WO2018028058A1 - 一种表面功能化可载药洗脱微球的制备方法 - Google Patents

一种表面功能化可载药洗脱微球的制备方法 Download PDF

Info

Publication number
WO2018028058A1
WO2018028058A1 PCT/CN2016/104511 CN2016104511W WO2018028058A1 WO 2018028058 A1 WO2018028058 A1 WO 2018028058A1 CN 2016104511 W CN2016104511 W CN 2016104511W WO 2018028058 A1 WO2018028058 A1 WO 2018028058A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
carboxymethyl chitosan
eluting
drug
preparing
Prior art date
Application number
PCT/CN2016/104511
Other languages
English (en)
French (fr)
Inventor
倪才华
曹元龙
石刚
张丽萍
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to KR1020187007546A priority Critical patent/KR102083023B1/ko
Publication of WO2018028058A1 publication Critical patent/WO2018028058A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to a preparation method of a biodegradable drug carrier, and relates to the field of biomedicine, in particular to a method for preparing a surface functionalized drug-loadable eluting microsphere.
  • liver cancer is a common malignant tumor with high morbidity and mortality.
  • the incidence of liver cancer in the world is increasing year by year. China is the country with the highest incidence of liver cancer and the highest number of deaths in the world.
  • the incidence of liver cancer is the third most common malignant tumor after gastric cancer and lung cancer.
  • the disease is a serious threat to people's health.
  • the common treatment of tumors is surgical resection, but for patients with advanced tumors, ranscatheter arterial chemoembolization (TACE) is an ideal treatment.
  • TACE ranscatheter arterial chemoembolization
  • Interventional therapy refers to transcatheter arterial chemoembolization, which involves transcatheter feeding the drug-containing microspheres into the target tissue, blocking the blood supply artery of the tumor and slowly releasing the drug, thereby increasing the local concentration of the chemotherapy drug and reducing the toxic side effects of the system.
  • TACE transcatheter arterial chemoembolization
  • Carboxymethyl chitosan is a derivative of chitosan, a water-soluble polymer with broad source, good water solubility, strong antibacterial properties, etc. due to its good biocompatibility and cell-free It is widely used in cosmetics, food, medicine and other industries, especially in biomedical materials, and has attracted much attention as a drug carrier.
  • carboxymethyl chitosan As a raw material.
  • the use of carboxymethyl chitosan to prepare drug-loaded microspheres is still defective: First, the cross-linking agent used is toxic to cells.
  • the role, such as glutaraldehyde, or the crosslinker source is narrow, expensive, such as genipin;
  • the lack of a suitable drug-loading group, the carboxyl group in carboxymethyl chitosan is a weak ionophore group, with a positive charge
  • the drug is not strong, so the drug loading rate is low and the reaction rate is slow.
  • Surface-functionalized drug-loaded eluting microspheres can be guided to the arterial blood vessels surrounding the tumor tissue by interventional therapy, not only blocking the nutrient supply to the tumor tissue, but also releasing anti-tumor drugs, along with the concentration of anticancer drugs in the tumor tissue. Increased, inhibiting tumor growth.
  • Carboxymethyl chitosan microspheres can be degraded in the body and excreted with the body's metabolism.
  • APG0810 alkyl glycoside
  • this patent synthesizes a surface functionalized drug-loaded eluting microsphere.
  • carboxymethyl chitosan microspheres were prepared, and then the dried microspheres were placed in an aqueous solution of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) to form a carboxymethyl group using cerium ions as an initiator.
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • Oxidation of chitosan generating free radicals, further initiating the polymerization of 2-acrylamide-2-methylpropanesulfonic acid (AMPS), thereby grafting the surface of the microspheres to prepare a surface functionalized drug-loading elution Microspheres.
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • the sulfonic acid group in the molecule of 2-acrylamide-2-methylpropanesulfonic acid is a strong ionizing group and is highly hydrophilic, the group is introduced into the carboxymethyl chitosan molecule, which can greatly enhance the carboxyl group.
  • the loading rate of the methyl chitosan microspheres to the drug doxorubicin; and the carboxymethyl chitosan microspheres containing the sulfonic acid group have the advantages of no cytotoxicity, good biocompatibility, and wide source of raw materials.
  • the invention provides a technical solution for preparing a surface functionalized drug-loadable eluting microsphere, which comprises the following steps in sequence:
  • the preferred mass fraction of the carboxymethyl chitosan solution is 3% to 4%, and the polymerization degree of the polyethylene glycol diglycidyl ether is 2-8, and the amount thereof is carboxymethyl chitosan. 1 to 5 times the weight, the magnetic stirring time of the mixed solution is 15 to 30 minutes.
