presence or absence of a front vehicle, and signal data of the intersection (S3-50, S3). -60).
- the camera system 1 can transmit the second information to the ECU 3-320, and the ECU 3-320 is based on the stop line 3-1270 of the intersection and the presence or absence of the vehicle ahead. Control the speed and brake. For example, when another vehicle exists in front of the vehicle 3-1000, the ECU 3-320 may control to reduce the speed of the vehicle 3-1000 or drive a brake.
- the ECU 3-320 may control the speed and brake of the vehicle 3-1000 to stop at the stop line 3-1270 of the intersection. (S3-70).
- the intersection signal is a driving signal capable of turning left
- the ECU 3-320 may control the vehicle 3-1000 to turn left. If the intersection signal is not a driving signal capable of turning left, the camera system 1 may again detect the second information and the ECU 3-320 may control the vehicle 3-1000 based on the second information. .
- the ECU 3-320 may control the driver warning controller to inform the driver of whether the vehicle can turn left based on the state information, the first information, and the second information (S3-80 and S3-90).
- the emergency braking system provides crash warning and automatic braking control when a collision with a vehicle or pedestrian in front is foreseen. For this purpose, the collision time points are calculated, the relative speed and relative acceleration of the own vehicle are calculated, the collision point is confirmed, and the braking control point of the vehicle is determined.
- the emergency braking system of the prior art determines the braking control timing of the own vehicle without considering the state of the road surface. When it rains or snows, the road becomes slippery and the braking distance is longer than that of general road conditions. Therefore, when the braking control entry point set on the basis of the general road surface is applied to the slippery drawing as it is, there is a problem that collision with the front vehicle or the object (including the pedestrian) cannot be avoided even when emergency braking is performed.
- a fourth embodiment of the present invention relates to a camera system, an emergency braking system and a method for an ADAS that can control the entry point of emergency braking according to the degree of sliding of the road.
- 16 is a diagram illustrating recognizing a slippery road sign using a camera system according to a fourth embodiment of the present invention.
- the emergency braking system may recognize slippage of a road and control an entry point of emergency braking according to a degree of sliding of the road.
- the emergency braking system is ECU (4-320), GPS MCU (4-313), navigation MCU (4-314), driver warning controller (4-331), engine control controller ( 4-335), brake controller 4-337, and camera system 1.
- the emergency braking system recognizes road slippage as an example, and recognizes signs S1 and S2 indicating the state of the road using the camera system 1, and road signs. Is provided to the ECU 4-320. For example, a sign S1 indicating a slippery road, a sign S2 indicating a road of water, and the like may be recognized. In addition, it can recognize signs indicating bridges that can easily freeze, signs supporting habitual flood zones, and the like.
- the emergency braking system recognizes the slippery of the road, and may check the slippery state of the road by checking the weather condition of the road being driven.
- the navigation MCU 4-314 or a smart device eg, a mobile phone
- the navigation MCU 4-314 or a smart device is used to receive current weather information of a road being driven, and provide the weather information to the ECU 4-320.
- the emergency braking system recognizes the slippery of the road as an example.
- the ECU 4-320 checks whether the wiper of the vehicle is operated, and continuously operates the wiper for a predetermined time. In this case, the driving road may be recognized as slippery.
- the emergency braking system recognizes the slippery of the road, and when rain or snow falls, moisture remains on the road surface and when the road image is analyzed, the road surface may be recognized. Can be.
- the front of the road being driven is photographed using the camera system 1, and the road surface state of the road is recognized from the front image.
- the camera system 1 provides the ECU 4-320 with information about the road surface condition.
- 17 is a diagram illustrating changing the emergency braking entry time according to the slipperiness of the road in the emergency braking system according to the fourth embodiment of the present invention.
- the ECU 4-320 determines that the own vehicle is driving on a general road, the default value is maintained without applying a separate weight when calculating the emergency braking entry time.
- the navigation MCU 4-314 calculates the speed of the host vehicle V1 and calculates a relative speed of the host vehicle V1 and the target vehicle V2 based on the distance between the host vehicle V1 and the target vehicle V2. Calculate.
- the information on the relative speeds of the host vehicle V1 and the target vehicle V2 is provided to the ECU 4-320.
- the ECU 4-320 calculates a collision time (TTC: Time to Collision) between the host vehicle V1 and the target vehicle V2 based on the relative speeds of the host vehicle V1 and the target vehicle V2 and collides with each other. According to the time points, the first warning A1, the second warning B1, and the third warning C1 are set.
- TTC Time to Collision
- the first warning (A1) is a step of prefilling the pressure in the brake (prefill)
- the ECU (4-320) controls the brake controller (4-337) to make the braking of the vehicle immediately during emergency braking Pre-charge the brakes.
- the secondary warning B1 is a step of reducing / stopping the output of the engine, and the ECU 4-320 controls the engine controller 4-331 to reduce the output of the engine so that the braking of the vehicle is performed immediately during emergency braking. / Stop
- the third warning C1 is a step in which the brake is actually braked, and the ECU 4-320 controls the brake controller 4-337 to brake the full brake.
- the ECU 4-320 controls the driver warning controller 4-331 to warn of an emergency braking situation, and emergency braking. Warn the driver of the entry.
- the alarm may be output through the audio device of the vehicle
- the warning condition may be visually output through the video device
- the warning situation may be tactilely output through the haptic device to warn the driver of the emergency situation.
- the ECU 4-320 recognizes whether the road currently running is a slippery road based on the sign recognition result on the road. In addition, the ECU 4-320 may recognize the slippery state of the road by checking the weather state of the road being driven. In addition, the ECU 4-320 may determine whether the wiper of the vehicle operates and recognize the slippery state of the currently driving road when the wiper continues to operate for a predetermined time. In addition, the ECU 4-320 may check the road surface state of the road in the front image to recognize the slippery state of the driving road.
- a weight is applied when calculating the emergency braking entry point in consideration of the increase in the braking distance (for example, a weight of + 30% to +70). %) To accelerate the entry of emergency braking control.
- the navigation MUC 4-314 calculates the speed of the host vehicle V1 and calculates a relative speed between the host vehicle V1 and the target vehicle V2 based on the distance between the host vehicle V1 and the target vehicle V2. Calculate.
- the information on the relative speeds of the host vehicle V1 and the target vehicle V2 is provided to the ECU 4-320.
- the ECU 4-320 calculates a collision time (TTC: Time to Collision) between the host vehicle V1 and the target vehicle V2 based on the relative speeds of the host vehicle V1 and the target vehicle V2 and collides with each other.
- TTC Time to Collision
- a weight is applied when calculating the emergency braking entry point (for example, a weight of + 30% to + 70%) to advance the entry point of the emergency braking control.
- the braking distance is increased by 1.5 times compared to general roads, and thus the emergency braking control entry point is advanced by applying a weight of 50% when calculating the emergency braking entry point.
- the primary warning (A2) is a step of prefilling the pressure in the brake, and the ECU 4-320 controls the brake controller 4-337 to brake the vehicle immediately so that the vehicle can be braked immediately in case of emergency braking. Charge the pressure in advance.
- the secondary warning (B2) is a step of reducing / stopping the engine output, and the ECU 4-320 controls the engine controller 4-331 to reduce the output of the engine so that the braking of the vehicle is performed immediately during emergency braking. / Stop
- the third warning C2 is a step in which braking is actually performed, and the ECU 4-320 controls the brake controller 4-337 to brake the full brake.
- the ECU 4-320 controls the driver warning controller 4-331 to warn of an emergency braking situation, and emergency braking. Warn the driver of the entry.
- the alarm may be output through the audio device of the vehicle
- the warning condition may be visually output through the video device
- the warning situation may be tactilely output through the haptic device to warn the driver of the emergency situation.
- FIG. 18 is a view showing an emergency braking method according to a fourth embodiment of the present invention.
- the braking distance is increased in consideration of the weighting applied when calculating the emergency braking entry point (for example, the weight + 30% ⁇ + 70%) to advance the entry point of emergency braking control (S4-50).
- a weight is applied when calculating the emergency braking entry point in consideration of the increase in the braking distance (for example, a weight of + 30%). ⁇ 70%) to advance the entry point of the emergency braking control (S4-50).
- the braking distance is increased in consideration of the weighting applied when the emergency braking entry point is calculated (for example, the weight + 30% ⁇ + 70%) to advance the entry point of emergency braking control (S4-50).
- the weight is applied when calculating the emergency braking entry point, considering that the braking distance is increased (for example, the weight is + 30% to + 70%) to advance the entry point of the emergency braking control (S4-50).
- voltage logic and memory logic that can be used in the front camera system for ADAS can be implemented.
- a manner in which the lens barrel and the lens holder can be combined in the front camera system for the ADAS can be provided.
- the emergency braking entry point may be advanced, and a collision / collision accident due to the increase of the braking distance may be prevented.
- a fifth embodiment of the present invention relates to a camera system for an ADAS and a driving assistance system for controlling a host vehicle using the same.
- FIGS. 19A to 21 a fifth embodiment of the present invention will be described with reference to FIGS. 19A to 21.
- 19A to 19C are views for explaining lateral control of a vehicle according to a fifth embodiment of the present invention.
- the host vehicle 5-100 is a vehicle system 5-100 of the host vehicle 5-100 in a lane in which the host vehicle is traveling using the camera system 1.
- the location and the vehicle front area 5-110 may be detected.
- the front area 5-110 may mean a lane in front of the own vehicle 5-100 and a lane adjacent thereto. This is defined as a first lane 5-50 that is a driving lane.
- the position of the host vehicle 5-100 in the first lane 5-50 may be a lateral distance between the host vehicle 5-100 and the first lane 5-50.
- the host vehicle 5-100 uses the camera system 1 to view a first lane 5-50 in which the host vehicle 5-100 is traveling and another vehicle 5-200 intervening in the forward direction. Can be detected.
- the camera system 1 may detect the separation distance between the host vehicle 5-100 and the first lane 5-50 through the detection of the first lane 5-50.
- the ECU 5-320 may calculate a position where the host vehicle 5-100 is disposed in the first lane 5-50.
- the ECU 5-320 may include a first distance d1 between the left side surface of the host vehicle 5-100 and the first lane 5-50 and the right side surface of the host vehicle 5-100 and the first lane.
- the second distance d2 between 5-50 may be calculated.
- the ECU 5-320 may use the own vehicle 5-100 and the other vehicle through the information of the first lane 5-50 and the position information of the other vehicle 5-200 detected by the camera system 1.
- the transverse positional relationship of (5-200) can be grasped.
- the ECU 5-320 may display the host vehicle 5 through the position of the other vehicle 5-200 detected by the camera system 1 and the degree of overlap between the other vehicle 5-200 and the first lane. 100 and the transverse position of the other vehicle 5-200 can be grasped.
- the radar device may measure the distance between the host vehicle 5-100 and the other vehicle 5-200.
- Radar systems use electromagnetic waves to measure distances, speeds, and angles of objects. They are usually located on the front grille of the vehicle and cover the front and bottom of the vehicle. The reason why the Radar device is placed on the front grill, that is, the outside of the vehicle, in other words, the reason for not transmitting or receiving through the windshield of the vehicle is due to the decrease in sensitivity when passing through the glass due to the nature of electromagnetic waves.
- the Radar device while the Radar device is located inside the vehicle, specifically, while positioned below the windshield in the interior space of the vehicle, it is possible to prevent electromagnetic waves from passing through the windshield.
- the Radar device is configured to transmit and receive electromagnetic waves through an opening provided at the top of the windshield.
- a cover is disposed at a position corresponding to the opening for the Radar device. This cover is intended to prevent loss due to the opening (eg, ingress of air, etc.).
- the cover is preferably made of a material that is easy to penetrate against electromagnetic waves of the frequency used by the Radar device.
- the Radar device is located inside the vehicle but transmits and receives electromagnetic waves through an opening provided in the windshield, and a cover is provided corresponding to the opening to prevent loss due to the opening, and the electromagnetic wave is transmitted and received through the cover.
- Such a radar device may use beam aiming, beam selection, digital beam forming, and digital beam steering.
- the Radar device may also include an array antenna or a phased array antenna.
- the ECU 3-520 may grasp the longitudinal positional relationship between the own vehicle 5-100 and the other vehicle 5-200 through the information measured by the radar device.
- the ECU 5-320 may determine a risk of collision with the other vehicle 5-200 based on the position of the host vehicle 5-100 in the first lane 5-50. Accordingly, steering and speed of the host vehicle 5-100 may be controlled.
- the camera system 1 may detect whether another vehicle is present in the second lane, which is the lane in a direction opposite to the direction in which the other vehicles 5-200 enter the first lane 5-50.
- the ECU 5-320 controls steering of the own vehicle 5-100 such that the own vehicle 5-100 changes lanes to the second lane. can do. Under the control of the ECU 3-320, collision between the host vehicle 5-100 and the other vehicle 5-200 can be prevented.
- 20A to 20C are diagrams for describing longitudinal control of a vehicle according to a fifth embodiment of the present invention. For simplicity of description, descriptions overlapping with those of FIG. 19 will be omitted. 20A and 20B are the same as or similar to FIGS. 19A and 19B, and thus descriptions thereof are omitted.
- the ECU 5-320 may use the other vehicle 5-200 based on the position of the host vehicle 5-100 in the first lane 5-50.
- the risk of collision with the vehicle can be determined, and accordingly, steering and speed of the own vehicle 5-100 can be controlled.
- the camera system 1 may detect whether another vehicle is present in the second lane, which is the lane in a direction opposite to the direction in which the other vehicles 5-200 enter the first lane 5-50.
- the ECU 5-320 when the third vehicle 5-300, which is another vehicle in the second lane, exists, the ECU 5-320 completely enters the other vehicle 5-200 into the first lane 5-50. Before it can be determined whether the own vehicle (5-100) can overtake other vehicles (5-200). Specifically, the ECU 5-320 may be configured to detect the transverse / longitudinal positional relationship between the host vehicle 5-100 and the other vehicle 5-200 detected by the camera system 1 and the host vehicle detected by the Radar device. 5-100 and the speed of the other vehicle 5-200 may determine whether the own vehicle 5-100 may overtake the other vehicle 5-200. The ECU 5-320 may accelerate the speed of the host vehicle 5-100 when it is determined that the host vehicle 5-100 may overtake the other vehicle 5-200.
- the ECU 5-320 decelerates the speed of the own vehicle 5-100 to reduce the speed of the other vehicle 5-5-. Collision with 200) can be prevented. Accordingly, the other vehicle 5-200 may enter the first lane 5-50 and be located in front of the own vehicle 5-100.
- 21 is a flowchart illustrating control of a vehicle according to a fifth embodiment of the present invention.
- a camera system installed in a host vehicle may detect an area in front of the subject vehicle.
- the camera system may recognize the front vehicle and the lane located in front of the own vehicle (S5-10).
- the camera system may detect the lateral position of the other vehicle through the position of the other vehicle and the degree of overlap of the other vehicle with the lane (S5-20).
- the ECU transmits the lateral and longitudinal directions between the own vehicle and the other vehicle through information on the position of the own vehicle and the position of the other vehicle in the first lane acquired by the camera system and the distance information between the own vehicle and the other vehicle obtained by the radar device.
- the positional relationship may be determined (S5-30).
- the camera system may detect whether there is another vehicle (third vehicle) in the lane next to the lane where the own vehicle proceeds.
- the side lane refers to a lane in a direction opposite to a lane in which another vehicle to enter the first lane travels (S5-45).
- the ECU may decelerate or accelerate the speed of the own vehicle to prevent a collision between the own vehicle and the other vehicle. That is, the ECU may perform longitudinal control of the own vehicle (S5-51).
- the ECU may control the steering of the own vehicle so that the own vehicle enters the side lane. That is, the ECU can perform lateral control of the own vehicle.
- the ECU may also control the speed of the own vehicle (S5-53).
- the own vehicle can drive by performing a straight, u-turn or left / right turn, and not only the own vehicle but also other vehicles can perform a u-turn or left / right turn, and accidents frequently occur between vehicles.
- Prior art intersection collision avoidance systems only perform braking control when a collision between a host vehicle and a surrounding vehicle is expected.
- there is a limit to prevent a collision accident at the intersection because there is no function to warn the driver in advance of the risk of collision or to avoid the collision by controlling the steering.
- the sixth embodiment of the present invention detects the risk of collision between the host vehicle and the surrounding vehicle on the basis of the stop or driving state of the own vehicle at the intersection and whether the steering wheel is operated, and provides the driver with the risk of collision according to the level of the collision risk.
- the present invention relates to a camera system for an ADAS capable of performing steering control of a vehicle, and an intersection collision prevention system and method.
- FIGS. 22A, 22B, 23A, and 23B a sixth embodiment will be described with reference to FIGS. 22A, 22B, 23A, and 23B.
- FIG. 22A is a diagram illustrating not to warn of a danger of collision when there is no operation of a steering wheel in a state where a vehicle is stopped at an intersection.
- Fig. 22B is a diagram showing the warning of the danger of collision to the first level when there is operation of the steering wheel in the state where the own vehicle is stopped at the intersection.
- the ECU 6-320 verifies that the steering wheel is operated to perform the left turn, the right turn, or the u-turn.
- the steering wheel of the own vehicle A it is determined whether there is a risk of collision with the surrounding vehicle B when the host vehicle A is traveling in the direction to proceed.
- the peripheral vehicle B is detected by at least one of the Lidar MCU 6-311, the Radar MCU 6-312, and the camera MCU 6-42, and the own vehicle ( The risk of collision between A) and the surrounding vehicle (B) can be determined.
- the ECU 6-320 determines that the first level collision risk between the host vehicle A and the surrounding vehicle B is at risk. Warn the driver about the risk of a level 1 crash.
- the driver warning controller 6-331 can display the video type warning message or warning image to the driver through the HUD display or the side mirror display to warn the user of the first level of collision risk.
- FIG. 23A is a diagram showing warning of a collision risk to a second level when a collision with a surrounding vehicle is expected in a state where driving of the own vehicle is started at an intersection.
- the ECU 6-320 controls the host vehicle A and the surrounding vehicle B. Determine if there is a risk of collision with
- the ECU 6-320 determines that the collision risk between the own vehicle and the surrounding vehicle is predicted as the collision risk of the second level when the own vehicle travels in the steering operation direction, and warns the driver of the collision risk of the second level. . Although the first collision risk is warned in the state where the own vehicle A is stopped, the risk of collision with the surrounding vehicles becomes higher when the own vehicle starts running, and thus it is determined as the second level collision risk.
- the driver warning controller 6-331 Upon warning of the second level of danger of collision, the driver warning controller 6-331 displays the video warning message or the warning image to the driver through the HUD display or the side mirror display, and generates the warning signal by the audio method. Let's do it. At this time, the driver warning controller 6-331 may output the warning sound using the sound system of the vehicle in order to output the warning sound. That is, when the steering operation for the left turn, the right turn or the U-turn is started and driving at the intersection, the vehicle is determined to be the second level collision risk, and the video collision warning and the audio collision warning are simultaneously output to the driver. Warns you of a two-level collision hazard
- FIG. 23B is a view showing that the third level warning of the collision risk is performed when a collision with the surrounding vehicle is expected in the state where the vehicle starts to be driven at the intersection and there is no operation of the steering wheel for braking or collision avoidance. .
- the ECU 6-320 determines whether there is a risk of collision with the surrounding vehicle while the steering wheel is operated by operating the steering wheel to perform the left turn, the right turn, or the U-turn at the intersection.
- the ECU 6-320 determines whether there is a risk of collision with the surrounding vehicle while the steering wheel is operated by operating the steering wheel to perform the left turn, the right turn, or the U-turn at the intersection.
- the braking or the steering wheel is not performed to avoid the collision, it is determined that the collision is at the third level, and the collision is at the third level. Warn the driver of danger.
- the driver warning controller 6-331 displays the video warning message or warning image to the driver through the HUD display or the side mirror display, and generates the warning signal by the audio method. Let's do it.
- the driver warning controller 6-331 may output the warning sound using the sound system of the vehicle in order to output the warning sound. That is, when the steering operation and the driving for the left turn, the right turn or the U-turn are started at the intersection, it is determined as the collision risk of the second level, and the video collision warning and the audio collision warning are simultaneously output.
- the steering controller 6-334 controls the steering of the host vehicle so that collision between the host vehicle and the surrounding vehicle is avoided.
- the steering controller 6-334 controls the electric power steering system MPDS that drives the steering wheel.
- the steering controller 6-334 controls the steering of the vehicle in a direction that can avoid the collision or minimize the damage.
- the suspension controller 6-336 controls the vehicle to maintain its normal posture in response to a sharp steering operation for avoiding a collision. That is, the vehicle attitude is maintained so that the riding comfort and the driving stability are secured even if the sharp steering control for collision avoidance is made.
- the ECU 6-320 may brake the vehicle by using the brake controller 6-337 when the collision control cannot guarantee the collision avoidance only when the warning of the third collision risk is performed. That is, the brake controller 6-337 performs braking of the vehicle based on the control of the ECU 6-320 when the third danger is warned.
- the brake controller 6-337 automatically emergency the brake controller 6-337 according to the control command of the ECU 6-320 regardless of whether the driver has operated the brake when a forward collision is expected. Control to activate the brakes.
- the intersection collision avoidance system and method of the present invention can detect the collision risk between the own vehicle and the surrounding vehicle at the intersection, and warn the driver of the collision risk according to the level of the collision risk. In addition, it is possible to avoid the collision by performing the steering control of the vehicle together with the warning of the collision risk according to the level of the collision risk.
- a seventh embodiment of the present invention relates to implementing automatic emergency braking based on a longitudinal TTC and a transverse TTC between a host vehicle and another vehicle in a front camera system for ADAS.
- FIG. 24 is a diagram for describing a host vehicle, a vehicle, and a TTC according to a seventh embodiment of the present invention.
- a host vehicle 7-610 and another vehicle 7-620 are shown.
- the host vehicle 7-610 is a vehicle equipped with the camera system according to the present invention, and the other vehicles 7-620 are all vehicles except the host vehicle 7-610.
- the other vehicle 7-620 is traveling in the transverse direction with respect to the host vehicle 7-610. Typically, such transverse progression can occur at intersections.
- TTC Time To Collision
- TTC x longitudinal TTC
- TTC y transverse TTC
- the transverse direction TTC (TTC y ) corresponds to the time taken for the other vehicles 7-620 to collide with respect to the traveling path of the host vehicle 7-610
- the longitudinal direction TTC (TTC x ) is the other vehicle. It corresponds to the time it takes for the own vehicle 7-610 to collide based on the traveling route of 7-620.
- FIG. 25 is a diagram for explaining an AEB control algorithm according to a seventh embodiment of the present invention.
- Such an AEB control algorithm may be performed by a camera system mounted on a host vehicle. More specifically, this AEB control algorithm can be performed by an image processor in the camera system.
- the present invention is not limited thereto, and may be performed by a camera MCU, may be performed by another MCU, may be performed by an ECU, or may be performed by a combination of a plurality of MCUs and / or ECUs. This should be understood.
- the other vehicle in front is detected (S7-710).
- the other vehicle is a vehicle that runs laterally relative to the own vehicle, and such a situation may occur at an intersection.
- TTC x the longitudinal TTC (TTC x ) between the own vehicle and the other vehicle is calculated (S7-720).
- Longitudinal TTC is the time taken for the own vehicle to collide based on the traveling path of the other vehicle.
- This longitudinal TTC can be calculated by calculating the intersection of the traveling path of the own vehicle and the traveling path of the other vehicle, calculating the distance between the own vehicle and the intersection point, and dividing the calculated distance by the speed of the own vehicle.
- the transverse direction TTC (TTC y ) between the host vehicle and the other vehicle is calculated (S7-730).
- the lateral TTC is the time taken for the other vehicle to collide with the traveling path of the own vehicle.
- This transverse TTC can be calculated by calculating the intersection of the traveling path of the own vehicle and the traveling path of the other vehicle, calculating the distance between the other vehicle and the intersection point, and dividing the calculated distance by the speed of the other vehicle.
- the difference between the longitudinal TTC and the transverse TTC is compared with a preset threshold TTC th (S7-740). If, as a result of the determination, the absolute value of the difference is smaller than the preset threshold, automatic emergency control (AEB) is executed (S7-750). If, as a result of the determination, the absolute value of the difference is larger than the preset threshold, automatic emergency control is not executed. For example, if the longitudinal TTC is 10 seconds and the transverse TTC is 1 second, the absolute value of the difference is calculated as 9 seconds. Nine seconds is determined to be sufficient time for the driver to defend (ie, greater than the preset threshold), in which case no automatic emergency control is executed.
- AEB automatic emergency control
- the absolute value of the difference is calculated as 1 second.
- One second is determined to be insufficient time for the driver to defend (ie, less than a preset threshold), in which case automatic emergency control is executed.
- the predetermined threshold as described above is determined based on at least one of the longitudinal TTC, the transverse TTC, the road surface condition, the slope of the road surface, and the air temperature. For example, even if the absolute value of the difference is 1 second, it is preferable that the preset threshold is set small when the longitudinal TTC and the transverse TTC are large (for example, 50 seconds and 49 seconds, respectively). On the contrary, even if the absolute value of the difference is 1 second, it is preferable that the preset threshold is set large when the longitudinal TTC and the transverse TTC are small (for example, 5 seconds and 4 seconds, respectively).
- a preset threshold is set larger than when it is a dry road surface.
- a predetermined threshold is set larger than when the slope is flat or uphill.
- a preset threshold is set larger than the case where the temperature is high.
- Vehicles entering an intersection are more likely to collide with nearby vehicles.
- the vehicle running behind the vehicle does not recognize the signal of the intersection and does not decelerate, thereby increasing the risk of collision.
- researches on a control system or a warning system that can avoid a possibility of a collision to a driver have been actively conducted recently.
- An eighth embodiment according to the present invention relates to a camera system for an ADAS and a driving assistance system for warning a driver using the same.
- FIG. 26 is a diagram illustrating that a host vehicle recognizes a surrounding situation at an intersection according to an eighth embodiment of the present invention. Duplicate descriptions are omitted for simplicity of explanation.
- the own vehicle 8-1000 may be equipped with a camera system 1 for detecting the front of the vehicle traveling direction and a rear radar 8-1030 for recognizing the rear and the side of the traveling direction.
- the camera system 1 may be disposed in front of the host vehicle 8-1000, and the rear radar 8-1030 may be disposed behind the host vehicle 8-1000.
- the rear radar 8-1030 may be disposed on the side of the host vehicle 8-1000, and the position of the camera system 1 and the rear radar 8-1030 may not be particularly limited.
- the camera system 1 may detect that the signal of the traffic light 8-1100 changes from a green signal to a yellow or red signal. That is, the camera system 1 may detect that the signal of the traffic light 8-1100 is changed from the driving signal to the stop signal, and transmit the detected signal data to the ECU 8-320. The driver recognizes a yellow or red signal of the traffic light 8-1100 to slow down the speed of the own vehicle 8-1000.
- the rear radar 8-1030 may recognize the surrounding vehicle 8-1200 that may collide with the host vehicle 8-1000.
- the rear radar 8-1030 may be the Radar device described with reference to FIG. 3.
- the rear radar 8-1030 may include the presence or absence of the surrounding vehicle 8-1200, the distance of the surrounding vehicle 8-1200, the speed of the surrounding vehicle 8-1200, the traveling angle of the surrounding vehicle 8-1200, and the like. It can be measured.
- the traveling angle may mean a direction in which the surrounding vehicles 8-1200 actually travel based on the direction in which the lane in which the surrounding vehicles 8-1200 are located is headed.
- the rear radar 8-1030 may detect an object up to 150 m in the horizontal angle range of 30 degrees using a frequency modulation carrier wave (FMCW) or a pulse carrier (pulse carrier) method.
- FMCW frequency modulation carrier wave
- pulse carrier pulse carrier
- the ECU 8-320 receives signal data of the traffic light 8-1100 detected by the camera system 1 and data of the surrounding vehicle 8-1200 detected by the rear radar 8-1030, thereby allowing the own vehicle ( The risk of collision between the vehicle 8-1000 and the surrounding vehicle 8-1200 may be determined. According to an example, when the host vehicle 8-1000 decelerates or runs at a constant speed, and the surrounding vehicle 8-1200 positioned behind the host vehicle 8-1000 accelerates toward the host vehicle 8-1000. The ECU 8-320 may determine a collision risk based on data about the distance between the host vehicle 8-1000 and the surrounding vehicle 8-1200 measured by the rear radar 8-1030.
- the vehicle 8-1000 decelerates or travels at a constant speed, and the surrounding vehicle 8-1200 located to the side of the vehicle 8-1000 changes steering to change the vehicle 8-1200.
- the ECU 8-320 may display data about the distance between the host vehicle 8-1000 and the surrounding vehicle 8-1200 measured by the rear radar 8-1030 and the surrounding vehicle 8-1200. The risk of collision can be determined from the data on the propagation angle of.
- the ECU 8-320 is connected to the host vehicle 8.
- the collision risk may be determined based on the deceleration degree of -1000, the acceleration degree of the surrounding vehicle 8-1200, and the distance between the own vehicle 8-1000 and the surrounding vehicle 8-1200.
- the method of determining the collision risk by the ECU 8-320 is not limited to the above-described example, and may be variously determined by combining data provided by the camera system 1 and the rear radar 8-1030.
- the ECU 8-320 may control the driver warning controller 8-331 to warn the driver of the risk of collision. have.
- the driver warning controller 8-331 may warn the driver in at least one of a video method, an audio method, and a vibration of the handle.
- the ECU 8-320 may warn the driver in a video manner through an instrument panel or a head-up display, A warning sound can be generated to warn the driver or the steering wheel shake can be generated above a certain intensity to warn the driver.
- the constant strength may be defined as an intensity that is greater than the shaking of a general steering wheel that a driver can feel while driving.
- FIG. 27 is a flowchart illustrating a warning to a driver according to a surrounding situation of a host vehicle according to an eighth embodiment of the present invention.
- FIG. 7 a case of recognizing a rear vehicle will be mainly described.
- a traffic light located in front of the host vehicle may be recognized through a camera system mounted on the host vehicle.
- the camera system Through the camera system, it is possible to recognize that the signal of the traffic light changes from the green signal (the runnable signal) to the yellow or the red (stop signal) (S8-10).
- the rear vehicle can recognize the rear vehicle.
- the rear radar may detect the presence or absence of the rear vehicle, the speed of the rear vehicle, the distance between the host vehicle and the rear vehicle and the traveling angle of the rear vehicle (S8-20).
- the ECU can combine the data detected by the camera system and the rear radar to determine the possibility of collision between the own vehicle and the rear vehicle.
- the ECU can focus on comparing the speed of the vehicle with the speed of the rear vehicle.
- the ECU may determine the possibility of collision by comparing data of the rear vehicle detected by the rear radar with the speed of the own vehicle (S8-35). If there is no possibility of collision, the own vehicle may stop or proceed under the control of the driver, and recognize the traffic light when entering the intersection again. If there is a possibility of a collision, the ECU can warn the driver of the possibility of a collision. As a warning to the driver, the driver can control the own vehicle to help avoid a collision with the rear vehicle (S8-40).
- intersections are points where driving paths between vehicles cross each other, accidents may occur frequently.
- the signal of the intersection is changed, there may occur a case in which the vehicles do not recognize the stop signal of the traffic light.
- a ninth embodiment of the present invention is directed to a travel assistance system for avoiding collision between vehicles.
- FIG. 28 is a diagram illustrating positions of a host vehicle and a surrounding vehicle at an intersection according to a ninth embodiment of the present invention. Duplicate descriptions are omitted for simplicity of explanation.
- the host vehicle 9-1000 and the surrounding vehicle 9-1200 enter an intersection.
- the host vehicle 9-1000 may change steering to make a left turn, and thus the traveling directions of the host vehicle 9-1000 and the surrounding vehicle 9-1200 may cross each other.
- the host vehicle 9-1000 may be equipped with a camera system 1 and a sensor 9-1100 that detect the front of the host vehicle 9-1000.
- the camera system 1 may acquire an image in front of the own vehicle 9-1000 and measure the presence and position of the surrounding vehicle 9-1200, and the sensor 9-1100 may measure the own vehicle 9-1000.
- the distance between the vehicle and the surrounding vehicle 9-1200 and the speed (relative speed and absolute speed) of the surrounding vehicle 9-1200 may be measured.
- the sensor 9-1100 may include at least one of Radar and Lidar.
- the ECU 9-320 may determine the risk of collision between the host vehicle 9-1000 and the surrounding vehicle 9-1200 based on the data acquired by the camera system 1 and the sensor 9-1100, and the collision
- the estimated collision time which is the time to hour, can be calculated.
- the estimated collision time is based on the traveling path of the own vehicle 9-1000 and the surrounding vehicle 9-1200, the speed (relative and absolute speed) of the surrounding vehicle 9-1200, and the surrounding vehicle by the camera system 1 ( Through the position of 1200).
- the ECU 9-320 may set the vehicle control point after calculating the estimated collision time.
- the vehicle control timing may refer to a timing at which the possibility of collision between the own vehicle 9-1000 and the neighboring vehicles 9-1200 is calculated once again after the estimated collision time is calculated.
- the vehicle control timing may include a first vehicle control timing and a second vehicle control timing, and the first vehicle control timing may precede the second vehicle control timing. That is, after determining the possibility of collision at the first vehicle control time point, it is possible to determine the possibility of collision at the second vehicle control time point.
- the ECU 9-320 may control the host vehicle 9-1000 by recalculating a probability of collision between the host vehicle 9-1000 and the surrounding vehicle 9-1200 at the first and second vehicle control points. have.
- the ECU 9-320 may control the driver warning controller 9-331, the steering controller 9-334, and the brake controller 9-337 to control the own vehicle 9-1000.
- the controller controlled by the ECU 9-320 may not be limited to the above example.
- the ECU 9-320 calculates a first collision estimated time, and at the first vehicle control point of view.
- the second collision prediction time can be calculated.
- the ECU 9-320 may generate an alarm to warn the driver.
- the alert may include video, audio and handle vibrations.
- the ECU 9-320 may calculate the third collision budget time at the second vehicle control time point. At this time, when the third collision budget time is smaller than the first collision estimated time or the second collision budget time, the ECU 9-320 may control the steering and brake of the own vehicle 9-1000 to avoid collision. have.
- 29 is a diagram illustrating two-dimensional coordinates of surrounding vehicles on the basis of a host vehicle according to a ninth embodiment of the present invention.
- the driving path 9-1010 of the host vehicle 9-1000 and the driving path 9-1210 of the neighboring vehicle 9-1200 may cross each other. There is a possibility of collision.
- the sensor 9-1100 may measure the linear distance D0 of the host vehicle 9-1000 and the surrounding vehicle 9-1200, and the speed (relative speed and absolute speed) of the surrounding vehicle 9-1200. Can be measured.
- the ECU 9-320 uses the relative distance between the host vehicle 9-1000 and the surrounding vehicle 9-1200 and the relative speed of the neighboring vehicle 9-1200.
- the estimated time to collision (TCT) between the vehicle and the surrounding vehicle 9-1200 may be calculated. That is, the ECU 9-320 may obtain the collision expected time by dividing the relative distance with the surrounding vehicle 9-1200 by the relative speed with the surrounding vehicle 9-1200.
- the ECU 9-320 may generate two-dimensional coordinates of the surrounding vehicle 9-1200 based on the host vehicle 9-1000 through the camera system 1 and the sensor 9-1100. .
- the ECU 9-320 compares the progress distance Dp according to the absolute speed of the surrounding vehicle 9-1200 with the progress distance Dx according to the absolute speed of the own vehicle 9-1200 through two-dimensional coordinates.
- the collision prediction point P can be calculated, and the collision prediction time can be obtained based on the collision prediction time P.
- FIG. 30 is a flowchart showing a procedure of controlling the own vehicle according to the ninth embodiment of the present invention.
- the camera system mounted on the own vehicle may recognize the surrounding vehicle traveling in front of the own vehicle (S9-10).
- the sensor may measure the distance between the own vehicle and the surrounding vehicle and the speed of the front vehicle.
- the ECU can generate two-dimensional coordinates of the position of the surrounding vehicle based on the own vehicle based on the data measured by the camera system and the sensor.
- the two-dimensional coordinates may be generated in consideration of the position of the host vehicle and the surrounding vehicle and the driving route of the host vehicle and the surrounding vehicle (S9-20).
- the ECU 9-320 may calculate the first collision estimated time of the host vehicle and the surrounding vehicle by combining the two-dimensional coordinate information with the speed information of the host vehicle and the surrounding vehicle.
- the ECU 9-320 may once again determine a possibility of collision between the own vehicle and the surrounding vehicle and calculate the second collision estimated time.
- the ECU may generate an alarm to inform the driver that there is a possibility of collision.
- the second collision prediction time is larger than the first collision prediction time, that is, when the time until the collision is increased, the ECU may determine that there is no possibility of collision and may not perform other control. For example, if the driving route is changed by changing the steering opposite to the driving route before calculating the second collision expected time, the possibility of collision may be reduced (S9-35 and S9-40).
- the ECU may once again determine the possibility of collision between the own vehicle and the surrounding vehicle to calculate the third collision estimated time.
- the third collision prediction time is smaller than the first and second collision prediction times, that is, when the time until the collision is reduced
- the ECU controls the steering of the vehicle or drives a brake to control the own vehicle and the surrounding vehicle. Collision can be avoided (S9-55, S9-60).
- an intersection collision that sets the priority of the intersection collision prevention control between the own vehicle and a neighboring vehicle so that a collision of the pedestrian and the vehicle protruding in the lateral direction when the own vehicle enters the intersection is avoided.
- a prevention system and method are disclosed.
- FIG. 31 is a diagram illustrating a Cross Traffic Assistance (CTA) system according to a tenth embodiment of the present invention
- FIG. 32 is a diagram illustrating the controller and controllers controlled for collision avoidance shown in FIG. 31.
- CTA Cross Traffic Assistance
- an intersection collision prevention system includes a camera system, a radar system, and a controller 10-170.
- the camera system includes at least one camera 10-110.
- the camera 10-110 may be a mono camera, a stereo camera, or a surround vision camera, and generate image data by photographing the front, rear, and left / right sides of the vehicle. Image data generated by the camera 10-110 is provided to the controller 10-170.
- the radar system includes a front radar 10-120, a front right radar 10-130, a front left radar 10-140, a rear right radar 10-150, a rear left radar 10-160. And a plurality of radar MCUs for driving each radar.
- the radio waves are radiated to the front, rear, left and right sides of the own vehicle, and then the reflected wave is received to detect objects located at 150m forward, rear, and right side of the room at a horizontal angle of 30 degrees.
- the radar system detects an object using a frequency modulated carrier wave (FMCW) or a pulse carrier (Pulse Carrier), and transmits radar data including the object detection result to the controller 10-170.
- FMCW frequency modulated carrier wave
- Pulse Carrier Pulse Carrier
- the controller 10-170 includes a receiver 10-172, an ECU 10-320, and a transmitter 10-174.
- the receiver 10-172 disposed in the host vehicle is connected to the transmitter of the surrounding vehicle in a wireless communication (eg, 4G long term evolution (LTE)) scheme and receives the surrounding vehicle CTA control signal from the surrounding vehicle.
- LTE long term evolution
- the received peripheral vehicle CTA control signal is transmitted to the ECU 10-320.
