CN110682903B - 一种基于视觉感知的安全超车预警系统及方法 - Google Patents

一种基于视觉感知的安全超车预警系统及方法 Download PDF

Info

Publication number
CN110682903B
CN110682903B CN201910965633.9A CN201910965633A CN110682903B CN 110682903 B CN110682903 B CN 110682903B CN 201910965633 A CN201910965633 A CN 201910965633A CN 110682903 B CN110682903 B CN 110682903B
Authority
CN
China
Prior art keywords
vehicle
image
distance
rear vehicle
running speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910965633.9A
Other languages
English (en)
Other versions
CN110682903A (zh
Inventor
唐阳山
曹玉珠
魏丹
徐兆华
白艳
王琪
刘哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University of Technology
Original Assignee
Liaoning University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University of Technology filed Critical Liaoning University of Technology
Priority to CN201910965633.9A priority Critical patent/CN110682903B/zh
Publication of CN110682903A publication Critical patent/CN110682903A/zh
Application granted granted Critical
Publication of CN110682903B publication Critical patent/CN110682903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed

Abstract

本发明公开了一种基于视觉感知的安全超车预警系统,包括:后向检测装置,其可拆卸设置在汽车后视镜上,能够获取本车道和邻车道的后车行驶图像;距离传感器,其设置在汽车前方和后侧,能够检测本车道和邻车道的前车和后车车距;车速传感器,能够检测位于检测本车道和邻车道的前车和后车行驶速度;计算处理单元,其连接所述后向检测装置、所述距离传感器和所述车速传感器,能够根据所述后向检测装置、所述距离传感器和所述车速传感器检测到的数据计算得到超车预警信息;超车预警系统控制器,其连接所述计算处理单元,能够根据所述计算处理单元计算得到的超车预警信息控制汽车行驶状态,本发明还公开了一种基于视觉感知的安全超车预警方法。