  • the oil phase is n-heptane, n-octane, paraffin oil or soybean oil, and the volume ratio of the oil phase to the water phase is 3:1 to 6:1.
  • the emulsifier is an alkyl glycoside, abbreviated as APG0810, and the amount thereof is 0.5% to 2% of the mass of the oil phase.
  • the emulsifier is first added to the oil phase, and after stirring for 20 minutes, the mixture of the carboxymethyl chitosan and the polyethylene glycol diglycidyl ether is gradually dropped into the oil phase. And control the stirring speed of 200 ⁇ 500 rev / min.
  • the concentration of 2-acrylamide-2-methylpropanesulfonic acid is 0.1-1.5 mol/L.
  • the initiator is ammonium cerium nitrate, and the amount thereof is 0.1% to 2% by weight of 2-acrylamide-2-methylpropanesulfonic acid, and is protected by N 2 at 50 ° C.
  • the reaction was carried out for 8 hours.
  • the carboxymethyl chitosan molecule contains a -NH 2 group and is weakly alkaline in water
  • the epoxy group in the polyethylene glycol diglycidyl ether is catalyzed with a carboxymethyl chitosan molecule under base catalysis.
  • the amino group on the reaction is ring-opened, and the carboxymethyl chitosan is crosslinked to form microspheres under reverse microsuspension polymerization conditions.
  • the prepared dry microspheres were immersed in an aqueous solution of 2-acrylamide-2-methylpropanesulfonic acid for 10 hours, and ammonium cerium nitrate was added thereto, and the molecular portion of the carboxymethyl chitosan was oxidized to generate a radical, which initiated 2-propene.
  • the amide-2-methylpropanesulfonic acid is polymerized and grafted onto the carboxymethyl chitosan molecule. According to the above mechanism, the sulfonic acid group can be efficiently grafted onto the surface of the microspheres.
  • the invention also provides a use of a surface functionalized drug-loaded eluting microsphere in a chemotherapeutic drug carrier.
  • the drug loading rate and the controlled release performance are improved by the interaction of the negative charge of the sulfonic acid group on the surface of the microsphere with the amino positive charge of the doxorubicin hydrochloride molecule.
  • the present invention has at least the following advantages:
  • microsphere contains a carboxyl group and a sulfonic acid group, the interaction with the antitumor drug doxorubicin can be enhanced, thereby increasing the load ratio of the carrier to the drug;
  • a new "green” emulsifier alkyl glycoside APG0810, which has high surface activity, good ecological safety and compatibility, is an internationally recognized “green” functional surfactant.
  • the emulsifier synthesizes the microspheres to ensure the safety of the product.
  • the eluted microspheres were synthesized by reversed-phase microsuspension polymerization method. The method was simple, the conditions were mild, no by-products were produced, the reaction was complete, and the product was pure.
  • Figure 1 is a synthetic route of surface functionalized drug-loaded eluting microspheres
  • 2 is an infrared spectrum of carboxymethyl chitosan before and after modification, wherein a: modified carboxymethyl chitosan microspheres; b: modified carboxymethyl chitosan microspheres;
  • FIG. 3 is a super depth-of-depth microscope photograph of a surface functionalized drug-loaded eluting microsphere in the present invention
  • Figure 4 is a graph showing the cumulative release rate of microspheres in a PBS (pH 7.4) medium in the present invention.
  • a modified surface functionalized drug-loaded eluting microspheres;
  • b unmodified carboxymethyl chitosan drug-loaded microspheres.
  • the emulsion is washed with a large amount of ethanol, the microspheres are washed, and the number of washings is repeated. Then, the microspheres were finally dried in a vacuum oven at 35 ° C for 24 hours, and the obtained microspheres were concentrated at 350 ⁇ m.
  • Example 1 The 4% carboxymethyl chitosan solution of Example 1 was changed to a 1% carboxymethyl chitosan solution, and the other amounts and the synthesis process were the same as in Example 1.
  • Example 1 The 4% carboxymethyl chitosan solution in Example 1 was changed to a 2% carboxymethyl chitosan solution, and the other amounts and the synthesis process were the same as in Example 1.
  • Example 1 The 4% carboxymethyl chitosan solution in Example 1 was changed to a 3% carboxymethyl chitosan solution, and the other amounts and the synthesis procedure were the same as in Example 1.
  • Example 1 The 4% carboxymethyl chitosan solution in Example 1 was changed to a 5% carboxymethyl chitosan solution, and the other amounts and the synthesis procedure were the same as in Example 4.