- the transmitter 10-174 disposed in the host vehicle is connected to the receiver of the surrounding vehicle by wireless communication (eg, 4G LTE (long term evolution)), and the host vehicle CTA control signal generated by the ECU 10-320. To the surrounding vehicle.
- wireless communication eg, 4G LTE (long term evolution)
- 4G LTE long term evolution
- FIG. 33 is a diagram illustrating detection of surrounding vehicles by a camera system and a radar system disposed in a host vehicle
- FIG. 34 is a method of setting control priorities of an intersection collision prevention (CTA) system when a plurality of vehicles enter an intersection. It is a figure which shows.
- CTA intersection collision prevention
- the ECU 10-320 detects the surrounding vehicles B1 to B5 when the host vehicle A enters an intersection based on the image data and the radar data. Then, the possibility of collision with the vehicles B1 to B5 around the own vehicle A is determined, and when there is a possibility of collision, the CTA control signal of the own vehicle is generated.
- the ECU 10-320 generates a vehicle control signal for controlling the own vehicle according to the CTA control signal, and outputs the generated vehicle control signal to the vehicle attitude control controller 10-333, the steering controller 10-334, and the engine. It supplies to the control controller 10-335, the suspension controller 10-336, and the brake controller 10-337. Through this, it is possible to control the vehicle to run without the CTA emergency braking, steering avoidance, deceleration, acceleration or CTA control on the intersection.
- the ECU 10-320 detects the neighboring vehicles B1 to B2 when the host vehicle A enters an intersection based on the image data and the radar data. The collision possibility with the vehicles B1 to B2 around the own vehicle A is determined, and when there is a possibility of collision, the CTA control signal of the own vehicle is generated. The CTA control signal of the own vehicle generated by the ECU 10-320 is transmitted to the surrounding vehicles B1 to B2 through the transmitter 10-174.
- the vehicle to perform CTA emergency braking, the vehicle to steer avoidance, the vehicle to decelerate, the vehicle to accelerate and the vehicle to run without control Select a vehicle to do That is, the CTA control priority of the plurality of vehicles may be determined, and the CTA control priority may be organically shared on the intersection by sharing the determined CTA control priority with the own vehicle and the surrounding vehicle.
- the ECU 10-320 generates a vehicle control signal for controlling the own vehicle according to the CTA control priority based on the CTA control signal of the own vehicle or the CTA control signal of the surrounding vehicle.
- the ECU 10-320 transmits the generated control signal to the vehicle attitude control controller 10-333, the steering controller 10-334, the engine control controller 10-335, the suspension controller 10-336, and the brake. Supply to the controller 10-337. Through this, it is possible to control the vehicle to run without the CTA emergency braking, steering avoidance, deceleration, acceleration or CTA control on the intersection.
- the priority of the CTA control is determined through communication between neighboring vehicles, and the plurality of vehicles are the intersection according to the determined CTA priority.
- CAT control can be performed organically.
- a collision may be prevented by detecting a vehicle or a pedestrian protruding in the lateral direction and then performing CTA control.
- the steering controller 10-334, the engine control controller 10-335, and the brake controller 10-337 can be controlled to avoid collision on the intersection.
- the vehicle's attitude control controller (10-333) and the suspension controller (10-336) are controlled together to avoid the accident due to the sudden speed change or steering change of the own vehicle and to prevent the accident caused by the driver's posture anxiety. Secure stability
- the vehicle detection system is used for various purposes such as detecting objects around the vehicle to prevent collisions with objects not recognized by the driver as well as detecting an empty space and performing automatic parking.
- Such a sensing system uses a radar signal and a camera.
- the radar signal is a method of detecting the surroundings of a vehicle by collecting the reflected signal of the radar signal transmitted to a preset detection area and analyzing the collected reflected signal. In addition, it is less affected by the external environment, and has the advantage of excellent performance in detecting a longitudinal object.
- a method using the radar has a disadvantage in that the accuracy of position and velocity detection and classification and information detection of objects in the lateral direction are inferior.
- a method using a camera is an apparatus for sensing the surroundings of a vehicle by analyzing image information obtained by photographing the camera, and has an advantage of excellent classification of an object and excellent accuracy of detecting information of the object.
- the speed detection of the object located in the transverse direction is excellent.
- the method using the camera is easily affected by the external environment, and the detection accuracy of the distance and the speed is relatively lower than that of the radar signal.
- An eleventh embodiment of the present invention relates to a detection system for detecting a vehicle and a pedestrian in a lateral direction by combining a camera and a radar.
- 35 is a diagram showing the configuration of a control apparatus for a vehicle according to an eleventh embodiment of the present invention.
- the configuration of the control apparatus 11-100 of a vehicle may include an image generator 11-110, a first information generator 11-120, and second information.
- the generation unit 11-130 and the control unit 11-140 are included.
- the image generating unit 11-110 may include at least one camera disposed in the host vehicle 11-10, and photographs the front of the host vehicle 11-10 to front the host vehicle 11-10. An image can be generated. In addition, the image generator 11-110 photographs the surrounding image of the host vehicle 11-10 by photographing the periphery of the host vehicle 11-10 in one or more directions as well as the front of the host vehicle 11-10. Can be generated.
- the front image and the surrounding image may be a digital image, and may include a color image, a black and white image, an infrared image, and the like.
- the front image and the surrounding image may include a still image and a video.
- the image generator 11-110 provides the front image and the surrounding image to the controller 11-140.
- the first information generator 11-120 may include at least one radar disposed on the host vehicle 11-10, and detect the front of the host vehicle 11-10 to detect the first detection information.
- the first information generator 11-120 is disposed in the host vehicle 11-10, and detects the position and speed of the vehicles located in front of the host vehicle 11-10, the presence and the location of a pedestrian, and the like. To generate the first sensing information.
- the first detection information generated by the first information generator 11-120 may be used to control the distance between the host vehicle 11-10 and the front vehicle to be kept constant.
- the stability of the vehicle operation can be enhanced in a specific case such as when the driving lane of the vehicle is to be changed or when the reverse parking is performed.
- the first information generator 11-120 provides the first sensing information to the controller 11-140.
- intersection may be detected using the front image generated by the image generator 11-110 and the first detection information generated by the first information generator 11-120.
- the second information generator 11-130 detects an intersection based on the front image generated by the image generator 11-110 and the first detection information generated by the first information generator 11-120.
- the second side of the vehicle 11-10 is sensed to generate second detection information.
- the second information generator 11-130 may include at least one radar disposed on the host vehicle 11-10, and positions and speeds of the vehicles located on the side of the host vehicle 11-10. Detect it.
- the second information generators 11-130 may be disposed at both sides of the front and the rear of the host vehicle 11-10, respectively.
- the second information generator 11-130 may detect the intersection.
- the sensing amount of the position and the speed of the vehicles located on the side of the host vehicle 11-10 is increased.
- the second information generator 11-130 may increase the width of the side sensing area of the host vehicle 11-10. . In addition, the second information generator 11-130 may increase the length of the side sensing area of the host vehicle 11-10 and reduce the sensing period of sensing in the side sensing area of the host vehicle 11-10. It is possible to increase the number of detections over a period of time. The second information generator 11-130 provides the second sensing information to the controller 11-140.
- 36 is a diagram illustrating a sensing area of a first information generating unit and a second information generating unit before intersection detection.
- the first information generating unit 11-120 may include one or more radars, and detects the position and the speed of the vehicles located in front of the host vehicle 11-10 to detect the first detection information. Can be generated.
- the first information generator 11-120 before detecting the intersection may increase the width of the front sensing area of the own vehicle 11-10 to detect the front of the own vehicle 11-10 intensively (as an important object). Can be.
- the first information generator 11-120 may increase the length of the front sensing region of the own vehicle 11-10, and detect the vehicle in the front sensing region of the own vehicle 11-10 for the same time. You can increase the number of times.
- the second information generator 11-130 may include one or more radars, and may detect the position and speed of the vehicles located on the side of the host vehicle 11-10.
- FIG. 37 is a view illustrating a change in the width of a sensing area of the second information generator after detecting an intersection.
- the second information generator 11-130 increases the width of the side sensing area of the host vehicle 11-10 so that the host vehicle 11 is increased.
- the position and the speed of the vehicles located on the side of -10 may be more concentrated than the position and the speed of the vehicles located in front of the host vehicle 11-10. That is, the position and speed of the vehicles located on the side of the own vehicle 11-10 may be selected as an important sensing target rather than the position and speed of the vehicles located in front of the own vehicle 11-10.
- 38 is a view illustrating a change in the length of a sensing area of the second information generating unit after detecting an intersection.
- the second information generating unit 11-130 when detecting an intersection based on the front image and the first sensing information, the second information generating unit 11-130 increases the length of the side sensing area of the own vehicle 11-10 so as to increase the length of the own vehicle 11.
- the position and the speed of the vehicles located on the side of -10) may be selected as the important sensing target of the position and the speed of the vehicles located in front of the own vehicle 11-10.
- the controller 11-140 selects the target vehicle 11-20 based on the second detection information, and determines whether the host vehicle 11-10 collides with the target vehicle 11-20. (11-10).
- the controller 11-140 selects vehicles close to the host vehicle 11-10 as the target vehicle 11-20 based on the second detection information. Further, even when the vehicle is not close to the host vehicle 11-10, the vehicles approaching the host vehicle 11-10 are selected as the target vehicle 11-20. In this case, the stopped vehicle may be determined as a vehicle without a risk of collision and may be excluded from the selection of the target vehicle 11-20.
- the controller 11-140 determines whether the selected target vehicle 11-20 collides with the own vehicle 11-10. In addition, the controller 11-140 determines whether the target vehicle 11-20 collides with the host vehicle 11-10, and as a result, the controller 11-140 collides with the target vehicle 11-20. If so, the driver can be alerted to the collision and controlled to brake his vehicle.
- 39 is a flowchart illustrating a control method of a vehicle according to an eleventh embodiment of the present invention.
- the image generating unit 11-110 generates a front image
- the first information generating unit 11-120 generates first sensing information in operation S11-510.
- the image generator 11-110 photographs the front of the host vehicle 11-10 to generate a front image.
- the image generator 11-110 photographs the surrounding image of the host vehicle 11-10 by photographing the periphery of the host vehicle 11-10 in one or more directions as well as the front of the host vehicle 11-10. Can be generated.
- the first information generator 11-120 detects the front of the host vehicle 11-10 to generate first detection information.
- the second information generating unit 11-130 generates the second sensing information in operation S11-520.
- the second information generator 11-130 is disposed in the host vehicle 11-10 and senses the position and speed of the vehicles located on the side of the host vehicle 11-10. At this time, when the intersection is detected, the second information generator 11-130 increases the sensing amount of the side of the host vehicle 11-10 and selects the side of the host vehicle 11-10 as an important sensing region. In addition, the second information generator 11-130 selects the position and the speed of the vehicles located on the side of the host vehicle 11-10 as an important sensing target to detect intensively.
- the second information generator 11-130 may increase the width of the side sensing area of the own vehicle 11-10 or increase the length of the side sensing area to detect the side of the own vehicle 11-10. The amount can be increased. Accordingly, the second information generator 11-130 may intensively sense the side of the host vehicle 11-10. In addition, the second information generator 11-130 reduces the period of detection in the side detection area of the own vehicle 11-10 and increases the number of detections for a predetermined time to concentrate the side of the own vehicle 11-10. Can be detected.
- the controller 11-140 selects the target vehicle 11-20 based on the second detection information (S11-530).
- the controller 11-140 selects the vehicle close to the host vehicle 11-10 as the target vehicle 11-20 based on the second detection information.
- a vehicle approaching the host vehicle 11-10 among the running vehicle may be selected as the target vehicle 11-20.
- controller 11-140 may exclude selection of the target vehicle 11-20 for the stationary vehicle that has no danger of collision with the host vehicle 11-10.
- the controller 11-140 determines whether the host vehicle 11-10 collides with the target vehicle 11-20 (S11-540).
- the controller 11-140 Controls the host vehicle 11-10 (S11-550).
- the controller 11-140 alerts the driver to the collision and brakes the host vehicle 11-10 to brake the vehicle. Can be controlled. Accordingly, the controller 11-140 may emergency brake the own vehicle 11-10.
- the own vehicle 11- 10 it controls to drive according to the instruction (S11-560).
- an intersection is detected by using a camera and a radar disposed in the host vehicle 11-10, and the detected intersection of the host vehicle 11-10 and the target vehicle 11-20 is detected.
- a vehicle control apparatus and method for emergency braking of the own vehicle 11-10 and generating an alarm to a driver can be realized.
- intersections are points where driving paths between vehicles cross each other, accidents may occur frequently. In particular, the collision is more likely to occur in the direction that the driver does not observe when the signal of the intersection changes. In order to prepare for such a case, research on a technology that can supplement the driver's limited gaze is required.
- the twelfth embodiment of the present invention relates to an advanced driving assistance system (ADAS), and more particularly, to a driving assistance system for avoiding collision between vehicles.
- ADAS advanced driving assistance system
- FIGS. 40A, 40B, and 41 a twelfth embodiment will be described with reference to FIGS. 40A, 40B, and 41.
- 40A and 40B are views for explaining driving of the driving assistance system when turning left according to a twelfth embodiment of the present invention.
- the host vehicle 12-1000 is waiting at an intersection to make a left turn.
- the driver may watch the left direction of the intersection.
- the left direction gazed by the driver may be defined as the first direction
- the right direction opposite to the first direction may be defined as the second direction.
- the vehicle approaching in the first direction at the intersection may be defined as the first other vehicle 12-1200a and the vehicle approaching in the second direction may be defined as the second other vehicle 12-1200b.
- the driver's gazing direction may be detected through a driver monitoring camera 316 disposed inside the vehicle.
- the driver monitoring camera 316 may detect a direction in which the driver watches by detecting a direction in which the driver's face faces or a direction in which the driver's eyes look.
- the driver monitoring camera 316 may be an MCU level configuration.
- the driver may control the own vehicle 12-1000 by sensing an object approaching in the first direction, and the range in which the driver can directly control the own vehicle 12-1000 is the driver control range 12-1300a. It can be defined as. If there is a possibility of collision between the host vehicle 12-1000 and the other vehicle in the driver control range 12-1300a, the ECU 12-320 may control the driver warning controller 12-331 to generate an alarm. . An object approaching in a second direction that is not watched by the driver may be detected by the vehicle camera system 1, and the ECU 12-320 may control the steering controller 12-334 through data acquired by the vehicle camera system 1. ) And the brake controller 12-337 to control steering and braking of the host vehicle 12-1000.
- the range in which the ECU 12-320 can control the own vehicle may be defined as the system control range 12-1300b. That is, the ECU 12-320 may detect the second direction, which is a direction opposite to the first direction that the driver watches, and control the host vehicle 12-1000 when there is a possibility of collision in the second direction. Can be.
- the ECU 12-320 may use the own vehicle and the other vehicles 12-1200a and 12-1200b through data about whether other vehicles 12-1200a and 12-1200b have been accessed by the camera system 1. The possibility of collision between them can be determined step by step.
- the camera system 1 provides the relative speeds of the other vehicles 12-1200a and 12-1200b and the own vehicles 12-1000 and other vehicles 12-1200a and 12 approaching toward the own vehicle 12-1000. Distance between -1200b) can be measured.
- the ECU 12-320 may display the relative speeds of the other vehicles 12-1200a and 12-1200b and the own vehicles 12-1000 and the other vehicles 12-1200a, which approach toward the own vehicle 12-1000. The distance between 12-1200b can set the stage for possible collision risk.
- the ECU 12-320 may determine this situation as the highest possible collision risk level, and the distance and the preset distance longer than the preset distance. If the speed is less than the set relative speed, the ECU 12-320 may determine this situation as the lowest collision risk level.
- these standards are only examples, and the standards may be preset in various ways.
- the ECU 12-320 determines that the collision risk in the system control range 12-1300b is higher when the collision risk levels in the driver control range 12-1300a and the system control range 12-1300b are the same. can do. That is, the ECU 12-320 may control the risk of collision that may occur in a range outside the range that can be controlled by the driver.
- the ECU 12-320 may control the host vehicle 12-1000 unlike the driver's control. That is, when there is no possibility of collision in the system control range 12-1300b but the possibility of collision in the driver control range 12-1300a is high, the ECU 12-320 generates an alarm in addition to generating an alarm. 1000 can be set to control steering and braking.
- the driver may perform a left turn at the intersection while detecting the first other vehicles 12-1200a located in the first direction.
- the vehicle camera system 1 may detect the presence of the second other vehicle 12-1200b that sails the host vehicle 12-1000, and the ECU 12-320 may detect the host vehicle 12-1000.
- the possibility of collision between the second vehicle 12-1200b and the second vehicle 1000 may be determined. If a collision is anticipated in the system control range 12-1300b, the ECU 12-320 controls steering and braking of the host vehicle 12-1000 to control the host vehicle 12-1000 and the second other vehicle ( 12-1200b) can be prevented.
- FIG. 41 is a view for explaining driving of a driving assistance system when a right turn is performed according to a twelfth embodiment of the present invention. For simplicity, descriptions of contents overlapping with FIGS. 40A and 40B will be omitted.
- the host vehicle 12-1000 is waiting at the intersection to make a right turn.
- the driver may watch the right direction of the intersection.
- the right direction viewed by the driver may be defined as the first direction
- the left direction opposite to the first direction may be defined as the second direction.
- the driver may control the own vehicle 12-1000 by sensing an object approaching in the first direction, and the range in which the driver can directly control the own vehicle 12-1000 is the driver control range 12-1300a. It can be defined as. If there is a possibility of collision between the host vehicle 12-1000 and the other vehicle in the driver control range 12-1300a, the ECU 12-320 may control the driver warning controller 12-331 to generate an alarm. .
- An object approaching in a second direction that is not watched by the driver may be detected by the vehicle camera system 1, and the ECU 12-320 may control the steering controller 12-334 through data acquired by the vehicle camera system 1. ) And the brake controller 12-337 to control steering and braking of the host vehicle 12-1000.
- the range in which the ECU 12-320 can control the own vehicle may be defined as the system control range 12-1300b.
- the driver may perform a left turn at the intersection while sensing the objects 12-1200b located in the first direction.
- the objects 12-1200b may be vehicles, pedestrians, bicycle drivers, and the like.
- the vehicle camera system 1 may detect the presence of another vehicle 12-1200a that sails the host vehicle 12-1000, and the ECU 12-320 may detect the host vehicle 12-1000.
- the possibility of collision between the vehicle and the other vehicle 1200a may be determined. If a collision is expected in the system control range 12-1300b, the ECU 12-320 controls steering and braking of the host vehicle 12-1000 to control the host vehicle 12-1000 and the other vehicle 12-300. Collision between 1200a) can be prevented.
- the driver may look in a direction opposite to the direction in which the own vehicle 12-1000 intends to travel.
- the ECU 12-320 may control the camera system 1 to look at the vehicle driving direction that is opposite to the direction that the driver looks at.
- the ECU 12-320 may determine both the possibility of collision in the direction of travel of the vehicle and the possibility of collision in the direction of the driver's attention. Steering and braking of the control panel 1000 can be controlled.
- the ECU 12-320 can generate an alarm when there is a possibility of collision in the direction that the driver watches.
- the described functions may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, these functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
- Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media may deliver or transmit desired program code in the form of RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage device, or instruction or data structure. It can include any other medium that can be used for storage and accessible by a computer.
- any connection is properly termed a computer readable medium.
- the software is transmitted from a website, server or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- Fiber technologies, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the medium.
- Discs as used herein include compact discs (CDs), laser discs, optical discs, digital general purpose discs (DVDs), floppy discs and Blu-ray discs, which usually contain data In contrast, the discs optically reproduce data by means of a laser. Combinations of the above should also be included within the scope of computer-readable media.
- the code segment may be a procedure, function, subprogram, program, routine, subroutine, module, software package, class, or instruction, data structure, or program statement. It should be appreciated that they can represent any combination of these.
- Code segments may be coupled to other code segments or hardware circuitry by passing and / or receiving information, data, arguments, parameters or memory content. Information, arguments, parameters, data, and the like may be delivered, sent or transmitted using any suitable means, including memory sharing, message delivery, token delivery, network transmission, and the like.
- the steps and / or operations of the method or algorithm may be one or more of codes and / or instructions on a machine-readable medium and / or computer-readable medium that may be incorporated into a computer program product. It can reside as any combination or set of.
- the techniques described herein may be implemented in modules (eg, procedures, functions, etc.) that perform the functions described herein.
- Software codes may be stored in memory units and executed by processors.
- the memory unit may be implemented within the processor or external to the processor, in which case the memory unit may be communicatively coupled to the processor by various means as is known in the art.
- the processing units may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, It may be implemented in a controller, microcontroller, microprocessor, other electronic units designed to perform the functions described herein, or a combination thereof.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors It may be implemented in a controller, microcontroller, microprocessor, other electronic units designed to perform the functions described herein, or a combination thereof.
- the term “infer” or “infer” generally refers to the process of determining or inferring about the state of the system, environment, and / or user from a set of observations captured by events and / or data.
- Inference can be used to identify a specific situation or action, or can generate a probability distribution over states, for example.
- Inference can be probabilistic, i.e., the calculation of the probability distribution for those states based on consideration of data and events.
- Inference can also refer to techniques used to construct higher level events from a set of events and / or data. This reasoning can be followed by new events or actions from a set of observed events and / or stored event data, whether the events are closely correlated in time, and whether the events and data come from one or several events and data sources. Let be estimated.
- ком ⁇ онент includes, but are not limited to, hardware, firmware, combinations of hardware and software, software, or software-related software such as running software. It includes an entity.
- a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable thread of execution, a program, and / or a computer.
- an application running on a computing device and the computing device can be a component.
- One or more components may reside within a process and / or thread of execution and a component may be localized on one computer and / or distributed between two or more computers.
- these components can execute from various computer readable media having various data structures stored thereon.
- Components follow a signal with one or more data packets (e.g., data from a local system, other components of a distributed system, and / or a signal that interacts with other systems across a network such as the Internet by way of a signal). Etc. may be communicated by local and / or remote processes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Abstract
본 발명은 ADAS(Advanced Driving Assistance System)에 대한 것으로서, 보다 구체적으로는 ADAS를 위한 카메라 시스템에 대한 것이다. 본 발명에 따르면 ADAS를 위한 전방 카메라 시스템에서 이용될 수 있는 전압 로직, 메모리 로직을 제공된다. 또한, 본 발명에 따르면, ADAS를 위한 전방 카메라 시스템에서 렌즈 배럴 및 렌즈 홀더를 결합시킬 수 있는 방식이 제공된다. 본 발명에 따른 카메라 시스템은, 차량의 전방을 촬영하기 위한 렌즈; 상기 렌즈를 내부 공간에 수용하기 위한 렌즈 배럴; 상기 렌즈 배럴과 결합하는 렌즈 홀더; 상기 렌즈가 촬영한 이미지를 센싱하기 위한 이미지 센서; 상기 이미지 센서로부터 이미지 데이터를 수신하여 프로세싱하기 위한 이미지 프로세서; 및 상기 이미지 프로세서와 통신하여 상기 이미지 프로세서가 프로세싱한 데이터를 수신하는 카메라 MCU를 포함한다.
Description
본 발명은 ADAS(Advanced Driving Assistance System)에 대한 것으로서, 보다 구체적으로는 ADAS를 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법에 대한 것이다.
ADAS(Advanced Driving Assistance System)란 운전자를 운전을 보조하기 위한 첨단 운전자 보조 시스템으로서, 전방의 상황을 센싱하고, 센싱된 결과에 기초하여 상황을 판단하고, 상황 판단에 기초하여 차량의 거동을 제어하는 것으로 구성된다. 예를 들어, ADAS 센서 장치는 전방의 차량을 감지하고, 차선을 인식한다. 이후 목표 차선이나 목표 속도 및 전방의 타겟이 판단되면, 차량의 ESC(Electrical Stability Control), EMS(Engine Management System), MDPS(Motor Driven Power Steering) 등이 제어된다. 대표적으로, ADAS는 자동 주차 시스템, 저속 시내 주행 보조 시스템, 사각 지대 경고 시스템 등으로 구현될 수 있다.
ADAS에서 전방의 상황을 센싱하기 위한 센서 장치는 GPS 센서, 레이저 스캐너, 전방 레이더, Lidar 등인데 가장 대표적인 것은 차량의 전방을 촬영하기 위한 전방 카메라이다.
본 발명에 따른 제1실시예는 ADAS를 위한 전방 카메라 시스템에서 이용될 수 있는 전압 로직, 메모리 로직을 제공하는 것을 그 목적으로 한다.
또한, 본 발명에 따른 제1실시예는 ADAS를 위한 전방 카메라 시스템에서 렌즈 배럴 및 렌즈 홀더를 결합시킬 수 있는 방식을 제공하는 것을 그 목적으로 한다.
본 발명의 제2실시예는 자차량의 조향을 제어하여 타겟 차량과의 충돌을 회피할 수 있는 충돌 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명의 제2실시예는 자차량의 속도를 제어하여 타겟 차량과의 충돌을 회피할 수 있는 충돌 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명의 제2실시예는 옆 차로 차량의 차로 변경 시 자차량의 속도, 제동 및 조향 중 하나 이상을 제어하여 옆 차로에서 끼어드는 차량과 자차량과의 충돌을 회피할 수 있는 충돌 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 제3실시예의 기술적 과제는 좌회전을 위해 좌회전 차선으로 차선 변경을 하기 위한 주행 보조 시스템을 제공하는 것이다.
본 발명의 제3실시예의 기술적 과제는, 좌회전 차선으로 차량이 진입한 후 차량의 조향을 제어하여 좌회전을 수행하는 주행 보조 시스템을 제공하는 것이다.
또한, 본 발명의 제4실시예는 도로의 미끄럼 정도에 따라 긴급제동의 진입 시점을 제어할 수 있는 긴급제동 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명의 제4실시예는 미끄러운 도로의 주행이 판단되는 경우에 긴급제동 진입 시점을 앞당길 수 있는 긴급제동 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 제5실시예의 기술적 과제는 자차량 전방으로 끼어드는 차량과의 충돌을 방지하기 위한 주행 보조 시스템을 제공하는 것이다.
본 발명의 제6실시예는 교차로에서 자차량과 주변차량 간의 충돌 위험을 감지하고, 충돌 위험의 레벨에 따라서 운전자에게 충돌 위험을 경고할 수 있는 교차로 충돌 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 제6실시예는 교차로에서 자차량과 주변차량 간의 충돌 위험을 감지하고, 충돌 위험의 레벨에 따라서 운전자에게 충돌 위험의 경고와 함께 자차량의 스티어링 제어를 함께 수행할 수 있는 교차로 충돌 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 제7실시예는 ADAS를 위한 전방 카메라 시스템에서 자차량 및 타차량 사이의 종방향 TTC 및 횡방향 TTC에 기초하여 자동 긴급 제동을 구현하는 것을 그 목적으로 한다.
본 발명의 제8실시예의 기술적 과제는 자차량과 주변 차량과의 충돌 가능성을 판단하고 이를 운전자에게 경고하는 주행 보조 시스템을 제공하는 것이다.
본 발명의 제9실시예의 기술적 과제는 교차로에서의 차량 간 충돌 예상 시간을 판단하여 차량 간의 충돌을 방지하기 위한 주행 보조 시스템을 제공하는 것이다.
또한, 본 발명의 제10실시예는 자차량이 교차로에 진입 시 주변 차량들 간에 통신을 통해서 CTA 제어의 우선순위를 결정하고, 결정된 CTA 우선순위에 따라서 복수이 차량들이 교차로에서 유기적으로 CAT 제어를 수행할 수 있는 교차로 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명의 제10실시예는 자차량이 교차로 진입 시, 횡방향에서 돌출하는 차량 또는 보행자를 검출한 후, CTA 제어를 수행하여 충돌을 방지할 수 있는 교차로 충돌 방지 시스템 및 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 제11실시예는 자차량에 배치된 카메라 및 레이더를 이용하여 교차로를 감지하고, 감지된 교차로에서 자차량의 측면을 감지하여 자차량과 타겟차량의 충돌 여부를 판단하는 차량 제어 장치 및 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명의 제11실시예는 자차량과 타겟차량의 충돌 여부에 기초하여 자차량과 타겟차량의 충돌이 판단되면 운전자에게 경보를 발생시키고, 자차량을 긴급제동 시키는 차량 제어 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 제12실시예의 기술적 과제는, 운전자가 주시하는 방향 이외의 방향을 카메라 시스템으로 주시하고 이를 통해 차량을 제어할 수 있는 주행 보조 시스템을 제공하는 것이다.
본 발명의 제1실시예에 따르면, 차량용 카메라 시스템으로서, 차량의 전방을 촬영하기 위한 렌즈 (10); 상기 렌즈를 내부 공간에 수용하기 위한 렌즈 배럴 (15); 상기 렌즈 배럴과 결합하는 렌즈 홀더 (20); 상기 렌즈가 촬영한 이미지를 센싱하기 위한 이미지 센서 (31); 상기 이미지 센서로부터 이미지 데이터를 수신하여 프로세싱하기 위한 이미지 프로세서(41); 및 상기 이미지 프로세서와 통신하여 상기 이미지 프로세서가 프로세싱한 데이터를 수신하는 카메라 MCU(42)를 포함하는, 차량용 카메라 시스템이 개시된다.
상기 차량용 카메라 시스템은: 이그니션 전압(510)을 수신하여 적어도 하나의 전압을 출력하는 제 1 컨버터부(521); 및 상기 제 1 컨버터부(521)에서 출력되는 전압을 수신하여 적어도 하나의 전압을 출력하는 레귤레이터부(523)를 더 포함한다.
상기 카메라 MCU(42)는 동작 전원으로서 상기 제 1 컨버터부(521)로부터 제 1 전압(511)을 수신하고, 상기 이미지 프로세서(41)는 동작 전원으로서 상기 제 1 컨버터부(521)로부터 제 1 전압(511)를 수신한다.
상기 제 1 컨버터부(521)로부터 출력되는 상기 제 1 전압(511)은 3.3 이다.
상기 이미지 프로세서(41)는 상기 제 1 컨버터부(521)로부터 제 2 전압(512)를 수신하고, 상기 이미지 센서(31)는 상기 레귤레이터부(523)로부터 제 5 전압(515)를 수신하고, 상기 제 2 전압(512) 및 상기 제 5 전압(515)는 서로 동일하다.
상기 제 2 전압 및 상기 제 5 전압(515)는 1.8 V이다.
상기 이미지 센서(31)는 코어 전원으로서 상기 레귤레이터부(523)로부터 제 6 전압(516)을 수신하고, 상기 제 6 전압(516)은 2.8 V이다.
상기 제 1 컨버터부(521)는 적어도 하나의 DC-DC 컨버터를 포함하도록 구성되고, 상기 레귤레이터부(523)는 적어도 하나의 LDO(Low Drop Out)을 포함하도록 구성된다.
상기 카메라 MCU(42)는 제 1 메모리(531)와 통신한다.
상기 이미지 프로세서(41)는 제 2 메모리(532) 및 제 3 메모리(533) 와 통신한다.
상기 제 2 메모리(532)는 상기 차량용 카메라 시스템이 지원하는 ADAS 기능의 개수에 따라서 용량이 결정된다.
상기 카메라 시스템은, RBDPS(Road Boundary Departure Prevention Systems), CACC(Cooperative Adaptive Cruise Control Systems), Vehicle/roadway warning systems, PAPS(Partially Automated Parking Systems), PALS(Partially Automated Lane Change Systems), C-FVBWS(Cooperative Forward Vehicle Emergency Brake Warning Systems), LDWS(Lane Departure Warning Systems), PDCMS(Pedestrian Detection and Collision Mitigation Systems), CSWS(Curve Speed Warning Systems), LKAS(Lane Keeping Assistance Systems), ACC(Adaptive Cruise Control systems), FVCWS(Forward Vehicle Collision Warning Systems), MALSO(Manoeuvring Aids for Low Speed Operation systems), LCDAS(Lane Change Decision Aid Systems), LSF(Low Speed Following systems), FSRA(Full Speed Range Adaptive cruise control systems), FVCMS(Forward Vehicle Collision Mitigation Systems), ERBA(Extended Range Backing Aids systems), CIWS(Cooperative Intersection Signal Information and Violation Warning Systems), TIWS(Traffic Impediment Warning Systems) 중 적어도 하나의 기능을 구현하기 위해서 사용된다.
상기 렌즈 배럴은 플랜지를 더 포함하고, 상기 렌즈 배럴의 플랜지의 하면에는 그루브가 형성된다.
상기 그루브는 단일의 원형 형상, 이중의 원형 형상, 십자 격자 형상 및 지그지그 형상 중 적어도 하나로 형성되는 것을 특징으로 한다.
상기 렌즈 홀더의 상면에는 그루브가 형성된다.
상기 그루브는 단일의 원형 형상, 이중의 원형 형상, 십자 격자 형상 및 지그지그 형상 중 적어도 하나로 형성되는 것을 특징으로 한다.
본 발명의 제2실시예에 따른 충돌 방지 시스템은, 자차량의 전방, 후방, 좌측 및 우측방의 영상 데이터를 생성하는 카메라 시스템과, 상기 자차량의 전방, 후방, 좌측 및 우측방의 물체에 대한 레이더 데이터를 생성하는 레이더 시스템과, 상기 영상 데이터 및 상기 레이더 데이터를 분석하여 주변 차량들 중에서 타겟 차량을 검출하고, 상기 자차량과 상기 타겟 차량과의 충돌이 판단되는 경우 상기 자차량의 속도, 제동, 조향 중 적어도 하나를 제어하여 ECU(electronic control unit)를 포함한다.
상기 ECU는, 상기 자차량과 상기 타겟 차량과의 충돌이 판단되는 경우, 상기 자차량에 배치된 차량 자세 제어 컨트롤러, 조향 컨트롤러, 엔진 제어 컨트롤러, 서스펜션 컨트롤러 및 브레이크 컨트롤러 중 적어도 하나에 제어신호를 전송한다.
상기 ECU는 전방의 타겟 차량과의 충돌이 예상되는 경우, 옆 차로에서 주행 중인 차량과의 충돌 위험이 없는 경우에 상기 조향 컨트롤러를 제어하여 상기 자차량의 주행 방향을 변경시키거나, 또는 상기 옆 차로에서 주행 중인 차량과의 충돌 위험이 있는 경우에 상기 엔진 제어 컨트롤러 및 브레이크 컨트롤러를 제어한다.
상기 ECU는 옆 차로에서 끼어드는 타겟 차량과의 충돌이 예상되는 경우, 상기 조향 컨트롤러를 제어하여 상기 자차량의 주행 방향을 변경시키거나, 또는 상기 엔진 제어 컨트롤러 및 브레이크 컨트롤러를 제어하여 상기 자차량의 속도를 제어한다.
본 발명의 제2실시예에 따른 충돌 방지 방법은, 자차량의 전방, 후방, 좌측 및 우측방의 영상 데이터를 생성하고, 상기 자차량의 전방, 후방, 좌측 및 우측방의 물체에 대한 레이더 데이터를 생성하는 단계와, 상기 영상 데이터 및 상기 레이더 데이터를 분석하여 주변 차량들 중에서 타겟 차량을 검출하는 단계와, 상기 자차량과 상기 타겟 차량과의 충돌이 판단하는 단계와, 충돌이 판단되는 경우 상기 자차량의 속도, 제동, 조향 중 적어도 하나를 제어 단계를 포함한다.
또한, 옆 차로에서 주행 중인 차량과의 충돌 위험이 없는 경우에 조향을 제어하여 상기 자차량의 주행 방향을 변경시키거나, 또는 상기 옆 차로에서 주행 중인 차량과의 충돌 위험이 있는 경우에 상기 자차량의 속도를 제어한다.
또한, 옆 차로에서 끼어드는 타겟 차량과의 충돌이 예상되는 경우, 조향을 제어하여 상기 자차량의 주행 방향을 변경시키거나, 또는 상기 자차량의 속도를 제어한다.
본 발명의 제3실시예에 따른 주행 보조 시스템을 제공한다. 주행 보조 시스템은 카메라 시스템을 포함하고, 상기 차량용 카메라 시스템이 탐지한 차량 주변의 상태 정보를 통해 상기 차량을 제어하는 ECU(electronic control unit)를 포함하고, 상기 ECU는 상기 상태 정보를 수신하여 상기 차량의 차선을 좌회전 차선으로 변경하도록 상기 차량의 조향을 제어한다.
제3실시예에 의하여, 상기 상태 정보는 로드 마킹(road mark) 및 넓어지는 분기 차선 중 적어도 하나를 포함한다.
제3실시예에 의하여, 상기 카메라 시스템은 상기 차량의 전방의 제 1 정보를 탐지하고, 상기 ECU는 상기 제 1 정보를 수신하여 상기 차량의 속도 및 브레이크를 제어한다.
제3실시예에 의하여, 상기 제 1 정보는 전방 차량에 대한 데이터, 전방 차선에 대한 데이터, 전방 차량과의 거리, 교차로의 교통 표지판에 대한 데이터 및 교차로의 신호 데이터 중 적어도 하나를 포함한다.
제3실시예에 의하여, 상기 ECU는 좌회전 차선으로 상기 차량을 조향한 후, 상기 차량용 카메라 시스템으로부터 전송받은 차량 주변의 제 2 정보를 통해 차량의 정지 여부를 판단 및 제어하고, 상기 제 2 정보는 교차로의 정지선, 전방 차량의 유무 및 교차로의 신호 데이터를 포함한다.
제3실시예에 의하여, 상기 ECU는 운전자 경고 컨트롤러를 제어하여 상기 상태 정보를 통해 판단한 상기 차량의 좌회전 가능 여부를 운전자에게 알려준다.
제3실시예에 의하여, 상기 교차로에서 좌회전 가능 여부 및 도로 전방에 좌회전 차선 분기 여부를 알려주는 GPS 장치를 더 포함하고, 상기 ECU는 상기 GPS 장치가 송신한 데이터를 수신하여 처리한다.
본 발명의 제4실시예에 따른 긴급제동 시스템은, 도로의 전방의 노면 상태 또는 교통 표지판을 인식하는 카메라 시스템과, 자차량의 속도를 산출하고, 상기 자차량과 타겟 차량의 상대속도를 산출하는 네비게이션 프로세서와, 상기 상대속도에 기초하여 충돌 시점을 산출하여 긴급제동 제어의 진입 시점을 산출하되, 미끄러운 도로를 주행 중인 것으로 판단되면 긴급제동 제어의 진입 시점을 앞당기는 ECU(Electronic Control Unit)를 포함한다.
본 발명의 제4실시예에 따른 긴급제동 시스템은, 현재 주행 중인 도로의 날씨의 정보를 인식하는 네비게이션 시스템을 더 포함하고, 상기 ECU는, 현재 주행 중인 도로의 날씨의 정보에 기초하여 미끄러운 도로를 주행 중인 것으로 판단되면 긴급제동 제어의 진입 시점을 앞당긴다.
본 발명의 제4실시예에 따른 긴급제동 시스템의 상기 ECU는, 일정 시간 동안 와이퍼가 동작하는 경우에 미끄러운 도로를 주행 중인 것으로 판단하고, 긴급제동 제어의 진입 시점을 앞당긴다.
