WO2018026014A1 - 鋼板及びめっき鋼板 - Google Patents

鋼板及びめっき鋼板 Download PDF

Info

Publication number
WO2018026014A1
WO2018026014A1 PCT/JP2017/028477 JP2017028477W WO2018026014A1 WO 2018026014 A1 WO2018026014 A1 WO 2018026014A1 JP 2017028477 W JP2017028477 W JP 2017028477W WO 2018026014 A1 WO2018026014 A1 WO 2018026014A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
grain
area ratio
hot
Prior art date
Application number
PCT/JP2017/028477
Other languages
English (en)
French (fr)
Inventor
幸一 佐野
誠 宇野
亮一 西山
山口 裕司
杉浦 夏子
中田 匡浩
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201780046261.9A priority Critical patent/CN109563580A/zh
Priority to BR112019000766A priority patent/BR112019000766B8/pt
Priority to EP17837115.9A priority patent/EP3495528A4/en
Priority to KR1020197000254A priority patent/KR102186320B1/ko
Priority to US16/315,120 priority patent/US11236412B2/en
Priority to JP2017562090A priority patent/JP6358407B2/ja
Priority to MX2019000576A priority patent/MX2019000576A/es
Publication of WO2018026014A1 publication Critical patent/WO2018026014A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

鋼板は、特定の化学組成を有し、面積率で、フェライト:30~95%、かつベイナイト:5~70%、で表される組織を有する。方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5~14°である結晶粒の全結晶粒に占める割合が面積率で20~100%である。前記結晶粒の相当楕円の平均アスペクト比が5以下である。フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度が10個/μm以下である。