  • Example 2 25 mg of the dried carboxymethyl chitosan microspheres modified in the above Example 1 was weighed and placed in 10 ml of a doxorubicin hydrochloride solution having a concentration of 2 mg/ml. Slowly oscillate at room temperature. The concentration of doxorubicin solution at a wavelength of 483 nm was measured at different time points by using an ultraviolet spectrophotometer. The drug loading rate of the microspheres was calculated, and the drug loading rate (LR) of the microspheres was calculated according to the following formula:
  • the drug loading rate of the modified carboxymethyl chitosan microsphere was 37.1%, which was 54.8% higher than that of the unmodified microsphere.
  • a small amount of unmodified carboxymethyl chitosan microspheres and modified carboxymethyl chitosan microspheres were obtained, respectively, using a total reflection Fourier infrared spectrometer in the wavenumber range of 4000-500 cm -1 .
  • An infrared absorption scan was performed to obtain an infrared spectrum.
  • 2 is an infrared spectrum of carboxymethyl chitosan microspheres before and after modification, wherein a: unmodified carboxymethyl chitosan microspheres; b: modified carboxymethyl chitosan microspheres.
  • Figure 3 is a super depth-of-depth micrograph of a surface functionalized drug-loaded eluting microsphere of the present invention.
  • the modified drug-loaded microspheres and the unmodified drug-loaded microspheres each having a particle size of 350 ⁇ m were selected, each weighing 25 mg, and placed in a buffer solution of PBS (pH 7.4), and then placed in a constant temperature water bath oscillator at a temperature. Control at 5 ⁇ 0.5°C, take 5mL supernatant from the fixed point, and add the same volume of fresh medium in time. Detect the drug content in the buffer by UV spectrophotometer, repeat the operation for 3 times, and calculate the different time periods in PBS. (pH 7.4) The cumulative release rate in the medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种表面功能化可载药洗脱微球的制备方法,包括以下步骤:(1)以羧甲基壳聚糖为原料,聚乙二醇二缩水甘油醚为交联剂,通过反相微悬浮交联方法,制备出粒径主要分布在300~400um的交联羧甲基壳聚糖微球;(2)将制备出的干燥交联羧甲基壳聚糖微球放入2‑丙烯酰胺‑2‑甲基丙磺酸水溶液中浸泡,以硝酸铈铵为引发剂,使2‑丙烯酰胺‑2‑甲基丙磺酸在微球表面接枝聚合,微球得以改性。该微球表面通过接枝聚合改性,带有大量的磺酸基团,可有效负载含正电荷药物例如盐酸阿霉素,用以制备洗脱微球。

Description

一种表面功能化可载药洗脱微球的制备方法 技术领域
本发明涉及一种生物可降解药物载体的制备方法,涉及生物医药领域,尤其涉及一种表面功能化可载药洗脱微球的制备方法。
背景技术
原发性肝癌是一种常见的恶性肿瘤,其发病率和死亡率均较高,全球肝癌的发病率呈逐年上升的趋势。我国是全球肝癌发病率最高和病死数最多的国家,肝癌的发病率成为死亡率仅次于胃癌、肺癌的第三大恶性肿瘤。该病严重威胁人们的身体健康,常见的治疗肿瘤方案是采用手术切除法,但是对于中晚期的肿瘤患者来说,介入疗法(ranscatheter arterial chemoembolization,TACE)是比较理想的治疗方案。介入治疗指的是经导管动脉化疗栓塞术,即经导管将含药微球输入靶组织,阻断肿瘤的供血动脉并缓慢释放药物,从而提高化疗药物的局部浓度,降低了全身的毒副作用。一系列临床分析显示TACE能有效地控制肿瘤生长,延长患者生存期。对于不能手术切除的中晚期肝癌患者,TACE是首选的非手术治疗方法。
羧甲基壳聚糖(CCN)是壳聚糖的衍生物,是一种水溶性高分子,具有来源广泛、水溶性好、抗菌性强等优点,因其良好的生物相容性和无细胞毒性,而被广泛应用于化妆品、食品、医药等行业,特别是在生物医药材料方面,作为药物载体而备受关注。以羧甲基壳聚糖作为原料制备载药栓塞微球已有一些报道,但是目前羧甲基壳聚糖用来制备载药微球尚有缺陷:一是使用的交联剂对细胞具有毒害作用,如戊二醛,或交联剂来源狭窄,价格昂贵,如京尼平;二是缺乏合适的载药基团,羧甲基壳聚糖中的羧基是弱电离基团,与正电荷药物作用力不强,因此药物负载率偏低,反应速度慢。
表面功能化可载药的洗脱微球可经介入疗法导向肿瘤组织周围的动脉血管中,不仅阻断对肿瘤组织的营养供给,同时释放抗肿瘤药物,随着肿瘤组织中抗癌药物浓度的升高,对肿瘤生长起到抑制作用。羧甲基壳聚糖微球在体内可以降解,随人体代谢排出体外。
作为医用材料,对人体的安全性至关重要。因此本工作在合成羧甲基壳聚糖栓塞微球时,选用了一种新型“绿色”表面活性剂,烷基糖苷,简称APG0810,它是由天然脂肪醇和葡萄糖合成的,具有高表面活性、良好的生态安全性和相溶性,是国际公认的“绿色”功能性表面活性剂。
发明内容
针对目前洗脱微球制备及其性能的缺陷,本专利合成了一种表面功能化可载药洗脱微球。 首先制得羧甲基壳聚糖微球,然后将干燥后的微球放入2-丙烯酰胺-2-甲基丙磺酸(AMPS)水溶液中,以铈离子为引发剂,使羧甲基壳聚糖氧化,产生自由基,进一步引发2-丙烯酰胺-2-甲基丙磺酸(AMPS)聚合,从而对微球表面进行接枝改性,制备出表面功能化可载药的洗脱微球。由于2-丙烯酰胺-2-甲基丙磺酸分子中的磺酸基是强电离基团,亲水性极强,将该基团引入到羧甲基壳聚糖分子上,可以大大提高羧甲基壳聚糖微球对药物阿霉素的负载率;且含有磺酸基团的羧甲基壳聚糖微球具有无细胞毒性、生物相容性好、原料来源广泛等优点。
本发明提供的制备一种表面功能化可载药洗脱微球的技术方案,依次包括以下步骤:
1)制备交联羧甲基壳聚糖微球,将羧甲基壳聚糖水溶液与聚乙二醇二缩水甘油醚按按10ml浓度为4wt%羧甲基壳聚糖水溶液与1.0g聚乙二醇二缩水甘油醚比例混合均匀,制备时使用了高分子交联剂,聚乙二醇二缩水甘油醚(PEGDE),将其与羧甲基壳聚糖溶液混合均匀,滴加到油相里,通过反相微悬浮方法,制备羧甲基壳聚糖微球。
2)交联羧甲基壳聚糖微球的表面功能化,以硝酸铈铵为引发剂,将上述干燥后的微球浸入到2-丙烯酰胺-2-甲基丙磺酸水溶液中,使2-丙烯酰胺-2-甲基丙磺酸在微球表面接枝聚合。反应结束后,将微球用蒸馏水反复洗涤数次,再冷冻干燥,得到表面功能化可载药洗脱微球。
在所述步骤1)中,羧甲基壳聚糖溶液的优选质量分数为3%~4%,聚乙二醇二缩水甘油醚的聚合度2~8,其用量占羧甲基壳聚糖重量的1~5倍,将混合溶液磁力搅拌时间为15~30min。
具体的,所述步骤1)中,油相为正庚烷、正辛烷、石蜡油或大豆油,油相与水相的体积比为3:1~6:1。
具体的,所述步骤1)中,乳化剂为烷基糖苷,简称APG0810,其用量占油相质量的0.5%~2%。
具体的,所述步骤1)中,先将乳化剂加入到油相里,搅拌20min后,再将羧甲基壳聚糖与聚乙二醇二缩水甘油醚混合物逐渐滴入到油相里,并控制搅拌速度为200~500转/分钟。
具体的,所述步骤2)中,2-丙烯酰胺-2-甲基丙磺酸用量浓度为:0.1~1.5mol/L。
具体的,所述步骤2)中,引发剂为硝酸铈铵,其加入量占2-丙烯酰胺-2-甲基丙磺酸重量的0.1%~2%,通N2保护,在50℃条件下反应8小时。
由于羧甲基壳聚糖分子上含有-NH2基团,在水中呈弱碱性,因此聚乙二醇二缩水甘油醚中的环氧基团在碱催化下与羧甲基壳聚糖分子上的氨基反应开环,在反相微悬浮聚合条件下,羧甲基壳聚糖交联形成微球。将制得的干燥微球放入2-丙烯酰胺-2-甲基丙磺酸水溶液中浸泡10小时,加入硝酸铈铵,羧甲基壳聚糖分子部分被氧化生成自由基,引发2-丙烯酰胺-2- 甲基丙磺酸聚合,接枝到羧甲基壳聚糖分子上去。根据如上机理,磺酸基团可有效地接枝到微球表面上。
本发明还提供一种表面功能化可载药洗脱微球在化疗药物载体中的应用。通过微球表面磺酸基团的负电荷与盐酸阿霉素分子的氨基正电荷的相互作用,提高药物负载率和控制释放性能。
借由上述方案,本发明至少具有以下优点:
1.使用一种新的高分子交联剂,无毒、价格低廉、易于获得。且由于聚乙二醇二缩水甘油醚属于低聚物,相对戊二醛小分子而言,所形成的凝胶“网格”空间更大,更易于阿霉素分子扩散到微球内部,从而提高微球的载药率;
2.由于该微球含有羧基和磺酸基团,可以增强与抗肿瘤药物阿霉素相互作用,因而可以提高载体对药物的负载率;
3.合成微球时选用了新型“绿色”乳化剂,烷基糖苷APG0810,它具有高表面活性、良好的生态安全性和相溶性,是国际公认的“绿色”功能性表面活性剂,用作乳化剂合成微球,保证了产品的安全性。
4.通过反相微悬浮聚合方法,合成洗脱微球,方法简单、条件温和,无副产物产生,反应完全,产物纯净。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下是本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为表面功能化可载药洗脱微球的合成路线;
图2为改性前后羧甲基壳聚糖的红外谱图,其中a:改性前羧甲基壳聚糖微球;b:改性后羧甲基壳聚糖微球;
图3为本发明中表面功能化可载药洗脱微球的超景深显微镜照片;
图4为本发明中微球在PBS(pH 7.4)介质中的累计释放率曲线。a:改性后表面功能化可载药洗脱微球;b:未改性的羧甲基壳聚糖载药微球。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1.
1)羧甲基壳聚糖微球的制备:
称取1.0g聚乙二醇二缩水甘油醚,加入到10ml浓度为4%羧甲基壳聚糖溶液中,常温下 磁力搅拌20min,使两者混合均匀。量取40ml正庚烷,放入到250ml三口烧瓶中,接着加入0.27g(占油相质量的1%)乳化剂APG0810,机械搅拌,转速为300rad/min。待乳化剂分散均匀后,将上述混合物逐渐滴入到正庚烷中,30℃条件下边乳化边交联,交联反应24h,反应结束后,用大量乙醇破乳、清洗微球,反复洗涤数次,最后将微球放入35℃真空干燥箱中干燥24小时,得到的微球粒径集中在在350um。
2)表面功能化可载药洗脱微球的制备:
称取上述干燥的羧甲基壳聚糖微球50mg,放入10ml浓度为0.9mol/L的2-丙烯酰胺-2-甲基丙磺酸水溶液中,磁力搅拌,常温下侵泡10h后,加入0.0186g硝酸铈铵,通N2保护,在50℃条件下反应8小时。反应结束后,将改性微球用蒸馏水多次浸泡洗涤,然后真空干燥,得到可载药洗脱微球。
实施例2.
将实施例1中4%羧甲基壳聚糖溶液改成1%羧甲基壳聚糖溶液,其他用量及其合成过程与实施例1相同。
实施例3.
将实施例1中4%羧甲基壳聚糖溶液改成2%羧甲基壳聚糖溶液,其他用量及其合成过程与实施例1相同。
实施例4
将实施例1中4%羧甲基壳聚糖溶液改成3%羧甲基壳聚糖溶液,其他用量及其合成过程与实施例1相同。
实施例5
将实施例1中4%羧甲基壳聚糖溶液改成5%羧甲基壳聚糖溶液,其他用量及其合成过程与实施例4相同。
表1不同浓度的羧甲基壳聚糖对制备微球的影响
Figure PCTCN2016104511-appb-000001
Figure PCTCN2016104511-appb-000002
实施例6
称取上述实施例1改性后的干燥羧甲基壳聚糖微球25mg,放入10ml浓度为2mg/ml的盐酸阿霉素溶液中。室温下缓慢震荡,通过使用紫外分光光度计,在不同时间段检测波长在483nm处阿霉素溶液的浓度,计算微球的载药率,按照下列公式计算微球的载药率(LR):
LR(%)=WD/WS×100
式中WD——微球中药物的质量,mg
WS——投入微球的质量,mg
通过计算,改性后羧甲基壳聚糖微球载药率为37.1%,较未改性的微球提高了54.8%。
实施例7
分别取少量干燥后未改性的羧甲基壳聚糖微球和改性后的羧甲基壳聚糖微球,使用全反射傅里叶红外光谱仪,在4000~500cm-1的波数范围内进行红外吸收扫描,得到红外谱图。图2为改性前后羧甲基壳聚糖微球的红外谱图,其中a:未改性羧甲基壳聚糖微球;b:改性后的羧甲基壳聚糖微球。
实施例8
选取改性后粒径在350um的羧甲基壳聚糖微球,分别在超景深显微镜下观察微球形貌。图3为本发明中表面功能化可载药洗脱微球的超景深显微镜照片。
实施例9
选取粒径均在350um的改性载药微球和未改性载药微球,各称取25mg,放入PBS(pH 7.4)缓冲溶液中,然后将其置于恒温水浴振荡器中,温度控制在37±0.5℃,定点量取5mL上清液,并及时补充相同体积的新鲜介质,通过紫外分光光度计检测缓冲液中药物含量,重复操作3次取平均值,计算不同时间段在PBS(pH 7.4)介质中的累计释放率。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述制备方法分两步进行:
    1)制备交联羧甲基壳聚糖微球,将羧甲基壳聚糖水溶液与聚乙二醇二缩水甘油醚按10ml浓度为4wt%羧甲基壳聚糖水溶液与1.0g聚乙二醇二缩水甘油醚比例预先混合均匀,将混合溶液滴入到含有乳化剂的油相里,采用反相微悬浮交联方法,30℃条件下搅拌反应,制备羧甲基壳聚糖微球,将所得微球用乙醇、蒸馏水洗涤数次,真空干燥;
    2)交联羧甲基壳聚糖微球的表面功能化,将上述干燥后的微球浸入到2-丙烯酰胺-2-甲基丙磺酸水溶液中10h,添加硝酸铈铵为引发剂,通N2保护,升温至50℃,使2-丙烯酰胺-2-甲基丙磺酸在微球表面接枝聚合,反应8h,反应结束后,将微球用蒸馏水反复洗涤数次,再冷冻干燥,最后得到表面功能化可载药的洗脱微球。
  2. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤1)中,羧甲基壳聚糖溶液的质量分数范围为1%~5%。
  3. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤1)中,聚乙二醇二缩水甘油醚的聚合度2~8,其用量占羧甲基壳聚糖重量的1~5倍,将聚乙二醇二缩水甘油醚缓慢滴入到羧甲基壳聚糖溶液中,磁力搅拌时间为15~30min。
  4. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤1)中,油相为正庚烷、正辛烷、石蜡油或大豆油,油相与水相的体积比为3:1~6:1。
  5. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤1)中,乳化剂为烷基糖苷APG0810,其用量占油相质量的0.5%~2%。
  6. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤2)中,先将乳化剂加入到油相里,搅拌20min后,再将羧甲基壳聚糖与聚乙二醇二缩水甘油醚混合物逐渐滴入到油相里,并控制搅拌速度为200~500转/分钟。
  7. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤2)中,2-丙烯酰胺-2-甲基丙磺酸浓度为:0.1~1.5mol/L。