본 발명의 제4실시예에 따른 긴급제동 시스템의 상기 ECU는, 긴급제동 제어의 진입 시점의 산출 시 30%~70%의 가중치를 적용하여 긴급제동 제어의 진입 시점을 앞당긴다.
본 발명의 제5실시예에 따른 주행 보조 시스템을 제공한다. 주행 보조 시스템은 자차량이 진행하는 제1 차선 내의 상기 자차량의 위치에 기초하여 타차량과의 충돌 위험을 판단하고 상기 자차량을 제어하는 ECU(electronic control unit)를 더 포함하고, 상기 카메라 시스템은 상기 자차량의 전방으로 끼어드는 타차량의 존재 및 위치를 탐지하고, 상기 ECU는 상기 자차량과 상기 타차량의 횡방향 위치에 기초하여 상기 자차량의 제어한다.
제5실시예에 의하여, 상기 카메라 시스템은 상기 타차량이 상기 제1 차선으로 끼어드는 방향과 반대되는 방향의 차선인 제2 차선에 다른 차량이 존재하지 않는 경우, 상기 ECU는 상기 자차량이 상기 제2 차선으로 차선을 변경하도록 조향을 제어한다
제5실시예에 의하여, 상기 카메라 시스템은 상기 타차량이 상기 자차량의 전방으로 끼어드는 방향과 반대되는 방향의 차선에 다른 차량이 존재하는 경우, 상기 ECU는 상기 자차량이 상기 제1 차선을 유지하면서 차량의 속도를 변경한다.
제5실시예에 의하여, 상기 자차량과 상기 타차량 간의 거리를 탐지하는 radar 장치를 더 포함하고, 상기 카메라 시스템은 상기 자차량과 상기 타차량의 횡방향 위치를 파악한다.
제5실시예에 의하여, 상기 ECU는 상기 타차량이 상기 제1 차선 내로 진입하기 전에 상기 타차량을 추월하도록 상기 자차량의 속도를 가속하도록 제어한다.
제5실시예에 의하여, 상기 ECU는 상기 자차량의 속도를 감속하도록 제어하여 상기 타차량과의 충돌을 방지한다.
제5실시예에 의하여, 상기 자차량과 상기 타차량 간의 종방향 거리를 탐지하는 radar 장치를 더 포함하고, 상기 카메라 시스템은 상기 자차량과 상기 타차량 간의 횡방향 거리를 탐지하고, 상기 ECU는 상기 자차량과 상기 타차량 간의 충돌을 방지하기 위해 상기 자차량의 종방향 및 횡방향으로의 제어를 수행한다.
제5실시예에 의하여, 상기 카메라 시스템은 상기 자차량의 전방에 상기 제1 차선을 탐지하고, 상기 ECU는 상기 카메라 시스템의 획득한 상기 제1 차선 정보를 통해 상기 자차량의 상기 제1 차선 내의 위치를 계산하여 상기 자차량의 조향 및 속도를 제어한다.
본 발명의 제6실시예에 따른 교차로 충돌 방지 시스템은, 교차로에서 자차량의 정지 또는 주행 상태와 스티어링 휠의 조작 여부에 기초하여 주변차량과의 충돌 위험을 단계적으로 판단하는 ECU(electronic control unit)와, 상기 ECU의 충돌 위험 판단 결과에 기초하여 비디오 및/또는 오디오 방식으로 상기 자차량과 상기 주변차량과의 충돌 위험을 경고하는 운전자 경고 컨트롤러를 포함한다.
상기 ECU는, 상기 자차량이 정지한 상태에서 좌회전, 우회전 또는 유턴을 위한 스티어링 휠의 조작이 이루어지는 경우, 상기 자차량과 상기 주변차량과의 제1 레벨의 충돌 위험으로 판단한다. 그리고, 상기 운전자 경고 컨트롤러는, 상기 제1 레벨의 충돌 위험 시 상기 비디오 방식으로 제1 레벨의 충돌 위험을 경고한다.
상기 ECU는, 상기 자차량이 주행을 시작하면서 좌회전, 우회전 또는 유턴을 위한 스티어링 휠의 조작이 이루어지는 경우, 상기 자차량과 상기 주변차량과의 제2 레벨의 충돌 위험으로 판단한다. 그리고, 상기 운전자 경고 컨트롤러는, 상기 제2 레벨의 충돌 위험 시 상기 비디오 및 오디오 방식으로 제2 레벨의 충돌 위험을 경고한다.
상기 교차로 충돌 방지 시스템은, 스티어링 휠을 구동시키는 전동식 파워스티어링 시스템(MPDS)에 대한 제어를 수행하는 조향 컨트롤러를 포함하다. 그리고, 상기 ECU는, 상기 자차량의 좌회전, 우회전 또는 유턴의 주행 시 상기 주변차량과의 충돌 위험이 있음에도 충돌 회피를 위한 스티어링 휠의 조작이 없는 경우, 제3 레벨의 충돌 위험으로 판단한다. 그리고, 상기 운전자 경고 컨트롤러는, 상기 제3 레벨의 충돌 위험 시 상기 비디오 및 오디오 방식으로 제3 레벨의 충돌 위험을 경고한다. 그리고, 상기 조향 컨트롤러는, 상기 제3 레벨의 충돌 위험 시 상기 자차량과 상기 주변차량과의 충돌 회피를 위한 스티어링의 제어를 수행한다.
본 발명의 제7실시예에 따른 이미지 프로세서는: 자차량 및 전방에 위치하는 타차량 사이의 종방향 TTC(TTCx) 및 횡방향 TTC(TTCy)를 계산하도록 구성되고; 상기 종방향 TTC 및 상기 횡방향 TTC 사이의 관계에 기초하여, 자동 긴급 브레이크(AEB)를 실행할지 여부를 결정하도록 구성된다.
상기 AEB를 실행할지 여부를 결정하기 위해, 상기 이미지 프로세서는: 상기 종방향 TTC 및 상기 횡방향 TTC의 차이의 절대값이 미리 설정된 임계치(TTCth)보다 작은 경우에 AEB를 실행하도록 결정한다.
상기 미리 설정된 임계치는, 상기 종방향 TTC, 상기 횡방향 TTC, 노면 상태, 노면의 경사, 및 기온 중 적어도 하나에 기초하여 결정되는 것을 특징으로 한다.
본 발명의 제8실시예에 따른 주행 보조 시스템을 제공한다. 주행 보조 시스템은 카메라 시스템을 포함하고, 교차로에서 자차량의 상태에 기초하여 주변 차량과의 충돌 위험을 판단하는 ECU(electronic control unit), 상기 자차량에 설치되어 상기 주변 차량을 인식하는 후방 레이더 및 상기 ECU의 충돌 위험 판단 결과에 기초하여 상기 자차량과 상기 주변 차량과의 충돌 위험을 경고하는 운전자 경고 컨트롤러를 포함하고, 상기 카메라 시스템은 자차량 전방의 신호등의 신호를 인식하여 이를 상기 ECU에 전송한다.
제8실시예에 의하여, 상기 카메라 시스템은 상기 신호등의 주행신호에서 황색 신호 또는 적색 신호로 바뀌는 것을 인식한다.
제8실시예에 의하여, 상기 ECU는 상기 후방 레이더가 측정한 데이터를 이용하여 상기 주변 차량의 유무, 상기 주변 차량과의 거리, 상기 주변 차량의 속도 및 상기 주변 차량의 진행 각도를 계산하여 상기 주변 차량과의 충돌 위험을 판단한다.
제8실시예에 의하여, 상기 신호등의 주행신호에서 황색 신호 또는 적색 신호로 바뀌는 경우 상기 후방 레이더가 상기 주변 차량이 가속 또는 정속으로 주행하는 것을 인식하면, 상기 ECU는 상기 운전자 경고 컨트롤러를 통해 운전자에게 충돌 위험을 경고한다.
제8실시예에 의하여, 상기 운전자 경고 컨트롤러는 비디오 방식, 오디오 방식 및 핸들의 진동 중 적어도 하나의 방식으로 운전자에게 경고한다.
제9실시예에 의하여, 카메라 시스템을 포함하는 주행 보조 시스템으로서, 교차로에서 자차량의 진행 경로에 기초하여 주변 차량과의 충돌 위험을 판단하여 차량을 제어하는 ECU(electronic control unit) 및 상기 교차로에서 상기 주변 차량을 탐지하는 센서를 포함하고, 상기 주변 차량은 상기 자차량의 진행방향과 교차하는 방향으로 진행하고, 상기 ECU는 상기 자차량의 속도와 상기 주변 차량의 속도를 통해 충돌 예상 시간을 계산한다.
제9실시예에 의하여, 상기 카메라 시스템은 상기 주변 차량의 위치를 측정하고, 상기 센서는 상기 자차량과 상기 주변 차량과의 거리를 측정하고, 상기 ECU는 상기 카메라 시스템과 상기 센서가 측정한 데이터를 통해 충돌 예상 시간을 계산한다.
제9실시예에 의하여, 상기 ECU는 상기 카메라 시스템과 상기 센서가 측정한 데이터 및 상기 주형 경로를 조합하여 상기 자차량과 상기 주변 차량의 제1 충돌 예상 시간을 계산하고, 상기 제1 충돌 예상 시간 후에 상기 자차량과 상기 주변 차량의 충돌 가능성을 다시 계산하여 제2 충돌 예상 시간을 계산하는 차량 제어 시점을 계산하고, 상기 차량 제어 시점에서 상기 제2 충돌 예상 시간이 상기 제1 충돌 예상 시간보다 작은 경우, 상기 ECU는 상기 자차량을 제어한다.
제9실시예에 의하여, 상기 차량 제어 시점은 제1 차량 제어 시점 및 상기 제1 차량 제어 시점보다 후행되어 판단되는 제2 차량 제어 시점을 포함하고, 상기 제1 차량 제어 시점에서 상기 ECU는 경보를 생성하여 운전자에게 경고하고, 상기 제2 차량 제어 시점에서 상기 ECU는 차량의 조향 및 브레이크를 제어하여 충돌을 회피한다.
본 발명의 제10실시예에 따른 교차로 충돌 방지 시스템은, 자차량의 전방, 후방, 좌측방 및 우측방의 영상 데이터를 생성하는 카메라 시스템과, 상기 자차량의 전방, 후방, 좌측방 및 우측방의 레이더 데이터를 생성하는 레이더 시스템과, 상기 자차량이 교차로 진입 시 상기 영상 데이터 및 상기 레이더 데이터를 분석하여 자차량과 주변 차량들 또는 보행자 간의 충돌을 판단하고, 충돌이 판단되는 경우에 자차량과 주변 차량들의 교차로 충돌 방지(CTA) 제어의 우선순위를 설정하는 ECU(electronic control unit)를 포함한다.
또한, 상기 ECU는, 상기 교차로 상에서 충돌이 판단되는 경우, 상기 자차량에 배치된 차량 자세 제어 컨트롤러, 조향 컨트롤러, 엔진 제어 컨트롤러, 서스펜션 컨트롤러 및 브레이크 컨트롤러 중 적어도 하나에 제어신호를 전송한다.
또한, 상기 ECU는, 상기 교차로 상에서 충돌이 판단되는 경우, 자차량의 CTA 제어신호를 생성하고, 상기 CTA 제어신호를 상기 주변 차량들로 전송한다. 그리고, 상기 주변 차량들로부터 주변 차량의 CTA 제어신호를 수신하고, 상기 자차량의 CTA 제어신호 및 상기 주변 차량의 CTA 제어신호를 비교하여 교차로 충돌 방지(CTA) 제어의 우선순위를 설정한다.
본 발명의 제11실시예에 따른 차량 제어 장치는, 자차량의 전방을 촬영하여 전방영상을 생성하는 영상 생성부와, 자차량의 전방을 감지하여 제1 감지정보를 생성하는 제1 정보 생성부와, 자차량의 측면을 감지하되 전방영상 및 제1 감지정보에 기초한 교차로 감지 시, 자차량의 측면의 감지량을 증가시켜 제2 감지정보를 생성하는 제2 정보 생성부와, 제2 감지정보에 기초하여 타겟차량을 선정하고, 타겟차량과 자차량의 충돌 여부를 판단하여 자차량의 제동을 제어하는 제어부를 포함한다.
여기서, 제2 정보 생성부는, 교차로 감지 전의 자차량의 측면 감지영역의 넓이보다 교차로 감지 후의 자차량의 측면 감지 영역의 폭을 증가시켜 제2 감지정보를 생성한다.
또한, 제2 정보 생성부는, 교차로 감지 전의 자차량의 측면 감지영역의 길이보다 교차로 감지후의 자차량의 측면 감지 영역의 길이를 증가시켜 제2 감지정보를 생성한다.
또한, 제2 정보 생성부는, 교차로 감지 전의 자차량의 측면 감지영역에서 감지하는 감지 주기보다 교차로 감지후의 자차량의 측면 감지 영역에서 감지하는 감지 주기를 줄여 일정한 시간 동안의 감지 횟수를 증가시키는 제2 감지정보를 생성한다.
또한, 제어부는, 제2 감지정보에 기초하여 자차량과 근접한 차량 및 자차량으로 근접해오는 차량을 타겟차량으로 선정한다.
또한, 제어부는, 타겟차량과 자차량의 충돌 여부를 판단하여 타겟차량과 자차량의 충돌이 판단되면 운전자에게 충돌을 경보 또는 자차량이 제동하도록 제어한다.
본 발명의 제11실시예에 따른 차량 제어 방법은, 자차량의 전방을 촬영 및 감지하여 교차로를 감지하는 단계와, 교차로 감지 시, 자차량의 측면의 감지량을 증가시켜 자차량의 측면을 중요 감지 대상으로 선정하여 집중적으로 감지하는 단계와, 감지한 결과에 기초하여 타겟차량을 선정하고, 타겟차량과 자차량의 충돌을 판단하여 자차량을 제어하는 단계를 포함한다.
여기서, 자차량의 측면을 감지하는 단계에 있어서, 교차로 감지 전의 자차량의 측면 감지영역의 폭보다 교차로 감지 후의 자차량의 측면 감지 영역의 폭을 증가시킨다.
또한, 자차량의 측면을 감지하는 단계에 있어서, 교차로 감지 전의 자차량의 측면 감지영역의 길이보다 교차로 감지후의 자차량의 측면 감지 영역의 길이를 증가시킨다.
또한, 자차량의 측면을 감지하는 단계에 있어서, 교차로 감지 전의 자차량의 측면 감지영역에서 감지하는 주기보다 교차로 감지후의 자차량의 측면 감지 영역에서 감지하는 감지 주기를 줄여 일정한 시간 동안의 감지 횟수를 증가시킨다.
또한, 자차량을 제어하는 단계에 있어서, 감지한 결과에 기초하여 자차량과 근접한 차량 및 자차량으로 근접해오는 차량을 타겟차량으로 선정한다.
또한, 자차량을 제어하는 단계에 있어서, 타겟차량과 자차량의 충돌을 판단하여 타겟차량과 자차량의 충돌이 판단되면 운전자에게 충돌을 경보 또는 자차량이 제동하도록 제어한다.
본 발명의 제12실시예에 따른 주행 보조 시스템을 제공한다. 주행 보조 시스템은 카메라 시스템을 포함하고, 교차로에서 자차량의 진행 경로에 기초하여 주변 차량과의 충돌 위험을 판단하여 차량을 제어하는 ECU(electronic control unit) 및 기 교차로에서 운전자가 주시하는 제1 방향을 감지하는 운전자 모니터링 카메라를 더 포함하고, 기 ECU는 상기 제1 방향과 서로 다른 방향인 제2 방향을 감지하도록 상기 차량용 카메라 시스템을 제어한다.
제12실시예에 의하여, 상기 차량용 카메라 시스템이 상기 제2 방향에서 상기 자차량으로 접근하는 물체를 감지하면, 상기 ECU는 경보를 발생시킨다.
제12실시예에 의하여, 상기 ECU는 상기 제2 방향에 위치하는 물체와 상기 자차량의 충돌 가능성이 있는 경우, 상기 자차량의 조향 또는 제동 중 적어도 하나 이상을 제어한다.
제12실시예에 의하여, 상기 운전자 모니터링 카메라는 상기 운전자의 얼굴이 향하는 방향 또는 상기 운전자의 눈의 주시 방향을 감지하여 상기 운전자가 주시하는 방향을 감지한다.
제12실시예에 의하여, 상기 제1 방향은 운전자 제어범위이고 상기 제2 방향은 시스템 제어범위이고, 상기 ECU는 상기 운전자 제어범위에서 충돌 가능성이 있는 경우 경보를 발생하고 상기 시스템 제어범위에서 충돌 가능성이 있는 경우 경보 발생과 차량의 조향 및 제동 중 적어도 하나 이상을 제어한다.
제12실시예에 의하여, 상기 ECU는 상기 자차량과 충돌 가능성이 있는 타차량과의 거리를 기준으로 충돌 위험 가능성을 단계별로 판단하고, 상기 시스템 제 범위와 상기 운전자 제어범위에서의 충돌 위험의 단계가 동일할 경우 상기 ECU는 상기 시스템 제어 범위에서의 충돌 위험 가능성이 더 높은 것으로 판단한다.
본 발명의 제1실시예에 따르면, ADAS를 위한 전방 카메라 시스템에서 이용될 수 있는 전압 로직 및 메모리 로직이 구현될 수 있다.
또한, 본 발명의 제1실시예에 따르면, ADAS를 위한 전방 카메라 시스템에서 렌즈 배럴 및 렌즈 홀더를 결합시킬 수 있는 방식이 제공될 수 있다.
또한, 본 발명의 제2실시예에 따르면, ADAS를 위한 전방 카메라 시스템에서 렌즈 배럴 및 렌즈 홀더를 결합시킬 수 있는 방식이 제공될 수 있다.
또한, 본 발명의 제2실시예에 따르면 자차량의 조향을 제어하여 타겟 차량과의 충돌을 회피할 수 있다.
또한, 본 발명의 제2실시예에 따르면 자차량의 속도를 제어하여 타겟 차량과의 충돌을 회피할 수 있다.
또한, 본 발명의 제2실시예에 따르면 옆 차로 차량의 차로 변경 시 자차량의 속도, 제동 및 조향 중 하나 이상을 제어하여 옆 차로에서 끼어드는 차량과 자차량과의 충돌을 회피할 수 있다.
본 발명의 제3실시예에 따르면, 카메라 시스템을 통해 획득한 상태 정보를 이용하여 1차선을 진행하는 차량을 분기 차선으로 자동으로 진입하도록 차량을 제어할 수 있다.
본 발명의 제3실시예에 따르면, 차량이 분기 차선으로 진입할 때 카메라 시스템이 획득한 제1 및 제2 정보를 통해 다른 차량과의 충돌 가능성을 줄일 수 있다.
본 발명의 제3실시예에 따르면, 차량이 분기 차선으로 진입한 후 카메라 시스템이 획득한 제2 정보를 통해 좌회전 가능 여부를 판단할 수 있고, 이에 따라 차량의 조향을 제어할 수 있다.
또한, 본 발명의 제4실시예에 따르면 도로의 미끄럼 정도에 따라 긴급제동의 진입 시점을 제어할 수 있다.
또한, 본 발명의 제4실시예에 따르면 미끄러운 도로의 주행이 판단되는 경우에 긴급제동 진입 시점을 앞당길 수 있어, 제동거리의 증가로 인한 충돌/추돌 사고를 방지할 수 있다.
본 발명의 제5실시예에 따르면, 자차량 전방을 감지하는 카메라 시스템을 통해 자차량 전방으로 끼어드는 타차량을 감지하여 자차량과 타차량의 충돌을 방지할 수 있다.
본 발명의 제5실시예에 따르면, 카메라 시스템을 이용하여 자차량 전방의 차선 및 자차량 전방으로 끼어드는 타차량을 감지하고, 차선 내에 자차량의 위치를 판단할 수 있다. 이러한 정보를 통해 자차량의 감속, 가속 및 조향 제어를 통해 자차량과 타차량의 충돌을 방지할 수 있다.
본 발명의 제6실시예에 따른 교차로 충돌 방지 시스템 및 방법은 교차로에서 자차량과 주변차량 간의 충돌 위험을 감지하고, 충돌 위험의 레벨에 따라서 운전자에게 충돌 위험을 경고할 수 있다. 또한, 충돌 위험의 레벨에 따른 충돌 위험의 경고와 함께 자차량의 스티어링 제어를 함께 수행하여 충돌이 회피 되도록 할 수 있다.
본 발명의 제7실시예에 따르면, ADAS를 위한 전방 카메라 시스템에서 자차량 및 타차량 사이의 종방향 TTC 및 횡방향 TTC에 기초하여 자동 긴급 제동이 구현될 수 있다.
본 발명의 제8실시예에 따르면, 카메라 시스템과 후방 레이더를 통해 자차량의 주변 상황에 대한 데이터를 습득할 수 있고 데이터를 통해 ECU가 자차량과 주변 차량과의 충돌 위험을 판단할 수 있다.
본 발명의 제8실시예에 따르면, ECU는 자차량과 주변 차량 간의 충돌 가능성이 판단되는 경우 운전자에게 이를 충돌을 회피할 수 있도록 경고할 수 있다. 이를 통해, 교차로 진입시에 발생할 수 있는 사고를 방지할 수 있다.
본 발명의 제9실시예에 따르면, 자차량과 주변 차량의 충돌 예상 시간을 계산하여 이를 바탕으로 자차량의 조향 및 브레이크를 제어할 수 있다. 이를 통해, 자차량과 주변 차량 간의 충돌을 회피할 수 있다.
본 발명의 제10실시예에 따르면, 자차량이 교차로에 진입 시 주변 차량들 간에 통신을 통해서 CTA 제어의 우선순위를 결정하고, 결정된 CTA 우선순위에 따라서 복수이 차량들이 교차로에서 유기적으로 CAT 제어를 수행할 수 있다.
또한, 본 발명의 제10실시예에 따르면, 자차량이 교차로 진입 시, 횡방향에서 돌출하는 차량 또는 보행자를 검출한 후, CTA 제어를 수행하여 충돌을 방지할 수 있다.
본 발명의 제11실시예에 따른 차량 제어 장치 및 방법은 교차로에서 자차량의 측면을 감지하여 자차량과 타겟차량의 충돌 여부를 판단할 수 있다.
또한, 자차량과 타겟차량의 충돌 예상 시, 경보를 발생시키고, 자차량을 긴급제동 시켜 차량 간의 충돌을 방지할 수 있다.
본 발명의 제12실시예에 따르면, 운전자가 주시하는 방향 이외의 방향을 카메라 시스템으로 주시할 수 있어 자차량과 타차량 간의 충돌을 방지할 수 있다. 또한, ECU는 카메라 시스템이 획득한 정보를 통해 자차량을 제어하여 자차량과 타차량 간의 충돌을 방지할 수 있다.
도 1은 본 발명의 제1실시예에 따른 카메라 시스템을 개략적으로 나타내는 분해 사시도이다.
도 2는 본 발명의 제1실시예에 따른 카메라 시스템이 자동차에 장착되는 것을 도시하는 도면이다.
도 3은 본 발명의 제1실시예에 따른 카메라 시스템이 장착되는 자동차의 구성요소를 도시하는 도면이다.
도 4a는 본 발명의 제1실시예에 따른 카메라 시스템의 구성요소를 나타내는 도면이다.
도 4b는 본 발명의 제1실시예에 따른 카메라 시스템의 구성요소를 나타내는 도면이다.
도 5는 본 발명의 제1실시예에 따른 렌즈 배럴 및 렌즈 홀더의 결합관계를 설명하기 위한 분해 사시도이다.
도 6은 본 발명의 제1실시예에 따른 렌즈 배럴 및 렌즈 홀더의 Active alignment를 설명하기 위한 도면이다.
도 7a 내지 도 7e은 본 발명의 제1실시예에 따른 렌즈 홀더(20)를 도시하는 도면이다.
도 8a 내지 도 8e은 본 발명의 제1실시예에 따른 렌즈 배럴(15)를 도시하는 도면이다.
도 9은 본 발명의 제2실시예에 따른 충돌 방지 시스템을 나타내는 도면이다.
도 10은 본 발명의 제2실시예에 따른 충돌위험이 있는 타겟 차량을 검출하는 방법을 나타내는 도면이다.
도 11은 본 발명의 제2실시예에 따른 자차량의 속도 및 조향을 제어하여 타겟 차량과의 충돌을 회피하는 방법을 나타내는 도면이다.
도 12는 본 발명의 제2실시예에 따른 충돌 회피 방법을 나타내는 도면이다.
도 13은 본 발명의 제3실시예에 따른 차량의 제어에 관한 도면이다.
도 14은 본 발명의 제3실시예에 따른 차량을 제어하는 순서를 나타내는 순서도이다.
도 15은 본 발명의 제3실시예에 따른 차량을 제어하는 순서를 나타내는 순서도이다.
도 16은 본 발명의 제4실시예에 따른 카메라 시스템을 이용하여 미끄러운 도로 표지판을 인식하는 것을 나타내는 도면이다.
도 17은 본 발명의 제4실시예에 따른 긴급제동 시스템에서 도로의 미끄러움 정도에 따라서 긴급제동 진입 시점을 변경시키는 것을 나타내는 도면이다.
도 18은 본 발명의 제4실시예에 따른 긴급제동 방법을 나타내는 도면이다.
도 19a 내지 도 19c는 본 발명의 제5실시예에 따른 차량의 횡방향 제어를 설명하기 위한 도면이다.
도 20a 내지 도 20c는 본 발명의 제5실시예에 따른 차량의 종방향 제어를 설명하기 위한 도면이다.
도 21은 본 발명의 제5실시예에 따른 차량의 제어를 나타내는 순서도이다.
도 22a는 본 발명의 제6실시예에 따라 교차로에서 자차량의 정지한 상태에서 스티어링 휠의 조작이 없을 시 충돌 위험을 경고하지 않는 것을 나타내는 도면이다.
도 22b는 본 발명의 제6실시예에 따라 교차로에서 자차량의 정지한 상태에서 스티어링 휠의 조작이 있는 경우에 충돌 위험을 제1 레벨로 경고하는 것을 나타내는 도면이다.
도 23a는 본 발명의 제6실시예에 따라 교차로에서 자차량의 주행을 시작한 상태에서 주변차량과의 충돌이 예상되는 경우에 충돌 위험을 제2 레벨로 경고하는 것을 타내는 도면이다.
도 23b는 본 발명의 제6실시예에 따라 교차로에서 자차량의 주행을 시작한 상태에서 주변차량과의 충돌이 예상되고, 제동 또는 충돌 회피를 위한 스티어링 휠의 조작이 없는 경우에 충돌 위험의 제3 레벨 경고를 수행하는 것을 타내는 도면이다.
도 24는 본 발명에 제7실시예에 따른 자차량, 타차량 및 TTC를 설명하기 위한 도면이다.
도 25는 본 발명의 제7실시예에 따른 AEB 제어 알고리즘을 설명하기 위한 도면이다.
도 26은 본 발명의 제8실시예에 따른 교차로에서 자차량이 주변 상황을 인식하는 것을 나타내는 도면이다.
도 27은 본 발명의 제8실시예에 따른 자차량의 주변 상황에 따라 운전자에게 경고하는 것을 나타내는 순서도이다.
도 28은 본 발명의 제9실시예에 따른 교차로에서 자차량과 주변 차량의 위치를 나타내는 도면이다.
도 29는 본 발명의 제9실시예에 따른 자차량 기준으로 주변 차량의 2차원 좌표를 나타내는 도면이다.
도 30은 본 발명의 제9실시예에 따른 자차량을 제어하는 순서를 나타내는 순서도이다.
도 31은 본 발명의 제10실시예에 따른 교차로 충돌 방지(CTA: Cross Traffic Assistance) 시스템을 나타내는 도면이다.
도 32는 도 31에 도시된 제어부 및 충돌 회피를 위해 제어되는 컨트롤러들을 나타내는 도면이다.
도 33은 자차량에 배치된 카메라 시스템 및 레이더 시스템에 의해서 주변 차량들을 검출하는 것을 나타내는 도면이다.
도 34는 복수의 차량이 교차로 진입 시 교차로 충돌 방지(CTA) 시스템의 제어 우선순위를 설정하는 방법을 나타내는 도면이다.
도 35은 본 발명의 제11실시예에 따른 차량의 제어 장치의 구성을 나타내는 도면이다.
도 36은 교차로 감지 전의 제1 정보 생성부 및 제2 정보 생성부의 감지영역을 나타내는 도면이다.
도 37은 교차로 감지 이후의 제2 정보 생성부의 감지영역의 폭 변화를 나타내는 도면이다.
도 38은 교차로 감지 이후의 제2 정보 생성부의 감지영역의 길이 변화를 나타내는 도면이다.
도 39는 본 발명의 제11실시예에 따른 차량의 제어 방법을 설명하기 위한 동작 흐름도이다.
도 40a 및 도 40b는 본 발명의 제12실시예에 따른 좌회전 시 주행 보조 시스템의 구동을 설명하기 위한 도면들이다.
도 41은 본 발명의 제12실시예에 따른 우회전 시 주행 보조 시스템의 구동을 설명하기 위한 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
어느 부분이 다른 부분의 "위에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 수반되지 않는다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
"아래", "위" 등의 상대적인 공간을 나타내는 용어는 도면에서 도시된 한 부분의 다른 부분에 대한 관계를 보다 쉽게 설명하기 위해 사용될 수 있다. 이러한 용어들은 도면에서 의도한 의미와 함께 사용 중인 장치의 다른 의미나 동작을 포함하도록 의도된다. 예를 들면, 도면 중의 장치를 뒤집으면, 다른 부분들의 "아래"에 있는 것으로 설명된 어느 부분들은 다른 부분들의 "위"에 있는 것으로 설명된다. 따라서 "아래"라는 예시적인 용어는 위와 아래 방향을 전부 포함한다. 장치는 90° 회전 또는 다른 각도로 회전할 수 있고, 상대적인 공간을 나타내는 용어도 이에 따라서 해석된다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
제1실시예
도 1은 본 발명의 제1실시예에 따른 카메라 시스템을 개략적으로 나타내는 분해 사시도이다.
도 1을 참조하면, 카메라 시스템(1)은 렌즈(10), 렌즈(10)가 설치되는 렌즈 홀더(20), 렌즈 홀더(20)에 결합되어 렌즈(10)에서 촬영한 피사체의 이미지를 센싱하는 이미지 센서(31)를 포함한다. 이미지 센서(31)는 이미지 PCB(30) 상에 배치되며, 픽셀로 구성된 이미지 어레이 센서를 포함한다. 예를 들면, 이미지 센서(31)는 CMOS 포토센서 어레이 또는 CCD 포토 센서 어레이를 포함한다. 이러한 이미지 센서(31)는 렌즈(10)와 평행하도록 배치된다. 또한, 렌즈(10)와 렌즈 홀더(20)는 Active Alignment 방식으로 서로 결합될 수 있다.
또한, 카메라 시스템(1)은 메인 PCB(40)을 포함하며 메인 PCB(40) 상에는 이미지 프로세서(41)와 카메라 MCU(micro control unit)(42)가 배치된다. 이미지 프로세서(41)는 이미지 센서(31)로부터 이미지 데이터를 수신하며 이를 위해 이미지 프로세서(41)와 이미지 센서(31)는 커넥터(미도시)를 통해 연결될 수 있다. 예를 들어 커넥터는 카메라 시스템의 내부 공간 활용을 극대화 시키기 위해 FPCB(flexible PCB)로 제작될 수 있다. 이러한 커넥터를 통해서는 전기적 신호, 전원, 제어 신호 등이 송수신될 수 있다. 이미지 프로세서(41)와 이미지 센서(31) 사이의 통신 방식은 예를 들어 I2C일 수 있다. 카메라 MCU(42)와 이미지 프로세서(41)는 서로 통신하며, 통신 방식은 예를 들어 UART(universal asynchronous receiver/transmitter) 또는 SPI(serial peripheral interface) 일 수 있다.
카메라 MCU(42)는 이미지 프로세서(41)가 프로세싱한 이미지 데이터를 수신하며, 그 이미지 데이터를 자동차 내의 ECU(electrical control unit)(미도시)에게 전달할 수 있다. 카메라 MCU(42) 및 자동차의 ECU 사이의 통신 방식은 예를 들어 Chassis CAN(controller area network)일 수 있다. 또한, 카메라 MCU(42)는 이미지 프로세서(41)가 프로세싱한 데이터를 수신하며 그 데이터는 예를 들어, 전방의 차량에 대한 데이터, 전방의 차선에 대한 데이터, 전방의 사이클리스트에 대한 데이터, 교통 표지판에 대한 데이터, 액티브 하이빔 컨트롤(AHBC)에 대한 데이터, 휠 디텍션(wheel detection)에 대한 데이터(예컨대, 카메라 FOV 안으로 들어오는 Close Cut-in 차량에 대해서 차량 바퀴 인식을 통해 보다 빠르게 차량을 인식하기 위한 데이터), 교통 신호등에 대한 데이터, 로드 마킹(예컨대, 도로 위의 화살표)에 대한 데이터, VD at any angle에 대한 데이터(전방 차량의 전 주행 방향 또는 각도에 대해 차량을 인식하기 위한 데이터), 로드 프로파일(예컨대, 전방 도로 형상(굴곡, 과속 방지턱 또는 호올(hole))을 인식하여 서스펜션 제어를 통해 승차감을 향상시키기 위한 데이터)에 대한 데이터, 시맨틱 프리 스페이스(예컨대, 바운더리 라벨링)에 대한 데이터, 일반적 물체(측면 차량 등)에 대한 데이터, 어드밴스트 패쓰 플래닝(advanced path planning)에 대한 데이터(예를 들어, 차선이 없거나 오염된 도로에서도 주변 환경을 통한 Deep Learning으로 차량 주행 예상 경로를 예측하기 위한 데이터), 오도메트리(odometry)에 대한 데이터(예컨대, 주행 도로 랜드 마크를 인식하여 GPS의 인식 정보와 융합시키기 위한 데이터) 등을 포함한다.
또한, 카메라 시스템(1)은 하우징(50)을 포함하며 하우징(50)은 상부 하우징(52) 및 하부 하우징(54)를 포함한다. 구체적으로 상부 하우징(52)와 하부 하우징(54)이 결합된 하우징(50)의 내부에는 소정의 수용 공간이 형성되며, 이 수용 공간에 렌즈(10), 렌즈 홀더(20), 이미지 PCB(30) 및 메인 PCB(40)이 수용된다.
이러한 카메라 시스템(1)을 제조하는 경우에, 렌즈(10)를 렌즈 홀더(20)에 설치한 후 렌즈 홀더(20)를 이미지 PCB(30)에 결합시킬 수 있다. 예를 들어 렌즈 홀더(20) 및 이미지 PCB(30)는 스크류(23)를 통해 결합될 수 있다.
다음으로, 렌즈 홀더(20)와 이미지 PCB(30)가 결합된 상태에서 상부 하우징(52)이 결합될 수 있다. 이 때 상부 하우징(52) 및 렌즈 홀더(20)는 스크류(25)에 의해 결합될 수 있다.
한편, 사용되는 렌즈(10)의 개수는 카메라 시스템(10)의 종류, 이미지 센서의 픽셀 수, 또는 카메라 시스템(10)이 구현하는 기능의 요구사항에 따라서 변경될 수 있다. 예를 들어 1개의 렌즈(10)가 사용되는 경우 그 렌즈는 예컨대, 1.3 MP이 요구되는 경우 52deg이거나 예컨대, 1.7 MP이 요구되는 경우 100deg일 수 있다. 또는 2개의 렌즈(10)가 사용될 수도 있다. 또는 3개의 렌즈(10)가 사용되는 경우 3개의 이미저 센서(31)이 요구되며 그 렌즈는 각각 28 deg, 52 deg, 150 deg 이거나 50 deg, 100 deg, 150 deg일 수 있다.
이와 같은 카메라 시스템(10)의 종류는 카메라 시스템(10)이 지원하는 ADAS 기능의 개수 또는 종류에 따라서 결정된다. 예컨대, ADAS 기능 중 일부만 지원하는 경우(이미지 프로세서(41)가 처리하는 데이터가 전방의 차량에 대한 데이터, 전방의 차선에 대한 데이터, 전방의 사이클리스트에 대한 데이터, 교통 표지판에 대한 데이터, 액티브 하이빔 컨트롤(AHBC)에 대한 데이터, 휠 디텍션(wheel detection)에 대한 데이터(예컨대, 카메라 FOV 안으로 들어오는 Close Cut-in 차량에 대해서 차량 바퀴 인식을 통해 보다 빠르게 차량을 인식하기 위한 데이터), 교통 신호등에 대한 데이터, 로드 마킹(예컨대, 도로 위의 화살표)에 대한 데이터인 경우에는 단일의 렌즈가 사용될 수 있고, 더 많은 기능을 지원하는 경우(이미지 프로세서(41)가 처리하는 데이터가 전술한 예에 추가적으로, VD at any angle에 대한 데이터(전방 차량의 전 주행 방향 또는 각도에 대해 차량을 인식하기 위한 데이터), 로드 프로파일(예컨대, 전방 도로 형상(굴곡, 과속 방지턱 또는 호올(hole))을 인식하여 서스펜션 제어를 통해 승차감을 향상시키기 위한 데이터)에 대한 데이터, 시맨틱 프리 스페이스(예컨대, 바운더리 라벨링)에 대한 데이터, 일반적 물체(측면 차량 등)에 대한 데이터, 어드밴스트 패쓰 플래닝(advanced path planning)에 대한 데이터(예를 들어, 차선이 없거나 오염된 도로에서도 주변 환경을 통한 Deep Learning으로 차량 주행 예상 경로를 예측하기 위한 데이터), 오도메트리(odometry)에 대한 데이터(예컨대, 주행 도로 랜드 마크를 인식하여 GPS의 인식 정보와 융합시키기 위한 데이터)인 경우에는 3개의 렌즈가 사용될 수 있다.
도 2는 본 발명의 제1실시예에 따른 카메라 시스템(1)이 자동차에 장착되는 것을 도시하는 도면이다.
도 2에 도시된 바와 같이, 카메라 시스템(1)은 차량 내에서 전면 유리(220) 아래의 차량 내부에 장착될 수 있고 룸미러(210)의 인근에 장착될 수 있다. 이에 따라서 카메라 시스템(1)의 자동차의 전방의 시야를 촬영하는데 이용되고, 전방의 시야 내에 존재하는 물체를 인식하는데 사용된다. 또한, 비가 오는 상황 또는 먼지가 존재하는 상황에 대비하여, 카메라 시스템(1)은 전면 유리(220)의 바깥에서 구동되는 와이퍼(wiper)에 의해 클리닝(cleaning)되는 영역에 대응하여 차량 내부에 장착되는 것이 바람직하다. 한편, 카메라 시스템(1)이 장착되는 위치는 이에 한정되는 것이 아니다. 카메라 시스템(1)은 차량의 전방, 측방, 후방을 촬영하기 위해 다른 위치에 설치될 수도 있다.