Description

一种基于视觉感知的安全超车预警系统及方法
技术领域
本发明涉及汽车安全驾驶领域,尤其涉及一种基于视觉感知的安全超车预警系统和一种基于视觉感知的安全超车预警方法。
背景技术
随着计算机技术和人工智能技术的飞速发展,智能机器人技术已经成为了国内外众多学者研究的热点。其中,服务型机器人开辟了机器人应用的新领域,人类想摆脱重复的劳动。目前的快件需要人工派送,人工需求大,效率低,故人工派送被智能化的无人驾驶自动派送所代替势不可挡。为了更方便的区分和定义自动驾驶技术,自动驾驶的研究就成了一件大事。
发明内容
本发明设计开发了一种基于视觉感知的安全超车预警系统,在汽车后视镜上安装后向检测装置,能够获取本车道和邻车道的后车行驶图像。
本发明还设计开发了一种基于视觉感知的安全超车预警方法,能够根据车辆行驶信息计算前车碰撞概率和后车碰撞概率,并前车碰撞概率和后车碰撞概率连同汽车行驶速度和行驶加速度输入神经网络控制器得到的车辆转向控制策略,实现自动安全驾驶。
本发明提供的技术方案为:
一种基于视觉感知的安全超车预警系统,包括:
后向检测装置,其可拆卸设置在汽车后视镜上,能够获取本车道和邻车道的后车行驶图像;
距离传感器,其设置在汽车前方和后侧,能够检测本车道和邻车道的前车和后车车距;
车速传感器,其设置在汽车前方和后侧,能够检测位于检测本车道和邻车道的前车和后车行驶速度;
计算处理单元,其连接所述后向检测装置、所述距离传感器和所述车速传感器,能够根据所述后向检测装置、所述距离传感器和所述车速传感器检测到的数据计算得到超车预警信息;
超车预警系统控制器,其连接所述计算处理单元,能够根据所述计算处理单元计算得到的超车预警信息控制汽车行驶状态。
一种基于视觉感知的安全超车预警方法,包括:
步骤一、将采集到的车辆行驶图像依次进行像素点压缩、彩色图像灰度化、灰度拉伸、滤波和二值化得到预处理的包含后车图像的车辆行驶图像;
步骤二、对所述预处理的包含车辆图像的车辆行驶图像进行边缘化处理,定位出车辆行驶图像中的后车图像,并计算所述后车图像与所述车辆行驶图像的面积比;
步骤三、通过车速传感器检测本车道后车行驶速度和邻车道后车行驶速度,并根据t时间间隔内所述后车图像与所述车辆行驶图像的面积比变化率计算车辆行驶图像中的后车与本车的车距;
步骤四、根据本车道前车行驶速度、邻车道前车行驶速度、本车道前车车距和邻车道前车车距计算前车碰撞概率;
步骤五、根据本车道后车行驶速度、邻车道后车行驶速度、本车道后车车距和邻车道后车车距计算后车碰撞概率;
步骤六、将所述前车碰撞概率、所述后车碰撞概率、本车行驶速度和本车行驶加速度输入神经网络控制器,获得表示超车行驶参数控制的向量群;
并将超车行驶参数控制的向量群作为超车和控制策略输出。
优选的是,所述步骤一中像素点压缩过程的图像压缩率为:
Figure GDA0002525735620000021
其中,Rimg为图像压缩率,δ为阈值像素高度,h为采集到包含车牌的汽车图像样本的像素高度;
图像二值化过程包括:
采用如下公式取得二值化的最佳阈值:
Figure GDA0002525735620000031
其中,Vmax为图像像素点灰度值最大值,Vmin为图像像素点灰度值最小值,Vbest为二值化的最佳阈值。
优选的是,所述步骤三中的后车与本车车距计算公式为:
Figure GDA0002525735620000032
其中,Si为后车与本车车距,S0为标准车距,δi为后车图像在行驶图像中的面积占比变化率,δ0为面积占比平均变化率,vi为后车行驶速度,v0为本车行驶速度。
优选的是,所述前车碰撞概率计算公式为:
Figure GDA0002525735620000033
其中,Sq为前车与本车车距,S0为标准车距,vq为前车行驶速度,v0为本车行驶速度;
所述后车碰撞概率计算公式为:
Figure GDA0002525735620000034
其中,Pi为后车碰撞概率,Si为后车与本车车距,S0为标准车距,vi为后车行驶速度,v0为本车行驶速度。
优选的是,所述步骤六的神经网络控制器的计算过程为:
步骤1、依次将参数前车碰撞概率、所述后车碰撞概率、本车行驶速度和本车行驶加速度进行规格化;
步骤2、确定三层BP神经网络的输入层神经元向量x={x1,x2,x3,x4},其中,x1为前车碰撞概率系数,x2为后车碰撞概率系数,x3为本车行驶速度指数、x4为本车行驶加速度系数;
步骤3、所述输入层向量映射到隐层,所述隐层向量y={y1,y2,…,ym},m为隐层节点个数;
步骤4、得到输出层神经元向量o={o1,o2,o3,o4};其中,o1为下一时段速度控制系数,o2为下一时段加速度控制系数,o3为下一时段转角控制系数,o4为下一时段紧急制动系数;
步骤5、控制器输出下一时段控制策略关系式;
其中,所述隐层节点个数m满足:
Figure GDA0002525735620000041
其中n为输入层节点个数,p为输出层节点个数。
优选的是,所述前车碰撞概率Yt、所述后车碰撞概率Yp、本车行驶速度vi和本车行驶加速度ai的规格化公式为:
Figure GDA0002525735620000042
其中,xj为输入层向量中的参数,Xj分别为测量参数Yt、Yp、vi、ai,j=1,2,3,4;Xjmax和Xjmin分别为相应测量参数中的最大值和最小值。
优选的是,所述控制器输出下一时段的车辆控制策略关系式为:
Figure GDA0002525735620000043
其中,vi+1为ti~(ti+t0)时段车辆的行驶速度,ai+1为ti~(ti+t0)时段车辆的行驶加速度,βi+1为ti~(ti+t0)时段车辆转角,Pi+1为ti~(ti+t0)时段车辆的制动指令。
优选的是,所述输出层o4的神经元值为0或1,当o4为1时,此时车辆制动,当o4为0时不进行制动。
优选的是,所述隐层及所述输出层的激励函数均采用S型函数fj(x)=1/(1+e-x)。
本发明所述的有益效果
本发明设计开发了一种基于视觉感知的安全超车预警系统,在汽车后视镜上安装后向检测装置,能够获取本车道和邻车道的后车行驶图像。
本发明还设计开发了一种基于视觉感知的安全超车预警方法,能够根据车辆行驶信息计算前车碰撞概率和后车碰撞概率,并前车碰撞概率和后车碰撞概率连同汽车行驶速度和行驶加速度输入神经网络控制器得到的车辆转向控制策略,实现自动安全驾驶。
具体实施方式
下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供的一种基于视觉感知的安全超车预警系统,包括:后向检测装置、距离传感器、车速传感器、计算单元和超车预警系统控制器。
后向检测装置可拆卸设置在汽车后视镜上,能够获取本车道和邻车道的后车行驶图像;距离传感器设置在汽车前方和后侧,能够检测本车道和邻车道的前车和后车车距;车速传感器设置在汽车前方和后侧,能够检测位于检测本车道和邻车道的前车和后车行驶速度;计算处理单元连接后向检测装置、距离传感器和车速传感器,能够根据后向检测装置、距离传感器和车速传感器检测到的数据计算得到超车预警信息;超车预警系统控制器连接计算处理单元,能够根据计算处理单元计算得到的超车预警信息控制汽车行驶状态。
本发明还提供了一种基于视觉感知的安全超车预警方法,包括:
步骤一、将采集到的车辆行驶图像依次进行像素点压缩、彩色图像灰度化、灰度拉伸、滤波和二值化得到预处理的包含后车图像的车辆行驶图像;
其中,像素点压缩过程的图像压缩率为:
Figure GDA0002525735620000051
其中,Rimg为图像压缩率,δ为阈值像素高度,h为采集到包含车牌的汽车图像样本的像素高度;
图像二值化过程包括:
采用如下公式取得二值化的最佳阈值:
Figure GDA0002525735620000052
其中,Vmax为图像像素点灰度值最大值,Vmin为图像像素点灰度值最小值,Vbest为二值化的最佳阈值;
步骤二、对所述预处理的包含车辆图像的车辆行驶图像进行边缘化处理,定位出车辆行驶图像中的后车图像,并计算所述后车图像与所述车辆行驶图像的面积比;
采用大小为的矩形模板,对包含车辆图像的车辆行驶图像作膨胀操作,填补孔洞,连通汽车图像区域,然后再用同等大小的矩形模板腐蚀,消除孤立的小区域,保留大块连通的区域,即定位出车辆区域,并计算连通区域在行驶图像中的面积比;