  8. 根据权利要求1所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述步骤2)中,引发剂为硝酸铈铵,加入量占2-丙烯酰胺-2-甲基丙磺酸重量的0.1%~2%。
  9. 根据权利要求2所述的一种表面功能化可载药洗脱微球的制备方法,其特征在于:所述羧甲基壳聚糖溶液的质量分数为3%~4%。
  10. 一种表面功能化可载药洗脱微球在制备化疗药物载体中的应用,其特征在于通过微球表面磺酸基团的负电荷与盐酸阿霉素分子的氨基正电荷的相互作用,提高药物负载率和控制释放性能。
PCT/CN2016/104511 2016-08-08 2016-11-04 一种表面功能化可载药洗脱微球的制备方法 WO2018028058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187007546A KR102083023B1 (ko) 2016-08-08 2016-11-04 표면 기능화된 약물 운반 가능한 용출 마이크로스피어의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610650166.7A CN106110334B (zh) 2016-08-08 2016-08-08 一种表面功能化可载药洗脱微球的制备方法
CN201610650166.7 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018028058A1 true WO2018028058A1 (zh) 2018-02-15

Family

ID=57257628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104511 WO2018028058A1 (zh) 2016-08-08 2016-11-04 一种表面功能化可载药洗脱微球的制备方法

Country Status (3)

Country Link
KR (1) KR102083023B1 (zh)
CN (1) CN106110334B (zh)
WO (1) WO2018028058A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508259A (zh) * 2019-09-03 2019-11-29 晋江瑞碧科技有限公司 一种铜离子印迹复合磁性中空微球的制备方法
WO2020193536A1 (de) 2019-03-25 2020-10-01 Sphera Technology Gmbh Mehrkomponentensystem und verfahren zur herstellung eines mehrkomponentensystems
CN114191410A (zh) * 2021-11-15 2022-03-18 深圳北航新兴产业技术研究院 一种诊疗一体化双亲微球缓释微球的制备方法
DE102020124955A1 (de) 2020-09-24 2022-03-24 Sphera Technology Gmbh Elektronikeinheit mit einem integrierten Schaltkreis und Verfahren zu deren Herstellung
CN114481616A (zh) * 2022-03-11 2022-05-13 四川三联新材料有限公司 一种加热卷烟用壳聚糖基膜复合材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264612B (zh) * 2018-02-25 2020-10-09 温岭汉德高分子科技有限公司 一种用于单晶硅制绒的壳聚糖-聚2-丙烯酰胺基-2-甲基丙磺酸钠共聚物的制备方法
CN109464702B (zh) * 2019-01-14 2021-02-26 浙江瑞谷生物科技有限公司 含bmp-2的牙槽骨修复材料及其制备方法和应用
CN112168787B (zh) * 2020-09-24 2023-03-24 山东瑞安泰医疗技术有限公司 一种功能化可降解药物洗脱微球及其制备方法
CN112316199B (zh) * 2020-11-16 2022-02-22 江南大学 一种改性羧甲基壳聚糖微球及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125225A (zh) * 2007-08-10 2008-02-20 苏州迦俐生生物医药科技有限公司 微球型栓塞剂及其制备工艺
CN101775386A (zh) * 2010-01-26 2010-07-14 武汉工业学院 一种壳聚糖微球固定化胰蛋白酶的方法
CN102784112A (zh) * 2011-05-19 2012-11-21 东华理工大学 壳聚糖接枝共聚物多孔缓释微球的制备方法
CN103965403A (zh) * 2013-01-24 2014-08-06 孙亮 壳聚糖接枝amps的新方法
CN104208756A (zh) * 2014-08-29 2014-12-17 石家庄亿生堂医用品有限公司 一种羧甲基壳聚糖微球的制备方法
CN104474575A (zh) * 2014-12-03 2015-04-01 广州肽莱医药科技有限公司 共价交联形成的壳聚糖止血材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102462664A (zh) * 2010-11-18 2012-05-23 华侨大学 一种磺酸基巯基壳聚糖介入栓塞化疗缓释微球及其制备方法