한편, 물체의 거리나 속도, 각도를 측정하기 위해 전자기파를 사용하는 센서 장치인 Radar 장치(미도시)는 대표적으로 자동차의 전면 그릴에 위치하여 자동차의 전방 아래부분까지도 커버할 수 있도록 할 수 있다. Radar 장치를 전면 그릴에 두는 이유는, 즉 차량의 외부에 두는 이유는, 다시 말하면, 차량의 전면 유리(220)를 통과하여 송수신하지 않도록 하는 이유는 전자기파의 특성상 유리를 통과하는 경우의 감도 감소 때문이다. 본 발명에 따르면, Radar 장치는 차량의 내부에 위치하면서, 구체적으로는, 차량의 내부 공간에서 전면 유리(220)의 아래에 위치하면서도 전자기파가 전면 유리를 통과하지 않게 할 수 있다. 이를 위해 Radar 장치는 전면 유리(220)의 상단에 마련된 개구(opening)을 통해 전자기파를 송수신하도록 구성된다. 또한, Radar 장치를 위한 개구에 대응하는 위치에 커버가 배치된다. 이러한 커버는 개구로 인한 손실(예컨대, 공기의 유입 등)을 막기 위한 것이다. 또한, 커버는 Radar 장치가 사용하는 주파수의 전자기파에 대해서 관통이 용이한 재료로 제조되는 것이 바람직하다. 결과적으로 Radar 장치는 차량의 내부에 위치하지만 전면 유리(220)에 구비된 개구를 통해 전자기파를 송수신하고, 개구로 인한 손실을 막기 위해 개구에 대응하여 커버가 구비되며, 전자기파는 커버를 통해 송수신된다. 이러한 Radar 장치는 빔 에이밍(beam aiming), 빔 셀렉션(beam selection), 디지털 빔 포밍(beam forming), 디지털 빔 스티어링(beam steering)을 이용할 수 있다. 또한, Radar 장치는 어레이 안테나 또는 위상 정렬 어레이 안테나를 포함할 수 있다.
전술한 카메라 시스템(1) 및 Radar 장치(미도시)는 전방의 물체를 감지하는 성능을 개선하기 위해서 서로 연동할 수 있다. 예를 들어 이미지 프로세서(41)와 Radar 프로세서(미도시)는 서로 연동하여 전방의 관심있는 물체를 확대하거나 초점을 포커싱할 수 있다. 이와 같이 Radar 및 전방 카메라가 서로 연동하는 경우라면, 이미지 센서(31) 및 Radar 장치는 동일한 기판(예를 들면, 이미지 PCB(30)) 상에 배치될 수 있다.
또한, 카메라 시스템(1)이나 Radar 장치(미도시)와 같이 전방의 시야에 있는 물체를 감지하기 위한 장치 또는 시스템은, 적응형 크루즈 컨트롤(ACC)와 같은 ADAS 기술을 위해 사용될 수 있다. 또한, 전방의 잠재적인 위험 상황을 인지하기 위해서 사용될 수도 있고 예를 들어, 전방의 다른 자동차, 전방의 사람, 전방의 동물을 인지하는데 사용될 수 있다. 또한, 카메라 시스템(1)이나 Radar 장치(미도시)와 같이 전방의 시야에 있는 물체를 감지하기 위한 장치 또는 시스템은, 차선 이탈 경고 시스템(lane departure warning system), 물체 감지 시스템(object detection system), 교통 표지판 인식 시스템(traffic sign recognition system), 차선 유지 보조 시스템(lane keeping assistance system), 차선 변경 보조 시스템(lane change assistance system), 사각지대 경보 시스템(blind spot warning system), 자동 헤드램프 제어 시스템(automatic headlamp control system), 충돌 회피 시스템(collision avoidance system) 등에 사용될 수 있다.
도 3은 본 발명의 제1실시예에 따른 카메라 시스템(1)이 장착되는 자동차의 구성요소를 도시하는 도면이다.
자동차의 구성요소는 MCU 레벨, ECU 레벨, 컨트롤러 레벨로 구별할 수 있다.
MCU 레벨에는 카메라 MCU(42)를 포함하여 Lidar MCU, Radar MCU, GPS MCU, 네비게이션 MCU, V2X MCU 등이 있다. MCU 레벨에 속하는 MCU들은 자신과 연결된 센싱 장치 또는 센싱 장치에 연결된 장치(예컨대, 프로세서)를 제어하고, 이들 센싱 장치 또는 센싱 장치에 연결된 장치로부터 데이터를 수신한다.
카메라 MCU(42)에 대하여 예를 들면, 렌즈(10)을 통해 촬영한 피사체의 이미지를 이미지 센서(31)가 센싱하고, 이미지 프로세서(41)가 이미지 센서(31)로부터 그 데이터를 수신하여 프로세싱하며, 카메라 MCU(42)는 이미지 프로세서(41)로부터 그 데이터를 수신한다. 카메라 MCU(42)는 이미지 센서(31), 이미지 프로세서(41)을 제어하고 이러한 제어는 예를 들면 전원 공급 제어, 리셋 제어, 클럭(CLK) 제어, 데이터 통신 제어, 전원 제어, 메모리 제어 등을 포함한다. 한편, 이미지 프로세서(41)는 이미지 센서(31)가 센싱하여 출력한 데이터를 프로세싱할 수 있고, 이러한 프로세싱은 센싱한 전방의 물체를 확대하거나 전체 시야 영역 중에서 물체의 영역에 포커스를 맞추는 것을 포함한다.
Lidar MCU(311)에 대하여 예를 들면, Lidar MCU(311)는 센서인 Lidar 장치와 연결된다. Lidar 장치는 레이저 송신 모듈, 레이저 검출 모듈, 신호 수집 및 처리 모듈, 데이터 송수신 모듈로 구성될 수 있고, 레이저의 광원은 250 nm 내지 11 μm 의 파장 영역에서 파장을 가지거나 파장 가변이 가능한 레이저 광원들이 사용된다. 또한 Lidar 장치는 신호의 변조 방식에 따라서, TOF(time of flight) 방식과 phase shift 방식으로 구분된다. Lidar MCU(311)는 Lidar 장치 및 Lidar 장치에 연결된 다른 장치(예컨대, Lidar 센싱 출력을 프로세싱하는 Lidar프로세서(미도시))를 제어한다. 이러한 제어는 예를 들면 전원 공급 제어, 리셋 제어, 클럭(CLK) 제어, 데이터 통신 제어, 메모리 제어 등을 포함한다. 한편, Lidar 장치는 자동차의 전방 영역을 센싱하기 위해 사용된다. 이러한 Lidar 장치는 자동차의 내부 전면, 구체적으로는 전면 유리(220) 아래에 위치하여 전면 유리를 통해서 laser 광원을 송수신한다.
Radar MCU(312)에 대하여 예를 들면, Radar MCU(312)는 센서인 Radar 장치와 연결된다. Radar 장치는 물체의 거리나 속도, 각도를 측정하기 위해 전자기파를 사용하는 센서 장치이다. Radar 장치를 이용하면 주파수 변조 반송파(FMCW, Frequency Modulation Carrier Wave) 또는 펄스 반송파(Pulse Carrier) 방식을 이용하여 수평각도 30도 범위에서 150m 전방까지의 물체를 감지할 수 있다. Radar MCU(312)는 Radar 장치 및 Radar 장치에 연결된 다른 장치(예컨대, Radar 센싱 출력을 프로세싱하는 Radar 프로세서(미도시))를 제어한다. 이러한 제어는 예를 들면 전원 공급 제어, 리셋 제어, 클럭(CLK) 제어, 데이터 통신 제어, 메모리 제어 등을 포함한다. 한편, Radar 장치는 대표적으로 77GHz 대역 레이더 또는 적합한 다른 대역을 사용하며, 자동차의 전방 영역을 센싱한다. Radar 장치로부터 획득한 정보는 적응형 크루즈 컨트롤(ACC)과 같은 ADAS 기술을 위해 사용될 수 있다. 한편, Radar 프로세서는 Radar 장치가 센싱하여 출력한 데이터를 프로세싱할 수 있고, 이러한 프로세싱은 센싱한 전방의 물체를 확대하거나 전체 시야 영역 중에서 물체의 영역에 포커스를 맞추는 것을 포함한다.
GPS MCU(313)에 대하여 예를 들면, GPS MCU(313)는 센서인 GPS 장치와 연결된다. GPS 장치는 위성과의 통신을 이용해 자동차의 위치, 속도 및 시간 측정을 할 수 있는 장치이다. 구체적으로 GPS 장치는 위성으로부터 발사되는 전파의 지연시간을 계측하고 궤도로부터의 거리에서 현재의 위치를 구하는 장치이다. GPS MCU(313)는 GPS 장치 및 GPS 장치에 연결된 다른 장치(예컨대, GPS 센싱 출력을 프로세싱하는 GPS 프로세서(미도시))를 제어한다. 이러한 제어는 예를 들면 전원 공급 제어, 리셋 제어, 클럭(CLK) 제어, 데이터 통신 제어, 메모리 제어 등을 포함한다.
네비게이션 MCU(314)에 대하여 예를 들면, 네비게이션 MCU(314)는 센서인 네비게이션 장치와 연결된다. 네비게이션 장치는 자동차 실내의 전면부에 설치되는 디스플레이 장치를 통해 맵(map) 정보를 표시하는 장치이다. 구체적으로 map 정보는 메모리 장치에 저장되며 GPS 장치를 통해 계측한 자동차의 현재 위치를 map 데이터에 표시한다. 네비게이션 MCU(314)는 네비게이션 장치 및 네비게이션 장치에 연결된 다른 장치(예컨대, 네비게이션 센싱 출력을 프로세싱하는 네비게이션 프로세서(미도시))를 제어한다. 이러한 제어는 예를 들면 전원 공급 제어, 리셋 제어, 클럭(CLK) 제어, 데이터 통신 제어, 메모리 제어 등을 포함한다.
V2X MCU(315)에 대하여 예를 들면, V2X MCU(315)는 센서인 V2X 장치와 연결된다. 구체적으로 V2X 장치는 자동차 간 통신(V2V), 자동차 대 인프라 통신(V2I), 자동차 대 모바일 통신(V2N)을 수행하는 장치이다. V2X MCU(315)는 V2X 장치 및 V2X 장치에 연결된 다른 장치(예컨대, V2X 센싱 출력을 프로세싱하는 V2X 프로세서(미도시))를 제어한다. 이러한 제어는 예를 들면 전원 공급 제어, 리셋 제어, 클럭(CLK) 제어, 데이터 통신 제어, 메모리 제어 등을 포함한다.
ECU 레벨에 속하는 ECU(electrical control unit)(320)는 자동차에서 사용되는 다수의 전자 장치들을 통합적으로 제어하는 장치이다. 예를 들어, ECU(320)는 MCU 레벨에 속하는 MCU들 및 컨트롤러 레벨에 속하는 컨트롤러들 모두를 제어할 수 있다. ECU(320)는 MCU들로부터 센싱 데이터를 수신하여 상황에 맞도록 컨트롤러를 제어하는 제어 명령을 생성하여 컨트롤러들에게 제어 명령을 전송한다. 한편, 본 명세서에서는 설명의 편의를 위해 MCU 레벨 보다 상위의 레벨로서 ECU 레벨을 설명하고 있으나, MCU 레벨에 속하는 MCU들 중의 하나의 MCU가 ECU로서 역할을 수행할 수도 있고, 두 개의 MCU가 결합하여 ECU로서 역할을 수행할 수도 있다.
컨트롤러 레벨에는 운전자 경고 컨트롤러(331), 헤드 램프 컨트롤러(332), 차량 자세 제어 컨트롤러(333), 조향 컨트롤러(334), 엔진 제어 컨트롤러(335), 서스펜션 컨트롤러(336), 브레이크 컨트롤러(337) 등이 있다. 컨트롤러는 ECU(320) 또는 MCU 레벨의 MCU들로부터 수신한 제어 명령에 기초하여 자동차의 구성 부품들을 제어한다.
운전자 경고 컨트롤러(331)에 대하여 예를 들면, 운전자 경고 컨트롤러(331)는 운전자에게 특정한 위험 상황을 경고하기 위해 오디오 방식, 비디오 방식 또는 햅틱 방식의 경고 신호를 발생시킨다. 예를 들어, 경고음을 출력하기 위해 운전자 경고 컨트롤러(331)는 자동차의 사운드 시스템을 이용해 경고음을 출력할 수 있다. 또는, 경고 메시지를 디스플레이 하기 위해 운전자 경고 컨트롤러(331)는 HUD 디스플레이 또는 사이드 미러 디스플레이를 통해 경고 메시지를 출력할 수 있다. 또는, 경고 진동을 발생시키기 위해 운전자 경고 컨트롤러(331)는 핸들에 장착된 진동모터를 동작시킬 수 있다.
헤드 램프 컨트롤러(332)에 대하여 예를 들면, 헤드 램프 컨트롤러(332)는 자동차의 전방에 위치하여 야간에 자동차의 전방에 대해 운전자의 시야를 확보해주는 헤드 램프를 제어한다. 예를 들면, 헤드 램프 컨트롤러(332)는 상향등 제어, 하향등 제어, 좌우 보조등 제어, 적응형 헤드 램프 제어 등을 수행한다.
차량 자세 제어 컨트롤러(333)에 대하여 예를 들면, 차량 자세 제어 컨트롤러(333)는 VDC(vehicle dynamic control) 또는 ESP(electrical stability control) 등으로 지칭되며, 운전자의 긴급한 핸들 조작이나 노면의 상태 등으로 인해서 자동차의 거동이 급격히 불안정해지는 경우에 전자적 장비가 개입이 자동차의 거동을 바로잡는 제어를 수행한다. 예를 들어, 휠 스피드 센서, 조향각 센서, 요 레이트(yaw rate) 센서, 실린더 압력 센서 등의 센서들이 스티어링 휠 조작을 센싱해 스티어링 휠과 바퀴의 진행방향이 어긋나는 경우에, 차량 자세 제어 컨트롤러(333)는 브레이크 잠김 방지 기능(ABS) 등을 이용해 각 바퀴의 제동력을 분산하는 제어를 수행한다.
조향 컨트롤러(334)에 대하여 예를 들면, 조향 컨트롤러(334)는 스티어링 휠을 구동시키는 전동식 파워스티어링 시스템(MPDS)에 대한 제어를 수행한다. 예를 들어, 자동차가 충돌이 예상되는 경우에 조향 컨트롤러(334)는 충돌을 회피하거나 피해를 최소화할 수 있는 방향으로 자동차의 조향을 제어한다.
엔진 제어 컨트롤러(335)에 대하여 예를 들면, 엔진 제어 컨트롤러(335)는 산소 센서, 공기량 센서, 매니폴드 절대압 센서로부터의 데이터를 ECU(32)가 수신하면, 그 제어 명령에 따라서 인젝터, 스로틀, 스파크 플러그 등의 구성을 제어하는 역할을 수행한다.
서스펜션 컨트롤러(336)에 대하여 예를 들면, 서스펜션 컨트롤러(336)은 모터 기반의 능동 서스펜션 제어를 수행하는 장치이다. 구체적으로 서스펜션 컨트롤러(336)는 쇽업 쇼버의 감쇠력을 가변적으로 제어해 일반 주행시는 부드러운 승차감을 주도록 하고, 고속 주행 및 자세 변화시에는 딱딱한 승차감을 주도록 하여 승차감 및 주행 안정성을 확보하게 한다. 또한, 서스펜션 컨트롤러(336)는 감쇠력 제어 외에도, 차고 제어, 자세 제어 등을 수행할 수도 있다.
브레이크 컨트롤러(337)에 대하여 예를 들면, 브레이크 컨트롤러(337)는 자동차의 브레이크의 동작 여부를 제어하고 브레이크의 답력을 제어한다. 예를 들어, 전방 충돌이 예상되는 경우에 운전자가 브레이크를 동작시켰는지 여부와 무관하게 브레이크 컨트롤러(337)는 ECU(320)의 제어 명령에 따라서 자동적으로 긴급 브레이크를 작동시키도록 제어한다.
한편, 본 도면을 이용하여 상술한 바에 따르면 MCU, ECU 및 컨트롤러가 각각 독립적인 구성요소로 설명하였으나, 반드시 이에 한정되는 것이 아님을 이해하여야 한다. 2개 이상의 MCU들은 1개의 MCU로 통합될 수 있고, 2개 이상의 MCU들은 서로 연동할 수 있고, 2개 이상의 MCU들 및 ECU는 하나의 장치로 통합될 수 있고, 2개 이상의 컨트롤러들은 1개의 컨트롤러로 통합될 수 있고, 2개 이상의 컨트롤러들은 서로 연동할 수 있고, 2개 이상의 컨트롤러들 및 ECU는 하나의 장치로 통합될 수 있다.
예를 들면, Radar 프로세서는 Radar 장치의 출력을 프로세싱하고, 이미지 프로세서(41)는 이미지 센서(31)의 출력을 프로세싱하는데, Radar 장치의 출력 및 이미지 센서(31)의 출력은 하나의 프로세서(Radar 프로세서, 이미지 프로세서(41), 통합된 프로세서, 또는 ECU(320))에 의해 연동될 수 있다. 예를 들면, Radar 장치가 센싱하여 출력한 데이터를 Radar 프로세서가 프로세싱하고, 그 프로세싱 결과로 도출된 전방의 물체에 대한 정보에 기초하여, 이미지 프로세서(41)는 이미지 센서(31)가 센싱하여 출력한 데이터를 확대하거나 포커스를 맞추는 프로세싱을 수행할 수 있다. 반대로, 이미지 센서(31)가 센싱하여 출력한 데이터를 이미지 프로세서(41)가 프로세싱하고, 그 프로세싱 결과로 도출된 전방의 물체에 대한 정보에 기초하여, Radar 프로세서는 Radar 장치가 센싱하여 출력한 데이터를 확대하거나 포커스를 맞추는 프로세싱을 수행할 수 있다. 이를 위해 Radar MCU는 Radar 장치에 대해 빔 에이밍(beam aiming) 또는 빔 셀렉션(beam selection)을 수행하도록 제어할 수 있다. 또는 Radar 프로세서는 배열 안테나 또는 위상 배열 안테나 시스템에서의 디지털 빔 포밍(beam forming)을 수행하거나 디지털 빔 스티어링(beam steering)을 수행할 수 있다. 이와 같이 Radar 및 전방 카메라가 서로 연동하는 경우라면, 이미지 센서(31) 및 Radar 장치는 동일한 기판(예를 들면, 이미지 PCB(30)) 상에 배치될 수 있다.
도 4a는 본 발명의 제1실시예에 따른 카메라 시스템(1)의 구성요소를 나타내는 도면이다.
도 4a를 참조하면, 카메라 시스템(1)은 렌즈(10), 이미지 센서(31), 이미지 프로세서(41) 및 카메라 MCU(42)를 포함한다.
또한, 카메라 시스템(1)은 이그니션 전압(410)을 수신하여 제1전압(411), 제2전압(412) 및 제3전압(413)으로 변환하는 제1컨버터부(421), 제3전압(413)을 수신하여 제4전압(414)으로 변환하는 제2컨버터부(422), 제1전압(411)을 수신하여 제5전압(415) 및 제6전압(416)으로 변환하는 레귤레이터부(423)를 포함한다. 제1컨버터부(421)는 도 4a에 도시된 바와 같이 1개의 3ch DC-DC 컨버터로 구성될 수 있으나, 이에 한정되지 않고 1ch DC-DC 컨버터 및 2ch DC-DC 컨버터로 구성될 수 있고 또는 3개의 1ch DC-DC 컨버터로 구성될 수 있다. 레귤레이터부(423)는 도 4a에 도시된 바와 같이 2ch LDO(Low Drop Out)로 구성될 수 있으나, 이에 한정되지 않고 2개의 1ch LDO로 구성될 수 있다. 레귤레이터부(423)를 LDO로 구현하는 이유는 이미지 센서(31)에서 요구되는 전류 레벨이 크지 않기 때문이다.
이그니션 전압(410)은 드라이버가 수동으로 키를 돌려 차량의 시동을 걸거나 버튼식으로 차량의 시동을 걸 때 발생하는 전압으로서 일반적으로 14V일 수 있다. 제 1 전압(411)은 제1컨버터부(421)가 이그니션 전압(410)을 수신하여 변환하는 전압으로서 3.3V일 수 있다. 제1전압(411)은 카메라 MCU(42)에 입력되어 카메라 MCU(42)의 동작 전원으로 이용될 수 있다. 또한, 제1전압(411)은 감시 모듈(441) 및 제1메모리(431)의 동작 전원으로 이용될 수 있다. 또한, 제1전압(411)은 이미지 프로세서(41)의 동작 전원으로 이용될 수 있다. 카메라 MCU(42) 및 이미지 프로세서(41)에 동일한 동작 전원인 제1전압(411)이 인가되는 이유는 두 개의 통신 컴포넌트 간의 통신 레벨(IO 전압)을 맞추기 위해서이다. 제2전압(412)은 제1컨버터부(421)가 이그니션 전압(410)을 수신하여 변환하는 전압으로서 1.8V일 수 있다. 한편, 후술하는 바와 같이 이미지 센서(31)에는 제5전압(예컨대, 1.8V)가 인가되는데, 이 전압은 제2전압과 동일하다. 이미지 프로세서(41)에 인가되는 제2전압(412) 및 이미지 센서(31)에 인가되는 제5전압(215)가 서로 동일한 이유는 이미지 프로세서(41) 및 이미지 센서(31) 사이의 통신 레벨(IO 전압)을 맞추기 위해서이다. 제3전압(413)은 제1컨버터부(421)가 이그니션 전압(410)을 수신하여 변환하는 전압으로서 5V일 수 있다. 제3전압(413)은 제2컨버터부(422)로 인가되고 제2컨버터부(422)는 제4전압(414)을 출력할 수 있다. 제4전압(414)는 이미지 프로세서(41)에 인가되어 이미지 프로세서(41)의 코어 전원로서 동작한다. 예를 들어, 제4전압(414)는 1.2V일 수 있다. 한편, 제1컨버터부(421)가 제4전압(414)를 직접 출력하는 것이 가능함에도 불구하고, 제1컨버터부(421)가 제3전압(413)을 출력하고 그 제3전압(413)을 수신한 제2컨버터부(422)가 제4전압(414)를 출력하는 이유는, 이미지 프로세서(41)가 요구하는 허용 전류를 만족시키기 위해서이다. 이에 더하여, 그 이유는 제3전압(413)은 다른 컴포넌트(예컨대, HS-CAN TRx 등)에서 동작 전원으로 사용하게 하기 위해서이다.
한편, 제1전압(411)은 레귤레이터부(423)로 인가되고 레귤레이터부(423)는 제5전압(415) 및 제6전압(416)을 출력한다. 제5전압(415)은 1.8V일 수 있고, 제6전압(416)은 2.8V일 수 있다. 제5전압(415)은 이미지 센서(31)로 인가되어 이미지 프로세서(41)와의 통신 레벨을 맞추기 위한 용도로 동작한다. 제6전압(416)은 이미지 센서(31)로 인가되어 이미지 센서(31)의 코어 전원으로서 동작한다. 결국 카메라 MCU(42)와 이미지 프로세서(41)은 제1전압(411)으로 통신 레벨 맞추고, 이미지 프로세서(41)와 이미지 센서(31)는 제 2 전압(412) 및 제 2 전압과 동일한 제 5 전압(415)으로 통신 레벨을 맞추게 된다.
또한, 카메라 시스템(1)은 제1전압(411)을 수신하고 카메라 MCU(42)에 연결되는 제1메모리(431), 이미지 프로세서(41)에 연결되는 제2메모리(432), 이미지 프로세서(41)에 연결되는 제3메모리(433), 이미지 프로세서(41)에 연결되는 제4메모리(434)를 포함한다. 제1메모리(431)는 EEPROM일 수 있고, 제2메모리(432)는 LPDDR2일 수 있고, 제3메모리(433)는 LPDDR2일 수 있고, 제4메모리(434)는 Flash 메모리일 수 있다. 제1메모리(431)는 카메라 MCU(42)에 연결되고 MCU 로직 데이터(컨트롤러를 제어하는 알고리즘), MCU 베이직 소프트웨어(이미지 프로세서(41), 이미지 센서(31) 등을 구동시키기 위한 스타트업 알고리즘 등)를 저장한다. 제2메모리(432)는 이미지 프로세서(41)에 연결되고 이미지 프로세서(41)의 명령에 따라서, 제4메모리(434)에 저장되는 기능 구현 알고리즘을 실행하는 역할을 수행한다. 제3메모리(433)는 이미지 프로세서(41)에 연결되고 이미지 프로세서(41)의 명령에 따라서, 제4메모리(434)에 저장되는 기능 구현 알고리즘을 실행하는 역할을 수행한다. 제4메모리(434)는 이미지 프로세서(41)에 연결되고 이미지 프로세서(41)에서 기능을 구현하는 알고리즘 데이터(예컨대, LD, PD, VD, TSR 등)를 저장한다. 한편, 제2메모리(432) 및 제3메모리(433)는 카메라 시스템(1)이 지원하는 기능의 개수에 따라서 그 용량이 결정될 수 있다. 예컨대, 기능 중 일부만 지원하는 경우(이미지 프로세서(41)가 처리하는 데이터가 전방의 차량에 대한 데이터, 전방의 차선에 대한 데이터, 전방의 사이클리스트에 대한 데이터, 교통 표지판에 대한 데이터, 액티브 하이빔 컨트롤(AHBC)에 대한 데이터, 휠 디텍션(wheel detection)에 대한 데이터(예컨대, 카메라 FOV 안으로 들어오는 Close Cut-in 차량에 대해서 차량 바퀴 인식을 통해 보다 빠르게 차량을 인식하기 위한 데이터), 교통 신호등에 대한 데이터, 로드 마킹(예컨대, 도로 위의 화살표)에 대한 데이터인 경우)에는 제2메모리(432) 및 제3메모리(433)는 각각 128MB일 수 있으며, 더 많은 기능을 지원하는 경우(이미지 프로세서(41)가 처리하는 데이터가 전술한 예에 추가적으로, VD at any angle에 대한 데이터(전방 차량의 전 주행 방향 또는 각도에 대해 차량을 인식하기 위한 데이터), 로드 프로파일(예컨대, 전방 도로 형상(굴곡, 과속 방지턱 또는 호올(hole))을 인식하여 서스펜션 제어를 통해 승차감을 향상시키기 위한 데이터)에 대한 데이터, 시맨틱 프리 스페이스(예컨대, 바운더리 라벨링)에 대한 데이터, 일반적 물체(측면 차량 등)에 대한 데이터, 어드밴스트 패쓰 플래닝(advanced path planning)에 대한 데이터(예를 들어, 차선이 없거나 오염된 도로에서도 주변 환경을 통한 Deep Learning으로 차량 주행 예상 경로를 예측하기 위한 데이터), 오도메트리(odometry)에 대한 데이터(예컨대, 주행 도로 랜드 마크를 인식하여 GPS의 인식 정보와 융합시키기 위한 데이터인 경우)에는 제2메모리(432) 및 제3메모리(433)은 각각 256MB일 수 있다. 또한, 제2메모리(432) 및 제3메모리(33)는 렌즈(10)의 개수에 따라서 1개의 메모리로 통합될 수도 있다. 1개의 렌즈(10)만을 사용하는 경우에는 제2메모리(432) 및 제3메모리(433)의 총 2개의 메모리(예컨대, 2 X 218MB)가 사용될 수 있고, 2개의 렌즈(10)를 사용하는 경우에는 2개의 메모리를 사용하는 경우보다 용량이 더 큰 1개의 메모리(예컨대, 1 X 512MB)가 사용될 수 있다. 또한, 3개의 렌즈(10)가 사용되는 경우에는 용량이 큰 2개의 메모리(예컨대, 2 X 512MB)가 사용될 수 있다. 즉, 제2메모리(432) 및 제3메모리(433)는 렌즈의 개수에 따라서 그 개수 및 용량이 변경될 수 있다.
또한, 카메라 시스템(1)은 카메라 MCU(42)에 연결되는 감시 모듈(441), 카메라 MCU(42)에 연결되어 샤시 CAN 통신을 수행하는 고속-캔 송수신기(HS-CAN_TRx)(442), 카메라 MCU(42)에 연결되어 로컬 CAN 통신을 수행하는 고속-캔 송수신기(443), 카메라 MCU(42)에 연결되어 와이퍼 동작 입력을 수신하는 외부 입력기(444), 카메라 MCU(42)에 연결되어 온오프 스위칭 입력을 수신하는 외부 입력기(445), 카메라 MCU(42)에 연결되어 LED 신호를 출력하는 외부 출력기(446)를 포함한다. 카메라 MCU(42)가 와이퍼 동작 입력을 수신하는 이유는, 와이퍼 ON 신호가 수신되는 경우는 비가 오는 상황으로써 카메라 시스템(1)을 통한 전방의 인식이 열화되기 때문에 카메라 MCU(42)의 동작을 Off 시키거나 또는 카메라 MCU(42)의 특정 기능을 Off 시킬 필요가 있기 때문이다.
도 4b는 본 발명의 제1실시예에 따른 카메라 시스템(1)의 구성요소를 나타내는 도면이다.
도 4b를 참조하면, 카메라 시스템(1)은 렌즈(10), 이미지 센서(31), 이미지 프로세서(41) 및 카메라 MCU(42)를 포함한다.
또한, 카메라 시스템(1)은 이그니션 전압(510)을 수신하여 제1전압(511), 제2전압(512), 제3전압(513) 및 제 4전압(514)으로 변환하는 제1컨버터부(421), 제1전압(511)을 수신하여 제5전압(515), 제6전압(516) 및 제7전압(517)으로 변환하는 레귤레이터부(523)를 포함한다. 제1컨버터부(521)는 도 4b에 도시된 바와 같이 1개의 4ch DC-DC 컨버터로 구성될 수 있으나, 이에 한정되지 않고 1ch DC-DC 컨버터 및 3ch DC-DC 컨버터로 구성될 수 있고 또는 2개의 2ch DC-DC 컨버터로 구성될 수 있고 또는 4개의 1ch DC-DC 컨버터로 구성될 수 있다. 또는 제1컨버터부(521)는 4ch PMIC(Power Management Integrated Circuit)로 구성될 수 있다. PMIC를 이용하는 경우 다수의 buck regulator를 실장하고 있고, boost regulator를 실장하고 있어 USB 기능을 지원할 수도 있고, 전원 설정을 위한 I2C 기능도 제공할 수 있는 장점이 있다. 레귤레이터부(523)는 도 4b에 도시된 바와 같이 3ch LDO(Low Drop Out)로 구성될 수 있으나, 이에 한정되지 않고 3개의 1ch LDO로 구성될 수 있다. 레귤레이터부(523)를 LDO로 구현하는 이유는 이미지 센서(31)에서 요구되는 전류 레벨이 크지 않기 때문이다.
이그니션 전압(510)은 드라이버가 수동으로 키를 돌려 차량의 시동을 걸거나 버튼식으로 차량의 시동을 걸 때 발생하는 전압으로서 일반적으로 14V일 수 있다. 제 1 전압(511)은 제1컨버터부(521)가 이그니션 전압(510)을 수신하여 변환하는 전압으로서 3.3V일 수 있다. 제1전압(511)은 카메라 MCU(42)에 입력되어 카메라 MCU(42)의 동작 전원으로 이용될 수 있다. 또한, 제1전압(511)은 감시 모듈(541) 및 제1메모리(531)의 동작 전원으로 이용될 수 있다. 또한, 제1전압(511)은 이미지 프로세서(41)의 동작 전원으로 이용될 수 있다. 카메라 MCU(42) 및 이미지 프로세서(41)에 동일한 동작 전원인 제1전압(511)이 인가되는 이유는 두 개의 통신 컴포넌트 간의 통신 레벨(IO 전압)을 맞추기 위해서이다. 제2전압(512)은 제1컨버터부(521)가 이그니션 전압(510)을 수신하여 변환하는 전압으로서 1.8V일 수 있다. 한편, 후술하는 바와 같이 이미지 센서(31)에는 제5전압(515)(예컨대, 1.8V)가 인가되는데, 이 전압은 제2전압(512)과 동일하다. 이미지 프로세서(41)에 인가되는 제2전압(512) 및 이미지 센서(31)에 인가되는 제5전압(515)가 서로 동일한 이유는 이미지 프로세서(41) 및 이미지 센서(31) 사이의 통신 레벨(IO 전압)을 맞추기 위해서이다. 제3전압(513)은 제1컨버터부(521)가 이그니션 전압(510)을 수신하여 변환 및 출력하는 전압으로서 5V일 수 있다. 제3전압(513)은 카메라 MCU(42)가 통신을 위해 이용하는 컴포넌트들(예컨대, S-CAN 통신 모듈, C-CAN 통신 모듈, High Side Driver)의 구동 전원으로 이용될 수 있다. 제4전압(514)은 제1컨버터부(521)가 이그니션 전압(510)을 수신하여 변환 및 출력하는 전압으로서 2.8V 일 수 있다. 제4전압(514)은 컨버터를 통해 1.1V로 변환되어 이미지 프로세서(41)에 인가될 수 있다. 1.1V 전압은 이미지 프로세서(41)의 코어 전원로서 동작한다. 한편, 제1컨버터부(521)가 이미지 프로세서의 코어 전원(1.1V)을 직접 출력하는 것이 가능함에도 불구하고, 별도의 컨버터를 통해 제4전압(514)(2.8V)을 코어 전원(1.1V)로 하강시키는 이유는, 이미지 프로세서(41)가 요구하는 허용 전류를 만족시키기 위해서이다.
한편, 제1전압(511)은 레귤레이터부(523)로 인가되고 레귤레이터부(523)는 제5전압(515), 제6전압(516) 및 제7전압(517)을 출력한다. 제5전압(515)은 1.8V일 수 있고, 제6전압(516)은 2.8V일 수 있고, 제7전압(517)은 1.2V일 수 있다. 제5전압(515)은 이미지 센서(31)로 인가되어 이미지 프로세서(41)와의 통신 레벨을 맞추기 위한 용도로 동작한다. 제6전압(516)은 이미지 센서(31)로 인가되어 이미지 센서(31)의 코어 전원으로서 동작한다. 결국 카메라 MCU(42)와 이미지 프로세서(41)은 제1전압(511)으로 통신 레벨 맞추고, 이미지 프로세서(41)와 이미지 센서(31)는 제 2 전압(512) 및 제 2 전압과 동일한 제 5 전압(515)으로 통신 레벨을 맞추게 된다.
또한, 카메라 시스템(1)은 제1전압(511)을 수신하고 카메라 MCU(42)에 연결되는 제1메모리(531), 이미지 프로세서(41)에 연결되는 제2메모리(532), 이미지 프로세서(41)에 연결되는 제3메모리(533)를 포함한다. 제1메모리(531)는 EEPROM일 수 있고, 제2메모리(532)는 LPDDR4일 수 있고, 제3메모리(533)는 Flash 메모리일 수 있다. 제1메모리(531)는 카메라 MCU(42)에 연결되고 MCU 로직 데이터(컨트롤러를 제어하는 알고리즘), MCU 베이직 소프트웨어(이미지 프로세서(41), 이미지 센서(31) 등을 구동시키기 위한 스타트업 알고리즘 등)를 저장한다. 제2메모리(532)는 이미지 프로세서(41)에 연결되고 이미지 프로세서(41)의 명령에 따라서, 제3메모리(533)에 저장되는 기능 구현 알고리즘을 실행하는 역할을 수행한다. 제3메모리(533)는 이미지 프로세서(41)에 연결되고 이미지 프로세서(41)에서 기능을 구현하는 알고리즘 데이터(예컨대, LD, PD, VD, TSR 등)를 저장한다. 한편, 제2메모리(532)는 카메라 시스템(1)이 지원하는 기능의 개수에 따라서 그 용량이 결정될 수 있다. 예컨대, 기능 중 일부만 지원하는 경우(이미지 프로세서(41)가 처리하는 데이터가 전방의 차량에 대한 데이터, 전방의 차선에 대한 데이터, 전방의 사이클리스트에 대한 데이터, 교통 표지판에 대한 데이터, 액티브 하이빔 컨트롤(AHBC)에 대한 데이터, 휠 디텍션(wheel detection)에 대한 데이터(예컨대, 카메라 FOV 안으로 들어오는 Close Cut-in 차량에 대해서 차량 바퀴 인식을 통해 보다 빠르게 차량을 인식하기 위한 데이터), 교통 신호등에 대한 데이터, 로드 마킹(예컨대, 도로 위의 화살표)에 대한 데이터인 경우)에는 제2메모리(532)는 128MB일 수 있으며, 더 많은 기능을 지원하는 경우(이미지 프로세서(41)가 처리하는 데이터가 전술한 예에 추가적으로, VD at any angle에 대한 데이터(전방 차량의 전 주행 방향 또는 각도에 대해 차량을 인식하기 위한 데이터), 로드 프로파일(예컨대, 전방 도로 형상(굴곡, 과속 방지턱 또는 호올(hole))을 인식하여 서스펜션 제어를 통해 승차감을 향상시키기 위한 데이터)에 대한 데이터, 시맨틱 프리 스페이스(예컨대, 바운더리 라벨링)에 대한 데이터, 일반적 물체(측면 차량 등)에 대한 데이터, 어드밴스트 패쓰 플래닝(advanced path planning)에 대한 데이터(예를 들어, 차선이 없거나 오염된 도로에서도 주변 환경을 통한 Deep Learning으로 차량 주행 예상 경로를 예측하기 위한 데이터), 오도메트리(odometry)에 대한 데이터(예컨대, 주행 도로 랜드 마크를 인식하여 GPS의 인식 정보와 융합시키기 위한 데이터인 경우)에는 제2메모리(532)는 256MB일 수 있다.
또한, 카메라 시스템(1)은 카메라 MCU(42)에 연결되는 감시 모듈(541), 카메라 MCU(42)에 연결되어 샤시 CAN 통신을 수행하는 고속-캔 송수신기(HS-CAN_TRx)(542), 카메라 MCU(42)에 연결되어 로컬 CAN 통신을 수행하는 고속-캔 송수신기(543), 카메라 MCU(42)에 연결되어 LED 신호를 출력하는 High Side Driver(544), 카메라 MCU(42)에 연결되어 온오프 스위칭 입력을 수신하는 외부 입력기(545)를 포함한다. 또한, 카메라 MCU(42)에 연결되어 와이어 입력을 수신하는 외부 입력 수신기(미도시)를 포함할 수 있는데 카메라 MCU(42)가 와이퍼 동작 입력을 수신하는 이유는, 와이퍼 ON 신호가 수신되는 경우는 비가 오는 상황으로써 카메라 시스템(1)을 통한 전방의 인식이 열화되기 때문에 카메라 MCU(42)의 동작을 Off 시키거나 또는 카메라 MCU(42)의 특정 기능을 Off 시킬 필요가 있기 때문이다.
전술한 카메라 시스템(1)은 RBDPS(Road Boundary Departure Prevention Systems), CACC(Cooperative Adaptive Cruise Control Systems), Vehicle/roadway warning systems, PAPS(Partially Automated Parking Systems), PALS(Partially Automated Lane Change Systems), C-FVBWS(Cooperative Forward Vehicle Emergency Brake Warning Systems), LDWS(Lane Departure Warning Systems), PDCMS(Pedestrian Detection and Collision Mitigation Systems), CSWS(Curve Speed Warning Systems), LKAS(Lane Keeping Assistance Systems), ACC(Adaptive Cruise Control systems), FVCWS(Forward Vehicle Collision Warning Systems), MALSO(Manoeuvring Aids for Low Speed Operation systems), LCDAS(Lane Change Decision Aid Systems), LSF(Low Speed Following systems), FSRA(Full Speed Range Adaptive cruise control systems), FVCMS(Forward Vehicle Collision Mitigation Systems), ERBA(Extended Range Backing Aids systems), CIWS(Cooperative Intersection Signal Information and Violation Warning Systems), TIWS(Traffic Impediment Warning Systems) 중 적어도 하나의 기능을 구현하기 위해서 사용될 수 있다.