步骤三、通过车速传感器检测本车道后车行驶速度和邻车道后车行驶速度,根据t时间间隔内所述后车图像与所述车辆行驶图像的面积比变化率计算车辆行驶图像中的后车与本车的车距;
Figure GDA0002525735620000061
其中,Si为后车与本车车距,S0为标准车距,δi为后车图像在行驶图像中的面积占比变化率,δ0为面积占比平均变化率,vi为后车行驶速度,v0为本车行驶速度。
步骤四、根据本车道前车行驶速度、邻车道前车行驶速度、本车道前车车距和邻车道前车车距计算前车碰撞概率;
Figure GDA0002525735620000062
其中,Pq为前车碰撞概率,Sq为前车与本车车距,S0为标准车距,vq为前车行驶速度,v0为本车行驶速度。
步骤五、根据本车道后车行驶速度、邻车道后车行驶速度、本车道后车车距和邻车道后车车距计算后车碰撞概率;
Figure GDA0002525735620000063
其中,Pi为后车碰撞概率,Si为后车与本车车距,S0为标准车距,vi为后车行驶速度,v0为本车行驶速度。
步骤六、将前车碰撞概率Pq、后车碰撞概率Pi、本车行驶速度v0和本车行驶加速度a0输入神经网络控制器,获得表示超车行驶参数控制的向量群;
建立BP神经网络模型。
BP模型上各层次的神经元之间形成全互连连接,各层次内的神经元之间没有连接,输入层神经元的输出与输入相同,即oi=xi。中间隐含层和输出层的神经元的操作特性为
Figure GDA0002525735620000071
opj=fj(netpj)
其中p表示当前的输入样本,ωji为从神经元i到神经元j的连接权值,opi为神经元j的当前输入,opj为其输出;fj为非线性可微非递减函数,一般取为S型函数,即fj(x)=1/(1+e-x)。
本发明采用的BP网络体系结构由三层组成,第一层为输入层,共n个节点,对应了表示设备工作状态的n个检测信号,这些信号参数由数据预处理模块给出;第二层为隐层,共m个节点,
Figure GDA0002525735620000072
其中,m为中间层节点个数,n为输入层节点个数,p为输出层节点个数;第三层为输出层,共p个节点,由系统实际需要输出的响应确定。
该网络的数学模型为:
输入层向量:x=(x1,x2,…,xn)T
中间层向量:y=(y1,y2,…,ym)T
输出层向量:z=(z1,z2,…,zp)T
按照采样周期,本发明中,输入层节点数为n=4,输出层节点数为p=4,隐藏层节点数m由下式估算得出:
Figure GDA0002525735620000073
由于传感器获取的数据属于不同的物理量,其量纲各不相同。因此,在数据输入人工神经网络之前,需要将数据规格化为0-1之间的数。
归一化的公式为
Figure GDA0002525735620000074
其中,xj为输入层向量中的参数,Xj分别为测量参数,Xj分别为Pq、Pi、v0和a0,j=1,2,3,4;Xjmax和Xjmin分别为相应测量参数中的最大值和最小值,采用S型函数。
具体而言,对于前车碰撞概率Pq,进行规格化后,得到前车碰撞概率系数x1
Figure GDA0002525735620000075
其中,max(Pq)和min(Pq)分别为前车碰撞概率的最大值和最小值。
同样的,后车碰撞概率Pi通过下式进行规格化,得到后车碰撞概率系数x2
Figure GDA0002525735620000081
其中,max(Pi)和min(Pi)分别为后车碰撞概率的最大值和最小值。
本车行驶速度v0进行规格化后,得到本车行驶速度系数x3
Figure GDA0002525735620000082
其中,max(v0)和min(v0)分别为本车行驶速度的最大值和最小值。
本车行驶加速度a0进行规格化后,得到本车行驶加速度系数x4
Figure GDA0002525735620000083
其中,max(a0)和min(a0)分别为本车行驶的最大加速度和最小加速度。
得到输出层神经元向量o={o1,o2,o3,o4};其中,o1为下一时段速度控制系数,o2为下一时段加速度控制系数,o3为下一时段转角控制系数,o4为下一时段紧急制动系数。