CN103304417B (zh) * 2012-03-15 2014-12-24 江南大学 一种双亲性共聚物改性壳聚糖复合物的制备及应用
CN103977458B (zh) * 2014-05-28 2016-10-05 苏州恒瑞迦俐生生物医药科技有限公司 多羟基聚合体栓塞微球及其制备工艺
CN105273209B (zh) * 2014-06-09 2018-05-22 南京顺昌医药科技有限公司 一种改性壳聚糖与聚(2-丙烯酰胺-2-甲基丙磺酸)复合微球的制备
CN104258474B (zh) * 2014-10-15 2015-09-23 江南大学 一种含有离子交换功能基团的栓塞微球及其制备方法
CN104338185B (zh) * 2014-11-06 2019-04-05 石家庄亿生堂医用品有限公司 一种羧甲基壳聚糖微球栓塞剂及其制备方法
CN104548123B (zh) * 2014-12-11 2017-10-10 江南大学 一种酰化改性明胶栓塞微球的制备
CN107321326A (zh) * 2017-07-03 2017-11-07 重庆大学 阴离子聚合物接枝壳聚糖磁性复合微球及制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125225A (zh) * 2007-08-10 2008-02-20 苏州迦俐生生物医药科技有限公司 微球型栓塞剂及其制备工艺
CN101775386A (zh) * 2010-01-26 2010-07-14 武汉工业学院 一种壳聚糖微球固定化胰蛋白酶的方法
CN102784112A (zh) * 2011-05-19 2012-11-21 东华理工大学 壳聚糖接枝共聚物多孔缓释微球的制备方法
CN103965403A (zh) * 2013-01-24 2014-08-06 孙亮 壳聚糖接枝amps的新方法
CN104208756A (zh) * 2014-08-29 2014-12-17 石家庄亿生堂医用品有限公司 一种羧甲基壳聚糖微球的制备方法
CN104474575A (zh) * 2014-12-03 2015-04-01 广州肽莱医药科技有限公司 共价交联形成的壳聚糖止血材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN YETING: "Alkylpolyglycoside inducing poly ( butylene terephthalate) non-woven graft copolymerization of chitosan", JOURNAL OF SOUTHEAST UNIVERSITY ( ENGLISH EDITION), vol. 28, no. 4, 31 December 2012 (2012-12-31), ISSN: 1003-7985 *
HE, LINYAN ET AL.,: "Investigation on the Development and Application of Green Surfactant Agent", LEATHER AND CHEMICALS, vol. 25, no. 5, 31 October 2008 (2008-10-31) *
ZHAO, LIRUI ET AL.,: "Preparation and Characteristics of Carboxymethyl Chitosan-PEG Bisglycidyl Ether Microsphere", CHEMICAL RESEARCH AND APPLICATION, 31 March 2008 (2008-03-31) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020193536A1 (de) 2019-03-25 2020-10-01 Sphera Technology Gmbh Mehrkomponentensystem und verfahren zur herstellung eines mehrkomponentensystems
WO2020193526A1 (de) 2019-03-25 2020-10-01 Sphera Technology Gmbh Mehrkomponentensystem und verfahren zur herstellung eines mehrkomponentensystems, insbesondere für mikroelektronische anwendung
CN110508259A (zh) * 2019-09-03 2019-11-29 晋江瑞碧科技有限公司 一种铜离子印迹复合磁性中空微球的制备方法
CN110508259B (zh) * 2019-09-03 2022-02-15 晋江瑞碧科技有限公司 一种铜离子印迹复合磁性中空微球的制备方法
DE102020124955A1 (de) 2020-09-24 2022-03-24 Sphera Technology Gmbh Elektronikeinheit mit einem integrierten Schaltkreis und Verfahren zu deren Herstellung
WO2022063977A2 (de) 2020-09-24 2022-03-31 Sphera Technology Gmbh Elektronikeinheit und verfahren zu deren herstellung
CN114191410A (zh) * 2021-11-15 2022-03-18 深圳北航新兴产业技术研究院 一种诊疗一体化双亲微球缓释微球的制备方法
CN114481616A (zh) * 2022-03-11 2022-05-13 四川三联新材料有限公司 一种加热卷烟用壳聚糖基膜复合材料的制备方法

Also Published As

Publication number Publication date
KR20180057622A (ko) 2018-05-30
CN106110334A (zh) 2016-11-16
CN106110334B (zh) 2019-11-15
KR102083023B1 (ko) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2018028058A1 (zh) 一种表面功能化可载药洗脱微球的制备方法
WO2017166903A1 (zh) 一种改性海藻酸钠栓塞微球的制备方法
JP4991563B2 (ja) 胆汁酸−キトサン複合体内部に疎水性抗癌剤が封入された剤形及びその製造方法
WO2019127297A1 (zh) 四价铂化合物-双环双键两亲性聚合物前药、其纳米胶束及制备方法和应用
CN106693040A (zh) 一种可载药聚乙烯醇洗脱微球的制备方法
CN112891548B (zh) 一种基于小分子药物的金属有机框架载药纳米系统
Mi et al. Postsurgical wound management and prevention of triple-negative breast cancer recurrence with a pryoptosis-inducing, photopolymerizable hydrogel
CN112043834A (zh) 一种负载顺铂的纤维蛋白胶复合体系
Chen et al. A biomimicking and electrostatic self-assembly strategy for the preparation of glycopolymer decorated photoactive nanoparticles
Li et al. Temperature-and pH-responsive injectable chitosan hydrogels loaded with doxorubicin and curcumin as long-lasting release platforms for the treatment of solid tumors
Hu et al. Thermosensitive PNIPAM-based hydrogel crosslinked by composite nanoparticles as rapid wound-healing dressings
Pourmadadi et al. Synthesis and characterization of biological macromolecules double emulsion based on carboxymethylcellulose/gelatin hydrogel incorporated with ZIF-8 as metal organic frameworks for sustained anti-cancer drug release
US20230398143A1 (en) Cis-platinum cross-linked protein hydrogel and preparation method thereof
CN112546025B (zh) 一种Ce6@CMCS-DSP-IPI549抗肿瘤纳米传递系统的制备方法
CN109481418B (zh) 抗肿瘤纳米颗粒及其制备方法和应用
CN113827724B (zh) 载药普鲁士蓝@锰纤维蛋白复合凝胶及制备方法、应用
Garg et al. Chondroitin sulphate decorated polymeric nanoparticles: An effective carrier for enhancement of lung cancer targeting capabilities of anticancer drug
CN110420335B (zh) 一种基于多孔碳酸钙的纳米免疫制剂的制备及应用
CN108102082B (zh) 聚己内酯基二乙基磺丙基甜菜碱及制备方法以及其作为药物释放载体的构建方法
CN113827546A (zh) 一种含阿霉素与免疫佐剂组合药物脂质体的注射用水凝胶及其制备方法
CN110123762A (zh) 一种载药纳米复合物及其制备方法和应用
WO2016158707A1 (ja) 薬剤担持ハイドロゲル製剤及びその製造方法
CN114456373B (zh) 一种基于亮氨酸的聚酯酰胺的纳米递药体系及其制备方法和应用
CN117122681B (zh) 无载体自组装药物纳米粒子及其制备方法和应用
CN116059357B (zh) 一种pH响应电荷翻转的纳米复合制剂及其制备方法与应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187007546

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912512

Country of ref document: EP

Kind code of ref document: A1