도 5는 본 발명의 제1실시예에 따른 렌즈 배럴 및 렌즈 홀더의 결합관계를 설명하기 위한 분해 사시도이다.
본 발명에 따른 렌즈(10)는 렌즈 배럴(15)에 삽입되고, 렌즈 배럴(15)은 플랜지(15-1)를 포함한다. 렌즈(10) 및 플랜지(15-1)를 포함하는 렌즈 배럴(15)의 몸통이 렌즈 홀더(20)에 삽입되는 방식으로 렌즈 배럴(15) 및 렌즈 홀더(20)가 서로 결합된다. 또한, 렌즈 배럴(15) 및 렌즈 홀더(20)는 Active alignment 방식으로 서로 결합되며 이 부분에 대해서는 도 6을 참조하여 후술하기로 한다.
도 6은 본 발명의 제1실시예에 따른 렌즈 배럴 및 렌즈 홀더의 Active alignment를 설명하기 위한 도면이다.
렌즈 배럴(15)이 렌즈 홀더(20)에 결합되는데 있어서 active alignment가 사용되는데, active alignment란 렌즈 배럴(15)의 플랜지(15-1) 및 렌즈 홀더(20)의 상면(25) 사이에 접착 물질(600)을 배치시키고, 이미지 센서(31)를 통해 인식되는 물체의 초점이 맞게 되도록 렌즈 배럴(15)의 상/하/좌/우 위치를 변경시키는 것을 말한다. 접착 물질(600)은 대표적으로 경화되기 전에는 변형이 가능하고 경화된 이후에는 강한 접착성을 갖는 에폭시가 사용될 수 있다.
종래의 방식에 따르면, 접착 물질(600)과 접촉하게 되는 플랜지(15-1)의 하면(15-2)과 렌즈 홀더(15)의 상면(25)는 모두 편평한 형상이었다. 이러한 종래의 방식에 따르면, 렌즈 배럴(15)과 렌즈 홀더(20)를 서로 접착시키는 것에는 문제가 없었으나, 카메라에 충격이 발생하거나 온도의 측면에서 극한의 상황이 발생하는 경우에는 접착 물질(600)의 접착력이 열화되어 렌즈 배럴(15)과 렌즈 홀더(20)가 분리되는 문제가 발견되었다.
도 7a 내지 도 7e는 본 발명의 제1실시예에 따른 렌즈 홀더(20)를 도시하는 도면이다. 구체적으로, 도 7a는 렌즈 홀더(20)의 사시도이고, 도 7b 내지 도 7e는 렌즈 홀더(20)의 상면도로서 렌즈 홀더(20)의 상면(25)을 도시한다. 도 7b 내지 도 7e에 도시된 바와 같이 렌즈 홀더(20)의 상면(25)에는 그루브(27)가 형성될 수 있다. 그루브(27)의 형상은 단일의 원형 그루브일 수 있고(도 7b), 이중의 원형 그루브(도 7c)일 수 있고, 십자 격자형 그루브(도 7d)일 수 있고, 지그재그형 그루브(도 7e)일 수 있다. 이러한 그루브(27)은 레이저를 이용하여 형성될 수 있다. 그루브(27)로 인해서 렌즈 홀더(20)의 상면(25)의 표면 거칠기가 증가함으로써 접착 물질(600)과의 접촉 면적이 극대화됨으로써 접착력 또는 극대화되는 효과를 도출시킬 수 있다.
도 8a 내지 도 8e는 본 발명의 제1실시예에 따른 렌즈 배럴(15)를 도시하는 도면이다. 구체적으로, 도 8a는 렌즈 배럴(15)의 사시도이고, 도 8b 내지 도 8e는 렌즈 배럴(15)의 하면도로서 렌즈 배럴(15)의 플랜지(15-1)의 하면(15-2)을 도시한다. 도 8b 내지 도 8e에 도시된 바와 같이 렌즈 배럴(15)의 플랜지(15-1)의 하면(15-2)에는 그루브(15-3)가 형성될 수 있다. 그루브(15-3)의 형상은 단일의 원형 그루브일 수 있고(도 8b), 이중의 원형 그루브(도 8c)일 수 있고, 십자 격자형 그루브(도 8d)일 수 있고, 지그재그형 그루브(도 8e)일 수 있다. 이러한 그루브(15-3)은 레이저를 이용하여 형성될 수 있다. 그루브(15-3)로 인해서 렌즈 배럴(15)의 플랜지(15-1)의 하면(15-2)의 표면 거칠기가 증가함으로써 접착 물질(600)과의 접촉 면적이 극대화됨으로써 접착력 또는 극대화되는 효과를 도출시킬 수 있다.
제2실시예
운전 보조를 넘어 자율주행을 위해서는 자차량과 주변차량들 과의 충돌 회피가 보장되어야 한다. 기존의 긴급제동 시스템은 전방의 충돌 위험 요소들과 자차량의 상대속도, 상대가속도를 계산하여 충돌 시점을 확인하고, 자차량의 제동 제어하여 충돌을 회피할 수 있다. 그러나, 전방 차량과의 충돌 회피를 위해서 종방향(가속 또는 감속) 제어만을 수행하고 있어, 위험 상황의 발생 시 전방 차량과의 충돌 회피에 한계가 있다.
본 발명의 제2실시예는 주변차량과의 충돌위험을 판단하여 충돌위험이 있는 타겟 차량을 검출하고, 자차량의 속도 및 조향을 제어하여 타겟 차량과의 충돌 회피할 수 있는 ADAS를 위한 카메라 시스템과, 충돌 방지 시스템 및 방법에 관한 것이다.
이하, 도 9 내지 도 12를 참조하여, 본 발명에 따른 제2실시예를 설명하기로 한다.
도 9는 본 발명의 제2실시예에 따른 충돌 방지 시스템을 나타내는 도면이다.
도 9를 참조하면, 본 발명의 제12실시예에 따른 충돌 방지 시스템은 카메라 시스템(1), 레이더 시스템(2-2), ECU(2-320), 차량 자세 제어 컨트롤러(2-333), 조향 컨트롤러(2-334), 엔진 제어 컨트롤러(2-335), 서스펜션 컨트롤러(2-336) 및 브레이크 컨트롤러(2-337)를 포함한다. 상기 컨트롤러들(2-2-333, 2-334, 2-335, 2-336, 2-337) 각각은 ECU(2-320)로부터 수신한 제어 명령에 기초하여 자동차의 구성 부품들을 제어한다.
카메라 시스템(1)은 하나 이상의 카메라, 이미지 프로세서(41) 및 카메라 MCU(42)를 포함한다. 이러한, 카메라 시스템(1)은 자차량의 전방, 후방, 좌측방 및 우측방의 영상 데이터를 생성하고, 생성된 영상 데이터를 ECU(2-320)로 전송한다.
레이더 시스템(2-2)은 하나 이상의 레이더 및 Radar MCU(2-312)를 포함한다. 이러한, 레이더 시스템(2-2)은 전방, 후방, 좌측방 및 우측방으로 전파를 방사한 후, 반사파를 수신하여 수평각도 30도 범위에서 150m 전방, 후방, 좌측방 우측방에 위치하는 물체를 검출한다. 여기서, 레이더 시스템(2-2)은 주파수 변조 반송파(FMCW, Frequency Modulation Carrier Wave) 또는 펄스 반송파(Pulse Carrier)을 이용하여 물체를 검출하며, 물체 검출 결과를 포함하는 레이더 데이터를 ECU(2-320)로 전송한다.
ECU(2-320)는 카메라 시스템(1)에서 입력된 영상 데이터 및 레이더 시스템(2-2)에서 입력된 레이더 데이터에 기초하여 주변차량들 중에서 타겟 차량을 검출하고, 자차량과 타겟 차량과의 충돌 위험을 판단한다. 여기서, 카메라 시스템(1)에서 ECU(2-320)로 전송되는 영상 데이터는 차선 인식 정보, 전방차량 인식 정보, 후방차량 인식 정보, 좌측방 차량 인식정보, 우측방 차량 인식정보를 포함한다. 그리고, 레이더 시스템(2-2)에서 ECU(2-320)로 전송되는 레이더 데이터는 전방차량 인식 정보, 후방차량 인식 정보, 좌측방 차량 인식정보, 우측방 차량 인식정보를 포함한다.
자차량과 타겟 차량 간의 충돌 위험이 판단되는 경우에 충돌이 회피되도록 차량 자세 제어 컨트롤러(2-333), 조향 컨트롤러(2-334), 엔진 제어 컨트롤러(2-335), 서스펜션 컨트롤러(2-336) 및 브레이크 컨트롤러(2-337)에 제어신호를 전송한다. 이를 통해서, 자차량의 자세, 속도 및 조향을 제어하여 타겟 차량과 자차량을 충돌을 회피한다.
조향 컨트롤러(2-334), 엔진 제어 컨트롤러(2-335), 브레이크 컨트롤러(2-337)를 제어하여 타겟 차량과의 충돌 회피할 수 있다. 자차량의 급격한 속도 변화 또는 조향 변화로 인해서 승차감이 떨어지고 운전자의 자세 불안으로 인한 사고 방지를 위해서 차량 자세 제어 컨트롤러(2-333) 및 서스펜션 컨트롤러(2-336)를 함께 제어하여 충돌 회피와 함께 주행 안정성을 확보한다.
도 10은 본 발명의 제2실시예에 따른 충돌위험이 있는 타겟 차량을 검출하는 방법을 나타내는 도면이다.
도 10을 참조하면, ECU(2-320)는 카메라 시스템(1)에서 입력된 영상 데이터 및 레이더 시스템(2-2)에서 입력된 레이더 데이터의 신호를 보정(lateral offset, angle, 타켓 횡속도)한다.
ECU(2-320)는 주변차량들 중에서 자차량(A)과 오버랩되는 부분이 일정 값 이상인 차량을 타겟 차량(B)으로 검출한다. 예로서, 자차량(A)과 오버랩되는 부분이 50% 이상인 차량을 타겟 차량(B)으로 검출할 수 있다.
또한, ECU(2-320)는 자차량(A)의 진행각도(angle)과 주변차량의 진행각도의 차이가 일정 값 이하인 차량을 타겟 차량(B)으로 검출한다. 예로서, 자차량(A)과 주변차량의 각도 차이가 0~30%인 경우에, 이를 타겟 차량(B)으로 검출할 수 있다. 여기서, 정지 상태 또는 주행 상태를 구분하지 않고, 자차량(A)과 일정 값 이상 오버랩되거나 또는 자차량과(A)의 각도 차이가 일정 값 이하인 주변차량(또는 물체)을 타겟 차량(B)으로 검출한다.
위의 설명에서는 타겟 차량(B)을 검출하는 것을 설명하였지만, 차량뿐만 아니라 보행자 또는 물체와의 충돌까지 회피할 수 있어야 함으로 타겟 물체(타겟 차량을 포함)을 검출하고, 타겟 물체와의 충돌을 회피하도록 자차량(A)을 제어한다. 즉, 자차량(A)의 주행 방향의 경로에서 물체(차량 및 보행자를 포함)가 검출된 경우에 이를 타겟 물체로 검출한다. 여기서, 자차량(A)의 주행 경로는 차선에 기초하여 설정할 수 있으며, 차선이 없는 도로에서는 가상의 차선을 생성하고, 주변 차량의 위치 및 가상의 차선에 기초하여 주행 경로에서 타겟 물체를 검출할 수 있다. 특히, 주행 경로 상에서 존재하지 않던 물체가 끼어드는 경우에, 이 물체를 타겟 물체(타겟 차량)으로 검출한다.
도 11은 본 발명의 제2실시예에 따른 자차량의 속도 및 조향을 제어하여 타겟 차량과의 충돌을 회피하는 방법을 나타내는 도면이다.
도 11을 참조하면, 하기의 수학식 1에 기재된 바와 같이 자차량과 타겟 차량의 횡방향 오프셋(lateral offset)에 기초하여 충돌 위험도를 산출한다.
(수학식 1)
횡방향 오프셋 = 타겟 물체의 횡방향 속도 * TTC = (상대 거리)/(상대 속도)
동 제어: 횡방향 offset(TTC, Vlat) < X
감속 + 회피 제어: X1 < 횡방향 offset(TTC, Vlat) < X2
제어 불필요: 횡방향 offset(TTC, Vlat) > X3
ECU(2-320)는 충돌 각도(heading angle) 및 횡방향 오프셋(lateral offset)을 산출한 후, 업데이트한다. 그리고, 차선의 곡률(curvature)과 곡률 변화(Curvature derivative)는 기존 값을 유지시킨다.
ECU(2-320)는 자차량과 타겟 차량의 충돌 위험도가 기 설정된 기준 값을 초과하는 경우에, 예상 충돌 각도(HA: heading angle)를 감안하여 회피 경로를 생성하고 자차량의 속도 및 조향을 제어한다. 이때, 3차원 차선 기반 모델에 기초하여 조향 회피 경로를 생성할 수 있다.
3차원 차선 기반 모델 Y = C0l+C1lX+C2lX2+C3lX3
C0l은 Lateral Offset(Lane Mark Position)을 의미하고, C1l은 Line Heading Angle(Lane Mark Heading Angle)을 의미하고, 2C2l은 Line Curvature(Lane Mark Model A)을 의미하고, 6C3l은 Line Curvature Derivative(Lane Mark Model d(A))을 의미한다.
조향
제어 충돌 회피
조향 제어를 통해 충돌을 회피하는 경우, ECU(2-320)는 조향 컨트롤러(2-334)로 제어신호를 전송하여, 자차량(A)의 조향을 제어한다. 여기서, 타겟 차량(B)과 충돌 회피를 위해서 자차량(A)의 조향을 제어하는 경우에 후방에서 접근하는 주변차량과의 충돌이 발생할 수 있다. 본 발명에서는 조향 회피의 제어의 수행 이전에, 후방에서 접근하는 차량 및 좌측 또는 우측 차선에서 주행 중인 차량과의 충돌 위험을 판단한다.
후방에서 주행 중인 차량과의 충돌 위험이 없고, 좌측 차선 또는 우측 차선에서 주행하는 차량이 없거나 또는 충돌 위험이 없는 경우에 타겟 차량(B)과의 충돌이 회피되도록 자차량(A)의 조향을 제어한다.
또한, ECU(2-320)는 전방의 타겟 차량(B)과의 충돌이 예상되는 경우에, 자차량(A)의 속도 감속만으로는 충돌을 회피할 수 있다고 판단되면 자차량(A)의 조향을 제어하여 타겟 차량(B)과의 충돌을 회피할 수 있다.
속도 제어 충돌 회피
속도 제어를 통해 충돌을 회피하는 경우, ECU(2-320)는 엔진 제어 컨트롤러(2-335) 및 브레이크 컨트롤러(2-337)로 제어신호를 전송하여, 자차량(A)의 속도를 감속 시킨다. 여기서, ECU(2-320)는 전방의 타겟 차량(B)과의 충돌이 예상되는 경우에, 조향 회피를 수행 시 좌측 또는 우측 차로에서 주행중인 차량과의 충돌 위험을 판단한다. 조향 회피 시 좌측 또는 우측 차로에서 주행중인 차량과의 충돌이 판단되면 자차량(A)을 감속시켜 타겟 차량(B)과의 충돌을 회피한다.
또한, ECU(2-320)는 전방의 타겟 차량(B)과의 충돌이 예상되는 경우에, 자차량(A)의 속도의 감속에 의해서 충돌을 회피할 수 있다고 판단되면 자차량(A)을 감속시켜 타겟 차량(B)과의 충돌을 회피할 수 있다.
옆 차로 차량의 차로 변경 시 충돌 회피
옆 차로에서 주행 중인 차량이 자차량의 주행 경로로 진입(끼어들기) 시 충돌을 방지하는 방법을 설명하기로 한다.
일 예로서, 카메라 시스템(1)에서 옆 차로에서 주행 중인 차량들을 촬영한 영상 데이터를 ECU(2-320)에서 분석하여, 옆 차로에서 주행 중인 차량들의 차로 변경의지를 감지한다. 주변 차량들의 방향 지시등(깜박이)을 검출하여 옆 차로에서 주행 중인 차량이 자차량(A)의 주행 경로로 진입(끼어들기)하는 것을 검출할 수 있다.
다른 예로서, 카메라 시스템(1)에서 옆 차로에서 주행 중인 차량들을 촬영한 영상 데이터를 ECU(2-320)에서 분석하여, 옆 차로에서 주행 중인 차량들의 차로 변경의지를 감지한다. 주변 차량들의 타이어의 방향을 검출하여 옆 차로에서 주행 중인 차량이 자차량(A)의 주행 경로로 진입(끼어들기)하는 것을 검출할 수 있다.
또 다른 예로서, 카메라 시스템(1)에서 옆 차로에서 주행 중인 차량들을 촬영한 영상 데이터 및 레이더 시스템(2-2)에서 옆 차로에서 주행 중인 차량들을 검출한 레이더 데이터를 ECU(2-320)에서 분석한다. 이를 통해서, 옆 차로에서 주행 중인 차량들의 차로 변경의지를 감지한다. 주변 차량들의 횡 가속도 및 방향을 검출하여 옆 차로에서 주행 중인 차량이 자차량(A)의 주행 경로로 진입(끼어들기)하는 것을 검출할 수 있다.
자차량 가속 | 옆 차로의 차량과의 상대속도 < V |
옆 차로의 차량과의 종방향 거리 < Y | |
옆 차로의 차량과의 횡방향 거리 < X | |
자차량 감속 | 옆 차로의 차량 속도 < 자차량 속도 + α |
옆 차로의 차량과의 종방향 거리 > Y | |
옆 차로의 차량과의 횡방향 거리 > X | |
자차량 제동 | 자차량의 속도 > 옆 차로 차량의 속도 |
옆 차로의 차량과의 종방향 거리 < Y | |
옆 차로의 차량과의 횡방향 거리 < X | |
자차량 조향 회피 | 자차량 속도 > 옆 차로 차량의 속도 |
옆 차로 차량과의 종방향 거리 < Y | |
X1 < 옆 차로 차량과의 횡방향 거리 < X2 | |
옆 차로에 차량이 없는 경우 | |
회피 방향 차로에서 전방 차량까지의 횡거리가 일정값 이상 |
옆 차로의 차량이 자차량(A)의 주행 경로로 진입(끼어들기)하는 경우, 교차로에서 좌회전 시 우측 차로의 차량이 끼어는 경우, 교차로에서 우회전 시 좌측 차로의 차량이 끼어드는 경우에 상기 표 1에 기재된 바와 같이, ECU(2-320)는 자차량(A)의 제어 모드를 결정한다. ECU(2-320)는 가속, 감속, 제동 및 조향 제어 모드 중 하나 또는 2개 이상을 제어모드를 결합하여 자차량(A)과 주변차량과의 충돌을 회피 시킬 수 있다. 예로서, 자차량(A)을 가속, 감속, 제동 시키거나, 또는 조향 제어를 수행하여 충돌을 회피할 수 있다. 여기서, 자차량(A)의 가속과 조향 제어를 함께 수행할 수 있고, 자차량(A)의 가속과 조향 제어를 함께 수행할 수 있고, 자차량(A)의 제동과 조향 제어를 함께 수행할 수 있다.
도 12는 본 발명의 제2실시예에 따른 충돌 회피 방법을 나타내는 도면이다.
도 12를 참조하면, 카메라 시스템(1)에서 생성된 영상 데이터 및 레이더 시스템(2-2)에서 생성된 레이더 데이터를 ECU(2-320)가 수신한다(S2-10).
이어서, ECU(2-320)는 영상 데이터 및 레이더 데이터의 신호를 보정한다. 즉, 센서 신호를 보정한다(S2-20).
이어서, ECU(2-320)는 영상 데이터 및 레이더 데이터에 기초하여 주변 차량들 중에서 타겟 차량을 검출한다(S2-30). 여기서, ECU(2-320)는 주변차량들 중에서 자차량(A)과 오버랩되는 부분이 일정 값 이상인 차량을 타겟 차량(B)으로 검출한다. 예로서, 자차량(A)과 오버랩되는 부분이 50% 이상인 차량을 타겟 차량(B)으로 검출할 수 있다. 또한, ECU(320)는 자차량(A)의 진행각도(angle)과 주변차량의 진행각도의 차이가 일정 값 이하인 차량을 타겟 차량(B)으로 검출한다. 예로서, 자차량(A)과 주변차량의 각도 차이가 0~30%인 경우에, 이를 타겟 차량(B)으로 검출할 수 있다. 주변차량의 정지 상태 또는 주행 상태를 구분하지 않고, 자차량(A)과 일정 값 이상 오버랩되거나 또는 자차량과(A)의 각도 차이가 일정 값 이하인 주변차량(또는 물체)을 타겟 차량(B)으로 검출한다.
이어서, ECU(2-320)는 자차량과 타겟 차량의 횡방향 오프셋(lateral offset)에 기초하여, 자차량과 타겟 차량과의 충돌 위험도를 판단한다(S2-40).
이어서, ECU(2-320)는 자차량과 타겟 차량과의 충돌이 판단되는 경우, 자차량의 제어 모드를 결정하고, 결정된 제어 모드에 따라서 차량 자세 제어 컨트롤러(2-333), 조향 컨트롤러(2-334), 엔진 제어 컨트롤러(2-335), 서스펜션 컨트롤러(2-336) 및 브레이크 컨트롤러(2-337)에 제어신호를 전송한다. 이를 통해서, 자차량의 자세, 속도 및 조향을 제어하여 타겟 차량과 자차량을 충돌을 회피한다.
여기서, 자차량의 조향을 제어하여 타겟 차량과의 충돌을 회피할 수 있다. 또한, 자차량의 속도를 제어하여 타겟 차량과의 충돌을 회피할 수 있다. 또한, 옆 차로 차량의 차로 변경 시 자차량의 속도, 제동 및 조향 중 하나 이상을 제어하여 옆 차로에서 끼어드는 차량과 자차량과의 충돌을 회피할 수 있다.
제3실시예
교차로에서는 자차량 직진, 유턴 또는 좌/우회전을 수행할 수 있고 유턴 또는 좌/우회전을 위해 차선을 변경할 수 있다. 또한, 자차량뿐만 아니라 다른 차량들도 유턴 또는 좌/우회전을 수행할 수 있어 차량 간에 충돌 가능성이 높다. 이를 위해, 차량에는 차량의 충돌을 방지하기 위한 제어 시스템, 충돌을 감지하기 위한 각종 센서들이 필요하다.
본 발명의 제3실시예는 ADAS를 위한 카메라 시스템을 이용해 차량을 제어하는 주행 보조 시스템에 관한 것이다.
도 13 내지 도 15를 참조하여, 본 발명에 따른 제3실시예를 설명하기로 한다.
도 13은 본 발명의 제3실시예에 따른 차량의 제어에 관한 도면이다.
도 1, 도 3 및 도 13을 참조하면, 카메라 시스템(1) 및/또는 GPS 프로세서(3-313)는 차량(3-1000)이 교차로에 진입하는 것은 탐지할 수 있다. 카메라 시스템(1)은 교차로의 신호등(3-1100)을 탐지하여 교차로에 차량(3-1000)이 진입하는 것을 탐지할 수 있다. GPS 프로세서(3-313)는 위성과의 통신을 통해 차량(3-1000)의 위치를 측정할 수 있고, 미리 저장된 지도 정보와 비교하여 차량(3-1000)이 교차로에 진입하는지 여부를 판단할 수 있다.
카메라 시스템(1)은 차량(3-1000) 주변의 상태 정보, 제1 정보 및 제2 정보를 촬영하여 이를 ECU(3-320)로 전송할 수 있고, ECU(3-320)는 상태 정보, 제1 정보 및 제 2 정보를 수신하여 이를 토대로 차량(3-1000)의 조향을 제어할 수 있다. 상태 정보는 넓어지는 분기 차선 및 로드 마킹(road mark, 3-1210, 3-1230)중 적어도 하나를 포함할 수 있다. 제1 정보는 전방 차량에 대한 데이터, 전방 차선에 대한 데이터, 전방 차량과의 거리, 교차로의 교통 표지판에 대한 데이터 및 교차로의 신호 데이터 중 적어도 하나를 포함할 수 있다. 제2 정보는 분기 차선(3-1130)의 좌회전 로드 마킹(3-1250), 교차로의 정지선(3-1270), 전방 차량의 유무 및 교차로의 신호 데이터를 포함할 수 있다. 넓어지는 분기 차선(3-1130)은 1차선(차량의 진행 방향에서 가장 좌측에 배치된 차선, 3-1110)을 진행하는 차량(3-1000)이 좌회전을 하기 위해 진입하게 되는 차선을 의미할 수 있다. 즉, 넓어지는 분기 차선(3-1130)은 기존의 1차선(3-1110)의 좌측에 새롭게 생성되는 차선을 의미할 수 있다. 제1 정보는 차량(3-1000)이 분기 차선(3-1130)에 진입하기 전 및 진입하는 동안 카메라 시스템(1)이 탐지한 정보일 수 있고, 제2 정보는 차량(3-1000)이 분기 차선(3-1130)에 진입한 후에 카메라 시스템(1)이 탐지한 정보일 수 있다.
일 예로, 카메라 시스템(1)은 차량(3-1000) 전방을 촬영하거나 차량(3-1000) 전방에 존재하는 로드 마크(3-1210, 3-1230)를 센싱하여 분기 차선의 유무를 탐지할 수 있다. 예를 들어, 로드 마크(3-1210, 3-1230)는 분기 차선을 위해 도로에 표시된 안전지대 표시(3-1210) 및 차량의 진행 가능한 방향을 표시하는 안내 표시(3-1230)를 포함할 수 있다. 안내 표시(3-1230)는 차량(3-1000)이 분기 차선(3-1130)으로 진입할 수 있음을 알려줄 수 있다.
일 예로, 카메라 시스템(1)은 차량(3-1000)이 분기 차선(3-1130)에 진입하기 전 및 진입하는 동안에 차량(3-1000) 전방의 차선이 비어있는지 여부, 전방에 다른 차량이 존재되는 여부 및 전방 차량과의 거리 등을 탐지할 수 있다. 이를 통해, 차량(3-1000)이 분기 차선(3-1130)으로 진입 시에 전방 차량과의 충돌을 피할 수 있다. 또한, 카메라 시스템(1)은 차량(3-1000)이 분기 차선(3-1130)에 진입한 후에 좌회전 로드 마크(3-1250), 교차로의 정지선(3-1270), 교차로의 교통 표지판에 대한 데이터 및 교차로의 신호 데이터를 탐지할 수 있다.
ECU(3-320)는 상태 정보, 제1 정보 및 제2 정보를 토대로 컨트롤러 레벨의 구성들 중 일부를 제어할 수 있다. 일 예로, ECU(3-320)는 상태 정보를 이용하여 조향 컨트롤러(3-334)를 제어하여 차량(3-1000)의 조향을 제어할 수 있다. 넓어지는 분기 차선 및 로드 마킹(road mark, 3-1210, 3-1230)에 대한 정보를 통해 ECU(3-320)는 1차선(3-1110)으로 진행하는 차량(3-1000)이 분기 차선(3-1130)으로 진입하도록 조향을 제어할 수 있다. 또한, ECU(3-320)는 제1 정보를 이용하여 차량(3-1000)의 속도 및 브레이크를 제어할 수 있다. 이 때, ECU(3-320)는 엔진 제어 컨트롤러(3-335), 서스펜션 컨트롤러(3-336) 및 브레이크 컨트롤러(3-337) 등을 제어할 수 있다. 차량(3-1000)이 분기 차선(3-1130)으로 진입 시에 ECU(3-320)는 앞선 전방 차량에 대한 데이터, 전방 차선에 대한 데이터 및 전방 차량과의 거리를 포함하는 제1 정보를 이용하여 전방 차량과의 충돌을 방지할 수 있다. 예를 들어, 전방 차량과의 거리가 기설정된 거리보다 가깝거나 전방 차량의 속도가 느린 경우, ECU(3-320)는 차량(3-1000)의 속도를 줄이거나 브레이크를 동작시킬 수 있다.
일 예로, 차량(3-1000)이 분기 차선(3-1130)에 진입한 후, ECU(3-320)는 좌회전 로드 마크(3-1250), 교차로의 정지선(3-1270), 교차로의 교통 표지판에 대한 데이터 및 교차로의 신호 데이터를 포함하는 제2 정보를 통해 교차로에서 정지할 것인지 좌회전을 할 것인지를 판단하고 차량(3-1000)을 제어할 수 있다. 예를 들어, 교차로의 신호 데이터가 좌회전 신호를 점등한 경우, 카메라 시스템(1)은 교차로의 신호 데이터 및 좌회전 로드 마크(3-1250)를 인식하고, ECU(3-320)는 카메라 시스템(1)으로부터 교차로의 신호 데이터 및 좌회전 로드 마크(3-1250)에 대한 정보를 송신받아 분기 차선(3-1130)에 위치하는 차량(3-1000)을 좌회전하도록 제어할 수 있다. 교차로의 신호 데이터가 좌회전 신호를 점등하지 않은 경우, ECU(3-320)는 차량(3-1000)이 교차로의 정지선(3-1270) 전에 정지하도록 제어하거나 차량(3-1000) 전방의 다른 차량과 거리를 두고 정지하도록 제어할 수 있다. 이 때, ECU(3-320)는 조향 컨트롤러(3-334), 엔진 제어 컨트롤러(3-335), 서스펜션 컨트롤러(3-336) 및 브레이크 컨트롤러(3-337) 등을 제어할 수 있다. 다만, 본 발명에서 ECU(3-320)를 통한 차량(3-1000)의 제어는 상기 예시에 제한되지 않을 수 있다.
다른 예로, 전방 차량에 대한 데이터, 전방 차선에 대한 데이터 및 방 차량과의 거리는 Lidar 및 Radar를 통해 탐지할 수 있다. 카메라 시스템(1)은 Lidar 및 Radar와 연동되어 차량 주변의 정보를 탐지할 수 있고 이를 ECU(3-320)에 송신할 수 있다.
ECU(3-320)는 운전자 경고 컨트롤러(3-331)를 제어하여 차량(3-1000)의 분기 차선(3-1130) 진입 가능 여부 및 분기 차선(3-1130)에서 좌회전 가능 여부 등을 운전자에게 알려줄 수 있다. 운전자 경고 컨트롤러(331)는 비디오 방식의 알림 메시지 또는 알림 이미지를 HUD 디스플레이 또는 사이드 미러 디스플레이를 통해 운전자에게 표시할 수 있고, 오디오 방식으로 운전자에게 알려줄 수 있다. 운전자는 운전자 경고 컨트롤러(3-331)가 제공하는 정보를 통해 직접 차량(3-1000)의 조향을 변경하거나 차량(3-1000)의 전반적인 구성을 제어할 수 있다.
도 14는 본 발명의 제3실시예에 따른 차량을 제어하는 순서를 나타내는 순서도이다.
도 1, 도 6 및 도 14를 참조하면, ECU(3-320)는 GPS 장치를 이용하여 교차로의 정보와 차량(3-1000)의 위치 정보를 바탕으로 차량(3-1000)이 교차로에 근접하고 있는지 여부를 판단할 수 있다. 또한, ECU(3-320)는 카메라 시스템(1)을 이용하여 교차로의 신호등(3-1100)을 탐지하여 차량(3-1000)이 교차로에 근접하고 있는지 여부를 판단할 수 있다(S3-10).
카메라 시스템(1)은 차량 주변의 상태 정보를 탐지할 수 있다. 예를 들어, 상태 정보는 넓어지는 분기 차선 및 로드 마킹(road mark, 3-1210, 3-1230)중 적어도 하나를 포함할 수 있다(S3-20). 카메라 시스템(1)은 추가적으로 차량(3-1000) 전방의 정보인 제1 정보를 탐지할 수 있다. 예를 들어, 제1 정보는 전방 차량에 대한 데이터, 전방 차선에 대한 데이터, 전방 차량과의 거리, 교차로의 교통 표지판에 대한 데이터 및 교차로의 신호 데이터 중 적어도 하나를 포함할 수 있다(S3-30).
카메라 시스템(1)은 상태 정보와 제1 정보를 ECU(3-320)로 송신할 수 있고, ECU(3-320)는 상태 정보와 제1 정보를 바탕으로 차량(3-1000)이 1차선(3-1110)에서 분기 차선(3-1130)으로 차선 변경을 할 수 있는지를 판단할 수 있다. 먼저, ECU(3-320)는 상태 정보를 토대로 분기 차선(3-1130)이 존재하는지 여부를 판단할 수 있고, 분기 차선(3-1130)이 있다고 판단되는 경우에 제1 정보를 바탕으로 차량(3-1000) 전방의 다른 차량과의 충돌 가능성을 판단할 수 있다. 상태 정보를 통해 1차선(3-1110) 좌측에 안전지대 표시(3-1210) 및 안내 표시(3-1230)가 있는 것으로 판단되면 ECU(3-320)는 차량(3-1000)의 조향을 제어하여 좌회전 가능한 차선, 즉 분기 차선(3-1130)으로 차선을 변경할 수 있다. 이 때, ECU(3-320)는 제1 정보를 고려하여 다른 차량과의 충돌을 예방하도록 차량(3-1000)을 제어할 수 있다. 제1 정보를 고려할 때 전방의 차량과 충돌 가능성이 존재하는 경우, ECU(3-320)는 분기 차선(3-1130)으로 진입하지 않을 수 있고, 카메라 시스템(1)은 다시 제1 정보를 탐지하여 ECU(3-320)에 송신하고 ECU(3-320)는 전방의 차량과의 충돌 가능성을 다시 판단할 수 있다(S3-45, S3-50).
다른 예로, 상태 정보를 통해 1차선(3-1110) 좌측에 안전지대 표시(3-1210) 및 안내 표시(3-1230)가 없는 것으로 판단되면 ECU(3-320)는 차량(3-1000)의 조향을 제어하지 않을 수 있다. 즉, ECU(3-320)는 차량(3-1000)이 분기 차선(3-1130)으로 진입하지 않도록 차량(3-1000)을 제어할 수 있다.
도 15는 본 발명의 제3실시예에 따른 차량을 제어하는 순서를 나타내는 순서도이다.
도 1, 도 6 및 도 15를 참조하면, 카메라 시스템(1)은 좌회전 차선으로 차선을 변경한 차량(3-1000) 전방의 제2 정보를 탐지할 수 있다. 제2 정보는 분기 차선(3-1130)의 좌회전 로드 마킹(3-1250), 교차로의 정지선(3-1270), 전방 차량의 유무 및 교차로의 신호 데이터를 포함할 수 있다(S3-50, S3-60). 카메라 시스템(1)은 제2 정보를 ECU(3-320)로 송신할 수 있고, ECU(3-320)는 교차로의 정지선(3-1270) 및 전방 차량의 유무를 토대로 차량(3-1000)의 속도 및 브레이크를 제어할 수 있다. 예를 들어, 차량(3-1000) 전방에 다른 차량이 존재하는 경우, ECU(3-320)는 차량(3-1000)의 속도를 줄이거나 브레이크를 구동하도록 제어할 수 있다. 차량(3-1000)의 전방에 다른 차량은 존재하지 않는 경우, ECU(3-320)는 교차로의 정지선(3-1270)에 정지하기 위해 차량(3-1000)의 속도 및 브레이크를 제어할 수 있다(S3-70). 교차로 신호가 좌회전이 가능한 주행 신호인 경우, ECU(3-320)는 차량(3-1000)이 좌회전하도록 제어할 수 있다. 교차로 신호가 좌회전이 가능한 주행 신호가 아닌 경우, 카메라 시스템(1)은 다시 제2 정보를 탐지할 수 있고 ECU(3-320)는 제2 정보를 토대로 차량(3-1000)을 제어할 수 있다. ECU(3-320)는 운전자 경고 컨트롤러를 제어하여 상태 정보, 제1 정보 및 제2 정보를 통해 판단한 상기 차량의 좌회전 가능 여부를 운전자에게 알려줄 수 있다(S3-80, S3-90).
제4실시예
긴급제동 시스템은 전방의 차량 또는 보행자와의 충돌이 예측되는 경우, 충돌 경보 및 자동 제동 제어를 제공한다. 이를 위해, 전방의 충돌 위험 요소들과 자차량의 상대속도, 상대가속도를 계산하여 충돌 시점을 확인하고, 자차량의 제동 제어 시점을 결정한다. 그러나, 종래 기술의 긴급제동 시스템은 노면의 상태를 고려하지 않고 자차량의 제동 제어 시점을 결정한다. 비가 오거나 눈이 오면 노면이 미끄러운 상태가 되어 일반적인 노면 상태 대비 제동거리가 길어지게 된다. 따라서, 일반적인 노면을 기준으로 설정된 제동제어 진입시점을 그대로 미끄러운 도면에 적용하면 긴급제동이 이루어지더라도 전방 차량 또는 물체(보행자 포함)와 충돌을 피할 수 없는 문제점이 있다.
본 발명의 제4실시예는 도로의 미끄럼 정도에 따라 긴급제동의 진입 시점을 제어할 수 있는 ADAS를 위한 카메라 시스템과, 긴급제동 시스템 및 방법에 관한 것이다.
도 16 내지 도 18을 참조하여, 본 발명에 따른 제4실시예를 설명하기로 한다.
도 16은 본 발명의 제4실시예에 따른 카메라 시스템을 이용하여 미끄러운 도로 표지판을 인식하는 것을 나타내는 도면이다.
도 16을 참조하면, 본 발명의 제4실시예에 따른 긴급제동 시스템은, 도로의 미끄러움을 인식하고 도로의 미끄럼 정도에 따라 긴급제동의 진입 시점을 제어할 수 있다. 또한, 미끄러운 도로의 주행이 판단되는 경우에 긴급제동 진입 시점을 앞당겨, 제동거리의 증가에 의한 충돌/추돌을 방지할 수 있다. 이를 위해, 본 발명의 실시 예에 따른 긴급제동 시스템은 ECU(4-320), GPS MCU(4-313), 네비게이션 MCU(4-314), 운전자 경고 컨트롤러(4-331), 엔진제어 컨트롤러(4-335), 브레이크 컨트롤러(4-337) 및 카메라 시스템(1)을 포함한다.
본 발명의 제4실시예에 따른 긴급제동 시스템은 도로의 미끄러움을 인지하는 일 예로서, 카메라 시스템(1)을 이용하여 도로의 상태를 지시하는 표지판(S1, S2)을 인식하고, 도로 표지판의 인식 결과를 ECU(4-320)에 제공한다. 예로서, 미끄러운 도로를 지시하는 표지판(S1), 물이고인 도로를 지시하는 표지판(S2) 등을 인식할 수 있다. 이 외에도 결빙이 쉽게 이루어질 수 있는 교량을 지시하는 표지판, 상습 침수 구간을 지지하는 표지판 등을 인식할 수 있다.
본 발명의 제4실시예에 따른 긴급제동 시스템은 도로의 미끄러움을 인지하는 일 예로서, 주행 중인 도로의 날씨 상태를 확인하여 도로의 미끄러움 상태를 인지할 수 있다. 네비게이션 MCU(4-314) 또는 스마트기기(예로서, 핸드폰)를 이용하여 주행 중인 도로의 현재 날씨 정보를 입력 받고, 날씨 정보를 ECU(4-320)에 제공한다.
본 발명의 제4실시예에 따른 긴급제동 시스템은 도로의 미끄러움을 인지하는 일 예로서, ECU(4-320)는 차량의 와이퍼의 동작 여부를 확인하고, 일정 시간 동안 지속적으로 와이퍼가 동작하는 경우 현재 주행중인 도로가 미끄러움 상태인 것으로 인지할 수 있다.
본 발명의 제4실시예에 따른 긴급제동 시스템은 도로의 미끄러움을 인지하는 일 예로서, 비 또는 눈이 오는 경우 도로의 노면에 습기가 잔존하게 되고 노면 영상을 분석하면 노면의 상태를 인지할 수 있다. 카메라 시스템(1)을 이용하여 주행 중인 도로의 전방을 촬영하고, 전방 영상에서 도로의 노면 상태를 인지한다. 카메라 시스템(1)은 도로의 노면 상태에 대한 정보를 ECU(4-320)에 제공한다.
일반 도로를 주행 시 긴급제동 제어
도 17은 본 발명의 제4실시예에 따른 긴급제동 시스템에서 도로의 미끄러움 정도에 따라서 긴급제동 진입 시점을 변경시키는 것을 나타내는 도면이다.
도 17을 참조하면, ECU(4-320)에서 자차량이 일반 도로를 주행중인 것으로 판단된 경우에, 긴급제동 진입 시점의 산출 시 별도의 가중치를 적용하지 않고 기본 값을 유지시킨다.
네비게이션 MCU(4-314)는 자차량(V1)의 속도를 연산하고, 자차량(V1)과 타겟 차량(V2)간의 거리에 기초하여 자차량(V1)과 타겟 차량(V2)의 상대속도를 산출한다. 자차량(V1)과 타겟 차량(V2)의 상대속도의 정보를 ECU(4-320)에 제공된다.
ECU(4-320)는 자차량(V1)과 타겟 차량(V2)의 상대속도에 기초하여 자차량(V1)과 타겟 차량(V2)의 충돌시점(TTC: Time to Collision)을 산출하고, 충돌시점에 따라서 1차 경고(A1), 2차 경고(B1), 3차 경고(C1) 시점을 설정한다.
여기서, 1차 경고(A1)는 브레이크에 압력을 사전에 충전시키는(prefill)는 단계로, ECU(4-320)는 브레이크 컨트롤러(4-337)를 제어하여 긴급제동 시 차량의 제동이 즉시 이루어지도록 브레이크에 압력을 사전에 충전시킨다.
2차 경고(B1)는 엔진의 출력을 감소/정지 시키는 단계로, ECU(4-320)는 엔진 컨트롤러(4-331)를 제어하여 긴급제동 시 차량의 제동이 즉시 이루어지도록 엔진의 출력을 감소/정지 시킨다.
3차 경고(C1)는 실제로 브레이크의 제동이 이루어지는 단계로, ECU(4-320)는 브레이크 컨트롤러(4-337)를 제어하여 풀 브레이크(full brake)로 제동이 이루어지도록 한다.
1차 경고(A1), 2차 경고(B1) 및 3차 경고(C1) 단계에서, ECU(4-320)는 운전자 경고 컨트롤러(4-331)를 제어하여 긴급제동 상황을 경고하고, 긴급제동 진입이 이루어지는 것을 운전자에게 경고한다. 여기서, 차량의 오디오 장치를 통해서 경음을 출력하고, 비디오 장치를 통해서 경고 상황을 시각적으로 출력하고, 햅틱 장치를 통해서 경고 상황을 촉각적으로 출력시켜 운전자에게 비상 상황을 경고할 수 있다.
미끄러운 도로를 주행 시 긴급제동 제어
ECU(4-320)는 도로 상의 표지판 인식 결과에 기초하여 현지 주행중인 도로가 미끄러운 도로인지를 인식한다. 또한, ECU(4-320)는 주행 중인 도로의 날씨 상태를 확인하여 도로의 미끄러움 상태를 인지할 수 있다. 또한, ECU(4-320)는 차량의 와이퍼의 동작 여부를 확인하고, 일정 시간 동안 지속적으로 와이퍼가 동작하는 경우 현재 주행중인 도로의 미끄러움 상태를 인지할 수 있다. 또한, ECU(4-320)는 전방 영상에서 도로의 노면 상태를 확인하여 주행중인 도로의 미끄러움 상태를 인지할 수 있다.
ECU(4-320)에서 자차량이 미끄러운 도로를 주행중인 것으로 판단된 경우에, 제동거리가 증가되는 것을 감안하여 긴급제동 진입 시점의 산출 시 가중치를 적용(예로서, 가중치 +30%~+70%)시켜 긴급제동 제어의 진입 시점을 앞당긴다.
네비게이션 MUC(4-314)는 자차량(V1)의 속도를 연산하고, 자차량(V1)과 타겟 차량(V2)간의 거리에 기초하여 자차량(V1)과 타겟 차량(V2)의 상대속도를 산출한다. 자차량(V1)과 타겟 차량(V2)의 상대속도의 정보를 ECU(4-320)에 제공된다.
ECU(4-320)는 자차량(V1)과 타겟 차량(V2)의 상대속도에 기초하여 자차량(V1)과 타겟 차량(V2)의 충돌시점(TTC: Time to Collision)을 산출하고, 충돌시점에 따라서 1차 경고(A2), 2차 경고(B2), 3차 경고(C2) 시점을 설정한다. 여기서, 긴급제동 진입 시점의 산출 시 가중치를 적용(예로서, 가중치 +30%~+70%)시켜 긴급제동 제어의 진입 시점을 앞당긴다.
일반적으로 미끄러운 도로인 경우 일반도로에 비해서 제동 거리가 1.5배 정도 증가하게 됨으로, 긴급제동 진입 시점의 산출 시 50%의 가중치를 적용하여 긴급제동 제어의 진입 시점을 앞당긴다.
1차 경고(A2)는 브레이크에 압력을 사전에 충전시키는(prefill)는 단계로, ECU(4-320)는 브레이크 컨트롤러(4-337)를 제어하여 긴급제동 시 차량의 제동이 즉시 이루어지도록 브레이크에 압력을 사전에 충전시킨다.
2차 경고(B2)는 엔진의 출력을 감소/정지 시키는 단계로, ECU(4-320)는 엔진 컨트롤러(4-331)를 제어하여 긴급제동 시 차량의 제동이 즉시 이루어지도록 엔진의 출력을 감소/정지 시킨다.
3차 경고(C2)는 실제로 브레이크의 제동이 이루어지는 단계로, ECU(4-320)는 브레이크 컨트롤러(4-337)를 제어하여 풀 브레이크(full brake)로 제동이 이루어지도록 한다.
1차 경고(A1), 2차 경고(B1) 및 3차 경고(C1) 단계에서, ECU(4-320)는 운전자 경고 컨트롤러(4-331)를 제어하여 긴급제동 상황을 경고하고, 긴급제동 진입이 이루어지는 것을 운전자에게 경고한다. 여기서, 차량의 오디오 장치를 통해서 경음을 출력하고, 비디오 장치를 통해서 경고 상황을 시각적으로 출력하고, 햅틱 장치를 통해서 경고 상황을 촉각적으로 출력시켜 운전자에게 비상 상황을 경고할 수 있다.
도 18은 본 발명의 제4실시예에 따른 긴급제동 방법을 나타내는 도면이다.
도 18을 참조하면, 도로 표시판의 인식에 기초하여 현재 주행 중인 도로가 미끄러운 도로인지를 판단한다(S4-10).
S4-10의 판단 결과, 도포 표지판이 인식되자 않거나 또는 이식된 도로 표지판이 노면 상태를 경고하는 것이 아닌 경우에 날씨 정보를 확인하여 현재 주행 중인 도로가 미끄러운 도로인지 판단한다(S4-20).
S4-20의 판단 결과, 현재 주행 중인 도로가 미끄러운 도로가 아닌 경우에 자차량의 와이퍼의 동작 여부를 확인하여 현재 주행 중인 도로가 미끄러운 도로인지 판단한다(S4-30).
S4-30의 판단 결과, 현재 주행 중인 도로가 미끄러운 도로가 아닌 경우에는 긴급제동 제어의 진입 시점의 산출 시 별도의 가중치를 적용하지 않고, 긴급제동 제어 진입 시점을 유지시킨다(S4-40).
한편, S4-10의 판단 결과, 도포 표지판의 인식 결과에 기초하여 현재 주행 중인 도로가 미끄러운 도로인 경우, 제동거리가 증가되는 것을 감안하여 긴급제동 진입 시점의 산출 시 가중치를 적용(예로서, 가중치 +30%~+70%)시켜 긴급제동 제어의 진입 시점을 앞당긴다(S4-50).
그리고, S4-20의 판단 결과, 날씨 정보에 기초하여 현재 주행 중인 도로가 미끄러운 도로인 경우, 제동거리가 증가되는 것을 감안하여 긴급제동 진입 시점의 산출 시 가중치를 적용(예로서, 가중치 +30%~+70%)시켜 긴급제동 제어의 진입 시점을 앞당긴다(S4-50).
그리고, S4-30의 판단 결과, 자차량의 와이퍼 동작에 기초하여 현재 주행 중인 도로가 미끄러운 도로인 경우, 제동거리가 증가되는 것을 감안하여 긴급제동 진입 시점의 산출 시 가중치를 적용(예로서, 가중치 +30%~+70%)시켜 긴급제동 제어의 진입 시점을 앞당긴다(S4-50).
또한, 카메라 시스템(1)을 이용하여 획득된 전방 영상에서 노면 상태를 분석한 결과 현재 주행 중인 도로가 미끄러운 도로인 경우, 제동거리가 증가되는 것을 감안하여 긴급제동 진입 시점의 산출 시 가중치를 적용(예로서, 가중치 +30%~+70%)시켜 긴급제동 제어의 진입 시점을 앞당긴다(S4-50).
본 발명에 따르면, ADAS를 위한 전방 카메라 시스템에서 이용될 수 있는 전압 로직 및 메모리 로직이 구현될 수 있다.
또한, 본 발명에 따르면, ADAS를 위한 전방 카메라 시스템에서 렌즈 배럴 및 렌즈 홀더를 결합시킬 수 있는 방식이 제공될 수 있다.
또한, 본 발명에 따르면 도로의 미끄럼 정도에 따라 긴급제동의 진입 시점을 제어할 수 있다.
또한, 본 발명에 따르면 미끄러운 도로의 주행이 판단되는 경우에 긴급제동 진입 시점을 앞당길 수 있어, 제동거리의 증가로 인한 충돌/추돌 사고를 방지할 수 있다.
제5실시예
고속으로 도로를 주행하는 경우, 차량 전방으로 끼어드는 차량에 의해 사고가 발생할 위험이 커진다. 이 때, 운전자의 대응이 늦어지는 경우 전방 차량과 충돌이 발생할 수 있다. 충돌을 방지하기 위해서는 차량의 감속, 가속 및 차량이 진행하는 차선 변경을 통해 충돌을 방지할 수 있다. 이를 위해, 자량 전방으로 진행하는 차량 및 끼어드는 차량의 존재를 파악하는 기술이 요구된다.
본 발명의 제5실시예는 ADAS를 위한 카메라 시스템과 이를 이용하여 자차량을 제어하는 주행 보조 시스템에 관한 것이다.
이하 도 19a 내지 도 21을 참조하여 본 발명의 제5실시예를 설명하기로 한다.
도 19a 내지 도 19c는 본 발명의 제5실시예에 따른 차량의 횡방향 제어를 설명하기 위한 도면이다.
도 1, 도 3 및 도 19a 내지 도 19c를 참조하면, 도 19a에서, 자차량(5-100)은 카메라 시스템(1)을 이용해 자차량이 주행중인 차선 내에서 자차량(5-100)의 위치 및 자차량 전방 영역(5-110)을 탐지할 수 있다. 전방 영역(5-110)은 자차량(5-100) 전방의 차선 및 이와 인접하는 차선을 의미할 수 있다. 주행중인 차선인 제1 차선(5-50)으로 정의한다. 제1 차선(5-50) 내에서 자차량(5-100)의 위치는 자차량(5-100)과 제1 차선(5-50) 사이의 횡방향 거리일 수 있다.
도 19b에서, 자차량(5-100)은 카메라 시스템(1)을 이용해 자차량(5-100)이 주행중인 제1 차선(5-50) 및 전방으로 끼어드는 타차량(5-200)을 탐지할 수 있다. 이 때, 카메라 시스템(1)은 제1 차선(5-50)의 탐지를 통해 자차량(5-100)과 제1 차선(5-50) 간의 이격 거리를 탐지할 수 있다. 이 때, ECU(5-320)는 자차량(5-100)이 제1 차선(5-50) 내에 배치되는 위치를 계산할 수 있다. 구체적으로, ECU(5-320)는 자차량(5-100)의 좌측면과 제1 차선(5-50) 간의 제1 거리(d1) 및 자차량(5-100)의 우측면과 제1 차선(5-50) 간의 제2 거리(d2)를 계산할 수 있다. 또한, ECU(5-320)는 카메라 시스템(1)이 탐지한 제1 차선(5-50)의 정보 및 타차량(5-200)의 위치 정보를 통해 자차량(5-100)과 타차량(5-200)의 횡방향 위치관계를 파악할 수 있다. 일 예로, ECU(5-320)는 카메라 시스템(1)이 탐지한 타차량(5-200)의 위치 및 타차량(5-200)과 제1 차선의 겹침 정도 등을 통해 자차량(5-100)과 타차량(5-200)의 횡방향 위치를 파악할 수 있다.
또한, radar 장치는 자차량(5-100)과 타차량(5-200) 간의 거리를 측정할 수 있다. Radar 시스템은 물체의 거리나 속도, 각도를 측정하기 위해 전자기파를 사용하는 센서로서, 일반적으로 차량의 전면 그릴에 위치하여 차량의 전방 아래부분까지도 커버하도록 하고 있다. Radar 장치를 전면 그릴에 두는 이유는, 즉 차량의 외부에 두는 이유는, 다시 말하면, 차량의 전면 유리를 통과하여 송수신하지 않도록 하는 이유는 전자기파의 특성상 유리를 통과하는 경우의 감도 감소 때문이다. 본 발명에 따르면, Radar 장치는 차량의 내부에 위치하면서, 구체적으로는, 차량의 내부 공간에서 전면 유리의 아래에 위치하면서도 전자기파가 전면 유리를 통과하지 않게 할 수 있다. 이를 위해 Radar 장치는 전면 유리의 상단에 마련된 개구(opening)을 통해 전자기파를 송수신하도록 구성된다. 또한, Radar 장치를 위한 개구에 대응하는 위치에 커버가 배치된다. 이러한 커버는 개구로 인한 손실(예컨대, 공기의 유입 등)을 막기 위한 것이다. 또한, 커버는 Radar 장치가 사용하는 주파수의 전자기파에 대해서 관통이 용이한 재료로 제조되는 것이 바람직하다. 결과적으로 Radar 장치는 차량의 내부에 위치하지만 전면 유리에 구비된 개구를 통해 전자기파를 송수신하고, 개구로 인한 손실을 막기 위해 개구에 대응하여 커버가 구비되며, 전자기파는 커버를 통해 송수신된다. 이러한 Radar 장치는 빔 에이밍(beam aiming), 빔 셀렉션(beam selection), 디지털 빔 포밍(beam forming), 디지털 빔 스티어링(beam steering)을 이용할 수 있다. 또한, Radar 장치는 어레이 안테나 또는 위상 정렬 어레이 안테나를 포함할 수 있다. 이 때, ECU(5-320)는 radar 장치가 측정한 정보를 통해 자차량(5-100)과 타차량(5-200)의 종방향 위치 관계를 파악할 수 있다.
도 19c에서, ECU(5-320)는 제1 차선(5-50) 내의 자차량(5-100)의 위치에 기초하여 타차량(5-200)과의 충돌 위험을 판단할 수 있고, 이에 따라 자차량(5-100)의 조향 및 속도를 제어할 수 있다. 카메라 시스템(1)은 타차량(5-200)이 제1 차선(5-50)으로 끼어드는 방향과 반대되는 방향의 차선인 제2 차선에 다른 차량이 존재하는지 여부를 탐지할 수 있다.
일 예로, 제2 차선에 또 다른 차량이 존재하지 않는 경우, ECU(5-320)는 자차량(5-100)이 제2 차선으로 차선을 변경하도록 자차량(5-100)의 조향을 제어할 수 있다. ECU(5-320)의 제어에 따라 자차량(5-100)과 타차량(5-200) 간의 충돌을 방지할 수 있다.
도 20a 내지 도 20c는 본 발명의 제5실시예에 따른 차량의 종방향 제어를 설명하기 위한 도면이다. 설명의 간략을 위해 도 19와 중복되는 내용의 기재는 생략한다. 도 20a 및 도 20b는 도 19a 및 도 19b와 동일하거나 유사하므로 설명은 생략한다.
도 1, 도 3 및 도 20을 참조하면, 도 20c에서 ECU(5-320)는 제1 차선(5-50) 내의 자차량(5-100)의 위치에 기초하여 타차량(5-200)과의 충돌 위험을 판단할 수 있고, 이에 따라 자차량(5-100)의 조향 및 속도를 제어할 수 있다. 카메라 시스템(1)은 타차량(5-200)이 제1 차선(5-50)으로 끼어드는 방향과 반대되는 방향의 차선인 제2 차선에 다른 차량이 존재하는지 여부를 탐지할 수 있다.
일 예로, 제2 차선에 또 다른 차량인 제3 차량(5-300)이 존재하는 경우, ECU(5-320)는 타차량(5-200)이 제1 차선(5-50) 내로 완전히 진입하기 전에 자차량(5-100)이 타차량(5-200)을 추월할 수 있을지 판단할 수 있다. 구체적으로, ECU(5-320)는 카메라 시스템(1)이 탐지한 자차량(5-100)과 타차량(5-200)의 횡방향/종방향 위치관계 및 Radar 장치가 탐지한 자차량(5-100)과 타차량(5-200)의 속도를 통해 자차량(5-100)이 타차량(5-200)을 추월할 수 있을지 판단할 수 있다. ECU(5-320)는 자차량(5-100)이 타차량(5-200)을 추월할 수 있다고 판단되는 경우, 자차량(5-100)의 속도를 가속할 수 있다. 이와 반대로, ECU(5-320)는 자차량(5-100)이 타차량(5-200)을 추월하기 힘들다고 판단되는 경우, 자차량(5-100)의 속도를 감속하여 타차량(5-200)과의 충돌을 방지할 수 있다. 이에 따라, 타차량(5-200)은 제1 차선(5-50)으로 진입하여 자차량(5-100) 전방에 위치할 수 있다.
도 21은 본 발명의 제5실시예에 따른 차량의 제어를 나타내는 순서도이다.
도 21을 참조하면, 자차량에 설치된 카메라 시스템은 자차량 전방 영역을 탐지할 수 있다. 카메라 시스템은 자차량 전방에 위치하는 전방 차량 및 차선을 인식할 수 있다(S5-10). 카메라 시스템은 자차량이 진행하는 차선의 전방으로 타차량이 끼어드는 경우, 타차량의 위치 및 타차량과 차선의 겹침 정도 등을 통해 타차량의 횡방향 위치를 탐지할 수 있다(S5-20). ECU는 카메라 시스템이 획득한 제1 차선 내의 자차량의 위치 및 타차량의 위치에 관한 정보와 radar 장치가 획득한 자차량과 타차량 간의 거리 정보를 통해 자차량과 타차량 간의 횡방향 및 종방향 위치 관계를 판단할 수 있다(S5-30). 이 때, 카메라 시스템은 자차량이 진행하는 차선 옆차선에 또 다른 차량(제3 차량)이 존재하는 지를 탐지할 수 있다. 상기 옆차선은 제1 차선으로 진입하려는 타차량이 주행하는 차선과 반대방향의 차선을 의미한다(S5-45). 옆차선에 제3 차량이 존재하는 경우, ECU는 자차량의 속도를 감속하거나 가속하여 자차량과 타차량 간의 충돌을 방지할 수 있다. 즉, ECU는 자차량의 종방향 제어를 수행할 수 있다(S5-51). 옆차선에 제3 차량이 존재하지 않는 경우, ECU는 자차량의 조향을 제어하여 옆차선으로 자차량이 진입하도록 할 수 있다. 즉, ECU는 자차량의 횡방향 제어를 수행할 수 있다. 추가적으로, ECU는 자차량의 속도도 제어할 수 있다(S5-53).
제6실시예
교차로에서 자차량이 직진, 유턴 또는 좌/우회전을 수행하여 주행할 수 있고, 자차량뿐만 아니라 다른 차량들도 유턴 또는 좌/우회전을 수행할 수 있어 차량 간에 출동사고가 빈번이 발생하고 있다. 종래 기술의 교차로 충돌 방지 시스템은 자차량과 주변차량 간의 충돌이 예상되는 경우에 제동 제어만을 수행한다. 또한, 운전자에게 충돌 위험의 사전에 경고하거나 스티어링을 제어하여 충돌을 회피하는 기능이 없어 교차로에서의 충돌 사고를 예방하는 것에 한계가 있다.
본 발명의 제6실시예는 교차로에서 자차량의 정지 또는 주행상태 및 스티어링 휠의 조작여부에 기초하여 자차량과 주변차량과의 충돌 위험을 감지하고, 충돌 위험의 레벨에 따라서 운전자에게 충돌 위험을 경고함과 아울러, 자차량의 스티어링 제어를 수행할 수 있는 ADAS를 위한 카메라 시스템과, 교차로 충돌 방지 시스템 및 방법에 관한 것이다.
이하에서 도 22a, 도 22b, 도 23a 및 도23b를 참조하여 제6실시예를 설명하기로 한다.
도 22a는 교차로에서 자차량의 정지한 상태에서 스티어링 휠의 조작이 없을 시 충돌 위험을 경고하지 않는 것을 나타내는 도면이다.
도 22a를 참조하면, 자차량(A)이 교차로에 정지한 상태에서 스티어링 휠의 조작이 없는 경우, 즉, 좌회전, 우회전 또는 유턴의 의사가 없는 경우에는 자차량(A)과 주변차량(B)과의 충돌 위험이 없거나 또는 매우 작음으로 별도의 충돌 위험을 경고하지 않는다.
도 22b는 교차로에서 자차량의 정지한 상태에서 스티어링 휠의 조작이 있는 경우에 충돌 위험을 제1 레벨로 경고하는 것을 나타내는 도면이다.
도 22b를 참조하면, 교차로에서 자차량(A)이 정지 상태일 때, ECU(6-320)는 좌회전, 우회전 또는 유턴의 수행을 위해서 스티어링 휠의 조작이 이루어지는 확인한다. 그리고, 자차량(A)의 스티어링 휠의 조작이 이루어지는 경우에, 자차량(A)이 진행하고자 하는 방향으로 주행 시 주변차량(B)과의 충돌 위험이 있는지 판단한다.
여기서, Lidar MCU(6-311), Radar MCU(6-312), 카메라 MCU(6-42) 중 적어도 하나에서 주변차량(B)의 검출이 이루어지고, ECU(6-320)에서 자차량(A)과 주변차량(B)과의 충돌 위험을 판단할 수 있다. ECU(6-320)는 자차량(A)이 정지한 상태에서 스티어링 휠의 조작이 이루어진 경우, 자차량(A)과 주변차량과(B)과의 제1 레벨의 충돌 위험으로 판단하고, 제1 레벨의 충돌 위험을 운전자에게 경고한다.
제1 레벨의 충돌 위험의 경고 시, 운전자 경고 컨트롤러(6-331)에서 비디오 방식의 경고 메시지 또는 경고 이미지를 HUD 디스플레이 또는 사이드 미러 디스플레이를 통해 운전자에게 표시하여 제1 레벨의 충돌 위험을 경고할 수 있다.
도 23a는 교차로에서 자차량의 주행을 시작한 상태에서 주변차량과의 충돌이 예상되는 경우에 충돌 위험을 제2 레벨로 경고하는 것을 타내는 도면이다.
도 23a를 참조하면, 교차로에서 자차량이 주행을 시작하고, 좌회전, 우회전 또는 유턴의 수행을 위해서 스티어링 휠의 조작이 이루어지는 경우, ECU(6-320)는 자차량(A)과 주변차량(B)과의 충돌 위험이 있는지를 판단한다.
ECU(6-320)는 스티어링 조작 방향으로 자차량이 주행 시, 자차량과 주변차량과의 충돌 위험이 예측되면 제2 레벨의 충돌 위험으로 판단하고, 제2 레벨의 충돌 위험을 운전자에게 경고한다. 자차량(A)이 정지한 상태에서는 제1 충돌 위험을 경고했으나, 자차량이 주행을 시작하면 주변차량과의 충돌 위험이 높아짐으로 제2 레벨의 충돌 위험으로 판단한다.
제2 레벨의 충돌 위험의 경고 시, 운전자 경고 컨트롤러(6-331)에서 비디오 방식의 경고 메시지 또는 경고 이미지를 HUD 디스플레이 또는 사이드 미러 디스플레이를 통해 운전자에게 표시함과 아울러, 오디오 방식으로 경고 신호를 발생시킨다. 이때, 경고음을 출력하기 위해 운전자 경고 컨트롤러(6-331)는 자동차의 사운드 시스템을 이용해 경고음을 출력할 수 있다. 즉, 교차로에서 자차량이 좌회전, 우회전 또는 유턴을 위한 스티어링 조작 및 주행이 시작되면 제2 레벨의 충돌 위험으로 판단하고, 비디오 방식의 충돌 경고와 함께 오디오 방식의 충돌 경고를 동시에 출력하여 운전자에게 제2 레벨의 충돌 위험을 경고한다.
도 23b는 교차로에서 자차량의 주행을 시작한 상태에서 주변차량과의 충돌이 예상되고, 제동 또는 충돌 회피를 위한 스티어링 휠의 조작이 없는 경우에 충돌 위험의 제3 레벨 경고를 수행하는 것을 타내는 도면이다.
도 23b를 참조하면, ECU(6-320)는 교차로에서 자차량이 좌회전, 우회전 또는 유턴의 수행을 위해서 스티어링 휠의 조작하여 주행이 이루어지는 동안에 주변차량과의 충돌 위험이 있는지를 판단한다. 여기서, 자차량이 현재의 주행 방향을 유지 시 충돌 위험이 있음에도 불구하고 충돌 회피를 위해서 제동의 수행 또는 스티어링 휠의 조작이 이루어지지 않는 경우 제3 레벨의 충돌 위험으로 판단하고, 제3 레벨의 충돌 위험을 운전자에게 경고한다.
이전 시점에서, 제1 레벨의 충돌 위험의 경고 또는 제2 레벨의 충돌 위험의 경고가 있었거나, 또는 제1 레벨의 충돌 위험의 경고 및 제2 레벨의 충돌 위험의 경고가 있었음에도 충돌 회피를 위한 제동의 수행 또는 스티어링 휠의 조작이 이루어지지 않는 경우에는 심각한 충돌 위험이 예상된다. 이러한 경우, 제3 레벨의 충돌 위험으로 판단하고, 운전자 경고 컨트롤러(6-331)를 이용한 제2 레벨의 충돌 위험의 경고에 더하여 조향 컨트롤러(6-334)를 이용하여 충돌을 회피할 수 있는 방향으로 자차량이 주행하도록 스티어링의 제어를 수행한다.
제3 레벨의 충돌 위험의 경고 시, 운전자 경고 컨트롤러(6-331)에서 비디오 방식의 경고 메시지 또는 경고 이미지를 HUD 디스플레이 또는 사이드 미러 디스플레이를 통해 운전자에게 표시함과 아울러, 오디오 방식으로 경고 신호를 발생시킨다. 이때, 경고음을 출력하기 위해 운전자 경고 컨트롤러(6-331)는 자동차의 사운드 시스템을 이용해 경고음을 출력할 수 있다. 즉, 교차로에서 자차량이 좌회전, 우회전 또는 유턴을 위한 스티어링 조작 및 주행이 시작되면 제2 레벨의 충돌 위험으로 판단하고, 비디오 방식의 충돌 경고와 함께 오디오 방식의 충돌 경고를 동시에 출력한다. 이와 함께, 조향 컨트롤러(6-334)에서 자차량의 스티어링을 제어하여 자차량과 주변차량과의 충돌이 회피 되도록 한다.
여기서, 조향 컨트롤러(6-334)는 스티어링 휠을 구동시키는 전동식 파워스티어링 시스템(MPDS)에 대한 제어를 수행한다. 자동차가 충돌이 예상되는 경우에 조향 컨트롤러(6-334)는 충돌을 회피하거나 피해를 최소화할 수 있는 방향으로 자동차의 조향을 제어한다.
제3 충돌 위험의 경고 시, 서스펜션 컨트롤러(6-336)는 충돌 회피를 위한 급격한 스티어링 조작에 대응하여 자차량의 자세가 정상 적으로 유지도도록 제어한다. 즉, 충돌 회피를 위한 급격한 스티어링 제어가 이루어지더라도 승차감 및 주행 안정성이 확보되도록 차량 자세를 유지시킨다.
ECU(6-320)는 제3 충돌 위험의 경고 시, 스티어링 제어만으로는 충돌 회피를 보장할 수 없는 경우에 브레이크 컨트롤러(6-337)를 이용하여 차량의 제동이 이루어지도록 할 수 있다. 즉, 브레이크 컨트롤러(6-337)는 제3 위험의 경고 시 ECU(6-320)의 제어에 기초하여 차량의 제동을 수행한다.
여기서, 브레이크 컨트롤러(6-337)는 전방 충돌이 예상되는 경우에 운전자가 브레이크를 동작시켰는지 여부와 무관하게 브레이크 컨트롤러(6-337)는 ECU(6-320)의 제어 명령에 따라서 자동적으로 긴급 브레이크를 작동시키도록 제어한다.
본 발명의 교차로 충돌 방지 시스템 및 방법은 교차로에서 자차량과 주변차량 간의 충돌 위험을 감지하고, 충돌 위험의 레벨에 따라서 운전자에게 충돌 위험을 경고할 수 있다. 또한, 충돌 위험의 레벨에 따른 충돌 위험의 경고와 함께 자차량의 스티어링 제어를 함께 수행하여 충돌이 회피 되도록 할 수 있다.
제7실시예
본 발명의 제7실시예는 은 ADAS를 위한 전방 카메라 시스템에서 자차량 및 타차량 사이의 종방향 TTC 및 횡방향 TTC에 기초하여 자동 긴급 제동을 구현하는 것에 대한 것이다.
이하, 도 24 및 도 25를 참조하여, 본 발명의 제7실시예를 설명하기로 한다.
도 24는 본 발명의 제7실시예에 따른 자차량, 타차량 및 TTC를 설명하기 위한 도면이다.
도 24를 참조하면, 자차량(7-610)과 타차량(7-620)이 도시된다. 자차량(7-610)은 본 발명에 따른 카메라 시스템을 탑재하고 있는 차량이고, 타차량은(7-620)은 자차량(7-610)을 제외한 모든 차량이다. 도 6에 도시된 바와 같이, 타차량(7-620)은 자차량(7-610)에 대하여 횡방향으로 진행하고 있다. 대표적으로, 교차로에서 이와 같은 횡방향 진행 상황이 발생할 수 있다. 한편, TTC(Time To Collision)은 자차량(7-610) 및 타차량(7-620)이 서로 충돌하는데 까지 걸리는 시간이다. 이러한 TTC는 종방향 TTC(TTCx) 및 횡방향 TTC(TTCy)로 나누어 생각할 수 있다. 즉, 횡방향 TTC(TTCy)는 자차량(7-610)의 진행 경로를 기준으로 타차량(7-620)이 충돌하는데 까지 걸리는 시간에 해당하고, 종방향 TTC(TTCx)는 타차량(7-620)의 진행 경로를 기준으로 자차량(7-610)이 충돌하는데 까지 걸리는 시간에 해당한다.
도 25는 본 발명의 제7실시예에 따른 AEB 제어 알고리즘을 설명하기 위한 도면이다. 이러한 AEB 제어 알고리즘은 자차량에 탑재된 카메라 시스템에 의해서 수행될 수 있다. 더 구체적으로, 이러한 AEB 제어 알고리즘은 카메라 시스템 내의 이미지 프로세서에 의해 수행될 수 있다. 하지만, 이에 한정되지 않는 것은 아니며, 카메라 MCU에 의해 수행될 수도 있고, 다른 MCU에 의해 수행될 수도 있고, ECU에 의해 수행될 수도 있고, 복수의 MCU 및/또는 ECU의 조합에 의해 수행될 수 있다는 점이 이해되어야 할 것이다.
먼저 전방의 타차량이 검출된다(S7-710). 타차량은 자차량에 대하여 횡방향으로 진행하는 차량으로서 대표적으로, 교차로에서 이와 같은 상황이 발생할 수 있다.
이후, 자차량 및 타차량 사이의 종방향 TTC(TTCx)가 계산된다(S7-720). 종방향 TTC는 타차량의 진행 경로를 기준으로 자차량이 충돌하는데 까지 걸리는 시간이다. 이러한 종방향 TTC는 자차량의 진행 경로 및 타차량의 진행 경로의 교차점을 계산하고, 자차량 및 교차점 사이의 거리를 계산하고, 계산된 거리를 자차량의 속도로 나눔으로써 계산될 수 있다.
이후, 자차량 및 타차량 사이의 횡방향 TTC(TTCy)가 계산된다(S7-730). 횡방향 TTC는 자차량의 진행 경로를 기준으로 타차량이 충돌하는데 까지 걸리는 시간이다. 이러한 횡방향 TTC는 자차량의 진행 경로 및 타차량의 진행 경로의 교차점을 계산하고, 타차량 및 교차점 사이의 거리를 계산하고, 계산된 거리를 타차량의 속도로 나눔으로써 계산될 수 있다.
이후, 종방향 TTC 및 횡방향 TTC의 차이를 미리 설정된 임계치(TTCth)와 비교한다(S7-740). 만약, 그 판단 결과, 차이의 절대값이 미리 설정된 임계치보다 작은 경우에는 자동 긴급 제어(AEB)가 실행된다(S7-750). 만약, 그 판단 결과, 차이의 절대값이 미리 설정된 임계치보다 큰 경우에는 자동 긴급 제어가 실행되지 않는다. 예를 들어, 종방향 TTC가 10초이고 횡방향 TTC가 1초라면 그 차이의 절대값은 9초로 계산된다. 9초는 운전자가 충분히 방어할 수 있는 시간이라고 판단되며(즉, 미리 설정된 임계치보다 큼), 이 경우에는 자동 긴급 제어를 실행시키지 않는다. 하지만, 예를 들어, 종방향 TTC가 10초이고 횡방향 TTC가 9초라면 그 차이의 절대값은 1초로 계산된다. 1초는 운전자가 방어하기에는 부족한 시간이라고 판단되며(즉, 미리 설정된 임계치보다 작음), 이 경우에는 자동 긴급 제어를 실행시킨다.
한편, 위와 같은 미리 설정된 임계치는 종방향 TTC, 횡방향 TTC, 노면 상태, 노면의 경사, 및 기온 중 적어도 하나에 기초하여 결정된다. 예를 들어, 차이의 절대값이 1초라고 하더라도 종방향 TTC 및 횡방향 TTC가 큰 경우(예를 들어 각각, 50초 및 49초인 경우)에는 미리 설정된 임계치는 작게 설정되는 것이 바람직하다. 반대로, 차이의 절대값이 1초라고 하더라도 종방향 TTC 및 횡방향 TTC가 작은 경우(예를 들어, 각각 5초 및 4초인 경우)에는 미리 설정된 임계치는 크게 설정되는 것이 바람직하다. 또한, 노면 상태가 젖은 노면인 경우에는 마른 노면인 경우보다 미리 설정된 임계치가 크게 설정되는 것이 바람직하다. 또한, 노면의 경사가 내리막 경사인 경우에는 평지 또는 오르막 경사인 경우보다 미리 설정된 임계치가 크게 설정되는 것이 바람직하다. 또한, 기온이 낮은 경우에는 높은 경우보다 미리 설정된 임계치가 크게 설정되는 것이 바람직하다.
제8실시예
교차로를 진입하는 차량은 주변 차량과의 충돌 가능성이 높다. 자차량이 교차로에 진입하면서 감속하거나 정지하는 경우, 자차량의 후방에서 진행하는 차량이 교차로의 신호를 인식하지 못해 감속하지 않아 충돌 위험성이 커질 수 있다. 이러한 경우를 대비하기 위해, 최근에 운전자에게 충돌 가능성을 회피할 수 있는 제어 시스템이나 경고 시스템에 대한 연구가 활발히 진행되고 있다.
본 발명에 따른 제8실시예는 ADAS를 위한 카메라 시스템과 이를 이용하여 운전자에게 경고하는 주행 보조 시스템에 관한 것이다.
이하, 도 26 및 도 27을 참조하여, 제8실시예를 설명하기로 한다.
도 26은 본 발명의 제8실시예에 따른 교차로에서 자차량이 주변 상황을 인식하는 것을 나타내는 도면이다. 설명의 간략을 위해 중복되는 내용의 기재는 생략한다.
도 3 및 도 26을 참조하면, 교차로를 진입하는 자차량(8-1000)과 자차량(8-1000)의 후방 또는 옆 차선을 진행하는 주변 차량(8-1200)이 있다. 자차량(8-1000)에는 차량 진행방향의 전방을 감지하는 카메라 시스템(1) 및 진행방향의 후방 및 측면을 인식하는 후방 레이더(8-1030)가 장착될 수 있다. 일반적으로, 카메라 시스템(1)은 자차량(8-1000)의 앞쪽에 배치될 수 있고, 후방 레이더(8-1030)은 자차량(8-1000)의 뒤쪽에 배치될 수 있다. 다만, 후방 레이더(8-1030)는 자차량(8-1000)의 측면에 배치될 수도 있고, 카메라 시스템(1)과 후방 레이더(8-1030)의 위치는 특별히 제한되지 않을 수 있다.
카메라 시스템(1)은 신호등(8-1100)의 신호가 녹색 신호에서 황색 또는 적색 신호로 변경되는 것을 감지할 수 있다. 즉, 카메라 시스템(1)은 신호등(8-1100)의 신호가 주행 신호에서 정지 신호로 변경되는 것을 감지하고, 감지한 신호 데이터를 ECU(8-320)로 전송할 수 있다. 운전자는 신호등(8-1100)의 황색 또는 적색 신호를 인식하여 자차량(8-1000)의 속도를 감속하게 된다.
후방 레이더(8-1030)은 자차량(8-1000)과 충돌 가능성이 있는 주변 차량(8-1200)의 인식할 수 있다. 후방 레이더(8-1030)은 도 3에서 설명한 Radar 장치일 수 있다. 후방 레이더(8-1030)는 주변 차량(8-1200)의 유무, 주변 차량(8-1200)의 거리, 주변 차량(8-1200)의 속도 및 주변 차량(8-1200)의 진행 각도 등을 측정할 수 있다. 진행 각도는 주변 차량(8-1200)이 위치하는 차선이 향하는 방향을 기준으로 주변 차량(8-1200)이 실제로 진행하는 방향을 의미할 수 있다. 후방 레이더(8-1030)는 주파수 변조 반송파(FMCW, Frequency Modulation Carrier Wave) 또는 펄스 반송파(Pulse Carrier) 방식을 이용하여 수평각도 30도 범위에서 150m 전방까지의 물체를 감지할 수 있다.
ECU(8-320)는 카메라 시스템(1)이 감지한 신호등(8-1100)의 신호 데이터 및 후방 레이더(8-1030)가 감지한 주변 차량(8-1200)의 데이터를 수신하여 자차량(8-1000)과 주변 차량(8-1200)과의 충돌 위험을 판단할 수 있다. 일 예에 따르면, 자차량(8-1000)이 감속하거나 정속으로 주행하고 자차량(8-1000)의 후방에 위치한 주변 차량(8-1200)이 자차량(8-1000)을 향해 가속하는 경우, ECU(8-320)는 후방 레이더(8-1030)가 측정한 자차량(8-1000)과 주변 차량(8-1200)과의 거리에 관한 데이터를 통해 충돌 위험을 판단할 수 있다. 다른 예에 따르면, 자차량(8-1000)이 감속하거나 정속으로 주행하고 자차량(8-1000)의 측방에 위치한 주변 차량(8-1200)이 조향을 변경하여 자차량(8-1200)을 향해 진행하는 경우, ECU(8-320)는 후방 레이더(8-1030)가 측정한 자차량(8-1000)과 주변 차량(8-1200)과의 거리에 관한 데이터 및 주변 차량(8-1200)의 진행 각도에 관한 데이터를 통해 충돌 위험을 판단할 수 있다. 또 다른 예에 따르면, 자차량(8-1000)이 감속하고 있고 주변 차량(8-1200)은 자차량(8-1000)을 향해 가속하고 있는 경우, ECU(8-320)는 자차량(8-1000)의 감속 정도, 주변 차량(8-1200)의 가속 정도 및 자차량(8-1000)과 주변 차량(8-1200)과의 거리를 통해 충돌 위험을 판단할 수 있다. ECU(8-320)가 충돌 위험을 판단하는 방법은 상술한 예에 한정되지 않고 카메라 시스템(1)과 후방 레이더(8-1030)가 제공하는 데이터를 조합하여 다양하게 판단할 수 있다.
ECU(8-320)는 자차량(8-1000)과 주변 차량(8-1200)과의 충돌 가능성이 있다고 판단되면, 운전자 경고 컨트롤러(8-331)를 제어하여 운전자에게 충돌 위험을 경고할 수 있다. 운전자 경고 컨트롤러(8-331)는 비디오 방식, 오디오 방식 및 핸들의 진동 중 적어도 하나의 방식으로 운전자에게 경고할 수 있다. 예를 들어, 자차량(8-1000)과 주변 차량(8-1200)과의 충돌 가능성이 있는 경우, ECU(8-320)는 계기판 또는 헤드업 디스플레이 등을 통해 운전자에게 비디오 방식으로 경고하거나, 경고음을 발생시켜 운전자에게 경고하거나 핸들을 떨림을 일정 강도 이상으로 생성하여 운전자에게 경고할 수 있다. 일정 강도라 함은 주행 중에 운전자가 느낄 수 있는 일반적인 핸들의 떨림 이상의 강도로 정의될 수 있다.
도 27은 본 발명의 제8실시예에 따른 자차량의 주변 상황에 따라 운전자에게 경고하는 것을 나타내는 순서도이다. 도 7에서는 후방 차량을 인식하는 경우에 대해 중점적으로 설명하도록 한다.
도 27을 참조하면, 자차량에 장착된 카메라 시스템을 통해 자차량 전방에 위치하는 신호등을 인식할 수 있다. 카메라 시스템을 통해 신호등의 신호가 녹색 신호(주행 가능 신호)에서 황색 또는 적색(정지 신호)으로 바뀌는 것을 인식할 수 있다(S8-10). 신호등의 신호가 황색 또는 적색으로 바뀌면, 후방 레이더를 통해 후방 차량을 인식할 수 있다. 이 때, 후방 레이더는 후방 차량의 유무, 후방 차량의 속도, 자차량과 후방 차량과의 거리 및 후방 차량의 진행 각도를 탐지할 수 있다(S8-20). ECU는 카메라 시스템과 후방 레이터가 탐지한 데이터를 조합하여 자차량과 후방 차량과의 충돌 가능성을 판단할 수 있다. 충돌 가능성을 판단할 때, ECU는 자차량의 속도와 후방 차량의 속도를 중점적으로 비교할 수 있다. 그 외에도, ECU는 후방 레이더가 탐지한 후방 차량에 대한 데이터와 자차량의 속도를 비교하여 충돌 가능성을 판단할 수 있다(S8-35). 충돌 가능성이 없는 경우 자차량은 운전자의 제어에 따라 정지 또는 진행할 수 있고, 다시 교차로에 진입하는 경우 신호등을 인식할 수 있다. 충돌 가능성이 있는 경우, ECU는 운전자에게 충돌 가능성이 있음을 경고할 수 있다. 운전자에게 경고를 함에 따라, 운전자가 자차량을 제어하여 후방 차량과의 충돌을 회피하는데 도움을 줄 수 있다(S8-40).
제9실시예
교차로는 차량 간의 주행 경로가 서로 교차되는 지점이므로, 사고가 빈번히 발생할 수 있다. 특히, 교차로의 신호가 변경되는 시점에서 차량들이 신호등의 정지 신호를 인지하지 못하고 주행하는 경우가 발생할 수 있다. 이런 경우를 대비하여, 신호 여부와 무관하게 차량 간의 거리 및 차량 속도를 통해 충돌 가능성을 판단하는 기술이 요구된다.
본 발명의 제9실시예는 차량 간의 충돌을 회피하기 위한 주행 보조 시스템에 관한 것이다.
이하, 도 28 내지 도 30을 참조하여 제9실시예를 설명하기로 한다.
도 28은 본 발명의 제9실시예에 따른 교차로에서 자차량과 주변 차량의 위치를 나타내는 도면이다. 설명의 간략을 위해 중복되는 내용의 기재는 생략한다.
도 3 및 도 28을 참조하면, 자차량(9-1000)과 주변 차량(9-1200)이 교차로에 진입한다. 일 예로, 자차량(9-1000)은 좌회전을 하기 위해 조향을 변경할 수 있고, 이에 따라 자차량(9-1000)과 주변 차량(9-1200)의 진행방향은 서로 교차할 수 있다. 자차량(9-1000)에는 자차량(9-1000)의 전방을 감지하는 카메라 시스템(1)과 센서(9-1100)가 장착될 수 있다. 카메라 시스템(1)은 자차량(9-1000) 전방의 영상을 획득하여 주변 차량(9-1200)의 존재 및 위치를 측정할 수 있고, 센서(9-1100)는 자차량(9-1000)과 주변 차량(9-1200)의 거리 및 주변 차량(9-1200)의 속도(상대 속도 및 절대 속도)를 측정할 수 있다. 센서(9-1100)는 Radar 및 Lidar 중 적어도 어느 하나를 포함할 수 있다.
ECU(9-320)는 카메라 시스템(1)과 센서(9-1100)가 획득한 데이터를 통해 자차량(9-1000)과 주변 차량(9-1200) 간의 충돌 위험성을 판단할 수 있고, 충돌 시까지의 시간인 충돌 예상 시간을 계산할 수 있다. 충돌 예상 시간은 자차량(9-1000)과 주변 차량(9-1200)의 진행 경로, 주변 차량(9-1200)의 속도(상대 속도 및 절대 속도) 및 카메라 시스템(1)에 의한 주변 차량(1200)의 위치를 통해 계산할 수 있다.
ECU(9-320)는 충돌 예상 시간을 계산한 후 차량 제어 시점을 설정할 수 있다. 차량 제어 시점이란 충돌 예상 시간 계산 후에 자차량(9-1000)과 주변 차량(9-1200) 간의 충돌 가능성을 다시 한번 계산하는 시점을 의미할 수 있다. 차량 제어 시점은 제1 차량 제어 시점 및 제2 차량 제어 시점을 포함할 수 있고, 제1 차량 제어 시점은 제2 차량 제어 시점보다 선행될 수 있다. 즉, 제1 차량 제어 시점에서 충돌 가능성을 다시 판단한 후, 제2 차량 제어 시점에서 충돌 가능성을 판단할 수 있다. ECU(9-320)는 제1 및 제2 차량 제어 시점에서 자차량(9-1000)과 주변 차량(9-1200)과의 충돌 가능성을 다시 계산하여 자차량(9-1000)을 제어할 수 있다. ECU(9-320)는 자차량(9-1000)의 제어를 위해 운전자 경고 컨트롤러(9-331), 조향 컨트롤러(9-334) 및 브레이크 컨트롤러(9-337)를 제어할 수 있다. 다만, ECU(9-320)가 제어하는 컨트롤러는 위의 예에 한정되지 않을 수 있다.
일 예로, 카메라 시스템(1)은 자차량(9-1000) 전방의 주변 차량(9-1200)을 인식하면 ECU(9-320)는 제1 충돌 예상 시간을 계산하고, 제1 차량 제어시점에서 제2 충돌 예상 시간을 계산할 수 있다. 이 때, 제2 충돌 예상 시간이 제1 충돌 예상 시간보다 작은 경우 ECU(9-320)는 경보를 생성하여 운전자에게 경고할 수 있다. 예를 들어, 경보는 비디오 방식, 오디오 방식 및 핸들의 진동을 포함할 수 있다. ECU(9-320)는 제2 차량 제어 시점에서 제3 충돌 예산 시간을 계산할 수 있다. 이 때, 제3 충돌 예산 시간이 제1 충돌 예상 시간 또는 제2 충돌 예산 시간보다 작은 경우, ECU(9-320)는 자차량(9-1000)의 조향 및 브레이크를 제어하여 충돌을 회피할 수 있다.
도 29는 본 발명의 제9실시예에 따른 자차량 기준으로 주변 차량의 2차원 좌표를 나타내는 도면이다.
도 3, 도 6 및 도 29를 참조하면, 자차량(9-1000)의 주행 경로(9-1010)와 주변 차량(9-1200)의 주행 경로(9-1210)는 서로 교차할 수 있는 바 충돌 가능성이 존재한다. 센서(9-1100)는 자차량(9-1000)과 주변 차량(9-1200)의 직선 거리(D0)를 측정할 수 있고, 주변 차량(9-1200)의 속도(상대 속도 및 절대 속도)를 측정할 수 있다.
일 예로, ECU(9-320)는 자차량(9-1000)과 주변 차량(9-1200)과의 상대 거리와 주변 차량(9-1200)의 상대 속도를 이용하여 자차량(9-1000)과 주변 차량(9-1200)과의 충돌 예상 시간 (Time To Collision, TTC)을 계산할 수 있다. 즉, ECU(9-320)는 주변 차량(9-1200)과의 상대 거리를 주변 차량(9-1200)과의 상대 속도로 나누어 충돌 예상 시간을 구할 수 있다.
다른 예로, ECU(9-320)는 카메라 시스템(1)과 센서(9-1100)를 통해 자차량(9-1000)을 기준으로 주변 차량(9-1200)의 2차원 좌표를 생성할 수 있다. ECU(9-320)는 2차원 좌표를 통해 주변 차량(9-1200)의 절대 속도에 따른 진행 가능한 거리(Dp)와 자차량(9-1200)의 절대 속도에 따른 진행 거리(Dx)를 비교하여 충돌 예상 지점(P)을 산정할 수 있고, 충돌 예상 시점(P)을 기초로 충돌 예상 시간을 구할 수 있다.
도 30은 본 발명의 제9실시예에 따른 자차량을 제어하는 순서를 나타내는 순서도이다.
도 30을 참조하면, 자차량에 장착된 카메라 시스템은 자차량 전방을 주행하는 주변 차량을 인식할 수 있다(S9-10). 자차량 전방의 주변 차량이 인식되면, 센서는 자차량과 주변 차량과의 거리 및 전방 차량의 속도를 측정할 수 있다. ECU는 카메라 시스템 및 센서가 측정한 데이터를 통해 자차량을 기준으로 주변 차량의 위치를 2차원 좌표로 생성할 수 있다. 2차원 좌표는 자차량과 주변 차량의 위치, 자차량과 주변 차량의 주행 경로를 고려하여 생성될 수 있다(S9-20). ECU(9-320)는 2차원 좌표 정보에 자차량과 주변 차량의 속도 정보를 조합하여 자차량과 주변 차량의 제1 충돌 예상 시간을 계산할 수 있다. 그 후, ECU(9-320)는 다시 한번 자차량과 주변 차량의 충돌 가능성을 판단하여 제2 충돌 예상 시간을 계산할 수 있다. 이 때, 제2 충돌 예상 시간이 제1 충돌 예상 시간보다 작은 경우, 즉, 충돌 시까지의 시간이 줄어든 경우, ECU는 경보를 발생하여 운전자에게 충돌 가능성이 있음을 알릴 수 있다. 제2 충돌 예상 시간이 제1 충돌 예상 시간보다 큰 경우, 즉, 충돌 시까지의 시간이 늘어난 경우, ECU는 충돌 가능성이 존재하지 않는다고 판단하여 별다른 제어를 수행하지 않을 수 있다. 예를 들어, 제2 충돌 예상 시간을 계산 하기 전, 운전자가 주행 경로와 반대로 조향을 변경하여 주행 경로가 변경되는 경우, 충돌 가능성이 줄어들 수 있다(S9-35, S9-40). 운전자에게 경보를 발생한 후, ECU는 다시 한번 자차량과 주변 차량의 충돌 가능성을 판단하여 제3 충돌 예상 시간을 계산할 수 있다. 이 때, 제3 충돌 예상 시간이 제1 및 제2 충돌 예상 시간보다 작은 경우, 즉, 충돌 시까지의 시간이 줄어든 경우, ECU는 자차량의 조향을 제어하거나 브레이크를 구동하여 자차량과 주변 차량의 충돌을 회피할 수 있다(S9-55, S9-60).
재10실시예
교차로에서 자차량이 직진, 유턴 또는 좌/우회전을 수행하여 주행할 수 있고, 자차량뿐만 아니라 주변 차량들(횡방향에서 주행하는 차량)들도 유턴 또는 좌/우회전을 수행할 수 있어 차량 간에 출동사고가 빈번이 발생하고 있다. 특히, 자차량의 횡방향에서 돌출하는 보행자 및 주변 차량에 의해서 충돌 사고가 발생할 수 있다. 그러나, 종래 기술에 따른 교차로 충돌 방지(CTA: Cross Traffic Assistance) 시스템은 자차량과 주변 차량 간의 충돌이 예상되는 경우에 자차량의 제동 제어만을 수행한다. 교차로에 진입한 복수의 차량에 교차로 충돌 방지 시스템이 적용된 경우, 모든 차량이 긴급제동을 수행하게 되어 오히려 더 큰 사고를 유발시키는 문제점이 있다.
본 발명의 제10실시예는 자차량이 교차로에 진입 시 횡방향에서 돌출하는 보행자 및 차량에 의한 충돌을 회피할 수 있도록, 자차량과 주변 차량 간의 교차로 충돌 방지 제어의 우선순위를 설정하는 교차로 충돌 방지 시스템 및 방법에 관한 것이다.
이하, 도 31 내지 도 34를 참조하여 본 발명의 제10실시예를 설명하기로 한다.
도 31은 본 발명의 제10실시예에 따른 교차로 충돌 방지(CTA: Cross Traffic Assistance) 시스템을 나타내는 도면이고, 도 32은 도 31에 도시된 제어부 및 충돌 회피를 위해 제어되는 컨트롤러들을 나타내는 도면이다.
도 31 및 도 32를 참조하면, 본 발명의 제10실시예에 따른 교차로 충돌 방지 시스템은 카메라 시스템, 레이더 시스템 및 제어부(10-170)를 포함한다.
카메라 시스템은 적어도 하나의 카메라(10-110)를 포함한다. 카메라(10-110)는 모노 카메라, 스테레오 카메라 또는 서라운드 비전(surround vision) 카메라가 적용될 수 있으며, 차량의 전방, 후방 및 좌/우 측방을 촬영하여 영상 데이터를 생성한다. 카메라(10-110)에서 생성된 영상 데이터는 제어부(10-170)에 제공된다.
레이더 시스템은 전방 레이더(10-120), 전방 우측방 레이더(10-130), 전방 좌측방 레이더(10-140), 후방 우측방 레이더(10-150), 후방 좌측방 레이더(10-160)와, 각각의 레이더를 구동 시키는 복수의 레이더 MCU를 포함한다.
레이더 시스템을 통해, 자차량의 전방, 후방, 좌측방 및 우측방으로 전파를 방사한 후, 반사파를 수신하여 수평각도 30도 범위에서 150m 전방, 후방, 좌측방 우측방에 위치하는 물체를 검출한다. 여기서, 레이더 시스템은 주파수 변조 반송파(FMCW, Frequency Modulation Carrier Wave) 또는 펄스 반송파(Pulse Carrier)을 이용하여 물체를 검출하며, 물체 검출 결과를 포함하는 레이더 데이터를 제어부(10-170)로 전송한다.
제어부(10-170)는 수신부(10-172), ECU(10-320) 및 송신부(10-174)를 포함한다.
자차량에 배치된 수신부(10-172)는 주변 차량의 송신부와 무선통신(예로서, 4G LTE(long term evolution)) 방식으로 연결되며, 주변 차량으로부터의 주변 차량 CTA 제어신호를 수신한다. 수신된 주변 차량 CTA 제어신호는 ECU(10-320)에 전송된다.
자차량에 배치된 송신부(10-174)는 주변 차량의 수신부와 무선통신(예로서, 4G LTE(long term evolution)) 방식으로 연결되며, ECU(10-320)에서 생성된 자차량 CTA 제어신호를 주변 차량으로 전송한다.
자차량의
교차로
CTA
제어
도 33은 자차량에 배치된 카메라 시스템 및 레이더 시스템에 의해서 주변 차량들을 검출하는 것을 나타내는 도면이고, 도 34는 복수의 차량이 교차로 진입 시 교차로 충돌 방지(CTA) 시스템의 제어 우선순위를 설정하는 방법을 나타내는 도면이다.
도 33 및 도 34를 참조하면, ECU(10-320)는 영상 데이터 및 레이더 데이터에 기초하여 자차량(A)이 교차로에 진입 시 주변 차량들(B1~B5)을 검출한다. 그리고, 자차량(A) 주변 차량들(B1~B5)과의 충돌 가능성을 판단하고, 충돌 가능성이 있는 경우에 자차량의 CTA 제어신호를 생성한다. ECU(10-320)는 CTA 제어신호에 따라서 자차량의 제어를 위한 차량 제어신호를 생성하고, 생성된 차량 제어신호를 차량 자세 제어 컨트롤러(10-333), 조향 컨트롤러(10-334), 엔진 제어 컨트롤러(10-335), 서스펜션 컨트롤러(10-336), 브레이크 컨트롤러(10-337)에 공급한다. 이를 통해서, 교차로 상에서 CTA 긴급제동, 조향 회피, 감속, 가속 또는 CTA 제어 없이 자차량이 주행하도록 제어할 수 있다.
자차량과
주변 차량 간의
CTA
제어 우선순위 결정 및
CTA
제어
ECU(10-320)는 영상 데이터 및 레이더 데이터에 기초하여 자차량(A)이 교차로에 진입 시 주변 차량들(B1~B2)을 검출한다. 그리고, 자차량(A) 주변 차량들(B1~B2)과의 충돌 가능성을 판단하고, 충돌 가능성이 있는 경우에 자차량의 CTA 제어신호를 생성한다. ECU(10-320)에서 생성된 자차량의 CTA 제어신호는 송신부(10-174)를 통해 주변 차량들(B1~B2)로 전송된다.
여기서, 자차량과 주변 차량들 간에 송수신한 CTA 제어신호들을 비교하여, CTA 긴급제동을 수행할 차량, 조향 회피를 수행할 차량, 감속을 수행할 차량, 가속을 수행할 차량 및 CTA 제어 없이 그대로 주행할 차량을 선별한다. 즉, 복수의 차량들의 CTA 제어 우선순위를 결정하고, 결정된 CTA 제어 우선순위를 자차량 및 주변 차량이 공유함으로써 교차로 상에서 유기적으로 CTA 제어가 이루어지도록 할 수 있다. 이때, 자차량뿐만 아니라, 주변 차량들 중 어느 하나에서 자신의 CTA 제어신호와 다른 주변 차량들의 CTA 제어신호를 비교하여 CTA 긴급제동을 수행할 차량, 조향 회피를 수행할 차량, 감속을 수행할 차량, 가속을 수행할 차량 및 CTA 제어 없이 그대로 주행할 차량을 선별할 수 있다.
ECU(10-320)는 자차량의 CTA 제어신호 또는 주변 차량의 CTA 제어신호에 기초한, CTA 제어 우선순위에 따라서 자차량의 제어를 위한 차량 제어신호를 생성한다.
그리고, ECU(10-320)는 생성된 제어 신호를 차량 자세 제어 컨트롤러(10-333), 조향 컨트롤러(10-334), 엔진 제어 컨트롤러(10-335), 서스펜션 컨트롤러(10-336), 브레이크 컨트롤러(10-337)에 공급한다. 이를 통해서, 교차로 상에서 CTA 긴급제동, 조향 회피, 감속, 가속 또는 CTA 제어 없이 자차량이 주행하도록 제어할 수 있다.
본 발명의 제10실시예에 따른 교차로 충돌 방지 시스템 및 방법은, 자차량이 교차로에 진입 시 주변 차량들 간에 통신을 통해서 CTA 제어의 우선순위를 결정하고, 결정된 CTA 우선순위에 따라서 복수이 차량들이 교차로에서 유기적으로 CAT 제어를 수행할 수 있다. 또한, 자차량이 교차로 진입 시, 횡방향에서 돌출하는 차량 또는 보행자를 검출한 후, CTA 제어를 수행하여 충돌을 방지할 수 있다.
여기서, 조향 컨트롤러(10-334), 엔진 제어 컨트롤러(10-335), 브레이크 컨트롤러(10-337)를 제어하여 교차로 상에서 충돌 회피할 수 있다. 자차량의 급격한 속도 변화 또는 조향 변화로 인해서 승차감이 떨어지고 운전자의 자세 불안으로 인한 사고 방지를 위해서 차량 자세 제어 컨트롤러(10-333) 및 서스펜션 컨트롤러(10-336)를 함께 제어하여 충돌 회피와 함께 주행 안정성을 확보한다.
제11실시예
근래에 들어 운전자의 안전 및 편의를 위해 차량 주변을 감지하는 감지 시스템에 대한 연구가 가속화되고 있다. 차량 감지 시스템은 차량 주변의 사물을 감지하여 운전자가 인지하지 못한 사물과의 충돌을 막는 것은 물론 빈공간 등을 감지하여 자동 주차를 수행하는 것과 같이 다양한 용도로 사용되고 있으며, 차량 자동 제어에 있어서 가장 필수적인 데이터를 제공하고 있다. 이러한 감지시스템은 레이더신호를 이용하는 방식과, 카메라를 이용하는 방식이 통상적으로 사용되고 있다. 레이더신호를 이용하는 방식은 기 설정된 감지영역으로 송신된 레이더신호의 반사 신호를 수집한 후 수집된 반사 신호를 분석하여 차량 주변을 감지하는 방식으로서, 차량위치 및 속도에 대한 검출의 정확도가 우수할 뿐만 아니라 외부 환경에 영향을 적게 받으며, 종 방향에 위치한 사물을 검출하는 성능이 뛰어난 장점이 있다. 그러나, 이러한 레이더를 이용한 방식은 횡 방향에 위치한 사물에 대한 위치 및 속도 검출과, 사물의 분류 및 정보 검출의 정확도가 떨어지는 단점이 있다. 한편, 카메라를 이용하는 방식은 카메라의 촬영에 의해 획득된 영상정보를 분석하여 차량 주변을 감지하기 위한 장치로서, 사물의 분류가 우수하고, 사물의 정보 검출의 정확도가 우수한 장점이 있다. 또한, 횡 방향에 위치한 사물의 속도 검출이 우수한 장점이 있다. 그러나, 카메라를 이용한 방식은 외부 환경에 영향을 쉽게 받으며, 거리 및 속도에 대한 검출 정확도가 레이더신호에 비교하여 상대적으로 떨어지는 단점이 있다.
본 발명의 제11실시예는 카메라 및 레이더를 결합하여 교차로에서 횡방향의 차량 및 보행자를 감지하기 위한 감지시스템에 대한 것이다.
이하, 도 35 내지 도 39를 참조하여, 본 발명의 제11실시예를 설명하기로 한다.
도 35은 본 발명의 제11실시예에 따른 차량의 제어 장치의 구성을 나타내는 도면이다.
도 35를 참조하면, 본 발명의 제11실시예에 따른 차량의 제어 장치(11-100)의 구성은 영상 생성부(11-110), 제1 정보 생성부(11-120), 제2 정보 생성부(11-130) 및 제어부(11-140)를 포함한다.
영상 생성부(11-110)는 자차량(11-10)에 배치되는 적어도 하나의 카메라를 포함할 수 있으며, 자차량(11-10)의 전방을 촬영하여 자차량(11-10)의 전방영상을 생성할 수 있다. 또한, 영상 생성부(11-110)는 자차량(11-10)의 전방뿐만 아니라 하나 이상의 방향에 대한 자차량(11-10)의 주변을 촬영하여 자차량(11-10)의 주변영상을 생성할 수 있다.
여기서, 전방영상 및 주변영상은 디지털 영상일 수 있으며, 컬러 영상, 흑백 영상 및 적외선 영상 등을 포함할 수 있다. 또한 전방영상 및 주변영상은 정지영상 및 동영상을 포함할 수 있다. 영상 생성부(11-110)는 전방영상 및 주변영상을 제어부(11-140)에 제공한다.
이어서, 제1 정보 생성부(11-120)는 자차량(11-10)에 배치되는 적어도 하나의 레이더를 포함할 수 있으며, 자차량(11-10)의 전방을 감지하여 제1 감지정보를 생성한다.
구체적으로, 제1 정보 생성부(11-120)는 자차량(11-10)에 배치되고, 자차량(11-10)의 전방에 위치한 차량들의 위치 및 속도, 보행자의 여부 및 위치 등을 감지하여 제1 감지정보를 생성한다.
제1 정보 생성부(11-120)에서 생성한 제1 감지정보를 이용하여 자차량(11-10)과 앞차와의 거리를 일정하게 유지하도록 제어할 수 있고, 운전자가 자차량(11-10)의 주행 차로를 변경하고자 하는 경우나 후진 주차 시와 같이 기 설정된 특정한 경우에 차량 운행의 안정성을 높일 수 있다. 제1 정보 생성부(11-120)는 제1 감지정보를 제어부(11-140)에 제공한다.
여기서, 영상 생성부(11-110)에서 생성한 전방영상과 제1 정보 생성부(11-120)에서 생성한 제1 감지정보를 이용하여 교차로를 감지할 수 있다.
이어서, 제2 정보 생성부(11-130)는 영상 생성부(11-110)에서 생성한 전방영상과 제1 정보 생성부(11-120)에서 생성한 제1 감지정보에 기초한 교차로 감지 시, 자차량(11-10)의 측면을 감지하여 제2 감지정보를 생성한다.
구체적으로, 제2 정보 생성부(11-130)는 자차량(11-10)에 배치되는 적어도 하나의 레이더를 포함할 수 있으며, 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 감지한다. 여기서, 제2 정보 생성부(11-130)는 자차량(11-10)의 전방 및 후방의 양 측에 각각 배치될 수 있다.
이때, 영상 생성부(11-110)에서 생성한 전방영상과 제1 정보 생성부(11-120)에서 생성한 제1 감지정보의 기초한 교차로 감지 시, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도의 감지량을 증가시킨다.
자차량(11-10)의 측면에 위치한 차량들을 집중적으로 감지하기 위한 예로서, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면 감지영역의 넓이를 증가시킬 수 있다. 또한, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면 감지영역의 길이를 증가시킬 수 있고, 자차량(11-10)의 측면 감지영역에서 감지하는 감지 주기를 줄여 일정한 시간 동안의 감지 횟수를 증가시킬 수 있다. 제2 정보 생성부(11-130)는 제2 감지정보를 제어부(11-140)에 제공한다.
도 36은 교차로 감지 전의 제1 정보 생성부 및 제2 정보 생성부의 감지영역을 나타내는 도면이다.
도 36을 참조하면, 제1 정보 생성부(11-120)는 하나 이상의 레이더를 포함할 수 있고, 자차량(11-10)의 전방에 위치한 차량들의 위치 및 속도를 감지하여 제1 감지정보를 생성할 수 있다.
교차로 감지 전의 제 1 정보 생성부(11-120)는 자차량(11-10)의 전방을 집중적으로(중요 대상으로) 감지하기 위해 자차량(11-10)의 전방 감지영역의 넓이를 증가시킬 수 있다. 또한, 제1 정보 생성부(11-120)는 자차량(11-10)의 전방 감지영역의 길이를 증가시킬 수 있고, 동일한 시간동안 자차량(11-10)의 전방 감지영역에서 차량을 감지하는 횟수를 증가시킬 수 있다.
또한, 제2 정보 생성부(11-130)는 하나 이상의 레이더를 포함할 수 있으며, 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 감지할 수 있다.
도 37은 교차로 감지 이후의 제2 정보 생성부의 감지영역의 넓이 변화를 나타내는 도면이다.
도 37을 참조하면, 전방영상 및 제1 감지정보에 기초한 교차로 감지 시, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면 감지영역의 넓이를 증가시켜 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 자차량(11-10)의 전방에 위치한 차량들의 위치 및 속도보다 더 집중적으로 감지할 수 있다. 즉, 자차량(11-10)의 전방에 위치한 차량들의 위치 및 속도보다 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 중요 감지 대상으로 선정할 수 있다.
도 38은 교차로 감지 이후의 제2 정보 생성부의 감지영역의 길이 변화를 나타내는 도면이다.
도 38을 참조하면, 전방영상 및 제1 감지정보에 기초한 교차로 감지 시, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면 감지영역의 길이를 증가시켜 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 자차량(11-10)의 전방에 위치한 차량들의 위치 및 속도를 중요 감지 대상으로 선정할 수 있다.
이어서, 제어부(11-140)는 제2 감지정보에 기초하여 타겟차량(11-20)을 선정하고, 자차량(11-10)과 타겟차량(11-20)의 충돌 여부를 판단하여 자차량(11-10)을 제어한다.
구체적으로, 제어부(11-140)는 제2 감지정보에 기초하여 자차량(11-10)과 근접한 차량들을 타겟차량(11-20)으로 선정한다. 또한, 자차량(11-10)과 근접하지 않더라도 자차량(11-10)에 근접해오는 차량들을 타겟차량(11-20)으로 선정한다. 이때, 정지한 차량은 충돌 위험이 없는 차량으로 판단하여 타겟차량(11-20)의 선정에서 제외할 수 있다.
제어부(11-140)는 선정한 타겟차량(11-20)과 자차량(11-10)의 충돌 여부를 판단한다. 또한, 제어부(11-140)는 타겟차량(11-20)과 자차량(11-10)의 충돌 여부를 판단한 결과, 자차량(11-10)과 타겟차량(11-20)이 충돌한다고 판단되면, 운전자에게 충돌을 경보하고, 자차량이 제동하도록 제어할 수 있다.
도 39는 본 발명의 제11실시예에 따른 차량의 제어 방법을 설명하기 위한 동작 흐름도이다.
도 39를 참조하면, 영상 생성부(11-110)는 전방영상을 생성하고, 제1 정보 생성부(11-120)는 제1 감지정보를 생성한다(S11-510).
구체적으로, 영상 생성부(11-110)는 자차량(11-10)의 전방을 촬영하여 전방영상을 생성한다. 여기서, 영상 생성부(11-110)는 자차량(11-10)의 전방뿐만 아니라 하나 이상의 방향에 대한 자차량(11-10)의 주변을 촬영하여 자차량(11-10)의 주변영상을 생성할 수 있다.
한편, 제1 정보 생성부(11-120)는 자차량(11-10)의 전방을 감지하여 제1 감지정보를 생성한다.
이어서, 전방영상 및 제1 감지정보에 기초하여 교차로가 감지되면, 제2 정보 생성부(11-130)는 제2 감지정보를 생성한다(S11-520).
구체적으로, 제2 정보 생성부(11-130)는 자차량(11-10)에 배치되어 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 감지한다. 이때, 교차로가 감지되면, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면의 감지량을 증가시켜 자차량(11-10)의 측면을 중요 감지 영역으로 선정한다. 그리고 제2 정보 생성부(11-130)는 자차량(11-10)의 측면에 위치한 차량들의 위치 및 속도를 중요 감지 대상으로 선정하여 집중적으로 감지하도록 한다.
예로서, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면 감지영역의 넓이를 증가시키거나 측면 감지영역의 길이를 증가시켜 자차량(11-10)의 측면의 감지량을 증가시킬 수 있다. 이에 따라, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면을 집중적으로 감지할 수 있다. 또한, 제2 정보 생성부(11-130)는 자차량(11-10)의 측면 감지영역에서 감지하는 주기를 줄여 일정한 시간 동안 감지 횟수를 증가시켜 자차량(11-10)의 측면을 집중적으로 감지하도록 할 수 있다.
이어서, 제어부(11-140)는 제2 감지정보에 기초하여 타겟차량(11-20)을 선정한다(S11-530).
구체적으로, 제어부(11-140)는 제2 감지정보에 기초하여 자차량(11-10)과 근접한 차량을 타겟차량(11-20)으로 선정한다. 또한, 주행 중인 차량 중에 자차량(11-10)에 근접해오는 차량을 타겟차량(11-20)으로 선정할 수 있다.
한편, 제어부(11-140)는 자차량(11-10)과 충돌 위험이 없는 정지한 차량에 대해 타겟차량(11-20)으로의 선정을 제외시킬 수 있다.
이어서, 제어부(11-140)는 자차량(11-10)과 타겟차량(11-20)의 충돌 여부를 판단한다(S11-540).
자차량(11-10)과 타겟타량(11-20)의 충돌 여부를 판단한 결과, 자차량(11-10)과 타겟차량(11-20)이 충돌할 것이라고 판단되면, 제어부(11-140)는 자차량(11-10)을 제어한다(S11-550).
구체적으로, 제어부(11-140)는 자차량(11-10)과 타겟차량(11-20)의 충돌이 판단되면, 운전자에게 충돌을 경보하고, 자차량(11-10)이 제동하도록 제동장치를 제어할 수 있다. 이에 따라, 제어부(11-140)는 자차량(11-10)을 긴급제동 시킬 수 있다.
한편, 자차량(11-10)과 타겟차량(11-20)의 충돌 여부를 판단한 결과, 자차량(11-10)과 타겟차량(11-20)이 충돌하지 않는다고 판단되면 자차량(11-10)이 운전자에 지시에 따라 주행하도록 제어한다(S11-560).
전술한 바와 같이 본 발명에 의하면, 자차량(11-10)에 배치된 카메라 및 레이더를 이용하여 교차로를 감지하고, 감지된 교차로에서 자차량(11-10)과 타겟차량(11-20)의 충돌 예상 시, 자차량(11-10)을 긴급제동 시킴과 아울러 운전자에게 경보를 발생시키는 차량 제어 장치 및 방법을 실현할 수 있다.
제12실시예
교차로는 차량 간의 주행 경로가 서로 교차되는 지점이므로, 사고가 빈번히 발생할 수 있다. 특히, 교차로의 신호가 변경되는 시점에서 운전자가 주시하지 못하는 방향에서 충돌이 발생할 가능성이 더욱 높다. 이런 경우를 대비하여, 운전자의 한정적인 주시 범위를 보완해줄 수 있는 기술에 대한 연구가 요구되고 있다.
본 발명의 제12실시예는 ADAS(Advanced Driving Assistance System)에 대한 것으로서, 구체적으로 차량 간의 충돌을 회피하기 위한 주행 보조 시스템에 관한 것이다.
이하, 도 40a, 도 40b 및 도41을 참조하여 제12실시예를 설명하기로 한다.
도 40a 및 도 40b는 본 발명의 제12실시예에 따른 좌회전 시 주행 보조 시스템의 구동을 설명하기 위한 도면들이다.
도 1, 도 3 및 도 40a를 참조하면, 자차량(12-1000)은 좌회전을 하기 위해 교차로에 대기 중이다. 이 때, 운전자는 교차로의 좌측 방향을 주시할 수 있다. 운전자가 주시하는 좌측 방향은 제1 방향으로 정의할 수 있고, 제1 방향과 반대되는 우측 방향은 제2 방향으로 정의할 수 있다. 교차로에서 제1 방향에서 접근하는 차량은 제1 타차량(12-1200a), 제2 방향에서 접근하는 차량은 제2 타차량(12-1200b)으로 정의될 수 있다. 운전자가 주시하는 방향은 차량 내부에 배치된 운전자 모니터링 카메라(316)를 통해 감지할 수 있다. 운전자 모니터링 카메라(316)는 운전자의 얼굴이 향하는 방향 또는 운전자의 눈의 주시 방향을 감지하여 운전자가 주시하는 방향을 감지할 수 있다. 운전자 모니터링 카메라(316)는 MCU 레벨의 일 구성일 수 있다.
운전자는 제1 방향으로 접근하는 물체를 감지하여 자차량(12-1000)을 제어할 수 있고, 운전자가 직접 자차량(12-1000)을 제어할 수 있는 범위는 운전자 제어범위(12-1300a)로 정의될 수 있다. 운전자 제어범위(12-1300a)에서 자차량(12-1000)과 타차량 간의 충돌 가능성이 존재하면, ECU(12-320)는 운전자 경고 컨트롤러(12-331)를 제어하여 경보를 발생시킬 수 있다. 운전자가 주시하지 않는 제2 방향으로 접근하는 물체는 차량용 카메라 시스템(1)이 감지할 수 있고, ECU(12-320)는 차량용 카메라 시스템(1)이 획득한 데이터를 통해 조향 컨트롤러(12-334) 및 브레이크 컨트롤러(12-337) 등을 제어하여 자차량(12-1000)의 조향 및 제동을 제어할 수 있다. 이 때, ECU(12-320)가 자차량을 제어할 수 있는 범위는 시스템 제어범위(12-1300b)로 정의될 수 있다. 즉, ECU(12-320)는 운전자가 주시하는 제1 방향과 반대되는 방향인 제2 방향을 감지할 수 있고, 제2 방향에서 충돌 가능성이 존재하는 경우 자차량(12-1000)을 제어할 수 있다.