进行BP神经网络的训练。
建立好BP神经网络节点模型后,即可进行BP神经网络的训练。根据产品的经验数据获取训练的样本,并给定输入节点i和隐含层节点j之间的连接权值wij,隐层节点j和输出层节点k之间的连接权值wjk,隐层节点j的阈值θj,输出层节点k的阈值wij、wjk、θj、θk均为-1到1之间的随机数。
(1)训练方法
各子网采用单独训练的方法;训练时,首先要提供一组训练样本,其中的每一个样本由输入样本和理想输出对组成,当网络的所有实际输出与其理想输出一致时,表明训练结束;否则,通过修正权值,使网络的理想输出与实际输出一致;各子网训练时的输出样本如表1所示。
表1网络训练用的输出样本
Figure GDA0002525735620000084
Figure GDA0002525735620000091
(2)训练算法
BP网络采用误差反向传播(Backward Propagation)算法进行训练,其步骤可归纳如下:
第一步:选定一结构合理的网络,设置所有节点阈值和连接权值的初值。
第二步:对每个输入样本作如下计算:
(a)前向计算:对l层的j单元
Figure GDA0002525735620000092
式中,
Figure GDA0002525735620000093
为第n次计算时l层的j单元信息加权和,
Figure GDA0002525735620000094
为l层的j单元与前一层(即l-1层)的单元i之间的连接权值,
Figure GDA0002525735620000095
为前一层(即l-1层,节点数为nl-1)的单元i送来的工作信号;i=0时,令
Figure GDA0002525735620000096
Figure GDA0002525735620000097
为l层的j单元的阈值。
若单元j的激活函数为sigmoid函数,则
Figure GDA0002525735620000098
Figure GDA0002525735620000099
若神经元j属于第一隐层(l=1),则有
Figure GDA00025257356200000910
若神经元j属于输出层(l=L),则有
Figure GDA0002525735620000101
且ej(n)=xj(n)-oj(n);
(b)反向计算误差:
对于输出单元
Figure GDA0002525735620000102
对隐单元
Figure GDA0002525735620000103
(c)修正权值:
Figure GDA0002525735620000104
η为学习速率。
第三步:输入新的样本或新一周期样本,直到网络收敛,在训练时各周期中样本的输入顺序要重新随机排序。
BP算法采用梯度下降法求非线性函数极值,存在陷入局部极小以及收敛速度慢等问题。更为有效的一种算法是Levenberg-Marquardt优化算法,它使得网络学习时间更短,能有效地抑制网络陷于局部极小。其权值调整率选为
Δω=(JTJ+μI)-1JTe
其中J为误差对权值微分的雅可比(Jacobian)矩阵,I为输入向量,e为误差向量,变量μ是一个自适应调整的标量,用来确定学习是根据牛顿法还是梯度法来完成。
在系统设计时,系统模型是一个仅经过初始化了的网络,权值需要根据在使用过程中获得的数据样本进行学习调整,为此设计了系统的自学习功能。在指定了学习样本及数量的情况下,系统可以进行自学习,以不断完善网络性能。
车辆控制策略关系式为:
Figure GDA0002525735620000105
其中,vi+1为ti~(ti+t0)时段车辆的行驶速度,ai+1为ti~(ti+t0)时段车辆的行驶加速度,βi+1为ti~(ti+t0)时段车辆转角,Pi+1为ti~(ti+t0)时段车辆的制动指令。
输出层o4的神经元值为0或1,当o4为1时,此时车辆制动,当o4为0时不进行制动。
并将超车行驶参数控制的向量群作为超车和控制策略输出有益效果。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。