Description

鋼板及びめっき鋼板
 本発明は、鋼板及びめっき鋼板に関する。
 近年、自動車の燃費向上を目的とした各種部材の軽量化が要求されている。この要求に対し、各種部材に用いる鋼板の高強度化による薄肉化や、Al合金等の軽金属の各種部材への適用が進められている。Al合金等の軽金属は、鋼等の重金属と比較して、比強度が高い。しかし、軽金属は、重金属と比較して著しく高価である。そのため、Al合金等の軽金属の適用は特殊な用途に限られている。従って、各種部材の軽量化をより安価でかつ広い範囲に適用するために、鋼板の高強度化による薄肉化が要求されている。
 自動車の各種部材に用いる鋼板では、部材の用途に応じて、強度だけでなく、延性、伸びフランジ加工性、バーリング加工性、疲労耐久性、耐衝撃性及び耐食性等の材料特性が要求される。しかし、鋼板を高強度化すると、一般的に成形性(加工性)等の材料特性が劣化する。そのため、高強度鋼板の開発においては、これら材料特性と強度とを両立させることが重要である。
 具体的には、鋼板を用いて複雑な形状の部品を製造する場合、例えば、以下に示す加工を行う。鋼板にせん断や打ち抜き加工を施し、ブランキングや穴開けを行った後、伸びフランジ加工やバーリング加工を主体としたプレス成形や、張り出し成形を行う。このような加工の施される鋼板には、良好な伸びフランジ性と延性が求められる。
 特許文献1には、鋼組織が面積率で95%以上のフェライト相を有し、鋼中に析出したTi炭化物の平均粒子径が10nm以下である延性、伸びフランジ性、材質均一性に優れる高強度熱延鋼板が記載されている。しかしながら、軟質のフェライト相を95%以上有する特許文献1に開示された鋼板において、480MPa以上の強度を確保した場合、十分な延性が得られない。
 特許文献2には、Ce酸化物、La酸化物、Ti酸化物、Alの介在物を含む伸びフランジ性と疲労特性に優れる高強度熱延鋼板が開示されている。また、特許文献2には、鋼板中のベイニティック・フェライト相の面積率が80~100%である高強度熱延鋼板が記載されている。特許文献3には、フェライト相とベイナイト相の合計の面積率、フェライト相と第二相のビッカース硬度差の絶対値を規定した、強度のばらつきが小さく、かつ延性と穴広げ性とに優れる高強度熱延鋼板が開示されている。
 特許文献4~7には、Ti、NbやV等の炭化物形成元素を添加した鋼板において、打ち抜き加工部の割れや疲労特性を向上させる技術が提案されている。特許文献8~10には、Ti、NbやV等の炭化物形成元素を添加した鋼板において、Bを活用することにより、打ち抜き加工部の割れや疲労特性を向上する技術が提案されている。特許文献11には、フェライトとベイナイトを主な組織とし、フェライト中の析出物の粒径と分率、及びベイナイトの形態を制御した、伸び特性、伸びフランジ特性、疲労特性に優れる高強度熱延鋼板が記載されている。特許文献12には、Ti、Nb、V等の炭化物形成元素を添加した鋼板において、連続鋳造工程における表面欠陥や生産性を向上させる技術が提案されている。
 従来の高強度鋼板は、冷間プレス成形すると、成形中に伸びフランジ成形となる部位のエッジからき裂が発生する場合がある。これは、ブランク加工時に、打ち抜き端面に導入されるひずみにより、エッジ部のみ加工硬化が進んでしまうことによるものと考えられる。
 鋼板の伸びフランジ性の試験評価方法としては、穴広げ試験が用いられている。しかしながら、穴広げ試験では、周方向のひずみ分布がほとんど存在しない状態で試験片が破断に至る。これに対し、実際に鋼板を部品形状に加工する場合、ひずみ分布が存在する。ひずみ分布は、部品の破断限界に影響を与える。このことにより、穴広げ試験で十分な伸びフランジ性を示す高強度鋼板であっても、冷間プレスを行うことにより、き裂が発生する場合があると推定される。
 特許文献1~3には、組織を規定することで、材料特性を向上させる技術が開示されている。しかしながら、特許文献1~3に記載の鋼板が、ひずみ分布を考慮した場合にも十分な伸びフランジ性を確保できるかどうかは不明である。また、従来の高強度鋼板は、優れた伸びフランジ性を有し、母材及び打ち抜き加工部の疲労特性が良好なものではない。
国際公開第2013/161090号 特開2005-256115号公報 特開2011-140671号公報 特開2002-161340号公報 特開2002-317246号公報 特開2003-342684号公報 特開2004-250749号公報 特開2004-315857号公報 特開2005-298924号公報 特開2008-266726号公報 特開2007-9322号公報 特開2007-138238号公報
 本発明は、高強度で、優れた伸びフランジ性を有し、母材及び打ち抜き加工部の疲労特性が良好な鋼板及びめっき鋼板を提供することを目的とする。
 従来の知見によれば、高強度鋼板における伸びフランジ性(穴広げ性)の改善は、特許文献1~3に示されるように、介在物制御、組織均質化、単一組織化及び/又は組織間の硬度差の低減などによって行われている。言い換えれば、従来、光学顕微鏡によって観察される組織を制御することによって、伸びフランジ性の改善が図られている。
 しかしながら、光学顕微鏡で観察される組織だけを制御しても、ひずみ分布が存在する場合の伸びフランジ性を向上させることは困難である。そこで、本発明者らは、各結晶粒の粒内の方位差に着目し、鋭意検討を進めた。その結果、結晶粒内の方位差が5~14°である結晶粒の全結晶粒に占める割合を20~100%に制御することで、伸びフランジ性を大きく向上させることができることを見出した。
 また、本発明者らは、結晶粒の平均アスペクト比と、フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の密度とを、特定の範囲にすることで、母材及び打ち抜き加工部において良好な疲労特性が得られ、打抜き端面における凹凸を伴う損傷を防止できることを見出した。
 本発明は、上述した結晶粒内の方位差が5~14°である結晶粒の全結晶粒に占める割合に関する新たな知見と、結晶粒の平均アスペクト比及びフェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の密度に関する新たな知見とに基づき、本発明者らが鋭意検討を重ね、完成に至ったものである。
 本発明の要旨は以下の通りである。
 (1)
 質量%で、
 C:0.008~0.150%、
 Si:0.01~1.70%、
 Mn:0.60~2.50%、
 Al:0.010~0.60%、
 Ti:0~0.200%、
 Nb:0~0.200%、
 Ti+Nb:0.015~0.200%、
 Cr:0~1.0%、
 B:0~0.10%、
 Mo:0~1.0%、
 Cu:0~2.0%、
 Ni:0~2.0%、
 Mg:0~0.05%、
 REM:0~0.05%、
 Ca:0~0.05%、
 Zr:0~0.05%、
 P:0.05%以下、
 S:0.0200%以下、
 N:0.0060%以下、かつ
 残部:Fe及び不純物、
 で表される化学組成を有し、
 面積率で、
 フェライト:30~95%、かつ
 ベイナイト:5~70%、
 で表される組織を有し、
 方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5~14°である結晶粒の全結晶粒に占める割合が面積率で20~100%であり、
 前記結晶粒の相当楕円の平均アスペクト比が5以下であり、
 フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度が10個/μm以下であることを特徴とする鋼板。
 (2)
 引張強度が480MPa以上であり、
 前記引張強度と鞍型伸びフランジ試験における限界成形高さとの積が19500mm・MPa以上であり、
 打ち抜き破断面の脆性破面率が20%未満であることを特徴とする(1)に記載の鋼板。
 (3)
 前記化学成分が、質量%で、
 Cr:0.05~1.0%、及び
 B:0.0005~0.10%、
からなる群から選択される1種以上を含むことを特徴とする(1)又は(2)に記載の鋼板。
 (4)
 前記化学成分が、質量%で、
 Mo:0.01~1.0%、
 Cu:0.01~2.0%、及び
 Ni:0.01%~2.0%、
からなる群から選択される1種以上を含むことを特徴とする(1)~(3)のいずれかに記載の鋼板。
 (5)
 前記化学成分が、質量%で、
 Ca:0.0001~0.05%、
 Mg:0.0001~0.05%、
 Zr:0.0001~0.05%、及び
 REM:0.0001~0.05%、
からなる群から選択される1種以上を含むことを特徴とする(1)~(4)のいずれかに記載の鋼板。
 (6)
 (1)~(5)のいずれかに記載の鋼板の表面に、めっき層が形成されていることを特徴とするめっき鋼板。
 (7)
 前記めっき層が、溶融亜鉛めっき層であることを特徴とする(6)に記載のめっき鋼板。
 (8)
 前記めっき層が、合金化溶融亜鉛めっき層であることを特徴とする(6)に記載のめっき鋼板。
 本発明によれば、高強度で、優れた伸びフランジ性を有し、母材及び打ち抜き加工部の疲労特性が良好な鋼板を提供できる。本発明の鋼板は、高強度でありながら厳しい伸びフランジ性と、母材及び打ち抜き加工部の疲労特性とを要求される部材に適用でき、クリアランスが厳しく、摩耗したシャーやパンチを用いる厳しい加工条件で打ち抜き加工を行った場合でも、打抜き端面における凹凸を伴う損傷を防止できる。
図1Aは、鞍型伸びフランジ試験法で用いられる鞍型成形品を示す斜視図である。 図1Bは、鞍型伸びフランジ試験法で用いられる鞍型成形品を示す平面図である。 図2は、結晶粒の平均アスペクト比を算出する方法を示す図である。
 以下、本発明の実施形態について説明する。
「化学組成」
 先ず、本発明の実施形態に係る鋼板の化学組成について説明する。以下の説明において、鋼板に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る鋼板は、C:0.008~0.150%、Si:0.01~1.70%、Mn:0.60~2.50%、Al:0.010~0.60%、Ti:0~0.200%、Nb:0~0.200%、Ti+Nb:0.015~0.200%、Cr:0~1.0%、B:0~0.10%、Mo:0~1.0%、Cu:0~2.0%、Ni:0~2.0%、Mg:0~0.05%、希土類金属(rare earth metal:REM):0~0.05%、Ca:0~0.05%、Zr:0~0.05%、P:0.05%以下、S:0.0200%以下、N:0.0060%以下、かつ残部:Fe及び不純物、で表される化学組成を有する。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
「C:0.008~0.150%」
 Cは、Nb、Ti等と結合して鋼板中で析出物を形成し、析出強化により鋼の強度向上に寄与する。C含有量が0.008%未満では、この効果を十分に得られない。このため、C含有量は0.008%以上とする。C含有量は、好ましくは0.010%以上とし、より好ましくは0.018%以上とする。一方、C含有量が0.150%超では、ベイナイト中の方位分散が大きくなりやすく、粒内の方位差が5~14°の結晶粒の割合が不足する。また、C含有量が0.150%超では、伸びフランジ性にとって有害なセメンタイトが増加し、伸びフランジ性が劣化する。このため、C含有量は0.150%以下とする。C含有量は、好ましくは0.100%以下とし、より好ましくは0.090%以下とする。
「Si:0.01~1.70%」
 Siは、溶鋼の脱酸剤として機能する。Si含有量が0.01%未満では、この効果を十分に得られない。このため、Si含有量は0.01%以上とする。Si含有量は、好ましくは0.02%以上とし、より好ましくは0.03%以上とする。一方、Si含有量が1.70%超では、伸びフランジ性が劣化したり、表面疵が発生したりする。また、Si含有量が1.70%超では、変態点が上がりすぎ、圧延温度を高くする必要が生じる。この場合、熱間圧延中の再結晶が著しく促進され、粒内の方位差が5~14°の結晶粒の割合が不足する。また、Si含有量が1.70%超では、鋼板の表面にめっき層が形成されている場合に表面疵が生じやすい。このため、Si含有量は1.70%以下とする。Si含有量は、好ましくは1.60%以下とし、より好ましくは1.50%以下とし、更に好ましくは1.40%以下とする。
「Mn:0.60~2.50%」
 Mnは、固溶強化により、又は鋼の焼入れ性を向上させることにより、鋼の強度向上に寄与する。Mn含有量が0.60%未満では、この効果を十分に得られない。このため、Mn含有量は0.60%以上とする。Mn含有量は、好ましくは0.70%以上とし、より好ましくは0.80%以上とする。一方、Mn含有量が2.50%超では、焼入れ性が過剰になり、ベイナイト中の方位分散の程度が大きくなる。この結果、粒内の方位差が5~14°の結晶粒の割合が不足し、伸びフランジ性が劣化する。このため、Mn含有量は2.50%以下とする。Mn含有量は、好ましくは2.30%以下とし、より好ましくは2.10%以下とする。
「Al:0.010~0.60%」
 Alは、溶鋼の脱酸剤として有効である。Al含有量が0.010%未満では、この効果を十分に得られない。このため、Al含有量は0.010%以上とする。Al含有量は、好ましくは0.020%以上とし、より好ましくは0.030%以上とする。一方、Al含有量が0.60%超では、溶接性や靭性などが劣化する。このため、Al含有量は0.60%以下とする。Al含有量は、好ましくは0.50%以下とし、より好ましくは0.40%以下とする。
「Ti:0~0.200%、Nb:0~0.200%、Ti+Nb:0.015~0.200%」
 Ti及びNbは、炭化物(TiC、NbC)として鋼中に微細に析出し、析出強化により鋼の強度を向上させる。また、Ti及びNbは、炭化物を形成することによってCを固定し、伸びフランジ性にとって有害なセメンタイトの生成を抑制する。更に、Ti及びNbは、粒内の方位差が5~14°である結晶粒の割合を著しく向上させ、鋼の強度を向上させつつ、伸びフランジ性を向上させることができる。Ti及びNbの合計含有量が0.015%未満では、粒内の方位差が5~14°である結晶粒の割合が不足し、伸びフランジ性が劣化する。このため、Ti及びNbの合計含有量は0.015%以上とする。Ti及びNbの合計含有量は、好ましくは0.018%以上とする。また、Ti含有量は、好ましくは0.015%以上とし、より好ましくは0.020%以上とし、更に好ましくは0.025%以上とする。また、Nb含有量は、好ましくは0.015%以上とし、より好ましくは0.020%以上とし、更に好ましくは0.025%以上とする。一方、Ti及びNbの合計含有量が0.200%超では、延性及び加工性が劣化し、圧延中に割れる頻度が高くなる。このため、Ti及びNbの合計含有量は0.200%以下とする。Ti及びNbの合計含有量は、好ましくは0.150%以下とする。また、Ti含有量が0.200%超では、延性が劣化する。このため、Ti含有量は0.200%以下とする。Ti含有量は、好ましくは0.180%以下とし、より好ましくは0.160%以下とする。また、Nb含有量が0.200%超では、延性が劣化する。そのため、Nb含有量は0.200%以下とする。Nb含有量は、好ましくは0.180%以下とし、より好ましくは0.160%以下とする。