ECU(12-320)는 카메라 시스템(1)이 획득한 타차량들(12-1200a, 12-1200b)의 접근 유무에 대한 데이터를 통해 자차량과 타차량들(12-1200a, 12-1200b) 간의 충돌 위험 가능성을 단계별로 판단할 수 있다. 카메라 시스템(1)은 자차량(12-1000)을 향해 접근하는 타차량들(12-1200a, 12-1200b)의 상대 속도 및 자차량(12-1000)과 타차량들(12-1200a, 12-1200b) 간의 거리를 측정할 수 있다. ECU(12-320)는 자차량(12-1000)을 향해 접근하는 타차량들(12-1200a, 12-1200b)의 상대 속도 및 자차량(12-1000)과 타차량들(12-1200a, 12-1200b) 간의 거리를 통해 충돌 위험 가능성에 대한 단계를 설정할 수 있다. 예를 들어, 기설정된 거리보다 짧은 거리 및 기설정된 상대 속도보다 큰 속도인 경우, ECU(12-320)는 이러한 상황을 가능 높은 충돌 위험 단계로 판단할 수 있고, 기설정된 거리보다 긴 거리 및 기설정된 상대 속도보다 작은 속도인 경우, ECU(12-320)는 이러한 상황을 가능 낮은 충돌 위험 단계로 판단할 수 있다. 다만, 이러한 기준은 일 예에 불과한 것으로 기준은 다양하게 기설정될 수 있다. ECU(12-320)는 운전자 제어범위(12-1300a)와 시스템 제어범위(12-1300b)에서의 충돌 위험 단계가 동일한 경우, 시스템 제어범위(12-1300b)에서의 충돌 위험이 더 높은 것으로 판단할 수 있다. 즉, ECU(12-320)는 운전자가 제어할 수 있는 범위 외의 범위에서 발생할 수 있는 충돌 위험을 중점적으로 제어할 수 있다.
상술한 예와 달리, ECU(12-320)는 운전자 제어범위(12-1300a)에서 충돌 가능성이 높은 경우, 운전자의 제어와 달리 자차량(12-1000)을 제어할 수도 있다. 즉, 시스템 제어범위(12-1300b)에서의 충돌 가능성은 없으나 운전자 제어범위(12-1300a)에서의 충돌 가능성은 높은 경우, ECU(12-320)는 경보를 발생하는 것 이외에 자차량(12-1000)의 조향 및 제동을 제어하도록 설정될 수 있다.
도 40b를 참조하면, 운전자는 제1 방향에 위치하는 제1 타차량(12-1200a)을 감지하면서 교차로에서 좌회전을 수행할 수 있다. 이 때, 차량용 카메라 시스템(1)은 자차량(12-1000)을 항해 접근하는 제2 타차량(12-1200b)의 존재를 감지할 수 있고, ECU(12-320)는 자차량(12-1000)과 제2 타차량(12-1200b) 간의 충돌 가능성을 판단할 수 있다. 시스템 제어범위(12-1300b)에서의 충돌이 예상되는 경우, ECU(12-320)는 자차량(12-1000)의 조향 및 제동을 제어하여 자차량(12-1000)과 제2 타차량(12-1200b) 간의 충돌을 방지할 수 있다.
도 41은 본 발명의 제12실시예에 따른 우회전 시 주행 보조 시스템의 구동을 설명하기 위한 도면들이다. 설명을 간략을 위해 도 40a 및 도 40b와 중복되는 내용의 기재는 생략한다.
도 1, 도 3 및 도 41을 참조하면, 자차량(12-1000)은 우회전을 하기 위해 교차로에 대기 중이다. 이 때, 운전자는 교차로의 우측 방향을 주시할 수 있다. 운전자가 주시하는 우측 방향은 제1 방향으로 정의할 수 있고, 제1 방향과 반대되는 좌측 방향은 제2 방향으로 정의할 수 있다. 운전자는 제1 방향으로 접근하는 물체를 감지하여 자차량(12-1000)을 제어할 수 있고, 운전자가 직접 자차량(12-1000)을 제어할 수 있는 범위는 운전자 제어범위(12-1300a)로 정의될 수 있다. 운전자 제어범위(12-1300a)에서 자차량(12-1000)과 타차량 간의 충돌 가능성이 존재하면, ECU(12-320)는 운전자 경고 컨트롤러(12-331)를 제어하여 경보를 발생시킬 수 있다. 운전자가 주시하지 않는 제2 방향으로 접근하는 물체는 차량용 카메라 시스템(1)이 감지할 수 있고, ECU(12-320)는 차량용 카메라 시스템(1)이 획득한 데이터를 통해 조향 컨트롤러(12-334) 및 브레이크 컨트롤러(12-337) 등을 제어하여 자차량(12-1000)의 조향 및 제동을 제어할 수 있다. 이 때, ECU(12-320)가 자차량을 제어할 수 있는 범위는 시스템 제어범위(12-1300b)로 정의될 수 있다.
운전자는 제1 방향에 위치하는 물체(12-1200b)을 감지하면서 교차로에서 좌회전을 수행할 수 있다. 물체(12-1200b)는 차량, 보행자 및 자전거 운행자 등일 수 있다. 이 때, 차량용 카메라 시스템(1)은 자차량(12-1000)을 항해 접근하는 타차량(12-1200a)의 존재를 감지할 수 있고, ECU(12-320)는 자차량(12-1000)과 타차량(1200a) 간의 충돌 가능성을 판단할 수 있다. 시스템 제어범위(12-1300b)에서의 충돌이 예상되는 경우, ECU(12-320)는 자차량(12-1000)의 조향 및 제동을 제어하여 자차량(12-1000)과 타차량(12-1200a) 간의 충돌을 방지할 수 있다.
상술한 예와 달리, 운전자는 자차량(12-1000)이 운행하려는 방향과 반대 방향을 주시할 수 있다. 이 때, ECU(12-320)는 카메라 시스템(1)을 제어하여 운전자가 주시하는 방향과 반대 방향인 차량 운행 방향을 주시할 수 있다. ECU(12-320)는 차량의 진행 방향에서 발생할 수 있는 충돌 가능성과 운전자가 주시하는 방향에서 발생할 수 있는 충돌 가능성을 모두 판단할 수 있고, 차량 진행 방향에서 충돌 가능성이 있는 경우 자차량(12-1000)의 조향 및 제동을 제어할 수 있다. 또한, ECU(12-320)는 운전자가 주시하는 방향에서 충돌 가능성이 있는 경우에는 경보를 발생시킬 수 있다.
하나 이상의 예시적인 실시예에서, 설명한 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 임의의 조합으로 구현될 수 있다. 소프트웨어로 구현된다면, 이 기능들은 컴퓨터 판독 가능 매체 상에 하나 이상의 명령 또는 코드로서 저장 또는 전송될 수 있다. 컴퓨터 판독 가능 매체는 한 장소에서 다른 장소로 컴퓨터 프로그램의 전달을 용이하게 하는 임의의 매체를 포함하는 통신 매체 및 컴퓨터 저장 매체를 모두 포함한다. 저장 매체는 컴퓨터에 의해 액세스 가능한 임의의 이용 가능한 매체일 수 있다. 한정이 아닌 예시로, 이러한 컴퓨터 판독 가능 매체는 RAM, ROM, EEPROM, CD-ROM이나 다른 광 디스크 저장소, 자기 디스크 저장소 또는 다른 자기 저장 디바이스, 또는 명령이나 데이터 구조의 형태로 원하는 프로그램코드를 전달 또는 저장하는데 사용될 수 있으며 컴퓨터에 의해 액세스 가능한 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 접속이 컴퓨터 판독 가능 매체로 적절히 지칭된다. 예를 들어, 소프트웨어가 동축 케이블, 광섬유 케이블, 꼬임 쌍선, 디지털 가입자 회선(DSL), 또는 적외선, 라디오 및 초고주파와 같은 무선 기술을 이용하여 웹사이트, 서버 또는 다른 원격 소스로부터 전송된다면, 동축 케이블, 광섬유 케이블, 꼬임 쌍선, DSL, 또는 적외선, 라디오 및 초고주파와 같은 무선 기술들이 매체의 정의에 포함된다. 여기서 사용된 것과 같은 디스크(disk 및 disc)는 콤팩트 디스크(CD), 레이저 디스크, 광 디스크, 디지털 다목적 디스크(DVD), 플로피디스크 및 블루레이 디스크를 포함하며, 디스크(disk)들은 보통 데이터를 자기적으로 재생하는 반면, 디스크(disc)들은 데이터를 레이저에 의해 광학적으로 재생한다. 상기의 조합들 또한 컴퓨터 판독 가능 매체의 범위 내에 포함되어야 한다.
실시예들이 프로그램 코드나 코드 세그먼트들로 구현될 때, 코드 세그먼트는 프로시저, 함수, 서브프로그램, 프로그램, 루틴, 서브루틴, 모듈, 소프트웨어 패키지, 클래스, 또는 명령들, 데이터 구조들, 또는 프로그램 명령문들의 임의의 조합을 나타낼 수 있는 것으로 인식해야 한다. 코드 세그먼트는 정보, 데이터, 인수(argument), 파라미터 또는 메모리 콘텐츠를 전달 및/또는 수신함으로써 다른 코드 세그먼트 또는 하드웨어 회로에 연결될 수 있다. 정보, 인수, 파라미터, 데이터 등은 메모리 공유, 메시지 전달, 토큰 전달, 네트워크 송신 등을 포함하는 임의의 적당한 수단을 이용하여 전달, 발송 또는 전송될 수 있다. 추가로, 어떤 측면들에서 방법 또는 알고리즘의 단계들 및/또는 동작들은 컴퓨터 프로그램 물건으로 통합될 수 있는 기계 판독 가능 매체 및/또는 컴퓨터 판독 가능 매체 상에 코드들 및/또는 명령들 중 하나 또는 이들의 임의의 조합이나 세트로서 상주할 수 있다.
소프트웨어에서 구현에서, 여기서 설명한 기술들은 여기서 설명한 기능들을 수행하는 모듈들(예를 들어, 프로시저, 함수 등)로 구현될 수 있다. 소프트웨어 코드들은 메모리 유닛들에 저장될 수 있으며 프로세서들에 의해 실행될 수 있다. 메모리 유닛은 프로세서 내에 구현될 수도 있고 프로세서 외부에 구현될 수 있으며, 이 경우 메모리 유닛은 공지된 바와 같이 다양한 수단에 의해 프로세서에 통신 가능하게 연결될 수 있다.
하드웨어 구현에서, 처리 유닛들은 하나 이상의 주문형 집적 회로(ASIC), 디지털 신호 프로세서(DSP), 디지털 신호 처리 디바이스(DSPD), 프로그래밍 가능 로직 디바이스(PLD), 현장 프로그래밍 가능 게이트 어레이(FPGA), 프로세서, 제어기, 마이크로컨트롤러, 마이크로프로세서, 여기서 설명한 기능들을 수행하도록 설계된 다른 전자 유닛들, 또는 이들의 조합 내에 구현될 수 있다.
상술한 것은 하나 이상의 실시예의 실례를 포함한다. 물론, 상술한 실시예들을 설명할 목적으로 컴포넌트들 또는 방법들의 가능한 모든 조합을 기술할 수 있는 것이 아니라, 당업자들은 다양한 실시예의 많은 추가 조합 및 치환이 가능함을 인식할 수 있다. 따라서 설명한 실시예들은 첨부된 청구범위의 진의 및 범위 내에 있는 모든 대안, 변형 및 개조를 포함하는 것이다. 더욱이, 상세한 설명 또는 청구범위에서 "포함한다"라는 용어가 사용되는 범위에 대해, 이러한 용어는 "구성되는"이라는 용어가 청구범위에서 과도적인 단어로 사용될 때 해석되는 것과 같이 "구성되는"과 비슷한 식으로 포함되는 것이다.
여기서 사용된 바와 같이, "추론하다" 또는 "추론"이라는 용어는 일반적으로 이벤트 및/또는 데이터에 의해 포착되는 한 세트의 관측으로부터 시스템, 환경 및/또는 사용자의 상태에 관해 판단하거나 추론하는 프로세스를 말한다. 추론은 특정 상황이나 동작을 식별하는데 이용될 수 있고, 또는 예를 들어 상태들에 대한 확률 분포를 생성할 수 있다. 추론은 확률적일 수 있는데, 즉 데이터 및 이벤트들의 고찰에 기초한 해당 상태들에 대한 확률 분포의 계산일 수 있다. 추론은 또한 한 세트의 이벤트들 및/또는 데이터로부터 상위 레벨 이벤트들을 구성하는데 이용되는 기술들을 말할 수도 있다. 이러한 추론은 한 세트의 관측된 이벤트들 및/또는 저장된 이벤트 데이터로부터의 새로운 이벤트들 또는 동작들, 이벤트들이 시간상 밀접하게 상관되는지 여부, 그리고 이벤트들과 데이터가 하나 또는 여러 이벤트 및 데이터 소스들로부터 나오는지를 추정하게 한다.
더욱이, 본 출원에서 사용된 바와 같이, "컴포넌트", "모듈", "시스템" 등의 용어는 이에 한정되는 것은 아니지만, 하드웨어, 펌웨어, 하드웨어와 소프트웨어의 조합, 소프트웨어 또는 실행중인 소프트웨어와 같은 컴퓨터 관련 엔티티를 포함하는 것이다. 예를 들어, 컴포넌트는 이에 한정되는 것은 아니지만, 프로세서상에서 실행하는 프로세스, 프로세서, 객체, 실행 가능한 실행 스레드, 프로그램 및/또는 컴퓨터일 수도 있다. 예시로, 연산 디바이스 상에서 구동하는 애플리케이션과 연산 디바이스 모두 컴포넌트일 수 있다. 하나 이상의 컴포넌트가 프로세스 및/또는 실행 스레드 내에 상주할 수 있으며, 컴포넌트가 하나의 컴퓨터에 집중될 수도 있고 그리고/또는 2개 이상의 컴퓨터 사이에 분산될 수도 있다. 또한, 이들 컴포넌트는 각종 데이터 구조를 저장한 각종 컴퓨터 판독 가능 매체로부터 실행될 수 있다. 컴포넌트들은 하나 이상의 데이터 패킷(예를 들어, 로컬 시스템, 분산 시스템의 다른 컴포넌트와 그리고/또는 신호에 의해 다른 시스템들과 인터넷과 같은 네트워크를 거쳐 상호 작용하는 어떤 컴포넌트로부터의 데이터)을 갖는 신호에 따르는 등 로컬 및/또는 원격 프로세스에 의해 통신할 수 있다.
Claims (16)
- 차량용 카메라 시스템으로서,차량의 전방을 촬영하기 위한 렌즈 (10);상기 렌즈를 내부 공간에 수용하기 위한 렌즈 배럴 (15);상기 렌즈 배럴과 결합하는 렌즈 홀더 (20);상기 렌즈가 촬영한 이미지를 센싱하기 위한 이미지 센서 (31);상기 이미지 센서로부터 이미지 데이터를 수신하여 프로세싱하기 위한 이미지 프로세서(41); 및상기 이미지 프로세서와 통신하여 상기 이미지 프로세서가 프로세싱한 데이터를 수신하는 카메라 MCU(42)를 포함하는,차량용 카메라 시스템.
- 제 1 항에 있어서,상기 차량용 카메라 시스템은:이그니션 전압(510)을 수신하여 적어도 하나의 전압을 출력하는 제 1 컨버터부(521); 및상기 제 1 컨버터부(521)에서 출력되는 전압을 수신하여 적어도 하나의 전압을 출력하는 레귤레이터부(523)를 더 포함하는,차량용 카메라 시스템.
- 제 2 항에 있어서,상기 카메라 MCU(42)는 동작 전원으로서 상기 제 1 컨버터부(521)로부터 제 1 전압(511)을 수신하고,상기 이미지 프로세서(41)는 동작 전원으로서 상기 제 1 컨버터부(521)로부터 제 1 전압(511)를 수신하는,차량용 카메라 시스템.
- 제 3 항에 있어서,상기 제 1 컨버터부(521)로부터 출력되는 상기 제 1 전압(511)은 3.3 V인,차량용 카메라 시스템.
- 제 3 항에 있어서,상기 이미지 프로세서(41)는 상기 제 1 컨버터부(521)로부터 제 2 전압(512)를 수신하고,상기 이미지 센서(31)는 상기 레귤레이터부(523)로부터 제 5 전압(515)를 수신하고,상기 제 2 전압(512) 및 상기 제 5 전압(515)는 서로 동일한,차량용 카메라 시스템.
- 제 5 항에 있어서,상기 제 2 전압 및 상기 제 5 전압(515)는 1.8 V인,차량용 카메라 시스템.
- 제 3 항에 있어서,상기 이미지 센서(31)는 코어 전원으로서 상기 레귤레이터부(523)로부터 제 6 전압(516)을 수신하고,상기 제 6 전압(516)은 2.8 V인,차량용 카메라 시스템.
- 제 3 항에 있어서,상기 제 1 컨버터부(521)는 적어도 하나의 DC-DC 컨버터를 포함하도록 구성되고,상기 레귤레이터부(523)는 적어도 하나의 LDO(Low Drop Out)을 포함하도록 구성되는,차량용 카메라 시스템.
- 제 1 항에 있어서,상기 카메라 MCU(42)는 제 1 메모리(531)와 통신하는,차량용 카메라 시스템.
- 제 9 항에 있어서,상기 이미지 프로세서(41)는 제 2 메모리(532) 및 제 3 메모리(533) 와 통신하는,차량용 카메라 시스템.
- 제 10 항에 있어서,상기 제 2 메모리(532)는 상기 차량용 카메라 시스템이 지원하는 ADAS 기능의 개수에 따라서 용량이 결정되는,차량용 카메라 시스템.
- 제 1 항에 있어서,상기 카메라 시스템은,RBDPS(Road Boundary Departure Prevention Systems), CACC(Cooperative Adaptive Cruise Control Systems), Vehicle/roadway warning systems, PAPS(Partially Automated Parking Systems), PALS(Partially Automated Lane Change Systems), C-FVBWS(Cooperative Forward Vehicle Emergency Brake Warning Systems), LDWS(Lane Departure Warning Systems), PDCMS(Pedestrian Detection and Collision Mitigation Systems), CSWS(Curve Speed Warning Systems), LKAS(Lane Keeping Assistance Systems), ACC(Adaptive Cruise Control systems), FVCWS(Forward Vehicle Collision Warning Systems), MALSO(Manoeuvring Aids for Low Speed Operation systems), LCDAS(Lane Change Decision Aid Systems), LSF(Low Speed Following systems), FSRA(Full Speed Range Adaptive cruise control systems), FVCMS(Forward Vehicle Collision Mitigation Systems), ERBA(Extended Range Backing Aids systems), CIWS(Cooperative Intersection Signal Information and Violation Warning Systems), TIWS(Traffic Impediment Warning Systems) 중 적어도 하나의 기능을 구현하기 위해서 사용되는,차량용 카메라 시스템.
- 제 1 항에 있어서,상기 렌즈 배럴은 플랜지를 더 포함하고,상기 렌즈 배럴의 플랜지의 하면에는 그루브가 형성되는,차량용 카메라 시스템.
- 제 13 항에 있어서,상기 그루브는 단일의 원형 형상, 이중의 원형 형상, 십자 격자 형상 및 지그지그 형상 중 적어도 하나로 형성되는 것을 특징으로 하는,차량용 카메라 시스템.
- 제 1 항에 있어서,상기 렌즈 홀더의 상면에는 그루브가 형성되는,차량용 카메라 시스템.
- 제 15 항에 있어서,상기 그루브는 단일의 원형 형상, 이중의 원형 형상, 십자 격자 형상 및 지그지그 형상 중 적어도 하나로 형성되는 것을 특징으로 하는,차량용 카메라 시스템.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/218,170 US10569771B2 (en) | 2017-01-19 | 2018-12-12 | Camera system for intelligent driver assistance system, and driver assistance system and method |
US16/512,887 US11208098B2 (en) | 2017-01-19 | 2019-07-16 | Camera system for intelligent driver assistance system, and driver assistance system and method |
US16/730,353 US11491974B2 (en) | 2017-01-19 | 2019-12-30 | Camera system for intelligent driver assistance system, and driver assistance system and method |
US17/158,330 US11767012B2 (en) | 2017-01-19 | 2021-01-26 | Camera system for intelligent driver assistance system, and driver assistance system and method |
US17/518,997 US11803026B2 (en) | 2017-01-19 | 2021-11-04 | Camera system for intelligent driver assistance system, and driver assistance system and method |
Applications Claiming Priority (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0009174 | 2017-01-19 | ||
KR10-2017-0009212 | 2017-01-19 | ||
KR1020170009176A KR102669526B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과, 충돌 방지 시스템 및 방법 |
KR1020170009212A KR102715505B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과 이를 이용한 주행 보조 시스템 |
KR10-2017-0009211 | 2017-01-19 | ||
KR1020170009209A KR102669183B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과, 차량 제어 장치 및 방법 |
KR1020170009213A KR102686601B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템 |
KR10-2017-0009173 | 2017-01-19 | ||
KR10-2017-0009175 | 2017-01-19 | ||
KR1020170009215A KR102691715B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과 이를 이용한 주행 보조 시스템 |
KR1020170009210A KR102666315B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과, 교차로 충돌 방지 시스템 및 방법 |
KR10-2017-0009172 | 2017-01-19 | ||
KR1020170009175A KR102670773B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과 이를 이용한 주행 보조 시스템 |
KR1020170009172A KR102670844B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과 이를 이용한 주행 보조 시스템 |
KR10-2017-0009176 | 2017-01-19 | ||
KR1020170009173A KR20180085529A (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과, 긴급제동 시스템 및 방법 |
KR1020170009214A KR20180085550A (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템 |
KR10-2017-0009215 | 2017-01-19 | ||
KR1020170009211A KR102682056B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과 이를 이용한 주행 보조 시스템 |
KR1020170009174A KR102713185B1 (ko) | 2017-01-19 | 2017-01-19 | Adas를 위한 카메라 시스템과, 교차로 충돌 방지 시스템 및 방법 |
KR10-2017-0009210 | 2017-01-19 | ||
KR10-2017-0009209 | 2017-01-19 | ||
KR10-2017-0009214 | 2017-01-19 | ||
KR10-2017-0009213 | 2017-01-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/218,170 Continuation US10569771B2 (en) | 2017-01-19 | 2018-12-12 | Camera system for intelligent driver assistance system, and driver assistance system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135869A1 true WO2018135869A1 (ko) | 2018-07-26 |
Family
ID=62909136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/000826 WO2018135869A1 (ko) | 2017-01-19 | 2018-01-18 | 지능형 운전자 보조 시스템을 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법 |
Country Status (2)
Country | Link |
---|---|
US (4) | US10569771B2 (ko) |
WO (1) | WO2018135869A1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110446106A (zh) * | 2019-06-27 | 2019-11-12 | 驭势(上海)汽车科技有限公司 | 一种前置摄像头文件的识别方法、电子设备及存储介质 |
CN110857096A (zh) * | 2018-08-10 | 2020-03-03 | 现代自动车株式会社 | 车辆和用于控制该车辆的方法 |
CN111127948A (zh) * | 2019-12-09 | 2020-05-08 | 苏州思酷数字科技有限公司 | 一种基于通信技术的车辆过弯检测系统及其工作方法 |
CN111845724A (zh) * | 2019-04-22 | 2020-10-30 | 上海汽车集团股份有限公司 | 一种自动驾驶车辆的避障方法、装置和车辆 |
US11091132B2 (en) | 2019-04-12 | 2021-08-17 | Bendix Commercial Vehicle Systems, Llc | Delay autonomous braking activation due to potential forward turning vehicle |
CN115107759A (zh) * | 2022-06-30 | 2022-09-27 | 重庆长安汽车股份有限公司 | 车辆的辅助驾驶方法、装置、车辆及存储介质 |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11036238B2 (en) | 2015-10-15 | 2021-06-15 | Harman International Industries, Incorporated | Positioning system based on geofencing framework |
US11235777B2 (en) * | 2015-10-15 | 2022-02-01 | Harman International Industries, Incorporated | Vehicle path prediction and target classification for autonomous vehicle operation |
CN108885828B (zh) * | 2016-04-15 | 2021-08-17 | 本田技研工业株式会社 | 车辆控制系统、车辆控制方法及存储介质 |
US10252717B2 (en) * | 2017-01-10 | 2019-04-09 | Toyota Jidosha Kabushiki Kaisha | Vehicular mitigation system based on wireless vehicle data |
KR102310378B1 (ko) * | 2017-04-18 | 2021-10-12 | 현대자동차주식회사 | 차량 주행제어 장치 및 방법 |
EP3404639A1 (en) * | 2017-05-18 | 2018-11-21 | Nokia Technologies Oy | Vehicle operation |
DE102017004826A1 (de) * | 2017-05-19 | 2018-11-22 | Lucas Automotive Gmbh | System und Verfahren zur Handhabung von Ausnahmeszenarien |
JP6911739B2 (ja) * | 2017-12-13 | 2021-07-28 | トヨタ自動車株式会社 | 運転支援装置 |
WO2019158204A1 (en) * | 2018-02-15 | 2019-08-22 | Toyota Motor Europe | Control method for a vehicle, computer program, non-transitory computer-readable medium, and automated driving system |
KR102496290B1 (ko) | 2018-07-06 | 2023-02-06 | 현대모비스 주식회사 | 헤딩각 보상 장치 및 방법 |
KR102644368B1 (ko) * | 2018-09-06 | 2024-03-07 | 현대자동차주식회사 | 레이더 센서의 타겟 각도 오차 보정 방법과 이를 이용한 레이더 감지 장치 |
JP6992719B2 (ja) * | 2018-09-27 | 2022-01-13 | オムロン株式会社 | 制御装置 |
US20210394752A1 (en) * | 2018-09-28 | 2021-12-23 | Hitachi Automotive Systems, Ltd. | Traveling Control Device, Vehicle, and Traveling Control Method |
JP7225791B2 (ja) * | 2018-12-26 | 2023-02-21 | 株式会社デンソー | 車両用制御装置 |
US11505181B2 (en) * | 2019-01-04 | 2022-11-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | System, method, and computer-readable storage medium for vehicle collision avoidance on the highway |
US11150664B2 (en) * | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
DE102019206026A1 (de) * | 2019-04-26 | 2020-10-29 | Robert Bosch Gmbh | Verfahren zur Ermittlung eines Sicherheitsniveaus einer Sollfunktion eines Fahrzeugs, Sicherheitssystem und Fahrzeug |
KR20200130888A (ko) * | 2019-05-07 | 2020-11-23 | 현대모비스 주식회사 | 복합정보 기반 scc시스템 제어 방법 및 장치 |
US11267393B2 (en) * | 2019-05-16 | 2022-03-08 | Magna Electronics Inc. | Vehicular alert system for alerting drivers of other vehicles responsive to a change in driving conditions |
JP7200871B2 (ja) * | 2019-07-25 | 2023-01-10 | トヨタ自動車株式会社 | 衝突回避支援装置 |
JP7165109B2 (ja) * | 2019-09-09 | 2022-11-02 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
KR20210042188A (ko) * | 2019-10-08 | 2021-04-19 | 현대자동차주식회사 | 차량 및 그 제어방법 |
CN110654381B (zh) * | 2019-10-09 | 2021-08-31 | 北京百度网讯科技有限公司 | 用于控制车辆的方法和装置 |
CN110682903B (zh) * | 2019-10-12 | 2020-08-28 | 辽宁工业大学 | 一种基于视觉感知的安全超车预警系统及方法 |
US11548505B2 (en) * | 2019-12-09 | 2023-01-10 | Magna Electronics Inc. | Vehicular speed control system with automatic setting parameters |
JP7330911B2 (ja) * | 2020-02-05 | 2023-08-22 | マツダ株式会社 | 車両用制御装置 |
US20230076404A1 (en) * | 2020-02-19 | 2023-03-09 | Nec Corporation | Traveling state determination apparatus, cutting-in warning apparatus, method, andcomputer readable medium |
US11599117B2 (en) * | 2020-02-20 | 2023-03-07 | Steering Solutions Ip Holding Corporation | Systems and methods for obstacle proximity detection |
KR20210114689A (ko) * | 2020-03-11 | 2021-09-24 | 주식회사 만도 | 차량 및 그 제어 방법 |
KR20210114791A (ko) * | 2020-03-11 | 2021-09-24 | 현대자동차주식회사 | 운전자 보조 장치 및 그의 동작 방법 |
US11206465B1 (en) * | 2020-03-30 | 2021-12-21 | Lytx, Inc. | Adaptive methods to minimize data storage and data transfer |
CN113492858B (zh) * | 2020-04-03 | 2023-03-28 | 荷兰移动驱动器公司 | 基于高精地图的辅助驾驶方法以及车载装置 |
JP7290137B2 (ja) * | 2020-06-10 | 2023-06-13 | トヨタ自動車株式会社 | 車両の制振制御装置及び制振制御方法 |
CN111731279B (zh) * | 2020-06-24 | 2022-06-07 | 重庆长安汽车股份有限公司 | 融合侧视摄像头实现车辆侧面保护的方法、车载设备及车辆 |
JP7474136B2 (ja) * | 2020-06-30 | 2024-04-24 | 本田技研工業株式会社 | 制御装置、制御方法、およびプログラム |
JP7425420B2 (ja) * | 2020-08-28 | 2024-01-31 | 日産自動車株式会社 | 運転支援方法及び運転支援装置 |
CN112109707B (zh) * | 2020-09-07 | 2022-01-07 | 东风汽车集团有限公司 | 一种针对vru的紧急车道保持辅助方法 |
US11516669B2 (en) * | 2020-09-22 | 2022-11-29 | Toyota Motor Engineering & Manufacturing North America, Inc. | Misbehavior detection for vehicle-to-everything messages |
US20240034358A1 (en) * | 2020-09-22 | 2024-02-01 | Valeo Vision | System for assisting with driving a vehicle |
KR20220078772A (ko) * | 2020-12-03 | 2022-06-13 | 현대모비스 주식회사 | 차량의 교차로 주행 제어 시스템 및 방법 |
US11718287B2 (en) * | 2020-12-09 | 2023-08-08 | Bendix Commercial Vehicle Systems Llc | Automated system and method for parking a commercial vehicle |
CN114684117A (zh) * | 2020-12-28 | 2022-07-01 | 观致汽车有限公司 | 防止侧向碰撞的控制方法和控制系统 |
JP2022122299A (ja) * | 2021-02-10 | 2022-08-23 | 株式会社Subaru | 運転支援装置 |
JP7533284B2 (ja) * | 2021-03-02 | 2024-08-14 | トヨタ自動車株式会社 | 情報処理装置、情報処理方法、およびシステム |
CN112977448A (zh) * | 2021-03-10 | 2021-06-18 | 中国第一汽车股份有限公司 | 一种自动巡航控制方法、自动巡航控制系统及车辆 |
JP2022152869A (ja) * | 2021-03-29 | 2022-10-12 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、及びプログラム |
US11794737B2 (en) | 2021-04-07 | 2023-10-24 | Ford Global Technologies, Llc | Vehicle operation |
US11708075B2 (en) * | 2021-04-08 | 2023-07-25 | Ford Global Technologies, Llc | Enhanced adaptive cruise control |
DE102021203551A1 (de) * | 2021-04-09 | 2022-10-13 | Volkswagen Aktiengesellschaft | Fahrintentionserkennung |
EP4112411B1 (en) * | 2021-07-01 | 2024-03-27 | Zenseact AB | Estimation of accident intensity for vehicles |
KR20230015640A (ko) * | 2021-07-23 | 2023-01-31 | 주식회사 에이치엘클레무브 | 차량 제어 장치 및 방법 |
CN113607127B (zh) * | 2021-10-08 | 2022-01-25 | 中交第一公路勘察设计研究院有限公司 | 公路用雷视一体机安装装置、使用方法及组网安装方法 |
DE202021105565U1 (de) | 2021-10-13 | 2022-02-17 | Verghese Ashok | Ein auf dem Internet der Dinge basierendes intelligentes Fahrzeug-Überholassistenzsystem |
WO2023208442A1 (en) | 2022-04-29 | 2023-11-02 | Zf Cv Systems Global Gmbh | Method for operating an advanced emergency braking system |
TWI844149B (zh) * | 2022-10-27 | 2024-06-01 | 富智捷股份有限公司 | 車輛狀態偵測方法、裝置及電腦可讀存儲介質 |
CN115689379A (zh) * | 2022-11-15 | 2023-02-03 | 安徽蔚来智驾科技有限公司 | 碰撞数据的检测方法、驾驶设备及其控制方法、介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120016430A (ko) * | 2010-08-16 | 2012-02-24 | 삼성전기주식회사 | 차량용 카메라 |
KR20130037971A (ko) * | 2011-10-07 | 2013-04-17 | 엘지이노텍 주식회사 | 능동형 자가진단 차량용 카메라 모듈 |
KR20130002349U (ko) * | 2011-10-10 | 2013-04-18 | 김정일 | 차량용 후방카메라 영상 분배기 |
KR20140136726A (ko) * | 2013-05-21 | 2014-12-01 | 삼성전기주식회사 | 카메라모듈용 렌즈유닛 |
KR20150140927A (ko) * | 2014-06-09 | 2015-12-17 | 엘지이노텍 주식회사 | 카메라 모듈 및 이를 포함하는 차량 부품 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4774849B2 (ja) | 2005-07-27 | 2011-09-14 | 日産自動車株式会社 | 車両の障害物表示装置 |
JP4720355B2 (ja) | 2005-08-11 | 2011-07-13 | トヨタ自動車株式会社 | 車両制御装置 |
JP2007171506A (ja) * | 2005-12-21 | 2007-07-05 | Fujifilm Corp | カメラシステム |
JP2009280015A (ja) | 2008-05-20 | 2009-12-03 | Toyota Motor Corp | 操舵制御装置 |
JP4814928B2 (ja) | 2008-10-27 | 2011-11-16 | 三菱電機株式会社 | 車両用衝突回避装置 |
US9771070B2 (en) * | 2011-12-09 | 2017-09-26 | GM Global Technology Operations LLC | Method and system for controlling a host vehicle |
JP5915152B2 (ja) | 2011-12-19 | 2016-05-11 | 日産自動車株式会社 | 走行支援装置及び走行支援方法 |
KR101361360B1 (ko) | 2011-12-26 | 2014-02-11 | 현대자동차주식회사 | 측후방 감지센서를 이용한 차간거리 제어 시스템 및 그 제어 방법 |
KR102228387B1 (ko) | 2015-10-06 | 2021-03-16 | 현대자동차주식회사 | 차량 제어 시스템 및 차량 제어 방법 |
US9688273B2 (en) * | 2015-10-27 | 2017-06-27 | GM Global Technology Operations LLC | Methods of improving performance of automotive intersection turn assist features |
KR101834351B1 (ko) | 2016-07-14 | 2018-03-05 | 엘지전자 주식회사 | 차량용 운전 보조 장치 |
-
2018
- 2018-01-18 WO PCT/KR2018/000826 patent/WO2018135869A1/ko active Application Filing
- 2018-12-12 US US16/218,170 patent/US10569771B2/en active Active
-
2019
- 2019-07-16 US US16/512,887 patent/US11208098B2/en active Active
- 2019-12-30 US US16/730,353 patent/US11491974B2/en active Active
-
2021
- 2021-11-04 US US17/518,997 patent/US11803026B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120016430A (ko) * | 2010-08-16 | 2012-02-24 | 삼성전기주식회사 | 차량용 카메라 |
KR20130037971A (ko) * | 2011-10-07 | 2013-04-17 | 엘지이노텍 주식회사 | 능동형 자가진단 차량용 카메라 모듈 |
KR20130002349U (ko) * | 2011-10-10 | 2013-04-18 | 김정일 | 차량용 후방카메라 영상 분배기 |
KR20140136726A (ko) * | 2013-05-21 | 2014-12-01 | 삼성전기주식회사 | 카메라모듈용 렌즈유닛 |
KR20150140927A (ko) * | 2014-06-09 | 2015-12-17 | 엘지이노텍 주식회사 | 카메라 모듈 및 이를 포함하는 차량 부품 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110857096A (zh) * | 2018-08-10 | 2020-03-03 | 现代自动车株式会社 | 车辆和用于控制该车辆的方法 |
CN110857096B (zh) * | 2018-08-10 | 2024-04-05 | 现代自动车株式会社 | 车辆和用于控制该车辆的方法 |
US11091132B2 (en) | 2019-04-12 | 2021-08-17 | Bendix Commercial Vehicle Systems, Llc | Delay autonomous braking activation due to potential forward turning vehicle |
CN111845724A (zh) * | 2019-04-22 | 2020-10-30 | 上海汽车集团股份有限公司 | 一种自动驾驶车辆的避障方法、装置和车辆 |
CN111845724B (zh) * | 2019-04-22 | 2021-11-09 | 上海汽车集团股份有限公司 | 一种自动驾驶车辆的避障方法、装置和车辆 |
CN110446106A (zh) * | 2019-06-27 | 2019-11-12 | 驭势(上海)汽车科技有限公司 | 一种前置摄像头文件的识别方法、电子设备及存储介质 |
CN110446106B (zh) * | 2019-06-27 | 2022-01-14 | 驭势(上海)汽车科技有限公司 | 一种前置摄像头文件的识别方法、电子设备及存储介质 |
CN111127948A (zh) * | 2019-12-09 | 2020-05-08 | 苏州思酷数字科技有限公司 | 一种基于通信技术的车辆过弯检测系统及其工作方法 |
CN115107759A (zh) * | 2022-06-30 | 2022-09-27 | 重庆长安汽车股份有限公司 | 车辆的辅助驾驶方法、装置、车辆及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US11491974B2 (en) | 2022-11-08 |
US20220080958A1 (en) | 2022-03-17 |
US20190337510A1 (en) | 2019-11-07 |
US10569771B2 (en) | 2020-02-25 |
US20190143968A1 (en) | 2019-05-16 |
US11208098B2 (en) | 2021-12-28 |
US20200231145A1 (en) | 2020-07-23 |
US11803026B2 (en) | 2023-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018135869A1 (ko) | 지능형 운전자 보조 시스템을 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법 | |
WO2020235765A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2018088615A1 (ko) | 차량 주행 제어 장치 및 방법 | |
WO2017209313A1 (ko) | 차량용 디스플레이 장치 및 차량 | |
WO2017222299A1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
WO2019031851A1 (ko) | 지도 제공 장치 | |
WO2021040060A1 (ko) | 차량용 전자 장치 및 그의 동작 방법 | |
WO2018088647A1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
WO2019098434A1 (ko) | 차량에 구비된 차량 제어 장치 및 차량의 제어방법 | |
EP3475134A1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
WO2017094952A1 (ko) | 차량 외부 알람방법, 이를 실행하는 차량 운전 보조장치 및 이를 포함하는 차량 | |
WO2018079919A1 (ko) | 자율 주행 차량 및 자율 주행 차량의 동작 방법 | |
WO2017200162A1 (ko) | 차량 운전 보조 장치 및 차량 | |
WO2015099465A1 (ko) | 차량 운전 보조 장치 및 이를 구비한 차량 | |
WO2019035652A1 (en) | DRIVING ASSISTANCE SYSTEM AND VEHICLE COMPRISING THE SAME | |
WO2021090971A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2020159247A1 (ko) | 영상 출력 장치 | |
WO2019066477A1 (en) | AUTONOMOUS VEHICLE AND ITS CONTROL METHOD | |
WO2021157760A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2021045256A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2018056515A1 (ko) | 차량용 카메라 장치 및 방법 | |
WO2021029444A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2020159245A1 (ko) | 차량 간 영상 공유 방법 | |
WO2021230387A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2015093823A1 (ko) | 차량 운전 보조 장치 및 이를 구비한 차량 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18741294 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18741294 Country of ref document: EP Kind code of ref document: A1 |