Claims (9)

1.一种基于视觉感知的安全超车预警方法,其特征在于,包括:
步骤一、将采集到的车辆行驶图像依次进行像素点压缩、彩色图像灰度化、灰度拉伸、滤波和二值化得到预处理的包含后车图像的车辆行驶图像;
步骤二、对所述预处理的包含车辆图像的车辆行驶图像进行边缘化处理,定位出车辆行驶图像中的后车图像,并计算所述后车图像与所述车辆行驶图像的面积比;
步骤三、通过车速传感器检测本车道后车行驶速度和邻车道后车行驶速度,并根据t时间间隔内所述后车图像与所述车辆行驶图像的面积比变化率计算车辆行驶图像中的后车与本车的车距;
步骤四、根据本车道前车行驶速度、邻车道前车行驶速度、本车道前车车距和邻车道前车车距计算前车碰撞概率;
步骤五、根据本车道后车行驶速度、邻车道后车行驶速度、本车道后车车距和邻车道后车车距计算后车碰撞概率;
步骤六、将所述前车碰撞概率、所述后车碰撞概率、本车行驶速度和本车行驶加速度输入神经网络控制器,获得表示超车行驶参数控制的向量群;
并将超车行驶参数控制的向量群作为超车和控制策略输出。
2.根据权利要求1所述的基于视觉感知的安全超车预警方法,其特征在于,所述步骤一中像素点压缩过程的图像压缩率为:
Figure FDA0002525735610000011
其中,Rimg为图像压缩率,δ为阈值像素高度,h为采集到包含车牌的汽车图像样本的像素高度;
图像二值化过程包括:
采用如下公式取得二值化的最佳阈值:
Figure FDA0002525735610000012
其中,Vmax为图像像素点灰度值最大值,Vmin为图像像素点灰度值最小值,Vbest为二值化的最佳阈值。
3.根据权利要求2所述的基于视觉感知的安全超车预警方法,其特征在于,所述步骤三中的后车与本车车距计算公式为:
Figure FDA0002525735610000021
其中,Si为后车与本车车距,S0为标准车距,δi为后车图像在行驶图像中的面积占比变化率,δ0为面积占比平均变化率,vi为后车行驶速度,v0为本车行驶速度。
4.根据权利要求3所述的基于视觉感知的安全超车预警方法,其特征在于,所述前车碰撞概率计算公式为:
Figure FDA0002525735610000022
其中,Sq为前车与本车车距,S0为标准车距,vq为前车行驶速度,v0为本车行驶速度;
所述后车碰撞概率计算公式为:
Figure FDA0002525735610000023
其中,Pi为后车碰撞概率,Si为后车与本车车距,S0为标准车距,vi为后车行驶速度,v0为本车行驶速度。
5.根据权利要求3所述的基于视觉感知的安全超车预警方法,其特征在于,所述步骤六的神经网络控制器的计算过程为:
步骤1、依次将参数前车碰撞概率、所述后车碰撞概率、本车行驶速度和本车行驶加速度进行规格化;
步骤2、确定三层BP神经网络的输入层神经元向量x={x1,x2,x3,x4},其中,x1为前车碰撞概率系数,x2为后车碰撞概率系数,x3为本车行驶速度指数、x4为本车行驶加速度系数;
步骤3、所述输入层神经元向量映射到隐层,所述隐层的向量y={y1,y2,…,ym},m为隐层的节点个数;
步骤4、得到输出层神经元向量o={o1,o2,o3,o4};其中,o1为下一时段速度控制系数,o2为下一时段加速度控制系数,o3为下一时段转角控制系数,o4为下一时段紧急制动系数;
步骤5、控制器输出下一时段控制策略关系式;
其中,所述隐层的节点个数m满足:
Figure FDA0002525735610000031
其中n为输入层节点个数,p为输出层节点个数。
6.根据权利要求5所述的基于视觉感知的安全超车预警方法,其特征在于,所述前车碰撞概率Pq、所述后车碰撞概率Pi、本车行驶速度v0和本车行驶加速度ai的规格化公式为:
Figure FDA0002525735610000032
其中,xj为输入层神经元向量中的参数,Xj分别为测量参数Pq、Pi、v0、ai,j=1,2,3,4;Xjmax和Xjmin分别为相应测量参数中的最大值和最小值。
7.根据权利要求5所述的基于视觉感知的安全超车预警方法,其特征在于,所述控制器输出下一时段的车辆控制策略关系式为:
Figure FDA0002525735610000033
其中,vi+1为ti~(ti+t0)时段车辆的行驶速度,ai为ti~(ti+t0)时段车辆的行驶加速度,βi+1为ti~(ti+t0)时段车辆转角,Pi+1为ti~(ti+t0)时段车辆的制动指令。
8.根据权利要求7所述的基于视觉感知的安全超车预警方法,其特征在于,所述输出层o4的神经元值为0或1,当o4为1时,此时车辆制动,当o4为0时不进行制动。
9.根据权利要求5所述的基于视觉感知的安全超车预警方法,其特征在于,所述隐层及所述输出层的激励函数均采用S型函数fj(x)=1/(1+e-x)。
CN201910965633.9A 2019-10-12 2019-10-12 一种基于视觉感知的安全超车预警系统及方法 Active CN110682903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910965633.9A CN110682903B (zh) 2019-10-12 2019-10-12 一种基于视觉感知的安全超车预警系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910965633.9A CN110682903B (zh) 2019-10-12 2019-10-12 一种基于视觉感知的安全超车预警系统及方法