「P:0.05%以下」
 Pは不純物である。Pは、靭性、延性、溶接性などを劣化させるので、P含有量は低いほど好ましい。P含有量が0.05%超であると、伸びフランジ性の劣化が著しい。このため、P含有量は0.05%以下とする。P含有量は、好ましくは0.03%以下とし、より好ましくは0.02%以下とする。P含有量の下限は特に定めないが、過剰な低減は製造コストの観点から望ましくない。このため、P含有量は0.005%以上としてもよい。
「S:0.0200%以下」
 Sは不純物である。Sは、熱間圧延時の割れを引き起こすばかりでなく、伸びフランジ性を劣化させるA系介在物を形成する。従って、S含有量は低いほど好ましい。S含有量が0.0200%超であると、伸びフランジ性の劣化が著しい。このため、S含有量は0.0200%以下とする。S含有量は、好ましくは0.0150%以下とし、より好ましくは0.0060%以下とする。S含有量の下限は特に定めないが、過剰な低減は製造コストの観点から望ましくない。このため、S含有量は0.0010%以上としてもよい。
「N:0.0060%以下」
 Nは不純物である。Nは、Cよりも優先的に、Ti及びNbと析出物を形成し、Cの固定に有効なTi及びNbを減少させる。従って、N含有量は低い方が好ましい。N含有量が0.0060%超であると、伸びフランジ性の劣化が著しい。このため、N含有量は0.0060%以下とする。N含有量は、好ましくは0.0050%以下とする。N含有量の下限は特に定めないが、過剰な低減は製造コストの観点から望ましくない。このため、N含有量は0.0010%以上としてもよい。
 Cr、B、Mo、Cu、Ni、Mg、REM、Ca及びZrは、必須元素ではなく、鋼板に所定量を限度に適宜含有されていてもよい任意元素である。
「Cr:0~1.0%」
 Crは、鋼の強度向上に寄与する。Crが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Cr含有量は好ましくは0.05%以上とする。一方、Cr含有量が1.0%超では、上記効果が飽和して経済性が低下する。このため、Cr含有量は1.0%以下とする。
「B:0~0.10%」
 Bは、焼入れ性を高め、硬質相である低温変態生成相の組織分率を増加させる。Bが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、B含有量は好ましくは0.0005%以上とする。一方、B含有量が0.10%超では、上記効果が飽和して経済性が低下する。このため、B含有量は0.10%以下とする。
「Mo:0~1.0%」
 Moは、焼入性を向上させると共に炭化物を形成して強度を高める効果を有する。Moが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Mo含有量は好ましくは0.01%以上とする。一方、Mo含有量が1.0%超では、延性や溶接性が低下することがある。このため、Mo含有量は1.0%以下とする。
「Cu:0~2.0%」
 Cuは、鋼板の強度を上げると共に、耐食性やスケールの剥離性を向上させる。Cuが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Cu含有量は好ましくは0.01%以上とし、より好ましくは0.04%以上とする。一方、Cu含有量が2.0%超では、表面疵が発生することがある。このため、Cu含有量は2.0%以下とし、好ましくは1.0%以下とする。
「Ni:0~2.0%」
 Niは、鋼板の強度を上げると共に、靭性を向上させる。Niが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Ni含有量は好ましくは0.01%以上とする。一方、Ni含有量が2.0%超では、延性が低下する。このため、Ni含有量は2.0%以下とする。
「Mg:0~0.05%、REM:0~0.05%、Ca:0~0.05%、Zr:0~0.05%」
 Ca、Mg、Zr及びREMは、いずれも硫化物や酸化物の形状を制御して靭性を向上させる。Ca、Mg、Zr及びREMが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Ca、Mg、Zr及びREMからなる群から選択される1種以上の含有量は好ましくは0.0001%以上とし、より好ましくは0.0005%以上とする。一方、Ca、Mg、Zr又はREMのいずれかの含有量が0.05%超では、伸びフランジ性が劣化する。このため、Ca、Mg、Zr及びREMの含有量は、いずれも0.05%以下とする。
「金属組織」
 次に、本発明の実施形態に係る鋼板の組織(金属組織)について説明する。以下の説明において、各組織の割合(面積率)の単位である「%」は、特に断りがない限り「面積%」を意味する。本実施形態に係る鋼板は、フェライト:30~95%、かつベイナイト:5~70%、で表される組織を有する。
「フェライト:30~95%」
 フェライトの面積率が30%未満であると、十分な疲労特性が得られない。このため、フェライトの面積率は30%以上とし、好ましくは40%以上とし、より好ましくは50%以上とし、更に好ましくは60%以上とする。一方、フェライトの面積率が95%超では、伸びフランジ性が劣化したり、十分な強度を得ることが困難となったりする。このため、フェライトの面積率は95%以下とする。
「ベイナイト:5~70%」
 ベイナイトの面積率が5%未満では、伸びフランジ性が劣化する。このため、ベイナイトの面積率は5%以上とする。一方、ベイナイトの面積率が70%超では、延性が劣化する。このため、ベイナイトの面積率は70%以下とし、好ましくは60%以下とし、より好ましくは50%以下とし、更に好ましくは40%以下とする。
 鋼板の組織に、パーライト若しくはマルテンサイト又はこれらの両方が含まれてもよい。パーライトは、ベイナイトと同様に、疲労特性及び伸びフランジ性が良好である。パーライトとベイナイトとを比較すると、ベイナイトの方が打ち抜き加工部の疲労特性が良好である。パーライトの面積率は、好ましくは0~15%とする。パーライトの面積率がこの範囲であると、打ち抜き加工部の疲労特性がより良好な鋼板が得られる。マルテンサイトは、伸びフランジ性に悪影響を与えることから、マルテンサイトの面積率は好ましくは10%以下とする。フェライト、ベイナイト、パーライト及びマルテンサイト以外の組織の面積率は、好ましくは10%以下とし、より好ましくは5%以下とし、更に好ましくは3%以下とする。
 各組織の割合(面積率)は、以下の方法により求められる。まず、鋼板から採取した試料をナイタールでエッチングする。エッチング後に光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行う。この画像解析により、フェライトの面積率、パーライトの面積率、並びにベイナイト及びマルテンサイトの合計面積率が得られる。次いで、レペラ腐食した試料を用い、光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行う。この画像解析により、残留オーステナイト及びマルテンサイトの合計面積率が得られる。さらに、圧延面法線方向から板厚の1/4深さまで面削した試料を用い、X線回折測定により残留オーステナイトの体積率を求める。残留オーステナイトの体積率は、面積率と同等であるので、これを残留オーステナイトの面積率とする。そして、残留オーステナイト及びマルテンサイトの合計面積率から残留オーステナイトの面積率を減じることでマルテンサイトの面積率が得られ、ベイナイト及びマルテンサイトの合計面積率からマルテンサイトの面積率を減じることでベイナイトの面積率が得られる。このようにして、フェライト、ベイナイト、マルテンサイト、残留オーステナイト及びパーライトのそれぞれの面積率を得ることができる。
 本実施形態に係る鋼板では、方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5~14°である結晶粒の全結晶粒に占める割合が面積率で20~100%である。粒内の方位差は、結晶方位解析に多く用いられる電子ビーム後方散乱回折パターン解析(electron back scattering diffraction:EBSD)法を用いて求められる。粒内の方位差は、組織において、方位差が15°以上である境界を粒界とし、この粒界によって囲まれる領域を結晶粒と定義した場合の値である。
 粒内の方位差が5~14°である結晶粒は、強度と加工性とのバランスが優れる鋼板を得るために有効である。粒内の方位差が5~14°である結晶粒の割合を多くすることで、所望の鋼板強度を維持しつつ、伸びフランジ性を向上させることができる。粒内方位差が5~14°である結晶粒の全結晶粒に占める割合が面積率で20%以上であると、所望の鋼板強度と伸びフランジ性が得られる。粒内の方位差が5~14°である結晶粒の割合は、高くても構わないため、その上限は100%である。
 後述するように、仕上げ圧延の後段3段の累積ひずみを制御すると、フェライトやベイナイトの粒内に結晶方位差が生じる。この原因を以下のように考える。累積ひずみを制御することによって、オーステナイト中の転位が増え、オーステナイト粒内に高密度で転位壁ができ、いくつかのセルブロックが形成される。これらのセルブロックは、異なる結晶方位をもつ。このように高い転位密度で、かつ異なる結晶方位のセルブロックが含まれるオーステナイトから変態することによって、フェライトやベイナイトも、同じ粒内であっても、結晶方位差があり、かつ転位密度も高くなるものと考えられる。したがって、粒内の結晶方位差は、その結晶粒に含まれる転位密度と相関があると考えられる。一般的に、粒内の転位密度の増加は、強度の向上をもたらす一方、加工性を低下させる。しかし、粒内の方位差が5~14°に制御された結晶粒では、加工性を低下させることなく強度を向上させることができる。そのため、本実施形態に係る鋼板では、粒内の方位差が5~14°の結晶粒の割合を20%以上とする。粒内の方位差が5°未満の結晶粒は、加工性に優れるが高強度化が困難である。粒内の方位差が14°超の結晶粒は、結晶粒内で変形能が異なるので、伸びフランジ性の向上に寄与しない。
 粒内の方位差が5~14°である結晶粒の割合は、以下の方法で測定できる。まず、鋼板表面から板厚tの1/4深さ位置(1/4t部)の圧延方向垂直断面について、圧延方向に200μm、圧延面法線方向に100μmの領域を0.2μmの測定間隔でEBSD解析して結晶方位情報を得る。ここでEBSD解析は、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製HIKARI検出器)で構成された装置を用い、200~300点/秒の解析速度で実施する。次に、得られた結晶方位情報に対して、方位差15°以上かつ円相当径で0.3μm以上の領域を結晶粒と定義して、結晶粒の粒内の平均方位差を計算し、粒内の方位差が5~14°である結晶粒の割合を求める。上記で定義した結晶粒や粒内の平均方位差は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」を用いて算出できる。
 本実施形態おける「粒内方位差」とは、結晶粒内の方位分散である「Grain Orientation Spread(GOS)」を表す。粒内方位差の値は「EBSD法及びX線回折法によるステンレス鋼の塑性変形におけるミスオリエンテーションの解析」、木村英彦他、日本機械学会論文集(A編)、71巻、712号、2005年、p.1722-1728に記載されているように、同一結晶粒内において基準となる結晶方位と全ての測定点間のミスオリエンテーションの平均値として求められる。本実施形態において、基準となる結晶方位は、同一結晶粒内の全ての測定点を平均化した方位である。GOSの値は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)Version 7.0.1」を用いて算出できる。
 本実施形態に係る鋼板において、フェライトやベイナイトなどの光学顕微鏡組織で観察される各組織の面積率と、粒内の方位差が5~14°である結晶粒の割合とは、直接関係するものではない。言い換えれば、例えば、同一のフェライトの面積率及びベイナイトの面積率を有する鋼板があったとしても、粒内の方位差が5~14°である結晶粒の割合が同一であるとは限らない。従って、フェライトの面積率及びベイナイトの面積率を制御しただけでは、本実施形態に係る鋼板に相当する特性を得ることはできない。
 組織における結晶粒の相当楕円の平均アスペクト比は、打ち抜き端面の割れや凹凸の発生挙動と関連がある。結晶粒の相当楕円の平均アスペクト比が5を超えると、割れが顕著になり、打ち抜き部を起点とした疲労亀裂が発生しやすくなる。従って、結晶粒の相当楕円の平均アスペクト比は、5以下とする。その平均アスペクト比は、好ましくは3.5以下とする。これにより、より厳しい打ち抜き加工でも割れの発生を防止できる。結晶粒の相当楕円の平均アスペクト比の下限は特に限定しないが、円相当となる1が実質的な下限である。
 ここで、平均アスペクト比は、L断面(圧延方向に平行な断面)の組織を観察し、50個以上の結晶粒について(楕円長軸長さ)/(楕円短軸長さ)を測定し、平均した値である。なお、ここでの結晶粒とは、粒界傾角10°以上の大傾角粒界で囲まれた粒をいう。
 組織におけるフェライト粒界上に微細なTi系炭化物又はNb系炭化物が存在し、かつ結晶粒が扁平であると、打ち抜き破断面の脆性破面率が増加し、疲労特性が悪化する。本発明者らの観察によれば、フェライト粒界上の粒径20nm以上のTi系炭化物及びNb系炭化物が、歪集中時にボイド発生を誘発しやすく、粒界破壊の原因となると考えられる。フェライト粒界上に20nm以上のTi系炭化物及びNb系炭化物が、合計の平均分布密度で粒界長さ1μmあたり10個を超えて存在すると、脆性破面率が増大し、部材の疲労特性の低下を招く。このため、フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度は10個/μm以下とし、好ましくは6個/μm以下とする。フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度は、脆性破面抑制の観点から低ければ低いほど好ましい。フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度が0.1個/μm以下であると、脆性破面はほぼ発生しなくなる。なお、フェライト粒界上のTi系炭化物及びNb系炭化物の合計の平均分布密度は、L断面(圧延方向に平行な断面)の切断試料を、走査型電子顕微鏡(SEM)を用いて観察した結果を用いて算出する。
 打ち抜き破断面の破面形態は、打ち抜き破断面の凹凸や微小割れの発生挙動と相関し、打ち抜き部を有する部材の疲労特性に影響を及ぼす。破断面内の脆性破面率が20%以上であると、破面の凹凸が大きく、微小な割れが発生しやすいため、打ち抜き加工部の疲労亀裂の発生が促進される。本実施形態によれば、20%未満の脆性破面率が得られ、10%以下の脆性破面率が得られることもある。破断面内の脆性破面率は、板厚の10~15%のクリアランス条件で試料鋼板をシャー又はポンチで打ち抜き、形成された破断面を観察して測定された値である。
 鋼板の集合組織は、打ち抜き破断面の割れ発生や残留応力分布への影響を通じて、打ち抜き加工部の疲労特性に影響を及ぼす。板厚中心部における板面の{112}<110>方位及び{332}<113>方位のX線ランダム強度比がそれぞれ5を超えると、打ち抜き加工部の破断面の割れ発生が起こる場合がある。従って、上記方位のX線ランダム強度比は好ましくは5以下とし、より好ましくは4以下とする。上記方位のX線ランダム強度比が4以下である場合、量産で使用される磨耗したパンチで打ち抜いても割れが発生しにくい。上記方位のX線ランダム強度比は、完全にランダムである1が実質的な下限である。
 本実施形態において、伸びフランジ性は鞍型成形品を用いた、鞍型伸びフランジ試験法で評価する。図1A及び図1Bは、本実施形態における鞍型伸びフランジ試験法で用いられる鞍型成形品を示す図であり、図1Aは斜視図、図1Bは平面図である。鞍型伸びフランジ試験法では、具体的には、図1A及び図1Bに示すような直線部と円弧部とからなる伸びフランジ形状を模擬した鞍型成形品1をプレス加工し、そのときの限界成形高さを用いて伸びフランジ性を評価する。本実施形態における鞍型伸びフランジ試験法では、コーナー部2の曲率半径Rを50~60mm、コーナー部2の開き角θを120°とした鞍型成形品1を用いて、コーナー部2を打ち抜く際のクリアランスを11%としたときの限界成形高さH(mm)を測定する。ここで、クリアランスとは、打ち抜きダイスとパンチの間隙と試験片の厚さとの比を示す。クリアランスは、実際には打ち抜き工具と板厚の組み合わせによって決まるので、11%とは、10.5~11.5%の範囲を満足することを意味する。限界成形高さHの判定は、成形後に目視にて板厚の1/3以上の長さを有するクラックの存在の有無を観察し、クラックが存在しない限界の成形高さとする。
 従来、伸びフランジ成形性に対応した試験法として用いられている穴広げ試験は、周方向のひずみがほとんど分布せずに破断に至る。このため、実際の伸びフランジ成形時とは破断部周辺のひずみや応力勾配が異なる。また、穴広げ試験は、板厚貫通の破断が発生した時点での評価となるなど、本来の伸びフランジ成形を反映した評価になっていない。一方、本実施形態で用いた鞍型伸びフランジ試験では、ひずみ分布を考慮した伸びフランジ性を評価できるため、本来の伸びフランジ成形を反映した評価が可能である。
 本実施形態に係る鋼板によれば、480MPa以上の引張強度が得られる。つまり、優れた引張強度が得られる。引張強度の上限は、特に限定されない。ただし、本実施形態における成分範囲において、実質的な引張強度の上限は1180MPa程度である。引張強度は、JIS-Z2201に記載の5号試験片を作製し、JIS-Z2241に記載の試験方法に従って引張試験を行うことによって、測定することができる。
 本実施形態に係る鋼板によれば、19500mm・MPa以上の引張強度と鞍型伸びフランジ試験における限界成形高さとの積が得られる。つまり、優れた伸びフランジ性が得られる。この積の上限は、特に限定されない。ただし、本実施形態における成分範囲において、実質的なこの積の上限は25000mm・MPa程度である。
 本実施形態に係る鋼板によれば、20%未満の脆性破面率及び0.4以上の疲労限度比が得られる。つまり、優れた母材及び打ち抜き加工部における疲労特性を得ることができる。
 次に、本発明の実施形態に係る鋼板を製造する方法について説明する。この方法では、熱間圧延、空冷、第1の冷却及び第2の冷却をこの順で行う。
「熱間圧延」
 熱間圧延は、粗圧延と仕上げ圧延とを含む。熱間圧延では、上述した化学成分を有するスラブ(鋼片)を加熱し、粗圧延を行う。スラブ加熱温度は、下記式(1)で表されるSRTmin℃以上1260℃以下とする。
 SRTmin=[7000/{2.75-log([Ti]×[C])}-273)+10000/{4.29-log([Nb]×[C])}-273)]/2・・・(1)
 ここで、式(1)中の[Ti]、[Nb]、[C]は、質量%でのTi、Nb、Cの含有量を示す。
 スラブ加熱温度がSRTmin℃未満であると、Ti及び/又はNbが十分に溶体化しない。スラブ加熱時にTi及び/又はNbが溶体化しないと、Ti及び/又はNbを炭化物(TiC、NbC)として微細析出させて、析出強化により鋼の強度を向上させることが困難となる。また、スラブ加熱温度がSRTmin℃未満であると、炭化物(TiC、NbC)の形成によってCを固定して、バーリング性にとって有害なセメンタイトの生成を抑制することが困難となる。また、スラブ加熱温度がSRTmin℃未満であると、粒内の結晶方位差が5~14°の結晶粒の割合が不足しやすい。このため、スラブ加熱温度はSRTmin℃以上とする。一方、スラブ加熱温度が1260℃超であると、スケールオフにより歩留が低下する。このため、スラブ加熱温度は1260℃以下とする。
 粗圧延により粗バーが得られる。粗圧延の終了温度が1000℃未満であると、仕上げ熱延後の結晶粒が扁平化して打ち抜き加工部の破断面に割れが発生する場合がある。このため、粗圧延の終了温度は、1000℃以上とする。
 粗圧延後、仕上げ圧延の完了までの間に加熱処理を施してもよい。加熱処理を行うことで、粗バーの幅方向及び長手方向の温度が均一となり、製品のコイル内における材質のばらつきが小さくなる。加熱処理における加熱方法は、特に限定しない。例えば、炉加熱、誘導加熱、通電加熱、高周波加熱などの方法で行えばよい。
 粗圧延後、仕上げ圧延の完了までの間に、デスケーリングを行っても良い。デスケーリングによって、表面粗さが小さくなり、疲労特性が向上する場合がある。デスケーリングの方法は、特に限定しない。例えば、高圧の水流によって行うことができる。
 粗圧延の終了から仕上げ圧延の開始までの時間は、圧延中のオーステナイトの再結晶挙動を通じて、打ち抜き破断面の破面形態に影響を及ぼす。粗圧延の終了から仕上げ圧延の開始までの時間が45秒未満であると、打ち抜き端面の脆性破面率が大きくなる場合がある。このため、粗圧延の終了から仕上げ圧延の開始までの時間を45秒以上とする。この時間を45秒以上とすることにより、オーステナイトの再結晶がさらに促進され、結晶粒をより球状とすることができ、打ち抜き加工部の疲労特性がより良好となる。
 仕上げ圧延により熱延鋼板が得られる。粒内の方位差が5~14°である結晶粒の割合を20%以上にするために、仕上げ圧延において後段3段(最終3パス)での累積ひずみを0.5~0.6とした上で、後述する冷却を行う。これは、以下に示す理由による。粒内の方位差が5~14°である結晶粒は、比較的低温にてパラ平衡状態で変態することにより生成する。このため、熱間圧延において変態前のオーステナイトの転位密度をある範囲に限定するとともに、その後の冷却速度をある範囲に限定することによって、粒内の方位差が5~14°である結晶粒の生成を制御できる。
 すなわち、仕上げ圧延の後段3段での累積ひずみ及びその後の冷却を制御することで、粒内の方位差が5~14°である結晶粒の核生成頻度及びその後の成長速度を制御できる。その結果、冷却後に得られる鋼板における粒内の方位差が5~14°である結晶粒の面積率を制御できる。より具体的には、仕上げ圧延によって導入されるオーステナイトの転位密度が主に核生成頻度に関わり、圧延後の冷却速度が主に成長速度に関わる。
 仕上げ圧延の後段3段の累積ひずみが0.5未満では、導入されるオーステナイトの転位密度が十分でなく、粒内の方位差が5~14°である結晶粒の割合が20%未満となる。このため、後段3段の累積ひずみは0.5以上とする。一方、仕上げ圧延の後段3段の累積ひずみが0.6を超えると、熱間圧延中にオーステナイトの再結晶が起こり、変態時の蓄積転位密度が低下する。この結果、粒内の方位差が5~14°である結晶粒の割合が20%未満となる。このため、後段3段の累積ひずみは0.6以下とする。
 仕上げ圧延の後段3段の累積ひずみ(εeff.)は、以下の式(2)によって求められる。
 εeff.=Σεi(t,T)・・・(2)
 ここで、
 εi(t,T)=εi0/exp{(t/τR)2/3}、
 τR=τ0・exp(Q/RT)、
 τ0=8.46×10-9
 Q=183200J、
 R=8.314J/K・mol、であり、
 εi0は圧下時の対数ひずみを示し、tは当該パスでの冷却直前までの累積時間を示し、Tは当該パスでの圧延温度を示す。
 圧延終了温度をAr℃未満にすると、変態前のオーステナイトの転位密度が過度に高まり、粒内の方位差が5~14°である結晶粒を20%以上とすることが困難となる。このため、仕上げ圧延の終了温度はAr℃以上とする。
 仕上げ圧延は、複数の圧延機を直線的に配置し、1方向に連続圧延して所定の厚みを得るタンデム圧延機を用いて行うことが好ましい。また、タンデム圧延機を用いて仕上げ圧延を行う場合、圧延機と圧延機との間で冷却(スタンド間冷却)を行って、仕上げ圧延中の鋼板温度がAr℃以上~Ar+150℃以下の範囲となるように制御する。仕上げ圧延時の鋼板の最高温度がAr+150℃を超えると、粒径が大きくなりすぎるために靭性が劣化することが懸念される。
 上記のような条件の熱間圧延を行うことで、変態前のオーステナイトの転位密度範囲を限定し、粒内の方位差が5~14°である結晶粒を所望の割合で得ることができる。
 Arは、鋼板の化学成分に基づき、圧下による変態点への影響を考慮した下記式(3)で算出する。
 Ar=970-325×[C]+33×[Si]+287×[P]+40×[Al]-92×([Mn]+[Mo]+[Cu])-46×([Cr]+[Ni])・・・(3)
 ここで、[C]、[Si]、[P]、[Al]、[Mn]、[Mo]、[Cu]、[Cr]、[Ni]は、それぞれ、C、Si、P、Al、Mn、Mo、Cu、Cr、Niの質量%での含有量を示す。含有されていない元素については、0%として計算する。
「空冷」
 この製造方法では、仕上げ圧延の終了から2秒超5秒以下の時間だけ熱延鋼板の空冷を行う。この空冷時間は、オーステナイトの再結晶と関連して変態後の結晶粒の扁平化に影響を及ぼす。空冷時間が2秒以下であると、打ち抜き端面の脆性破面率が大きくなる。従って、この空冷時間は、2秒超とし、好ましくは2.5秒以上とする。空冷時間が5秒を超えると、粗大なTiC及び/又はNbCが析出して強度の確保が困難になるとともに、打ち抜き端面の性状が劣化する。このため、空冷時間は5秒以下とする。
「第1の冷却、第2の冷却」
 2秒超5秒以下の空冷後、熱延鋼板の第1の冷却及び第2の冷却をこの順で行う。第1の冷却では、10℃/s以上の冷却速度で600~750℃の第1の温度域まで熱延鋼板を冷却する。第2の冷却では、30℃/s以上の冷却速度で450~650℃の第2の温度域まで熱延鋼板を冷却する。第1の冷却と第2の冷却との間には、第1の温度域に熱延鋼板を1~10秒間保持する。第2の冷却後には熱延鋼板を空冷することが好ましい。
 第1の冷却の冷却速度が10℃/s未満であると、粒内の結晶方位差が5~14°の結晶粒の割合が不足する。また、第1の冷却の冷却停止温度が600℃未満であると、面積率で30%以上のフェライトを得ることが困難となるとともに、粒内の結晶方位差が5~14°の結晶粒の割合が不足する。第1の冷却の冷却停止温度が高いほど、フェライト分率が高くなりやすい。高いフェライト分率を得るという観点から、第1の冷却の冷却停止温度は、600℃以上とし、好ましくは610℃以上とし、より好ましくは620℃以上とし、さらに好ましくは630℃以上とする。また、第1の冷却の冷却停止温度が750℃超であると、面積率で5%以上のベイナイトを得ることが困難となるとともに、粒内の結晶方位差が5~14°の結晶粒の割合が不足したり、フェライト粒界面上のTi系炭化物及びNb系炭化物の平均分布密度が過剰になったりする。
 600~750℃での保持時間が10秒を超えると、バーリング性に有害なセメンタイトが生成しやすくなる。また、600~750℃での保持時間が10秒を超えると、面積率で5%以上のベイナイトを得ることが困難となる場合が多く、さらに粒内の結晶方位差が5~14°の結晶粒の割合が不足する。600~750℃での保持時間が1秒未満であると、フェライトを面積率で30%以上得ることが困難になるとともに、粒内の結晶方位差が5~14°の結晶粒の割合が不足する。保持時間が長いほど、フェライト分率が高くなりやすい。高いフェライト分率を得るという観点から、保持時間は、1秒以上とし、好ましくは1.5秒以上とし、より好ましくは2秒以上とし、さらに好ましくは2.5秒以上とする。
 第2の冷却の冷却速度が30℃/s未満であると、バーリング性に有害なセメンタイトが生成しやすくなるとともに、粒内の結晶方位差が5~14°の結晶粒の割合が不足する。第2の冷却の冷却停止温度が450℃未満であると、面積率で30%以上のフェライトを得ることが困難となるとともに、粒内の結晶方位差が5~14°の結晶粒の割合が不足する。第2の冷却の冷却停止温度が高いほど、フェライト分率が高くなりやすい。高いフェライト分率を得るという観点から、第2の冷却の冷却停止温度は、450℃以上とし、より好ましくは510℃以上とし、さらに好ましくは550℃以上とする。一方、第2の冷却の冷却停止温度が650℃超であると、面積率で5%以上のベイナイトを得ることが困難となるとともに、粒内の方位差が5~14°である結晶粒の割合が不足する。
 第1の冷却及び第2の冷却における冷却速度の上限は、特に限定しないが、冷却設備の設備能力を考慮して200℃/s以下としてもよい。フェライト及びベイナイトの面積率は第1の冷却、第2の冷却及びこれらの間の保持の条件に複合的に依存し、これらの個々の条件のみで制御することはできないが、例えば、次のような傾向がある。すなわち、第1の冷却の冷却停止温度が610℃以上であればフェライトの面積率を40%以上としやすく、620℃であればフェライトの面積率を50%以上としやすく、630℃であればフェライトの面積率を60%以上としやすい。
 このようにして本実施形態に係る鋼板を得ることができる。
 上述の製造方法では、熱間圧延の条件を制御することにより、オーステナイトに加工転位を導入する。そうした上で、冷却条件を制御することにより、導入された加工転位を適度に残すことが重要である。すなわち、熱間圧延の条件又は冷却の条件を単独で制御したとしても、本実施形態に係る鋼板を得ることはできず、熱間圧延及び冷却の条件の両方を適切に制御することが重要である。上記以外の条件については、例えば、第2の冷却の後に公知の方法で巻き取るなど、公知の方法を用いればよく、特に限定しない。
 表面のスケールをとるために、酸洗してもよい。熱間圧延及び冷却の条件が上記のとおりであれば、その後に、冷間圧延、熱処理(焼鈍)、めっきなどを行っても同様の効果を得ることができる。
 冷間圧延では、圧下率を90%以下とすることが好ましい。冷間圧延における圧下率が90%を超えると、延性が低下することがある。冷間圧延を行わなくてもよく、冷間圧延における圧下率の下限は0%である。上記のとおり、熱延原板のままで、優れた成形性を有する。一方で、冷間圧延により導入された転位上に、固溶ままのTi、Nb、Mo等が集まり、析出することによって、降伏点(YP)や引張強度(TS)を向上させることができる。従って、強度の調整のために冷間圧延を使用できる。冷間圧延により冷延鋼板が得られる。
 冷間圧延後の熱処理(焼鈍)の温度は840℃以下とすることが好ましい。焼鈍時には、熱間圧延の段階で析出しきれなかったTiやNbが析出することによる強化、転位の回復、析出物の粗大化による軟質化等の複雑な現象が生じる。焼鈍温度が840℃を超えると、析出物の粗大化の効果が大きく、粒内の結晶方位差が5~14°の結晶粒の割合が不足する。焼鈍温度は、より好ましくは820℃以下とし、更に好ましくは800℃以下とする。焼鈍温度の下限は特に設けない。上述の通り、焼鈍を行わない熱延原板のままで、優れた成形性を有するためである。
 本実施形態の鋼板の表面に、めっき層が形成されていてもよい。つまり、本発明の他の実施形態としてめっき鋼板が挙げられる。めっき層は、例えば電気めっき層、溶融めっき層又は合金化溶融めっき層である。溶融めっき層及び合金化溶融めっき層としては、例えば、亜鉛及びアルミニウムの少なくともいずれか一方からなる層が挙げられる。具体的には、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、合金化溶融アルミニウムめっき層、溶融Zn-Alめっき層、及び合金化溶融Zn-Alめっき層などが挙げられる。特に、めっきのし易さや防食性の観点から、溶融亜鉛めっき層及び合金化溶融亜鉛めっき層が好ましい。
 溶融めっき鋼板や合金化溶融めっき鋼板は、前述した本実施形態に係る鋼板に対して溶融めっき又は合金化溶融めっきを施すことによって製造される。ここで、合金化溶融めっきとは、溶融めっきを施して表面に溶融めっき層を形成し、次いで、合金化処理を施して溶融めっき層を合金化溶融めっき層とすることを言う。めっきを施す鋼板は熱延鋼板であってもよく、熱延鋼板に冷間圧延と焼鈍とを施した鋼板であってもよい。溶融めっき鋼板や合金化溶融めっき鋼板は、本実施形態に係る鋼板を有し、かつ表面に溶融めっき層や合金化溶融めっき層が設けられているため、本実施形態に係る鋼板の作用効果と共に、優れた防錆性が達成できる。めっきを施す前に、プレめっきとして、Ni等を表面につけてもよい。
 鋼板に熱処理(焼鈍)を施す場合、熱処理行った後に、そのまま溶融亜鉛めっき浴に浸漬させて、鋼板の表面に溶融亜鉛めっき層を形成してもよい。この場合、熱処理の原板は、熱延鋼板であってもよいし、冷延鋼板であってもよい。溶融亜鉛めっき層を形成した後、再加熱し、めっき層と地鉄とを合金化させる合金化処理を行って、合金化溶融亜鉛めっき層を形成してもよい。
 本発明の実施形態に係るめっき鋼板は、鋼板の表面にめっき層が形成されているので、優れた防錆性を有する。したがって、例えば、本実施形態のめっき鋼板を用いて、自動車の部材を薄肉化した場合に、部材の腐食により自動車の使用寿命が短くなることを防止できる。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1及び表2に示す化学組成を有する鋼を溶製して鋼片を製造し、得られた鋼片を表3及び表4に示す加熱温度に加熱して、表3及び表4に示す条件で粗圧延を行い、引き続いて、表3及び表4に示す条件で仕上げ圧延を行った。仕上げ圧延後の熱延鋼板の板厚は、2.2~3.4mmであった。表1及び表2の空欄は、分析値が検出限界未満であったことを意味する。表3及び表4中の「経過時間」は粗圧延の終了から仕上げ圧延の開始までの経過時間である。表1及び表2中の下線は、その数値が本発明の範囲から外れていることを示し、表4中の下線は、本発明の鋼板の製造に適した範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 Ar(℃)は表1及び表2に示した成分より式(3)を用いて求めた。
 Ar=970-325×[C]+33×[Si]+287×[P]+40×[Al]-92×([Mn]+[Mo]+[Cu])-46×([Cr]+[Ni])・・・(3)
 仕上げ3段の累積ひずみは式(2)より求めた。
 εeff.=Σεi(t,T)・・・(2)
 ここで、
 εi(t,T)=εi0/exp{(t/τR)2/3}、
 τR=τ0・exp(Q/RT)、
 τ0=8.46×10-9
 Q=183200J、
 R=8.314J/K・mol、であり、
 εi0は圧下時の対数ひずみを示し、tは当該パスでの冷却直前までの累積時間を示し、Tは当該パスでの圧延温度を示す。
 次いで、表5及び表6に示す条件で熱延鋼板の空冷、第1の冷却、第1の温度域での保持、第2の冷却を行い、試験No.1~45の熱延鋼板を得た。空冷時間は、仕上げ圧延の終了から第1の冷却の開始までの時間に相当する。
 試験No.21の熱延鋼板には、表5に示す圧下率で冷間圧延を施し、表5に示す熱処理温度で熱処理を施した後、溶融亜鉛めっき層を形成し、さらに合金化処理を行い、表面に合金化溶融亜鉛めっき層(GA)を形成した。試験No.18~20、45の熱延鋼板には、表5及び表6に示す熱処理温度で熱処理を施した。試験No.18~20の熱延鋼板は、熱処理を施した後、表面に溶融亜鉛めっき層(GI)を形成した。表6中の下線は、本発明の鋼板の製造に適した範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 そして、各鋼板(試験No.1~17、22~44の熱延鋼板、熱処理を施した試験No.18~20、45の熱延鋼板、熱処理を施した試験No.21の冷延鋼板)について、以下に示す方法により、フェライト、ベイナイト、マルテンサイト、パーライトの組織分率(面積率)、及び粒内の方位差が5~14°である結晶粒の割合を求めた。その結果を表7及び表8に示す。マルテンサイト及び/またパーライトが含まれる場合、表中の「残部組織」の欄に記載した。表8中の下線は、その数値が本発明の範囲から外れていることを示す。
「フェライト、ベイナイト、マルテンサイト、パーライトの組織分率(面積率)」
 まず、鋼板から採取した試料をナイタールでエッチングした。エッチング後に光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行った。この画像解析により、フェライトの面積率、パーライトの面積率、並びにベイナイト及びマルテンサイトの合計面積率を得た。次いで、レペラ腐食した試料を用い、光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行った。この画像解析により、残留オーステナイト及びマルテンサイトの合計面積率を得た。さらに、圧延面法線方向から板厚の1/4深さまで面削した試料を用い、X線回折測定により残留オーステナイトの体積率を求めた。残留オーステナイトの体積率は、面積率と同等であるので、これを残留オーステナイトの面積率とした。そして、残留オーステナイト及びマルテンサイトの合計面積率から残留オーステナイトの面積率を減じることでマルテンサイトの面積率を得、ベイナイト及びマルテンサイトの合計面積率からマルテンサイトの面積率を減じることでベイナイトの面積率を得た。このようにして、フェライト、ベイナイト、マルテンサイト、残留オーステナイト及びパーライトのそれぞれの面積率を得た。
「粒内の方位差が5~14°である結晶粒の割合」
 鋼板表面から板厚tの1/4深さ位置(1/4t部)の圧延方向垂直断面について、圧延方向に200μm、圧延面法線方向に100μmの領域を0.2μmの測定間隔でEBSD解析して結晶方位情報を得た。ここで、EBSD解析は、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製HIKARI検出器)で構成された装置を用い、200~300点/秒の解析速度で実施した。次に、得られた結晶方位情報に対して、方位差15°以上かつ円相当径で0.3μm以上の領域を結晶粒と定義し、結晶粒の粒内の平均方位差を計算し、粒内の方位差が5~14°である結晶粒の割合を求めた。上記で定義した結晶粒や粒内の平均方位差は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」を用いて算出した。
 各鋼板(試験No.1~17、22~44の熱延鋼板、熱処理を施した試験No.18~20、45の熱延鋼板、熱処理を施した試験No.21の冷延鋼板)について、以下に示す方法により、結晶粒の相当楕円の平均アスペクト比と、フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度とを求めた。その結果を表7及び表8に示す。
「結晶粒の相当楕円の平均アスペクト比」
 L断面(圧延方向に平行な断面)を、上記のEBSDを用いて組織観察し、50個以上の結晶粒についてそれぞれ(楕円長軸長さ)/(楕円短軸長さ)を算出し、算出した値の平均値を求めた。図2は、結晶粒の平均アスペクト比を算出する方法を示す図である。図2に示す結晶粒14は、粒界傾角15°以上の大傾角粒界で囲まれた粒である。図2に示すように、楕円長軸12とは、上記のEBSDを用いて観察した各結晶粒14の粒界11上における任意の2点間を結ぶ直線のうち、最も長い直線を意味する。楕円短軸13とは、上記のEBSDを用いて観察した各結晶粒14の粒界11上における任意の2点間を結ぶ直線のうち、楕円長軸12の長さを2等分する点を通り、楕円長軸12と直交する直線を意味する。
「フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度」
 L断面を、SEMを用いて観察し、フェライト粒界の長さを測定し、さらにそのフェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の個数を計測した。計測したTi系炭化物及びNb系炭化物の合計の個数を用いて、フェライト粒界の長さ1μm当たりのTi系炭化物及びNb系炭化物の合計の個数である平均分布密度を算出した。なお、Ti系炭化物及びNb系炭化物の粒径とは、Ti系炭化物及びNb系炭化物の円相当半径のことをいう。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 各鋼板(試験No.1~17、22~44の熱延鋼板、熱処理を施した試験No.18~20、45の熱延鋼板、熱処理を施した試験No.21の冷延鋼板)について、JIS Z2275に従って、応力比=-1の条件下で平面曲げ疲労試験を行い、疲労限により評価した。試験No.1~17、22~44の熱延鋼板、熱処理を施した試験No.18~20、45の熱延鋼板、熱処理を施した試験No.21の冷延鋼板について、引張試験において、降伏強度と引張強度とを求め、鞍型伸びフランジ試験によって、フランジの限界成形高さを求めた。そして、引張強度(MPa)と限界成形高さ(mm)との積を伸びフランジ性の指標とし、積が19500mm・MPa以上の場合に、伸びフランジ性に優れると判断した。また、引張強度(TS)が480MPa以上である場合に、高強度であると判断した。また、打ち抜き時の脆性破面率が20%未満で、かつ、疲労限度比が0.4以上である場合に、母材及び打ち抜き加工部における疲労特性が良好であると判断した。それらの結果を表9及び表10に示す。表10中の下線は、その数値が望ましい範囲から外れていることを示す。
 引張試験は、JIS5号引張試験片を圧延方向に対して直角方向から採取し、この試験片を用いて、JISZ2241に準じて試験を行った。
 鞍型伸びフランジ試験は、コーナーの曲率半径をR60mm、開き角θを120°とした鞍型成形品を用いて、コーナー部を打ち抜く際のクリアランスを11%として行った。限界成形高さは、成形後に目視にて、板厚の1/3以上の長さを有するクラックの存在の有無を観察し、クラックが存在しない限界の成形高さとした。
 打ち抜き時の脆性破面率は、板厚の10~15%のクリアランス条件で20~50個の試料鋼板をシャー又はポンチで円形状に打ち抜き、形成された破断面を、マイクロスコープを用いてそれぞれ観察した。そして、金属光沢のある部分を脆性破面とし、脆性破面の円周方向の長さを測定した。ここで、脆性破面の円周方向の長さとは、脆性破面となった領域の端から端までの円周方向の長さを言う。そして、観察した全ての円周長さに対する合計の脆性破面の円周長さの割合を脆性破面率とした。例えば、20個の試料鋼板を直径10mmのポンチで打ち抜いた場合、円周長さの合計は20×10×πmmとなる。20個の試料鋼板のうちの1つだけに脆性破面があり、かつ、その脆性破面の円周方向の長さが1mmだった場合、脆性破面率は1/(20×10×π)となる。
 疲労限度比は、上記の方法により測定した各鋼板の疲労限の値を引張強度で除す(疲労限(MPa)/引張強度(MPa))ことにより算出した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明例(試験No.1~21)では、480MPa以上の引張強度、19500mm・MPa以上の引張強度と鞍型伸びフランジ試験における限界成形高さとの積、20%未満の打ち抜き時の脆性破面率、及び0.4以上の疲労限度比が得られた。
 試験No.22~27は、化学成分が本発明の範囲外の比較例である。試験No.22~24は、伸びフランジ性の指標が目標値を満足しなかった。試験No.25は、Ti及びNbの合計含有量が少ないため、伸びフランジ性の指標及び引張強度が目標値を満足しなかった。試験No.26は、Ti及びNbの合計含有量が多いため、加工性が劣化し、圧延中に割れが発生した。試験No.27は、Ti及びNbの合計含有量が多いため、伸びフランジ性の指標が目標値を満足しなかった。
 試験No.28~46は、製造条件が望ましい範囲から外れた結果、光学顕微鏡で観察される組織、粒内の方位差が5~14°である結晶粒の割合、平均アスペクト比、炭化物の密度のいずれか1つ又は複数が本発明の範囲を満たさなかった比較例である。試験No.28~40、45は、粒内の方位差が5~14°である結晶粒の割合が少ないため、伸びフランジ性の指標が目標値を満足しなかった。試験No.41~44は、結晶粒の相当楕円の平均アスペクト比が大きいため、打ち抜き時の脆性破面率が20%超となった。
 本発明によれば、高強度で、優れた伸びフランジ性を有し、母材及び打ち抜き加工部の疲労特性が良好な鋼板を提供できる。本発明の鋼板は、クリアランスが厳しく、摩耗したシャーやパンチを用いる厳しい加工条件で打ち抜き加工を行った場合でも、打抜き端面における凹凸を伴う損傷を防止できる。本発明の鋼板は、高強度でありながら厳しい伸びフランジ性と、母材及び打ち抜き加工部の疲労特性とを要求される部材への適用が可能である。本発明の鋼板は、自動車の部材の薄肉化による軽量化に適した素材であり、自動車の燃費向上等に寄与するため、産業上の利用可能性が高い。

Claims (8)

  1.  質量%で、
     C:0.008~0.150%、
     Si:0.01~1.70%、
     Mn:0.60~2.50%、
     Al:0.010~0.60%、
     Ti:0~0.200%、
     Nb:0~0.200%、
     Ti+Nb:0.015~0.200%、
     Cr:0~1.0%、
     B:0~0.10%、
     Mo:0~1.0%、
     Cu:0~2.0%、
     Ni:0~2.0%、
     Mg:0~0.05%、
     REM:0~0.05%、
     Ca:0~0.05%、
     Zr:0~0.05%、
     P:0.05%以下、
     S:0.0200%以下、
     N:0.0060%以下、かつ
     残部:Fe及び不純物、
     で表される化学組成を有し、
     面積率で、
     フェライト:30~95%、かつ
     ベイナイト:5~70%、
     で表される組織を有し、
     方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5~14°である結晶粒の全結晶粒に占める割合が面積率で20~100%であり、
     前記結晶粒の相当楕円の平均アスペクト比が5以下であり、
     フェライト粒界上における粒径が20nm以上のTi系炭化物及びNb系炭化物の合計の平均分布密度が10個/μm以下であることを特徴とする鋼板。
  2.  引張強度が480MPa以上であり、
     前記引張強度と鞍型伸びフランジ試験における限界成形高さとの積が19500mm・MPa以上であり、
     打ち抜き破断面の脆性破面率が20%未満であることを特徴とする請求項1に記載の鋼板。
  3.  前記化学成分が、質量%で、
     Cr:0.05~1.0%、及び
     B:0.0005~0.10%、
    からなる群から選択される1種以上を含むことを特徴とする請求項1又は2に記載の鋼板。
  4.  前記化学成分が、質量%で、
     Mo:0.01~1.0%、
     Cu:0.01~2.0%、及び
     Ni:0.01%~2.0%、
    からなる群から選択される1種以上を含むことを特徴とする請求項1乃至3のいずれか1項に記載の鋼板。
  5.  前記化学成分が、質量%で、
     Ca:0.0001~0.05%、
     Mg:0.0001~0.05%、
     Zr:0.0001~0.05%、及び
     REM:0.0001~0.05%、
    からなる群から選択される1種以上を含むことを特徴とする請求項1乃至4のいずれか1項に記載の鋼板。
  6.  請求項1乃至5のいずれか1項に記載の鋼板の表面に、めっき層が形成されていることを特徴とするめっき鋼板。
  7.  前記めっき層が、溶融亜鉛めっき層であることを特徴とする請求項6に記載のめっき鋼板。
  8.  前記めっき層が、合金化溶融亜鉛めっき層であることを特徴とする請求項6に記載のめっき鋼板。
PCT/JP2017/028477 2016-08-05 2017-08-04 鋼板及びめっき鋼板 WO2018026014A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780046261.9A CN109563580A (zh) 2016-08-05 2017-08-04 钢板及镀覆钢板
BR112019000766A BR112019000766B8 (pt) 2016-08-05 2017-08-04 Chapa de aço
EP17837115.9A EP3495528A4 (en) 2016-08-05 2017-08-04 STEEL SHEET, AND PLATED STEEL SHEET
KR1020197000254A KR102186320B1 (ko) 2016-08-05 2017-08-04 강판 및 도금 강판
US16/315,120 US11236412B2 (en) 2016-08-05 2017-08-04 Steel sheet and plated steel sheet
JP2017562090A JP6358407B2 (ja) 2016-08-05 2017-08-04 鋼板及びめっき鋼板
MX2019000576A MX2019000576A (es) 2016-08-05 2017-08-04 Lámina de acero y lámina de acero chapada.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-155100 2016-08-05
JP2016155100 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018026014A1 true WO2018026014A1 (ja) 2018-02-08

Family

ID=61073647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028477 WO2018026014A1 (ja) 2016-08-05 2017-08-04 鋼板及びめっき鋼板

Country Status (9)

Country Link
US (1) US11236412B2 (ja)
EP (1) EP3495528A4 (ja)
JP (1) JP6358407B2 (ja)
KR (1) KR102186320B1 (ja)
CN (1) CN109563580A (ja)
BR (1) BR112019000766B8 (ja)
MX (1) MX2019000576A (ja)
TW (1) TWI629369B (ja)
WO (1) WO2018026014A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010399A1 (en) * 2018-11-26 2022-01-13 Posco High-strength steel with excellent durability and method for manufacturing same
EP3940092A4 (en) * 2019-03-11 2023-03-01 Nippon Steel Corporation HOT ROLLED STEEL SHEET
EP3940093A4 (en) * 2019-03-11 2023-03-08 Nippon Steel Corporation HOT ROLLED STEEL SHEET
JP7381842B2 (ja) 2019-08-20 2023-11-16 日本製鉄株式会社 厚鋼板
JP7431325B2 (ja) 2019-12-02 2024-02-14 ポスコホールディングス インコーポレーティッド 耐久性に優れた厚物複合組織鋼及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) * 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
EP3495527A4 (en) * 2016-08-05 2019-12-25 Nippon Steel Corporation STEEL SHEET, AND PLATED STEEL SHEET
US10889879B2 (en) * 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
BR112019000306B1 (pt) * 2016-08-05 2023-02-14 Nippon Steel Corporation Chapa de aço e chapa de aço galvanizada
MX2019000576A (es) 2016-08-05 2019-09-02 Nippon Steel Corp Lámina de acero y lámina de acero chapada.
US20220170128A1 (en) * 2019-05-31 2022-06-02 Nippon Steel Corporation Steel sheet for hot stamping
KR20220138402A (ko) * 2020-03-19 2022-10-12 닛폰세이테츠 가부시키가이샤 강판
KR102326688B1 (ko) * 2020-05-15 2021-11-15 히타치 긴조쿠 가부시키가이샤 핸들링성이 우수한 금속박판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132548A1 (ja) * 2006-05-16 2007-11-22 Jfe Steel Corporation 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
WO2008056812A1 (fr) * 2006-11-07 2008-05-15 Nippon Steel Corporation Plaque en acier à module de young élevé et procédé de production de celle-ci
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
WO2010131303A1 (ja) * 2009-05-11 2010-11-18 新日本製鐵株式会社 打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法
WO2014014120A1 (ja) * 2012-07-20 2014-01-23 新日鐵住金株式会社 鋼材

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770257A (en) 1980-10-17 1982-04-30 Kobe Steel Ltd High strength steel plate
US4501626A (en) 1980-10-17 1985-02-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel plate and method for manufacturing same
JPS5842726A (ja) 1981-09-04 1983-03-12 Kobe Steel Ltd 高強度熱延鋼板の製造方法
JPS61217529A (ja) 1985-03-22 1986-09-27 Nippon Steel Corp 延性のすぐれた高強度鋼板の製造方法
JPH02149646A (ja) 1988-11-30 1990-06-08 Kobe Steel Ltd 加工性、溶接性に優れた高強度熱延鋼板とその製造方法
JP2609732B2 (ja) 1989-12-09 1997-05-14 新日本製鐵株式会社 加工性とスポット溶接性に優れた熱延高強度鋼板とその製造方法
JP2840479B2 (ja) 1991-05-10 1998-12-24 株式会社神戸製鋼所 疲労強度と疲労亀裂伝播抵抗の優れた高強度熱延鋼板の製造方法
JP2601581B2 (ja) 1991-09-03 1997-04-16 新日本製鐵株式会社 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP2548654B2 (ja) 1991-12-13 1996-10-30 新日本製鐵株式会社 複合組織鋼材のエッチング液およびエッチング方法
JP3037855B2 (ja) 1993-09-13 2000-05-08 新日本製鐵株式会社 耐疲労亀裂進展特性の良好な鋼板およびその製造方法
JPH0949026A (ja) 1995-08-07 1997-02-18 Kobe Steel Ltd 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JP3333414B2 (ja) 1996-12-27 2002-10-15 株式会社神戸製鋼所 伸びフランジ性に優れる加熱硬化用高強度熱延鋼板及びその製造方法
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
DZ2530A1 (fr) 1997-12-19 2003-02-01 Exxon Production Research Co Procédé de préparation d'une tôle d'acier cette tôle d'acier et procédé pour renforcer la resistanceà la propagation des fissures d'une tôle d'acier.
EP1149925B1 (en) 1999-09-29 2010-12-01 JFE Steel Corporation Sheet steel and method for producing sheet steel
FR2801061B1 (fr) 1999-11-12 2001-12-14 Lorraine Laminage Procede de realisation d'une bande de tole laminere a chaud a tres haute resistance, utilisable pour la mise en forme et notamment pour l'emboutissage
JP4258934B2 (ja) 2000-01-17 2009-04-30 Jfeスチール株式会社 加工性と疲労特性に優れた高強度熱延鋼板およびその製造方法
JP4306076B2 (ja) 2000-02-02 2009-07-29 Jfeスチール株式会社 伸びフランジ性に優れた高延性熱延鋼板およびその製造方法
WO2001081640A1 (fr) 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
JP4445095B2 (ja) 2000-04-21 2010-04-07 新日本製鐵株式会社 バーリング加工性に優れる複合組織鋼板およびその製造方法
JP3790135B2 (ja) 2000-07-24 2006-06-28 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
EP1176217B1 (en) 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
JP3888128B2 (ja) 2000-10-31 2007-02-28 Jfeスチール株式会社 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
JP3882577B2 (ja) 2000-10-31 2007-02-21 Jfeスチール株式会社 伸びおよび伸びフランジ性に優れた高張力熱延鋼板ならびにその製造方法および加工方法
WO2002036840A1 (fr) 2000-10-31 2002-05-10 Nkk Corporation Tole d"acier laminee a chaud presentant une resistance elevee a la traction et procede de fabrication
JP4205853B2 (ja) 2000-11-24 2009-01-07 新日本製鐵株式会社 バーリング加工性と疲労特性に優れた熱延鋼板およびその製造方法
JP2002226943A (ja) 2001-02-01 2002-08-14 Kawasaki Steel Corp 加工性に優れた高降伏比型高張力熱延鋼板およびその製造方法
JP2002317246A (ja) 2001-04-19 2002-10-31 Nippon Steel Corp 切り欠き疲労強度とバーリング加工性に優れる自動車用薄鋼板およびその製造方法
JP4062118B2 (ja) 2002-03-22 2008-03-19 Jfeスチール株式会社 伸び特性および伸びフランジ特性に優れた高張力熱延鋼板とその製造方法
JP4205893B2 (ja) 2002-05-23 2009-01-07 新日本製鐵株式会社 プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4288146B2 (ja) 2002-12-24 2009-07-01 新日本製鐵株式会社 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板の製造方法
AU2003284496A1 (en) 2002-12-24 2004-07-22 Nippon Steel Corporation High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
JP4116901B2 (ja) 2003-02-20 2008-07-09 新日本製鐵株式会社 バーリング性高強度薄鋼板およびその製造方法
JP2004315857A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4580157B2 (ja) 2003-09-05 2010-11-10 新日本製鐵株式会社 Bh性と伸びフランジ性を兼ね備えた熱延鋼板およびその製造方法
JP4412727B2 (ja) 2004-01-09 2010-02-10 株式会社神戸製鋼所 耐水素脆化特性に優れた超高強度鋼板及びその製造方法
US20050150580A1 (en) 2004-01-09 2005-07-14 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
JP4470701B2 (ja) 2004-01-29 2010-06-02 Jfeスチール株式会社 加工性および表面性状に優れた高強度薄鋼板およびその製造方法
JP4333379B2 (ja) 2004-01-29 2009-09-16 Jfeスチール株式会社 加工性、表面性状および板平坦度に優れた高強度薄鋼板の製造方法
JP2005256115A (ja) 2004-03-12 2005-09-22 Nippon Steel Corp 伸びフランジ性と疲労特性に優れた高強度熱延鋼板
JP4926406B2 (ja) 2004-04-08 2012-05-09 新日本製鐵株式会社 疲労き裂伝播特性に優れた鋼板
JP4460343B2 (ja) 2004-04-13 2010-05-12 新日本製鐵株式会社 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
US8038809B2 (en) 2005-03-28 2011-10-18 Kobe Steel, Ltd. High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
JP3889766B2 (ja) 2005-03-28 2007-03-07 株式会社神戸製鋼所 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP5070732B2 (ja) 2005-05-30 2012-11-14 Jfeスチール株式会社 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
DE102005051052A1 (de) 2005-10-25 2007-04-26 Sms Demag Ag Verfahren zur Herstellung von Warmband mit Mehrphasengefüge
JP4840567B2 (ja) 2005-11-17 2011-12-21 Jfeスチール株式会社 高強度薄鋼板の製造方法
JP4854333B2 (ja) 2006-03-03 2012-01-18 株式会社中山製鋼所 高強度鋼板、未焼鈍高強度鋼板およびそれらの製造方法
JP4528275B2 (ja) 2006-03-20 2010-08-18 新日本製鐵株式会社 伸びフランジ性に優れた高強度熱延鋼板
JP4575893B2 (ja) * 2006-03-20 2010-11-04 新日本製鐵株式会社 強度延性バランスに優れた高強度鋼板
JP4969915B2 (ja) 2006-05-24 2012-07-04 新日本製鐵株式会社 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
EP2130938B1 (en) 2007-03-27 2018-06-06 Nippon Steel & Sumitomo Metal Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface and burring properties and process for manufacturing the same
JP5339765B2 (ja) 2007-04-17 2013-11-13 株式会社中山製鋼所 高強度熱延鋼板およびその製造方法
JP5087980B2 (ja) 2007-04-20 2012-12-05 新日本製鐵株式会社 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4980163B2 (ja) 2007-07-20 2012-07-18 新日本製鐵株式会社 成形性に優れる複合組織鋼板およびその製造方法
CN101861288B (zh) 2007-11-14 2013-05-22 日立金属株式会社 钛酸铝质陶瓷蜂窝状结构体、其制造方法及用于制造其的原料粉末
JP5359296B2 (ja) 2008-01-17 2013-12-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5194858B2 (ja) * 2008-02-08 2013-05-08 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2009118945A1 (ja) 2008-03-26 2009-10-01 新日本製鐵株式会社 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法
CA2720702C (en) 2008-04-10 2014-08-12 Nippon Steel Corporation High-strength steel sheet and galvanized steel sheet having very good balance between hole expansibility and ductility, and also excellent in fatigue resistance, and methods of producing the steel sheets
JP5200653B2 (ja) 2008-05-09 2013-06-05 新日鐵住金株式会社 熱間圧延鋼板およびその製造方法
JP5042914B2 (ja) 2008-05-12 2012-10-03 新日本製鐵株式会社 高強度鋼およびその製造方法
JP5438302B2 (ja) 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP2010168651A (ja) 2008-12-26 2010-08-05 Nakayama Steel Works Ltd 高強度熱延鋼板およびその製造方法
JP4853575B2 (ja) 2009-02-06 2012-01-11 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
WO2010114131A1 (ja) 2009-04-03 2010-10-07 株式会社神戸製鋼所 冷延鋼板およびその製造方法
JP4977184B2 (ja) 2009-04-03 2012-07-18 株式会社神戸製鋼所 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法
JP5240037B2 (ja) 2009-04-20 2013-07-17 新日鐵住金株式会社 鋼板およびその製造方法
CN102341521B (zh) 2009-05-27 2013-08-28 新日铁住金株式会社 疲劳特性、延伸率以及碰撞特性优良的高强度钢板、热浸镀钢板、合金化热浸镀钢板以及它们的制造方法
JP5423191B2 (ja) 2009-07-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5482204B2 (ja) * 2010-01-05 2014-05-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
ES2705232T3 (es) 2010-01-29 2019-03-22 Nippon Steel & Sumitomo Metal Corp Lámina de acero y método para fabricar la lámina de acero
JP4842413B2 (ja) 2010-03-10 2011-12-21 新日本製鐵株式会社 高強度熱延鋼板及びその製造方法
JP5510025B2 (ja) 2010-04-20 2014-06-04 新日鐵住金株式会社 伸びと局部延性に優れた高強度薄鋼板およびその製造方法
JP5765080B2 (ja) 2010-06-25 2015-08-19 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
MX342629B (es) 2010-07-28 2016-10-07 Nippon Steel & Sumitomo Metal Corp Lamina de acero enrollada en caliente, lamina de acero enrollada en frio, lamina de acero galvanizada y metodos para fabricar los mismos.
JP5719545B2 (ja) 2010-08-13 2015-05-20 新日鐵住金株式会社 伸びとプレス成形安定性に優れた高強度薄鋼板
JP5126326B2 (ja) 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
EP2439290B1 (de) 2010-10-05 2013-11-27 ThyssenKrupp Steel Europe AG Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung
RU2543590C2 (ru) * 2010-10-18 2015-03-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячекатаный, холоднокатаный и плакированный стальной лист, имеющий улучшенную равномерную и локальную пластичность при высокой скорости деформации
JP5776398B2 (ja) 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5667471B2 (ja) 2011-03-02 2015-02-12 株式会社神戸製鋼所 温間での深絞り性に優れた高強度鋼板およびその温間加工方法
KR101549317B1 (ko) 2011-03-28 2015-09-01 신닛테츠스미킨 카부시키카이샤 냉연 강판 및 그 제조 방법
WO2012133636A1 (ja) 2011-03-31 2012-10-04 新日本製鐵株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
KR101555418B1 (ko) 2011-04-13 2015-09-23 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
CA2832890C (en) 2011-04-13 2016-03-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof
EP2716783B1 (en) 2011-05-25 2018-08-15 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and process for producing same
JP5640898B2 (ja) 2011-06-02 2014-12-17 新日鐵住金株式会社 熱延鋼板
JP5780210B2 (ja) 2011-06-14 2015-09-16 新日鐵住金株式会社 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法
BR112014002203B1 (pt) 2011-07-29 2020-10-06 Nippon Steel Corporation Camada galvanizada, seu método para a produção e chapa de aço
WO2013047812A1 (ja) 2011-09-30 2013-04-04 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板
ES2737678T3 (es) 2011-09-30 2020-01-15 Nippon Steel Corp Chapa de acero galvanizado por inmersión en caliente de alta resistencia con excelentes características de corte mecánico, chapa de acero galvanizado por inmersión en caliente aleado de alta resistencia, y método de fabricación de las mismas
IN2014KN01251A (ja) 2011-12-27 2015-10-16 Jfe Steel Corp
EP2816132B1 (en) 2012-02-17 2016-11-09 Nippon Steel & Sumitomo Metal Corporation Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
TWI463018B (zh) 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp 具優異裂縫阻滯性之高強度厚鋼板
KR101706441B1 (ko) 2012-04-26 2017-02-13 제이에프이 스틸 가부시키가이샤 양호한 연성, 신장 플랜지성, 재질 균일성을 갖는 고강도 열연 강판 및 그 제조 방법
MX353735B (es) 2012-06-26 2018-01-26 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminada en caliente de alta resistencia y método para producir la misma.
CA2880063C (en) 2012-08-03 2017-03-14 Tata Steel Ijmuiden B.V. A process for producing hot-rolled steel strip and a steel strip produced therewith
JP5825225B2 (ja) 2012-08-20 2015-12-02 新日鐵住金株式会社 熱延鋼板の製造方法
KR101658744B1 (ko) 2012-09-26 2016-09-21 신닛테츠스미킨 카부시키카이샤 복합 조직 강판 및 그 제조 방법
EP2902520B1 (en) 2012-09-27 2019-01-02 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet, and production method therefor
US10144996B2 (en) 2012-12-18 2018-12-04 Jfe Steel Corporation High strength cold rolled steel sheet with low yield ratio and method of manufacturing the same
JP5821861B2 (ja) 2013-01-23 2015-11-24 新日鐵住金株式会社 外観に優れ、伸びと穴拡げ性のバランスに優れた高強度熱延鋼板及びその製造方法
KR101758003B1 (ko) * 2013-04-15 2017-07-13 신닛테츠스미킨 카부시키카이샤 열연 강판
JP6241274B2 (ja) 2013-12-26 2017-12-06 新日鐵住金株式会社 熱延鋼板の製造方法
CA2944863A1 (en) 2014-04-23 2015-10-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet for tailored rolled blank, tailored rolled blank, and methods for producing these
JP6292022B2 (ja) 2014-05-15 2018-03-14 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
JP6390273B2 (ja) 2014-08-29 2018-09-19 新日鐵住金株式会社 熱延鋼板の製造方法
BR112017016799A2 (ja) 2015-02-20 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel product
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
BR112019000306B1 (pt) * 2016-08-05 2023-02-14 Nippon Steel Corporation Chapa de aço e chapa de aço galvanizada
MX2019000576A (es) 2016-08-05 2019-09-02 Nippon Steel Corp Lámina de acero y lámina de acero chapada.
EP3495527A4 (en) * 2016-08-05 2019-12-25 Nippon Steel Corporation STEEL SHEET, AND PLATED STEEL SHEET

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132548A1 (ja) * 2006-05-16 2007-11-22 Jfe Steel Corporation 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
WO2008056812A1 (fr) * 2006-11-07 2008-05-15 Nippon Steel Corporation Plaque en acier à module de young élevé et procédé de production de celle-ci
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
WO2010131303A1 (ja) * 2009-05-11 2010-11-18 新日本製鐵株式会社 打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法
WO2014014120A1 (ja) * 2012-07-20 2014-01-23 新日鐵住金株式会社 鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495528A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010399A1 (en) * 2018-11-26 2022-01-13 Posco High-strength steel with excellent durability and method for manufacturing same
JP2022509655A (ja) * 2018-11-26 2022-01-21 ポスコ 耐久性に優れた高強度鋼材及びその製造方法
JP7244723B2 (ja) 2018-11-26 2023-03-23 ポスコ カンパニー リミテッド 耐久性に優れた高強度鋼材及びその製造方法
EP3940092A4 (en) * 2019-03-11 2023-03-01 Nippon Steel Corporation HOT ROLLED STEEL SHEET
EP3940093A4 (en) * 2019-03-11 2023-03-08 Nippon Steel Corporation HOT ROLLED STEEL SHEET
JP7381842B2 (ja) 2019-08-20 2023-11-16 日本製鉄株式会社 厚鋼板
JP7431325B2 (ja) 2019-12-02 2024-02-14 ポスコホールディングス インコーポレーティッド 耐久性に優れた厚物複合組織鋼及びその製造方法

Also Published As

Publication number Publication date
US11236412B2 (en) 2022-02-01
EP3495528A1 (en) 2019-06-12
KR20190014077A (ko) 2019-02-11
BR112019000766A2 (pt) 2019-04-24
TWI629369B (zh) 2018-07-11
TW201809313A (zh) 2018-03-16
JPWO2018026014A1 (ja) 2018-08-02
EP3495528A4 (en) 2020-01-01
KR102186320B1 (ko) 2020-12-03
BR112019000766B8 (pt) 2023-03-14
JP6358407B2 (ja) 2018-07-18
BR112019000766B1 (pt) 2023-01-10
MX2019000576A (es) 2019-09-02
CN109563580A (zh) 2019-04-02
US20190226061A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6358407B2 (ja) 鋼板及びめっき鋼板
JP6354916B2 (ja) 鋼板及びめっき鋼板
JP6358406B2 (ja) 鋼板及びめっき鋼板
TWI592500B (zh) 冷軋鋼板及其製造方法
JP6638870B1 (ja) 鋼部材およびその製造方法
JP6852736B2 (ja) 溶融亜鉛めっき冷延鋼板
US20180105908A1 (en) Plated steel sheet
CN114502759B (zh) 热轧钢板
JP6354917B2 (ja) 鋼板及びめっき鋼板
JP6950835B2 (ja) 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法
US20220056549A1 (en) Steel sheet, member, and methods for producing them
JPWO2020203158A1 (ja) 鋼板
WO2020162560A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
US20220090247A1 (en) Steel sheet, member, and methods for producing them
KR20240042470A (ko) 열간 압연 강판
KR102274284B1 (ko) 고강도 냉연 강판 및 그의 제조 방법
JP7260825B2 (ja) 熱延鋼板
JP6668662B2 (ja) 疲労特性と成形性に優れた鋼板およびその製造方法
WO2023037878A1 (ja) 冷延鋼板およびその製造方法
WO2024080327A1 (ja) 熱延鋼板
WO2023068368A1 (ja) 鋼板
KR20230040349A (ko) 열연 강판
WO2023153097A1 (ja) 冷延鋼板およびその製造方法
KR20230036137A (ko) 열연 강판
KR20240068702A (ko) 강판

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017562090

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000254

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000766

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017837115

Country of ref document: EP

Effective date: 20190305

ENP Entry into the national phase

Ref document number: 112019000766

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190115