Publications (2)

Publication Number Publication Date
CN110682903A CN110682903A (zh) 2020-01-14
CN110682903B true CN110682903B (zh) 2020-08-28

Family

ID=69112265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910965633.9A Active CN110682903B (zh) 2019-10-12 2019-10-12 一种基于视觉感知的安全超车预警系统及方法

Country Status (1)

Country Link
CN (1) CN110682903B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402627B (zh) * 2020-02-24 2021-06-25 吉林大学 一种基于车联网的多工况换道安全预警系统及预警方法
CN112172670B (zh) * 2020-10-19 2022-10-04 广州优创电子有限公司 基于图像识别的后视图像显示方法及装置
CN113781800A (zh) * 2021-08-20 2021-12-10 东风汽车集团股份有限公司 一种道路拥堵时选择最快行驶路线的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991504B (zh) * 2012-12-07 2015-06-03 长安大学 一种对驾驶员换道安全性进行判断并预警的方法
CN105844967B (zh) * 2016-05-16 2018-08-24 广州市甬利格宝信息科技有限责任公司 基于车车通信的车辆碰撞预警及主动控制方法
CN106427998B (zh) * 2016-09-30 2018-08-21 江苏大学 一种高速状态下车辆紧急变道避撞的控制方法
CN108230748A (zh) * 2016-12-22 2018-06-29 柯美汽车零部件(上海)有限公司 一种基于视觉感知的低成本超车预警系统
WO2018135869A1 (ko) * 2017-01-19 2018-07-26 주식회사 만도 지능형 운전자 보조 시스템을 위한 카메라 시스템, 및 운전자 보조 시스템 및 방법

Also Published As

Publication number Publication date
CN110682903A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN110682903B (zh) 一种基于视觉感知的安全超车预警系统及方法
CN109552289B (zh) 一种汽车自适应辅助制动系统及其控制方法
CN108482481B (zh) 四轮独立驱动与转向电动汽车的四轮转向控制方法
CN109455178B (zh) 一种基于双目视觉的道路交通车辆行驶主动控制系统及方法
CN110097785A (zh) 一种前车切入或紧急换道识别预警装置及预警方法
CN108537197A (zh) 一种基于深度学习的车道线检测预警装置及预警方法
CN109263654B (zh) 一种汽车过减速带自适应调速系统及调速方法
CN110728241A (zh) 一种基于深度学习多特征融合的驾驶员疲劳检测方法
CN109703548B (zh) 一种基于混合动力的汽车动力分配方法
CN112232490A (zh) 一种基于视觉的深度模仿强化学习驾驶策略训练方法
CN111338385A (zh) 一种基于GRU网络模型与Gipps模型融合的车辆跟驰方法
CN109712424B (zh) 一种基于物联网的车辆导航方法
CN111081067B (zh) 车联网环境下基于iga-bp神经网络的车辆碰撞预警系统及方法
CN112109708A (zh) 一种考虑驾驶行为的自适应巡航控制系统及其控制方法
CN109910865B (zh) 一种基于物联网的车辆预警刹车方法
CN110816531B (zh) 一种无人驾驶汽车车辆间安全距离的控制系统及控制方法
CN110103960B (zh) 车辆自适应巡航控制方法、系统及车辆
CN109835333B (zh) 一种保持车辆在车道中间行驶的控制系统及控制方法
CN110154893B (zh) 一种基于驾驶员特性的汽车安全驾驶预警方法
CN109572692B (zh) 一种电控车辆防冲撞系统的控制方法
CN110456790B (zh) 基于自适应权重的智能网联电动汽车队列优化控制方法
CN110231820B (zh) 一种基于物联网的车辆行驶控制方法
CN110203190B (zh) 一种用于电控车辆的防溜车系统及其控制方法
CN113705865B (zh) 一种基于深度神经网络的汽车稳定性因数预测方法
CN111255557A (zh) 一种汽车发动机冷却检测系统及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant