WO2009118945A1 - 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 - Google Patents
疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2009118945A1 WO2009118945A1 PCT/JP2008/070612 JP2008070612W WO2009118945A1 WO 2009118945 A1 WO2009118945 A1 WO 2009118945A1 JP 2008070612 W JP2008070612 W JP 2008070612W WO 2009118945 A1 WO2009118945 A1 WO 2009118945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- hot
- rolled steel
- mpa
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 154
- 239000010959 steel Substances 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims description 23
- 230000008569 process Effects 0.000 title description 4
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims abstract description 52
- 230000032683 aging Effects 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 238000005096 rolling process Methods 0.000 claims description 62
- 238000001816 cooling Methods 0.000 claims description 33
- 238000007747 plating Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000005275 alloying Methods 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 6
- 239000002244 precipitate Substances 0.000 description 62
- 229910000859 α-Fe Inorganic materials 0.000 description 26
- 238000001556 precipitation Methods 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 22
- 229910001563 bainite Inorganic materials 0.000 description 15
- 229910052718 tin Inorganic materials 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 11
- 238000009661 fatigue test Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000035882 stress Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- -1 TiC precipitates Chemical compound 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- DXHPZXWIPWDXHJ-UHFFFAOYSA-N carbon monosulfide Chemical class [S+]#[C-] DXHPZXWIPWDXHJ-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
Definitions
- the present invention relates to a hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability and a method for producing the same.
- the present invention relates to a hot-rolled steel sheet having a uniform microstructure that exhibits excellent stretch flangeability and capable of easily forming even a part that requires severe stretch flange processing, and a method for manufacturing the same.
- TRIP Transformation Induced Plasticity
- the TRIP phenomenon is expressed during forming by including retained austenite in the microstructure of the steel.
- the formability ductility and deep drawability
- the stretch flangeability is generally inferior. Therefore, a steel sheet having high strength and extremely excellent stretch flangeability is desired.
- Patent Documents 6 and 7 disclose hot-rolled steel sheets with good hole expansibility to which Ti is added. However, Ti / C is not properly controlled, and the hole expansion rate is not so high. JP 2000-169935 A JP 2000-169936 A JP 2000-144259 A JP 61-130454 A JP-A-8-269617 JP 2005-248240 A JP 2004-131802 A
- the present invention provides a hot rolled steel sheet having a maximum tensile strength of 520 to 720 MPa, excellent stretch flangeability and good ductility, and excellent fatigue characteristics, particularly fatigue characteristics after piercing. It aims at providing the manufacturing method.
- the present inventors have intensively studied to overcome the above problems. As a result, first of all, it should be noted that Si is suppressed to the lowest level, that the structure is mainly composed of ferrite, and that even a small amount of solute C remains, and the ratio of Ti amount to C amount is noted. Newly found to be important.
- FIG. 1 shows a photograph obtained by observing a shear punching end face (cross-sectional shape of shear cutting, cut surface) with a microscope.
- the upper side of FIG. 1 shows the result of the normal fracture surface being observed, and the lower side is the result of the normal fracture surface and the abnormal fracture surface being observed.
- FIG. 2 shows an SEM photograph of a normal fracture surface portion
- FIG. 3 shows an SEM photograph of an abnormal fracture surface portion.
- FIGS. 1 to 3 show the results of shear cutting of a hot-rolled steel sheet with a clearance of 12% of the plate thickness and observing the obtained punched end face (fracture surface property of the punched portion).
- the normal fracture surface is a ductile fracture surface
- the abnormal surface fracture surface is a brittle fracture surface.
- the brittle fracture surface is considered to occur when there are a large number of elongated ferrite grain boundaries on the cut surface, or when a large number of precipitates such as TiC are present at the ferrite grain boundaries. Therefore, in order to suppress the occurrence of brittle fracture surfaces, it is important that (1) the crystal grain morphology is controlled and (2) no precipitate such as TiC is present. In the present invention, the production of a hot-rolled steel sheet of 520 MPa to 720 MPa is targeted.
- the present invention has been completed. That is, the gist of the present invention is as follows.
- the hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability according to the present invention is C: 0.015% or more and less than 0.040%, Si: less than 0.05%, Mn: 0.9% in mass%.
- the structure contains a mixed structure of polygonal ferrite and quasi-polygonal ferrite exceeding 96%, the maximum tensile strength is 520 MPa or more and less than 720 MPa, the aging index AI is more than 15 MPa, the hole expansion ratio ( ⁇ )% and the total elongation (El) )% Product is 2350 or more, fatigue limit is 200 MPa or more That.
- Cu 0.01% to 1.5% and Ni: 0.01% to 0.8% in mass%. Any one or two of them may be contained. Furthermore, you may contain any 1 type or 2 types of Ca: 0.0005% or more and 0.005% or less and REM: 0.0005% or more and 0.05% or less in the mass%.
- Plating may be performed.
- the steel slab is heated to 1100 ° C. or higher, rough rolled under conditions that end at a temperature of 1000 ° C.
- the rough bar is finish-rolled under conditions that end at a temperature range of 830 to 980 ° C.
- the hot-rolled steel sheet having a fatigue limit of 2350 or more and a fatigue limit of 200 MPa or more is produced.
- the coarse bar or the rolled material may be heated. Descaling may be performed between the end of the step of rough rolling the steel slab and the start of the step of finish rolling the rough bar. You may anneal the said hot-rolled steel plate at 780 degrees C or less.
- the hot-rolled steel sheet may be heated at 780 ° C. or lower and then immersed in a plating bath to plate the steel sheet surface. After the plating, a plating alloying treatment may be performed.
- the present invention relates to a hot-rolled steel sheet excellent in stretch flangeability and a method for manufacturing the hot-rolled steel sheet.
- a hot-rolled steel sheet excellent in stretch flangeability By using these steel sheets, even parts that require severe stretch flange processing typified by a decorative hole portion of a high-design wheel are used. Easy to mold. Also, the end face properties after the stretch flange processing are good with no secondary shear surface and similar defects.
- the hot-rolled steel sheet of the present invention is used for a member that is used by punching a hole, such as a wheel of an automobile, it is possible to effectively suppress fatigue failure occurring from around the hole.
- brittle fracture surface When a hole is punched and a brittle fracture (brittle fracture surface) occurs on the punched end face (cut fracture surface) of the hole, fatigue fracture occurs from around the hole.
- the hot-rolled steel sheet of the present invention since the occurrence of brittle fracture at the punched end face is suppressed, fatigue fracture can be effectively suppressed, and excellent fatigue characteristics (pierce fatigue characteristics) can be achieved. It also has excellent post-painting corrosion resistance.
- the steel sheet strength can be reduced because it has high fatigue strength and high tensile strength of 520 to 670 MPa.
- FIG. 1 is a view showing a photograph obtained by observing a shear punching end surface (cross-sectional form of shear cutting) with a microscope.
- FIG. 2 is a view showing an SEM photograph of a normal fracture surface portion.
- FIG. 3 is a view showing an SEM photograph of the abnormal fracture surface portion.
- FIG. 4 is a diagram schematically showing regions in which Ti—C clusters and TiC precipitates are generated in the relationship between the steel plate temperature and the elapsed time from the finish rolling.
- C is one of the most important elements in the present invention. If it is contained in an amount of 0.04% or more, the carbide that becomes the starting point of stretch flange cracking increases, not only the hole expansion value deteriorates, but also the strength increases and the workability deteriorates. Therefore, the C content is less than 0.040%. From the viewpoint of stretch flangeability, less than 0.035% is desirable. Further, if less than 0.015%, the strength is insufficient, so 0.015% or more. The content of C is preferably 0.015% or more and less than 0.035%.
- the upper limit is less than 0.02%. Less than 0.01% is a more preferable upper limit. Although the lower limit is not particularly specified, it is difficult to make it 0.001% or less in terms of steelmaking technology. Therefore, more than 0.001% is a substantial lower limit.
- Al may be added for deoxidation of molten steel, but the upper limit is set to less than 0.1% because of an increase in cost. Moreover, when adding too much, a nonmetallic inclusion will be increased and elongation and hole expansibility will be degraded, therefore It is desirably made into less than 0.06%.
- the Al content is more preferably 0.01% to 0.05%. Al may not be added.
- Ti is an extremely important element in the present invention. Ti is indispensable for increasing the strength and has the effect of improving the hole expandability. Therefore, addition of 0.05% or more is essential. However, if it is added too much, the strength may become too high, or the hole expandability, fatigue characteristics, and piercing fatigue characteristics may decrease. Therefore, the upper limit is made less than 0.11%.
- the Ti content is more preferably 0.075% or more and less than 0.10%.
- Ti / C is 2.5 or more and less than 3.5 by mass ratio.
- the content of C is 0.015 or more and less than 0.040%
- Ti / C is 2.5 or more and less than 3.5
- the time to reach 700 ° C. from the end of finish rolling is 5 to 20 seconds.
- Ti-C clusters are easily formed.
- the Ti—C cluster refers to a state in which Ti is trapped by C although it is difficult for precipitates as TiC to be generated. Since Ti is in a state where C is captured, it is possible to suppress the precipitation of cementite that normally precipitates at 440 ° C. to 560 ° C. Furthermore, bainite can also be suppressed.
- FIG. 4 is a diagram schematically showing regions in which Ti—C clusters and TiC precipitates are generated in the relationship between the steel plate temperature and the elapsed time from the finish rolling.
- the amount of TiN (precipitate) and TiC precipitate in the hot-rolled steel sheet can be measured as an amount in terms of Ti by collecting an extraction residue from the steel sheet and measuring the Ti component. For this reason, the amount of Ti—C clusters can be calculated by the formula of (added Ti amount) ⁇ (Ti as TiC precipitate) ⁇ (Ti as TiN).
- the amount of Ti as Ti—C cluster calculated by this calculation formula is about 0.02% to 0.07%.
- the amount of (Ti as TiC precipitate) in terms of Ti is about 0.02%, and the amount of (Ti as TiN) is about 0.02%.
- the filter used for the electrolytic extraction residue analysis is 0.2 ⁇ m.
- the precipitate extracted with (Ti as TiC precipitate) or (Ti as TiN) is considered to be about 5 nm or more. Further, in the present invention, it was found that when the amount of TiC precipitate in terms of Ti is about 0.02% and the amount of TiN is about 0.02%, the brittle fracture surface of the cut surface is not affected. . This has a close influence on the ratio of the structure of polygonal ferrite and quasi-polygonal ferrite in the microstructure described later.
- strengthening by Ti-C clusters is performed.
- Ti—C clusters are generated, a strain field is formed in the surrounding crystals, so that dislocation can be fixed and strength can be improved.
- TiN coarsens it cannot be used as a reinforcing element.
- TiC precipitates reduce the cracking of the end face and the fatigue limit, the amount of precipitation should be small, and cannot be used as a strengthening element.
- composite precipitates such as NbC and TiNbCN are not used as reinforcing elements.
- Composite precipitates such as NbC and TiNbCN should be avoided because they tend to produce brittle fracture surfaces.
- Nb should not be added.
- NbC precipitates, which inhibits the formation of Ti—C clusters.
- the Ti—C cluster is decomposed.
- the formation of Ti—C clusters is suppressed, the strength is reduced, the occurrence of cracks on the end face is suppressed, and the fatigue limit is reduced.
- the recrystallization temperature rises, so that elongated ferrite crystal grains are likely to be generated. Therefore, from this point of view, it was found that Nb should not be included.
- the hot-rolled steel sheet of the present invention does not contain Zr, V, Cr, Mo, B, and W.
- Zr, V, Cr, Mo, B, and W generate carbides, but these elements also inhibit the formation of Ti—C clusters or decompose Ti—C clusters. For this reason, these Zr, V, Cr, Mo, B, and W are not contained either.
- O is not particularly limited, but if it is too much, coarse oxides increase and the hole expandability is impaired, so 0.012% is a practical upper limit. More preferably, it is 0.006% or less, More preferably, it is 0.003% or less.
- any one or more of Cu, Ni, Ca, and REM may be contained. Below, the component of each element is described.
- any one or two of Cu and Ni which are precipitation strengthening or solid solution strengthening elements may be added.
- the effect cannot be obtained if Cu is less than 0.01% or Ni is less than 0.01%, respectively.
- Cu is added in a range of more than 1.5% or Ni: more than 0.8%, the effect is not only saturated but also the formability is deteriorated and the cost is increased.
- REM is a rare earth metal, and is selected from Sc, Y and lanthanoids La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. One or more.
- the microstructure is mainly composed of ferrite.
- Ferrite is a mixed structure of polygonal ferrite (PF) and pseudo-polygonal ferrite (Quasi-Polygonal Ferrite, hereinafter referred to as ⁇ q).
- the total of quasi-polygonal ferrite and polygonal ferrite is more than 96%, preferably 98% or more.
- the quasi-polygonal ferrite does not show an internal structure by etching as in the case of polygonal ferrite (PF), but is an ash-shaped structure that is clearly separated from polygonal ferrite.
- PF polygonal ferrite
- the perimeter length lq of the target crystal grain and the equivalent circle diameter thereof are dq
- the crystal grain satisfying lq / dq ⁇ 3.5 in their ratio (lq / dq) is quasi-polygonal ferrite. is there.
- the quasi-polygonal ferrite is not completely round as defined above, and is a ferrite having a grain boundary with a jagged shape. Therefore, when mixed with polygonal ferrite, brittle fracture of the cut surface hardly occurs.
- Ti—C clusters are related to the formation of polygonal ferrite and quasi-polygonal ferrite. In particular, it is closely related to the formation of quasi-polygonal ferrite. That is, it has been found that a mixed structure of polygonal ferrite and quasi-polygonal ferrite is easily formed as a microstructure under the conditions in which Ti—C clusters are formed.
- polygonal ferrite is preferably 30 to 70%, and the other is preferably quasi-polygonal ferrite.
- the grain boundaries of polygonal ferrite are linear, whereas the grain boundaries of quasi-polygonal ferrite are intricate.
- the amount of TiC precipitates is extremely small, but if TiC precipitates are aligned with the grain boundaries of polygonal ferrite, they tend to cause brittle fracture surfaces.
- polygonal ferrite is 30% to 70% and the other is quasi-polygonal ferrite, and both microstructures are arranged side by side, brittle fracture surface does not occur.
- the content of bainitic ferrite, bainite, or pearlite is 4% or less in terms of area ratio, the probability that these microstructures appear on the punched end face is very low. For this reason, since it becomes difficult to raise
- the content of the bainitic ferrite, bainite, or pearlite is preferably 2% or less, and in this case, it is possible to more effectively suppress deterioration of hole expanding property. Most preferably, these microstructures are absent.
- TiC precipitates tend to be formed at the grain boundaries, when a large amount of TiC precipitates are deposited, the formation of Ti-C clusters is suppressed and embrittlement cracks along the grain boundaries at the time of punching, that is, abnormal fractures. Promotes surface formation. For this reason, the grain boundary strengthening is weakened. Furthermore, TiC precipitates are likely to become the starting point of cracking and flange cracking during stretch flange molding. For this reason, when the hole expansion ratio is 120% or more, further 140% or more, or when the product of the hole expansion ratio and the total elongation is 2350 or more, brittle fracture of the cut surface is likely to occur, so it is necessary to suppress it. .
- the amount of the TiC precipitate is preferably 0.03% or less, more preferably 0.02% or less, in terms of Ti.
- TiN like TiC precipitates, can be the starting point of cracking, so the amount of TiN and TiC precipitates is preferably 0.02% or less in terms of Ti (value measured by the extraction residue method). .
- the aging index AI is very important in the present invention.
- the amount of C not fixed to Ti as TiC precipitates is defined as solute C and is usually estimated using an internal friction method.
- the Ti—C clusters are generated in the hot-rolled steel sheet of the present invention, the amount of C generated as Ti—C clusters cannot be evaluated by the internal friction method, which is a means for measuring ordinary solute C. That is, Ti—C clusters are not solute C.
- AI is greater than 15 MPa. If it is 15 MPa or less, good hole expansibility and fatigue characteristics cannot be ensured.
- the upper limit of AI is not particularly provided, but if it exceeds 80 MPa, the amount of solid solution C is too much and the moldability may be lowered. Therefore, the upper limit is preferably 80 MPa or less.
- Stretch flangeability is more excellent as the balance between hole expansion value and total elongation is better.
- the product of the hole expansion rate (%) and the total elongation (%) is less than 2350, the frequency of stretch flange cracking during molding increases. For this reason, the optimal range of the product of the hole expansion rate (%) and the total elongation (%) is limited to 2350 or more.
- the product of the hole expansion rate (%) and the total elongation (%) is preferably 3400 or more.
- the hole expansion rate is 140% or more. More preferably, it is 160% or more.
- the hole expansion rate is measured according to the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.
- the pierce hole fatigue limit is preferably 200 MPa or more.
- Pierce hole fatigue limit is a value measured as follows.
- the test method follows JIS Z 2275 similarly to the above fatigue test.
- the test shape conforms to JIS Z 2275.
- a punched hole is formed in the middle of the fatigue test piece with a punch diameter of 10 mm and a clearance of 12%.
- the inventor has found that when a brittle fracture surface including a cleavage fracture surface, a grain boundary fracture surface, or an interface fracture fracture surface exists on the punched end face, fatigue fracture is likely to occur from the periphery of the punched hole.
- the fatigue test characteristics (pierce hole fatigue limit) of this pierced hole punched material reflect the ease with which fatigue fracture occurs, and particularly excellent piercing fatigue characteristics are achieved when the pierced hole fatigue limit is 200 MPa or more. it can.
- the hot rolled steel sheet of the present invention may be plated.
- the main component of the plating may be zinc, aluminum, tin, or any other plating.
- the plating may be electroplating in addition to hot dipping and alloying hot dipping.
- the chemical component of plating may contain one or more elements such as Fe, Mg, Al, Cr, Mn, Sn, Sb, and Zn in addition to the main component.
- the production method preceding hot rolling is not particularly limited.
- the components are adjusted so that the desired component content is obtained by various secondary scouring, and then, in addition to normal continuous casting, casting by ingot method, thin slab What is necessary is just to cast by methods, such as casting.
- Scrap may be used as a raw material.
- a slab obtained by continuous casting it may be directly sent to a hot rolling mill as it is a high-temperature slab, or may be hot-rolled after being reheated in a heating furnace after being cooled to room temperature.
- the component of the steel slab is the same as the component of the hot-rolled steel sheet of the present invention described above.
- the steel slab needs to be heated to 1100 ° C. or higher.
- this temperature (slab extraction temperature) is less than 1100 ° C., it is difficult to obtain sufficient strength. This is presumably because Ti-based carbides are not sufficiently dissolved when the temperature is lower than 1100 ° C., and as a result, the precipitates become coarse.
- the slab extraction temperature is more preferably 1140 ° C or higher. Although there is no particular upper limit, even if it exceeds 1300 ° C., there is no particular effect, and the cost is increased, so 1300 ° C. or less is a practical upper limit.
- the heated steel slab is roughly rolled into a rough bar. The end temperature of rough rolling is extremely important in the present invention.
- 1000 degreeC or more is made into a minimum. More preferably, it is 1060 degreeC or more.
- the upper limit of the end temperature is not particularly provided, but the slab extraction temperature is a practical upper limit as a temperature that does not increase the cost.
- the finishing temperature of finish rolling is 830 to 980 ° C. If this temperature is less than 830 ° C., the strength of the hot-rolled steel sheet varies greatly depending on the cooling and winding conditions after hot rolling (rough rolling and finish rolling), or the in-plane anisotropy of tensile properties increases. . Moreover, since hole expansibility also deteriorates, 830 degreeC or more is made into a minimum. On the other hand, if the finishing temperature exceeds 980 ° C., the hot-rolled steel sheet becomes hard and the ductility may deteriorate. Moreover, since a hot-rolling roll tends to wear out, it is not preferable. Accordingly, 980 ° C. is the upper limit of the finishing temperature.
- the finishing temperature of finish rolling is preferably 850 ° C. to 960 ° C., and more preferably 870 ° C. to 930 ° C.
- the rolled material After finishing rolling, the rolled material is air-cooled for 0.5 seconds or more. If this is less than 0.5 seconds, good hole expansion characteristics cannot be obtained. The reason for this is not necessarily clear, but if it is less than 0.5 seconds, the recrystallization of austenite does not proceed, and as a result, the anisotropy of mechanical properties increases and the hole expansibility tends to decrease. Seem. More preferably, an air cooling time of more than 1.0 seconds is provided.
- the rolled material is cooled to form a hot rolled steel sheet.
- the average cooling rate in the temperature range of 750 ° C. to 600 ° C. is in the range of 10 ° C./sec to 40 ° C./sec.
- the cooling rate is preferably 15 ° C./sec to 40 ° C./sec, more preferably 20 ° C./sec and 35 ° C./sec or less.
- the cooling rate is in the range of 10 ° C./sec to 40 ° C./sec, when Ti / C is less than 2.5, there is no precipitation of TiC precipitates, so that the structure becomes only polygonal ferrite, Quady polygonal ferrite does not form. In this case, the strength is less than 520 MPa and does not satisfy the target characteristics of the present invention.
- the cooling rate is in the range of 10 ° C / sec to 40 ° C / sec, when Ti / C is 3.5 or more, there is precipitation of TiC precipitate, brittle fracture surface is generated, and the piercing fatigue limit is lowered. To do.
- Nb is not included.
- Nb itself suppresses recrystallization of austenite. Therefore, the austenite grain size does not become 60 ⁇ m or more even if the same time is maintained. Therefore, when Nb is contained, the number of TiC precipitate precipitation sites after finish rolling increases even if the same time is maintained, and the refinement of the TiC precipitate is promoted. In the present invention, this does not occur because Nb is not included.
- the winding temperature is 440 ° C to 560 ° C.
- the coiling temperature is less than 440 ° C.
- a hard structure such as bainite or martensite appears and the hole expandability deteriorates.
- it exceeds 560 ° C. it is difficult to secure solute C, which is one of the most important requirements in the present invention, and as a result, the hole expandability may be deteriorated.
- a more preferable range of the coiling temperature is 460 ° C to 540 ° C.
- the rough bar after rough rolling may be subjected to heat treatment until finish rolling is completed (during finish rolling). Further, the heat treatment can be performed until the finish rolling is started on the rough bar after the rough rolling is completed. As a result, the temperature in the width direction and the longitudinal direction of the steel sheet becomes uniform, and the material variation in the coil of the product is also reduced.
- the heating method is not particularly specified. What is necessary is just to perform by methods, such as a furnace heating, induction heating, electrical heating, and high frequency heating.
- Descaling may be performed between the end of rough rolling and the start of finish rolling. This may reduce the surface roughness and improve fatigue characteristics and hole expansibility.
- the descaling method is not particularly specified, but the most common method is a high-pressure water stream.
- the obtained hot rolled steel sheet may be reheated (annealed).
- the reheating temperature exceeds 780 ° C.
- the tensile strength and fatigue limit of the steel sheet decrease, so the appropriate range is limited to 780 ° C. or less.
- 680 ° C. or lower is a more preferable range.
- the heating method is not particularly specified, and may be performed by methods such as furnace heating, induction heating, energization heating, and high frequency heating.
- the heating time is not particularly defined, but when the heating and holding time of 550 ° C. or higher exceeds 30 minutes, the maximum heating temperature is desirably 720 ° C. or lower in order to obtain a strength of 520 MPa or higher.
- the hot-rolled steel sheet may be pickled or subjected to a skin pass depending on the purpose.
- Skin pass rolling is effective in improving shape correction, aging, and fatigue properties, and therefore may be performed after pickling or before pickling.
- it is desirable that the rolling reduction is 3% as an upper limit. This is because if it exceeds 3%, the formability of the steel sheet is impaired.
- the hot-rolled steel sheet may be heated and hot-dip plated using a continuous galvanizing facility or a continuous annealing galvanizing facility.
- a heating temperature of the steel plate exceeds 780 ° C., the tensile strength and fatigue limit of the steel plate decrease, so the appropriate range of heating temperature is limited to 780 ° C. or less.
- a plating alloying treatment may be applied to form hot-dip galvanizing.
- the heating temperature is more preferably 680 ° C. or less from the viewpoint of stretch flangeability.
- descaling may be performed between the end of rough rolling and the start of finish rolling.
- the maximum height Ry of the steel sheet surface after finish rolling is 15 ⁇ m (15 ⁇ m Ry, l (reference length: sampling length) 2.5 mm, ln (evaluation length: traveling length) 12.5 mm) or less.
- the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling.
- Ra defined by JIS B 0601 is preferably less than 1.40 ⁇ m, more preferably less than 1.20 ⁇ m.
- a sheet bar may be joined between rough rolling and finish rolling, and finish rolling may be performed continuously.
- the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.
- a to R steels (thin steel plates) having chemical components shown in Table 1 were produced by the following method. First, it was melted in a converter and continuously cast into a steel piece. The steel slab is reheated and rough-rolled into a rough bar under the conditions shown in Tables 2 and 3, and then the rough bar is finish-rolled to 4.5 mm (the range of the thickness of the steel sheet of the present invention is 2. The sheet was rolled into a rolled material having a thickness of 2 mm to 5.6 mm) and then cooled and wound up as a hot rolled steel sheet (thin steel sheet). The time from the end of rough rolling to the start of finish rolling was set to 60 to 200 seconds, and the austenite grain size before finish rolling was adjusted to about 60 to 150 ⁇ m.
- the indication about the chemical composition in Table 1 is mass%.
- Steel D, steel O, and steel P were subjected to descaling under the conditions of a collision pressure of 2.7 MP and a flow rate of 0.001 liter / cm 2 after rough rolling.
- the steel I shown in Table 1 was galvanized at 450 ° C.
- the chemical composition of the steel in the table is the steel No. Steel No. 1 in Table 1 with the same alphabet. It corresponds to the chemical composition of steel.
- SRT indicates the slab extraction temperature.
- Rough bar heating indicates whether or not the rough bar or the rolled material is heated from the end of rough rolling to the start of finish rolling or / and during finish rolling.
- RT indicates the rough rolling end temperature.
- FT indicates the finish rolling end temperature.
- Time to start cooling indicates the time from the end of finish rolling to the start of cooling.
- Cooling rate at 750 to 600 ° C.” indicates an average cooling rate when passing through a temperature range of 750 to 600 ° C. during cooling.
- CT indicates a winding temperature.
- Tables 4 and 5 The evaluation results of the obtained thin steel sheet are shown in Tables 4 and 5.
- the specimen was processed into a No. 5 test piece described in JIS Z 2201, and was subjected to a test method described in JIS Z 2241.
- AI test the specimen is processed into a No. 5 test piece described in JIS Z 2201 in the same way as the tensile test, and after applying a 7% tensile pre-strain to the test piece, heat treatment is performed at 100 ° C. for 60 minutes. Then, the tensile test was performed again.
- AI aging index
- AI aging index
- the stretch flangeability was evaluated by the hole expansion value (rate) measured according to the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.
- TS is the maximum tensile strength
- YS is the yield strength
- EI is the elongation
- AI is the aging index
- ⁇ is the hole expansion ratio.
- Fatigue properties were evaluated by a full swing bending test according to JIS Z 2275. The test shape conformed to JIS Z 2275. The upper limit of the fatigue strength at 1 ⁇ 10 7 repetitions was defined as the fatigue limit.
- the fatigue test may be terminated at a repetition number of 1 ⁇ 10 6 times or 2 ⁇ 10 6 times due to the test time, but in this case, the fatigue limit becomes higher than the case of a repetition number of 1 ⁇ 10 7 times. .
- the investigation of the microstructure was performed as follows. A sample cut from a 1/4 W or 3/4 W position of the steel plate width is polished to a cross section in the rolling direction, etched using a Nital reagent, and observed at a magnification of 200 to 500 times using an optical microscope. A photograph of the field of view at / 4t was taken to investigate the microstructure.
- the volume fraction of the microstructure is defined as an area fraction in the metal structure photograph.
- the steel sheet of the present invention is mainly composed of PF and ⁇ q. The total volume fraction of PF and ⁇ q was defined as the ferrite volume fraction.
- ⁇ q is described in the Japan Iron and Steel Institute Basic Research Group Bainite Research Group / Edition; Recent Research on Bainite Structure and Transformation Behavior of Low Carbon Steels-Final Report of Bainite Research Group (1994 Sakai Japan Iron and Steel Institute) It is one of the microstructures defined as the transformation structure in the intermediate stage between the polygonal ferrite produced by the diffusive mechanism and the non-diffusible martensite.
- ⁇ q like PF, does not reveal the internal structure by etching, but is an ashcular with a divided shape, and is clearly distinguished from PF.
- the punched fracture surface was evaluated as follows. Shear cutting was performed on the steel sheet with a clearance of 12% of the plate thickness, and the obtained punched end face (fracture surface properties of the punched part, fracture surface) was observed with a microscope. Then, the area ratio of the abnormal fracture surface other than the ductile fracture surface in the punched end surface was measured and evaluated as follows. A (good): Area ratio of abnormal fracture surface is less than 5% B (fair): Area ratio of abnormal fracture surface is less than 5% to less than 20% C (bad): Area ratio of abnormal fracture surface is 20% or more A brittle fracture surface was defined as a typical ductile fracture surface in which dimples were not observed with a microscope.
- a cleavage fracture surface, a grain boundary fracture surface, or an interface fracture fracture surface is classified as a brittle fracture surface.
- An abnormal fracture surface is a brittle fracture surface in which dimples are not observed with a microscope, and is a cleavage fracture fracture surface or a grain boundary fracture fracture surface.
- Tables 6 and 7 show examples in which hot-rolled steel sheets obtained under the following conditions were pickled and then annealed or galvanized.
- Conditions for hot rolling reheating slab to 1200 ° C; finishing rolling temperature is 900 ° C; time to start cooling is 2 sec; average cooling rate at 750 to 600 ° C is 35 ° C / sec; and winding temperature is 530 ° C.
- Steel A-3 and Steel A-4 are examples in which only annealing was performed in a box-type annealing furnace.
- Steel B-3 and Steel B-4 are examples in which annealing was performed in a continuous annealing plating facility followed by galvanization.
- Steel C-3, Steel C-4, Steel D-3, Steel E-3, Steel F-3, Steel L-2, and Steel L-3 were annealed in a continuous annealing plating facility, followed by zinc This is an example of plating and plating alloying treatment.
- Steel M-2 and Steel N-2 are examples in which the pickled plate was heated to the galvanizing temperature, and then galvanized and plated alloyed.
- the galvanizing immersion temperature was 450 ° C. and the plating alloying temperature was 500 ° C.
- a hot-rolled steel sheet containing a predetermined amount of a steel component, whose microstructure is mainly composed of uniform ferrite, and has both fatigue characteristics and stretch flangeability is obtained. That is, the hole expansion value evaluated by the method described in the present invention exceeds 140%.
- the results of fatigue characteristics (fatigue limit) are excellent in fatigue strength in the examples of the present invention as shown in Tables 2 to 7.
- the comparative example it can be seen that the chemical component or / and the production method are out of the scope of the invention, and as a result, the strength, hole expansibility, fatigue characteristics, etc. are inferior.
- steels K-1 and K-2 whose components are outside the present invention are out of the present invention because the fatigue limit is 200 or less.
- the hot-rolled steel sheet of the present invention is particularly suitable for automobile chassis and undercarriage parts, and is particularly suitable for wheel disks. Since it has excellent formability such as stretch flangeability, the design freedom is increased and so-called high-design wheels are realized. Furthermore, since the occurrence of brittle fracture on the punched end face (shear cutting fracture surface) when punching a hole is suppressed, fatigue fracture can be effectively suppressed, and excellent fatigue characteristics (pierce fatigue characteristics) can be achieved. In addition, it has excellent corrosion resistance after painting, and because it has high strength, it is possible to reduce the plate thickness, contributing to the conservation of the global environment through weight reduction of the car body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本願は、2008年3月26日に出願された日本国特許出願第2008-079591号に対し優先権を主張し、その内容をここに援用する。
特許文献4には、フェライトとベイナイトからなる組織を有する鋼板が開示されているが、このような複合組織鋼では、比較的良好な延性が得られるものの、伸びフランジ性を表す指標である穴拡げ率が低い傾向にある。
さらに特許文献5には、フェライト体積率が高い鋼板が開示されている。しかしこれにはSiが多量に含有されているため、疲労特性などに問題を生じる場合がある。このようなSiによる弊害を避けるためには、熱延中または/および熱延後に表面改質を図ることが必要となり、特殊な設備導入が必要となったり、生産性が劣化したりと問題も多い。
図1は、シャー打ち抜き端面(シャー切断の断面形態、切断面)を顕微鏡により観察して得られた写真を示す。ここで、図1の上側には、正常破面が観察された結果を示し、下側には、正常破面と異常破面が観察された結果を示す。
図2は、正常破面部のSEM写真を示し、図3は、異常破面部のSEM写真を示す。
図1~3は、板厚の12%のクリアランスで熱延鋼板にシャー切断を行い、得られた打ち抜き端面(打ち抜き部の破面性状)を観察した結果である。
したがって、脆性破面の発生を抑制するためには、(1)結晶粒の形態を制御することと、(2)TiC等の析出物が存在しないことが重要である。
本発明では、520MPa~720MPaの熱延鋼板の製造を目標としているが、析出物で強化する析出強化では、TiCなどの析出物が生成されるので、破面での脆性破壊が阻止できない。また、C等の固溶元素を使うと、ベイナイト、セメンタイト、及びマルテンサイト等の硬質の第2相が析出するとともにTiCなどの析出物が生成することが多いので、破面での脆性破壊が阻止できない。加えて、硬質相は穴広げ率を低下させる。また、析出物が無い時には強度が不足した。
1)TiC等の主に炭化物系の析出物の生成を抑制できる。
2)セメンタイトなどの硬質の第2相の生成を抑制できる。
3)結晶粒の形態を制御して,脆性破壊(脆性破面)が起き難い形態にすることができる。
4)Ti-Cクラスターの周り生成する歪み場を用いて転位を固定し、強度を確保することができる。
さらに、Nbを添加すると、再結晶温度が上がるので、伸長したフェライト粒が発生しやすいことが分かった。したがって、この観点からNbを含有してはいけないことを見出した。
本発明にかかる疲労特性と伸びフランジ性に優れた熱延鋼板は、質量%にて、C:0.015%以上0.040%未満、Si:0.05%未満、Mn:0.9%以上1.8%以下、P:0.02%未満、S:0.01%未満、Al:0.1%未満、N:0.006%未満及び、Ti:0.05%以上0.11%未満を含有し、残部がFe及び不可避的不純物からなり、Ti/C=2.5以上3.5未満であり、Nb、Zr,V、Cr、Mo、B、及びWを含まず、ミクロ組織が、ポリゴナルフェライトとクアジーポリゴナルフェライトの混合組織を96%超含み、引張最高強度が520MPa以上かつ720MPa未満、時効指数AIが15MPa超、穴拡げ率(λ)%と全伸び(El)%の積が2350以上、疲労限が200MPa以上である。
さらに、質量%にて、Ca:0.0005%以上0.005%以下、REM:0.0005%以上0.05%以下のいずれか一種または二種を含有してもよい。
めっきが施されていてもよい。
前記鋼片を粗圧延する工程の終了時点から前記粗バーを仕上げ圧延する工程の開始時点までの間に、デスケーリングを行ってもよい。
前記熱延鋼板を780℃以下で焼鈍を行ってもよい。
前記熱延鋼板を780℃以下で加熱し、次いでめっき浴中に浸漬させて鋼板表面をめっきしてもよい。
前記めっき後、めっき合金化処理してもよい。
さらに、自動車のホイールなどのように穴を打ち抜きして使用される部材に本発明の熱延鋼板を用いた場合、穴の周囲から発生する疲労破壊を効果的に抑制できる。穴を打ち抜きした際に穴の打ち抜き端面(切断破面)に脆性破壊(脆性破面)が起きると、疲労破壊がこの穴の周囲から発生する。本発明の熱延鋼板では、打ち抜き端面における脆性破壊の発生が抑制されるため、疲労破壊を効果的に抑制でき、優れた疲労特性(ピアス疲労特性)が達成できる。
また、塗装後耐食性にも優れている。しかも、鋼板強度に関しては、良好な疲労特性を有しつつ、引張最高強度で520~670MPaと高強度であるので、板厚の低減が可能となる。
まず、本発明の熱延鋼板の化学成分について説明する。
Cは、本発明において最も重要な元素の一つである。0.04%以上含有していると、伸びフランジ割れの起点となる炭化物が増加し、穴拡げ値が劣化するだけでなく強度が上昇してしまい加工性が劣化する。このためCの含有量は、0.040%未満とする。伸びフランジ性の観点から、0.035%未満が望ましい。また、0.015%未満では、強度が不足するので、0.015%以上とする。Cの含有量は、好ましくは0.015%以上0.035%未満である。
また、化成処理性が劣化し、その結果、耐食性も劣悪となる。したがって、Siに関しては、極力低く含有量を抑制する必要がある。したがって、上限を0.05%未満とする。これによって粗圧延後に高圧デスケーリングをせずとも、良好な化成処理性と塗装後耐食性を確保することが可能となる。下限は特に定めないが、0.001%未満とするには大きなコストアップを伴うので、0.001%以上が実質的な下限である。Siの含有量は、好ましくは0.001%以上、0.01%未満である。
ここで、Ti-Cクラスターとは、TiCとしての析出物が生成しにくいがTiがCを捕獲した状態であることを言う。TiがCを捕捉した状態であるので、通常、440℃~560℃で析出するセンメンタイトの析出を抑制できる。更にベイナイトも抑制できる。
Tiの原子量は48であり、Cの原子量は12であるので、Ti/C=4の場合には、TiとCの原子比率(モル比率)が1:1になる。また、Nと結合するTiはおよそ0.02%である。したがって、Ti/Cが2.5以上、3.5未満では、Cが余っていることになるが、本発明のCの含有量で、本発明の冷却速度では、セメンタイトの析出は起きない。
Ti/Cの析出ノーズと鋼板の冷却曲線を交差させるためには、700℃で5秒~20秒の経過時間の地点を鋼板の冷却曲線が通過するようにする。すなわち、仕上げ圧延終了からの経過時間が5秒~20秒の間に鋼板温度が700℃となるように冷却する。この鋼板温度が700℃になるまでの経過時間は更に10秒~15秒が好ましい。
図4に示されたようにTiC析出物が生成するTi/Cの値と鋼板温度-経過時間の領域は、Ti-Cクラスターが生成するTi/Cの値と鋼板温度-経過時間の領域とは異なるので、Ti-Cクラスターが生成すると、TiC析出物の生成が抑制される。
Ti/Cが2.5未満では、高強度を安定して得ることができない。またTiC析出物量およびTi-Cクラスター量が共に少ないため、強度確保ができない。一方、Ti/Cが3.5以上では、後述する本発明において非常に重要な固溶Cの確保が困難となり、その結果、穴拡げ性や疲労特性が劣化する。またTiC析出物の析出が起こりやすく、Ti-Cクラスターが生成しにくい。
また、Ti換算での(Ti as TiC析出物)の量は0.02%程度、(Ti as TiN)量は0.02%程度である。
なお、電解抽出残渣分析に用いるフィルターは0.2μmである。しかし、これ以下の析出物が全部通過することは無く、微細析出物の凝集効果やフィルター目詰まりの影響で、実際には数nmオーダーの析出物もかなり抽出されることを電子顕微鏡の観察で確認している。したがって、(Ti as TiC析出物)または(Ti as TiN)で抽出される析出物は5nm程度以上であると考えられる。
また、本発明では、Ti換算でのTiC析出物の量が0.02%程度、TiNの量が0.02%程度の場合には、切断面の脆性破面には影響しないことがわかった。これは後述するミクロ組織において、ポリゴナルフェライトおよびクアジーポリゴナルフェライトの組織の割合と密接に影響している。
TiNは粗大化するので、強化要素としては用いることができない。
TiC析出物は端面の割れや、疲労限を低下させるので、析出量は少ない方が良く、強化要素としては用いることができない。
本発明では、Nbを含まないので、NbCやTiNbCNのような複合析出物も強化要素としては用いることはしない。NbCやTiNbCNのような複合析出物も切断面の脆性破面を生成しやすいので避けるべきである。
クアジーポリゴナルフェライトは上記の定義のように、完全に丸くはなく、粒界がギザギザした形状のフェライトであるので、ポリゴナルフェライトと混合されると、切断面の脆性破壊を起こし難い。
即ち、Ti-Cクラスターが形成する条件では、ミクロ組織としてポリゴナルフェライトおよびクアジーポリゴナルフェライトの混合組織が生成しやすいことがわかった。
ポリゴナルフェライトの粒界は直線的であるのに対して、クアジーポリゴナルフェライトの粒界は入り組んでいる。本発明では、TiC析出物の析出量は極めて少ないが、TiC析出物がポリゴナルフェライトの粒界に並ぶと、脆性破面を生成する原因になりやすい。これに対して、ポリゴナルフェライトが30%~70%、それ以外がクアジーポリゴナルフェライトであり、両方のミクロ組織が互いに並ぶように存在すると、脆性破面の生成が起こらない。
ベイネティックフェライトまたはベイナイトを含有する場合、本発明では析出物が殆ど無いために、本発明の強度の520MPa以上を確保することが難しくなるので、好ましくない。
フェライト組織内での混合割合としてポリゴナルフェライトが70%よりも多い場合、脆性破面が発生しやすいので好ましくない。
TiNもTiC析出物と同様に、割れの起点となる可能性があるので、TiN,TiC析出物の量はTi換算(抽出残渣法で測定する値)で0.02%以下にすることが好ましい。
本発明の熱延鋼板の引張最高強度は、520MPa以上、720MPa未満である。520MPa未満では、高強度化のメリットが小さく、720MPa以上では、成形性が劣化する。一方、高意匠性ホイール等の厳しい成形性や形状凍結性が求められる場合には、670MPa未満であることがより望ましい。なお、引張最高強度は、JIS Z 2241の方法にしたがって行う引張試験により測定される。
通常、TiC析出物としてTiに固定されていないC量は、固溶Cとして定義されて、内部摩擦法を用いて推定するのが通常である。しかし、本発明の熱延鋼板では、Ti-Cクラスターが生成しているので、通常の固溶Cを測定する手段である内部摩擦法では、Ti-Cクラスターとして生成するC量を評価できない。すなわち、Ti-Cクラスターは固溶Cではない。
なお、AIは本発明の鋼板の場合には以下のようにして測定する。まず、6.5~8.5%の引張歪を付与する。このときの流動応力をσ1とする。一旦除荷して試験片を引張試験機から取り外し、100℃にて1時間保持する熱処理を施す。その後、再度引張試験を行う。そこで得られた上部降伏応力をσ2とする。AI(MPa)=σ2-σ1で定義される。なお、引張試験はJIS Z 2241の方法にしたがって行う。
なお、本発明の鋼板を意匠性の高いホイール部材に適用する場合には、穴拡げ率が140%未満では、フランジ端面に割れが発生する場合がある。このため穴拡げ率は140%以上であることが望ましい。更に好ましくは160%以上である。なお、穴拡げ率は、日本鉄鋼連盟規格JFS T 1001-1996に記載の穴拡げ試験方法に従って測定される。
疲労試験は、試験時間の都合上、繰り返し数1×106回や2×106回で打ち切る場合もあるが、この場合には、繰り返し数1×107回の場合よりも疲労限は高くなる。
ピアス穴疲労限は以下のように測定される値である。試験方法は、上記の疲労試験と同様に、JIS Z 2275に従う。試験形状はJIS Z 2275に従う。しかし、疲労試験片の真ん中にポンチ径Φ10mm、クリアランス12%で打ち抜き穴を開けることが、上記の疲労試験とは異なる。そして、上記疲労特性と同様に応力振幅一定の完全両振り曲げ疲労試験(応力比R=-1)を行い、繰り返し数1×107回での疲労強度の上限をピアス疲労限として求める。
へき開破壊破面、粒界破壊破面、又は界面破壊破面からなる脆性破面が穴の打ち抜き端面に存在すると、疲労破壊が打ち抜き穴の周囲から発生しやすいことを発明者は見出した。このピアス穴打抜材の疲労試験特性(ピアス穴疲労限)は、疲労破壊の発生のしやすさを反映しており、ピアス穴疲労限が200MPa以上のとき、特に優れたピアス疲労特性が達成できる。
本発明の熱延鋼板の製造方法は、鋼片(スラブ)を熱間圧延することによって熱延鋼板とする方法であり、鋼片を圧延し粗バー(シートバーとも言う。)とする粗圧延工程と、粗バーを圧延して圧延材とする仕上げ圧延工程と、圧延材を冷却し熱延鋼板とする冷却工程と、熱延鋼板を巻き取る工程とを有する。
そして加熱した鋼片を粗圧延して粗バーとする。粗圧延の終了温度は本発明において極めて重要である。すなわち、粗圧延は1000℃以上で完了する必要がある。終了温度が1000℃未満では穴拡げ性が劣化するためである。したがって、1000℃以上を下限とする。より好ましくは1060℃以上である。終了温度の上限は特に設けないが、コストアップとならない温度として、スラブ抽出温度が実質的な上限である。
Ti/Cが上記範囲で、冷却速度が10℃/sec未満の場合、TiC析出物の析出が起こり、脆性破面が発生する。
反対に、冷却速度が40℃/sec超の場合、ミクロ組織がベイナイトになる。本発明ではTiCの析出を極力抑えているので、ベイナイト組織では強度が520MPa未満になり、本発明で目的とする特性を満足しない。逆に、TiC析出物を析出させて強度を520MPa以上にすると、脆性破面が生成してピアス疲労限が低下する。
冷却速度が10℃/sec~40℃/secの範囲内ではあるが、Ti/Cが3.5以上の場合、TiC析出物の析出があり、脆性破面が生成してピアス疲労限が低下する。
このためには、粗圧延終了から仕上げ圧延開始までの時間を60秒~200秒に調整することが好ましい。なお、本発明ではNbを含まないが、Nbを含む場合、Nb自体がオーステナイトの再結晶を抑制するので、同じ時間保持してもオーステナイト粒径は60μm以上にはならない。したがって、Nbを含有する場合には、同じ時間保持しても仕上げ圧延後のTiC析出物の析出サイトが多くなり、TiC析出物の微細化が促進される。本発明ではNbを含まないのでこのようなことは生じない。
さらに、溶融めっきを施した後に、めっき合金化処理を施し、合金化溶融亜鉛めっきとしてもよい。
なお、加熱温度は、伸びフランジ性の観点から、680℃以下がより好ましい範囲である。
表1に示す化学成分を有するA~Rの鋼(薄鋼板)は以下の方法により製造した。まず転炉にて溶製して、連続鋳造し鋼片とした。そして、表2,3に示す条件で鋼片を再加熱、粗圧延して粗バーとし、次いで粗バーを仕上げ圧延して4.5mm(本発明の鋼の製造板厚の範囲としては2.2mm~5.6mm)の板厚の圧延材にした後に冷却して熱延鋼板(薄鋼板)として巻き取った。
なお、粗圧延終了から仕上げ圧延開始までの時間を60秒~200秒にして、仕上げ圧延前のオーステナイトの粒径を60~150μm程度に調整した。
ここで、表中の鋼の化学組成は、その鋼No.のアルファベットが同じ表1の鋼No.の鋼の化学組成と対応している。「SRT」はスラブ抽出温度を示す。「粗バー加熱」は、粗圧延終了から仕上げ圧延開始までの間または/および仕上げ圧延中に、粗バーまたは圧延材を加熱することの有無を示す。「RT」は、粗圧延終了温度を示す。「FT」は、仕上げ圧延終了温度を示す。「冷却開始までの時間」とは、仕上げ圧延終了から冷却を開始するまでの時間を示す。「750~600℃での冷却速度」とは、冷却時に750~600℃の温度域を通過する時の平均冷却速度を示す。「CT」とは、巻取温度を示している。
得られた薄鋼板の評価結果を表4,5に示す。
AI試験は、引張試験と同様に供試材をJIS Z 2201に記載の5号試験片に加工し、7%の引張予ひずみを試験片に付与した後、100℃×60分の熱処理を施してから再度引張試験を実施した。ここでAI(時効指数)とは、再引張での上降伏点から10%の引張り予ひずみの流動応力を差し引いた値として定義される。
伸びフランジ性は、日本鉄鋼連盟規格JFS T 1001-1996記載の穴拡げ試験方法に従い測定された穴拡げ値(率)にて評価した。
なお、表2において「TS」は引張最高強度であり、「YS」は降伏強度であり、「EI」は伸びであり、「AI」は時効指数であり、「λ」は穴拡げ率である。
疲労特性はJIS Z 2275に従った完全両振り曲げ試験によって評価した。試験形状はJIS Z 2275に従った。繰り返し数1×107回での疲労強度の上限を疲労限として定義した。
疲労試験は、試験時間の都合上繰り返し数1×106回や2×106回で打ち切る場合もあるが、この場合には、繰り返し数1×107回の場合よりも疲労限は高くなる。
A(good):異常破面の面積率が5%未満
B(fair):異常破面の面積率が5%~20%未満
C(bad):異常破面の面積率が20%以上
ここで、典型的な延性破面の形態であるディンプルが顕微鏡により観察されないものを脆性破面と定義した。へき開破壊破面、粒界破壊破面、あるいは界面破壊破面は、脆性破面に分類する。異常破面とは、顕微鏡で見てディンプルが観察されない脆性破面であり、へき開破壊破面あるいは粒界破壊破面である。
疲労試験片の真ん中にポンチ径Φ10mm、クリアランス12%で打ち抜き穴を開けた。そして、上記疲労特性と同様に応力振幅一定の完全両振り曲げ疲労試験(応力比R=-1)を行い、繰り返し数1×107回での疲労強度の上限をピアス疲労限として測定した。
鋼A-1、B-1、D-2、D-3、E-1、F-1、及びF-2は、本発明例である。
鋼A-2では、CTが高いため、TiC析出物の析出が増加して脆性破面が発生した。
鋼B-2では、仕上げ圧延後の冷却速度が遅いため、TiC析出物の析出が増加して脆性破面が発生した。
鋼C-1では、NbCの析出により脆性破面が発生した。
鋼C-2では、NbCの析出により脆性破面が発生した。
鋼D-1では、Ti系炭化物の十分な固溶が出来ず、TiC析出物の析出が増加して脆性破面が発生した。
鋼E-2では、CTが低いので伸びが低下した。
鋼E-3では、冷却速度が速いので、析出物は析出せずにベイナイトが生成して強度が低下した。
鋼F-3では、CTが高いため、TiCの析出が増加して脆性破面が発生した。
鋼G-1では、Ti/Cが高いため、TiC析出物の析出が増加して穴広げ性が悪化し、また脆性破面が発生した。
鋼G-2では、Ti/Cが高いため、TiC析出物の析出が増加して穴広げ性が悪化し、また脆性破面が発生した。
鋼H-1では、Ti含有量が高いため、TiC析出物の析出が増加して穴広げ性が悪化し、また脆性破面が発生した。
鋼H-2では、TiC析出物の析出が増加して穴広げ性が悪化し、また脆性破面が発生した。
鋼I-1では、C含有量が低いため、Ti-Cクラスターが生成しなかった。
鋼I-2では、C含有量が低いため、Ti-Cクラスターが生成しなかった。
鋼J-1では、Ti/Cが低いため、ポリゴナルフェライトになり、強度が下がり、脆性破面も発生した。
鋼J-2では、Ti/Cが低いため、ポリゴナルフェライトになり、強度が下がり、脆性破面も発生した。
鋼K-1では、Si含有量が高いため、疲労限が低下した。
鋼K-2では、Si含有量が高いため、疲労限が低下した。
鋼L-1では、Crの炭化物が生成して脆性破面が発生した。
鋼M-1では、B炭化物が生成して脆性破面が発生した。
鋼N-1では、V炭化物が生成して疲労限が低下した。
鋼O-1では、W炭化物が生成して脆性破面が発生した。
鋼P-1では、Mo炭化物が生成して脆性破面が発生した。
鋼Q-1では、Cr炭化物が発生して脆性破面が発生した。
鋼R-1では、B炭化物が発生して脆性破面が発生した。
熱間圧延の条件:1200℃にスラブを再加熱;仕上げ圧延温度が900℃;冷却開始までの時間が2sec;750~600℃での平均冷却速度が35℃/sec;及び巻き取り温度が530℃。
鋼A-3,鋼A-4は、箱型焼鈍炉にて焼鈍のみを行った例である。
鋼B-3,鋼B-4は、連続焼鈍めっき設備にて焼鈍を行い引き続き亜鉛めっきを行った例である。
鋼C-3、鋼C-4、鋼D-3、鋼E-3,鋼F-3,鋼L-2、及び鋼L-3は、連続焼鈍めっき設備にて、焼鈍を行い、引き続き亜鉛めっきとめっき合金化処理を行った例である。
鋼M-2,鋼N-2は、酸洗した板を亜鉛めっき温度まで加熱した後、亜鉛めっき及びめっき合金化処理を行った例である。
なお、亜鉛めっき浸漬温度は450℃、めっき合金化温度は500℃で行った。
また、疲労特性の結果(疲労限)は、表2~表7のとおり、本発明例では疲労強度にも優れている。
これに対して比較例は、化学成分または/および製造方法が発明の範囲外にあり、結果として強度、穴拡げ性、疲労特性などが劣位となっていることが分かる。
また、表2~表5において、成分が本発明外である鋼K-1,K-2では、疲労限が200以下であるため本発明外となっている。
Claims (10)
- 質量%にて、
C :0.015%以上0.040%未満、
Si:0.05%未満、
Mn:0.9%以上1.8%以下、
P :0.02%未満、
S :0.01%未満、
Al:0.1%未満、
N :0.006%未満、
及びTi:0.05%以上0.11%未満を含有し、
残部がFe及び不可避的不純物からなり、
Ti/C=2.5以上3.5未満であり、
Nb、Zr,V、Cr、Mo、B、及びWを含まず、
ミクロ組織が、ポリゴナルフェライトとクアジーポリゴナルフェライトの混合組織を96%超含み、
引張最高強度が520MPa以上かつ720MPa未満、
時効指数AIが15MPa超、
穴拡げ率(λ)%と全伸び(El)%の積が2350以上、
疲労限が200MPa以上であることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。 - さらに質量%にて、Cu:0.01%以上1.5%以下、及びNi:0.01%以上0.8%以下のうちのいずれか一種または二種を含有することを特徴とする請求項1に記載の疲労特性と伸びフランジ性に優れた熱延鋼板。
- さらに、質量%にて、Ca:0.0005%以上0.005%以下、REM:0.0005%以上0.05%以下のいずれか一種または二種を含有することを特徴とする請求項1に記載の疲労特性と伸びフランジ性に優れた熱延鋼板。
- めっきが施されていることを特徴とする請求項1に記載の疲労特性と伸びフランジ性に優れた熱延鋼板。
- 質量%にて、C:0.015%以上0.040%未満、Si:0.05%未満、Mn:0.9%以上1.8%以下、P:0.02%未満、S:0.01%未満、Al:0.1%未満、N:0.006%未満、及びTi:0.05%以上0.11%未満を含有し、残部がFe及び不可避的不純物からなり、Ti/C=2.5以上3.5未満であり、Nb、Zr,V、Cr、Mo、B、及びWを含まない鋼片を1100℃以上に加熱し、1000℃以上の温度で終了する条件で粗圧延して粗バーとする工程と、
830~980℃の温度域で終了する条件で前記粗バーを仕上げ圧延して圧延材とする工程と、
前記仕上げ圧延の終了後0.5秒以上空冷し、750~600℃の温度域を10~40℃/secの範囲の平均冷却速度で冷却して熱延鋼板とする工程と、
440~560℃にて前記熱延鋼板を巻き取る工程とを有し、
ミクロ組織がポリゴナルフェライトとクアジーポリゴナルフェライトの混合組織を96%超含み、引張最高強度が520MPa以上かつ720MPa未満、時効指数AIが15MPa超、穴拡げ率(λ)%と全伸び(El)%の積が2350以上、及び疲労限が200MPa以上である前記熱延鋼板を製造することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。 - 前記粗バーを仕上げ圧延する工程を開始するまでの間、および/または前記粗バーを仕上げ圧延する工程中に、前記粗バーまたは前記圧延材を加熱することを特徴とする請求項5に記載の疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
- 前記鋼片を粗圧延する工程の終了時点から前記粗バーを仕上げ圧延する工程の開始時点までの間に、デスケーリングを行うことを特徴とする請求項5に記載の疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
- 前記熱延鋼板を780℃以下で焼鈍を行うことを特徴とする請求項5に記載の疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
- 前記熱延鋼板を780℃以下で加熱し、次いでめっき浴中に浸漬させて鋼板表面をめっきすることを特徴とする請求項5に記載の疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
- 前記めっき後、めっき合金化処理することを特徴とする請求項9に記載の疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08873613A EP2267175B1 (en) | 2008-03-26 | 2008-11-12 | Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet |
CA2718098A CA2718098C (en) | 2008-03-26 | 2008-11-12 | Hot-rolled steel sheet excellent in fatigue properties and stretch-flange formability and method for manufacturing the same |
US12/934,039 US8657970B2 (en) | 2008-03-26 | 2008-11-12 | Hot-rolled steel sheet excellent in fatigue properties and stretch-flange formability and method for manufacturing the same |
BRPI0822384A BRPI0822384B1 (pt) | 2008-03-26 | 2008-11-12 | folha de aço laminada a quente excelente em propriedades de fadiga e formabilidade de flange por esticamento, e método para a fabricação da mesma |
CN2008801281683A CN101978083B (zh) | 2008-03-26 | 2008-11-12 | 疲劳特性和拉伸凸缘性优异的热轧钢板及其制造方法 |
MX2010010386A MX2010010386A (es) | 2008-03-26 | 2008-11-12 | Lamina de acero enrollada en caliente que tiene excelentes propiedades de fatiga y capacidad de conformacion mediante las pestañas de estiramiento y procesos para producir lamina de acero enrollada en caliente. |
JP2010505269A JP4593691B2 (ja) | 2008-03-26 | 2008-11-12 | 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 |
KR1020107021118A KR101103203B1 (ko) | 2008-03-26 | 2008-11-12 | 피로 특성과 신장 플랜지성이 우수한 열연 강판 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008079591A JP2008274416A (ja) | 2007-03-30 | 2008-03-26 | 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 |
JP2008-079591 | 2008-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009118945A1 true WO2009118945A1 (ja) | 2009-10-01 |
Family
ID=41114875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/070612 WO2009118945A1 (ja) | 2008-03-26 | 2008-11-12 | 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8657970B2 (ja) |
EP (1) | EP2267175B1 (ja) |
JP (1) | JP4593691B2 (ja) |
KR (1) | KR101103203B1 (ja) |
CN (1) | CN101978083B (ja) |
BR (1) | BRPI0822384B1 (ja) |
CA (1) | CA2718098C (ja) |
MX (1) | MX2010010386A (ja) |
WO (1) | WO2009118945A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011126154A1 (ja) * | 2010-04-09 | 2011-10-13 | Jfeスチール株式会社 | 温間加工性に優れた高強度鋼板およびその製造方法 |
WO2013150669A1 (ja) * | 2012-04-06 | 2013-10-10 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 |
CN115161548A (zh) * | 2022-05-25 | 2022-10-11 | 昆明理工大学 | 一种Ti-Zr复合微合金化700MPa级高强度高韧性钢板及制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5609786B2 (ja) * | 2010-06-25 | 2014-10-22 | Jfeスチール株式会社 | 加工性に優れた高張力熱延鋼板およびその製造方法 |
CN102839321B (zh) * | 2012-08-31 | 2014-08-20 | 武汉钢铁(集团)公司 | 一种屈服强度≥500MPa级超薄热轧板带及其制造方法 |
CA2898421C (en) | 2013-02-11 | 2017-09-12 | Tata Steel Ijmuiden B.V. | A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet |
DE102013225409A1 (de) * | 2013-12-10 | 2015-06-11 | Muhr Und Bender Kg | Verfahren und Vorrichtung zur Nachbehandlung eines gehärteten metallischen Formteils mittels elektrischer Widerstandserwärmung |
WO2016132549A1 (ja) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
WO2016132542A1 (ja) * | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
ES2769224T3 (es) | 2015-02-25 | 2020-06-25 | Nippon Steel Corp | Chapa de acero laminada en caliente |
WO2016135898A1 (ja) | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | 熱延鋼板 |
BR112019000766B8 (pt) | 2016-08-05 | 2023-03-14 | Nippon Steel & Sumitomo Metal Corp | Chapa de aço |
JP6358406B2 (ja) | 2016-08-05 | 2018-07-18 | 新日鐵住金株式会社 | 鋼板及びめっき鋼板 |
WO2018055098A1 (en) | 2016-09-22 | 2018-03-29 | Tata Steel Ijmuiden B.V. | A method of producing a hot-rolled high-strength steel with excellent stretch-flange formability and edge fatigue performance |
US11021776B2 (en) | 2016-11-04 | 2021-06-01 | Nucor Corporation | Method of manufacture of multiphase, hot-rolled ultra-high strength steel |
JP2019537666A (ja) | 2016-11-04 | 2019-12-26 | ニューコア・コーポレーション | 多相冷間圧延超高強度鋼 |
US20180147614A1 (en) * | 2016-11-28 | 2018-05-31 | Ak Steel Properties, Inc. | Press hardened steel with increased toughness and method for production |
CN106834937B (zh) * | 2017-01-05 | 2018-02-06 | 河钢股份有限公司邯郸分公司 | 一种530MPa级薄规格镀锌带钢及其生产方法 |
MX2019011941A (es) * | 2017-04-07 | 2019-11-28 | Jfe Steel Corp | Elemento de acero, laminas de acero laminadas en caliente para elementos de acero y metodo de produccion de los mismos. |
CN107587054A (zh) * | 2017-09-06 | 2018-01-16 | 河钢股份有限公司承德分公司 | 一种低碳当量易焊接380cl轮辋用钢及其生产方法 |
CN110643894B (zh) * | 2018-06-27 | 2021-05-14 | 宝山钢铁股份有限公司 | 具有良好的疲劳及扩孔性能的超高强热轧钢板和钢带及其制造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004131802A (ja) * | 2002-10-10 | 2004-04-30 | Sumitomo Metal Ind Ltd | 高強度鋼材及びその製造方法 |
JP2005082841A (ja) * | 2003-09-05 | 2005-03-31 | Nippon Steel Corp | Bh性と伸びフランジ性を兼ね備えた熱延鋼板およびその製造方法 |
JP2006274317A (ja) * | 2005-03-28 | 2006-10-12 | Kobe Steel Ltd | 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS591632A (ja) | 1982-06-28 | 1984-01-07 | Sumitomo Metal Ind Ltd | 冷間加工性のすぐれたTi添加強靭性熱延高張力鋼板の製造法 |
JPS61130454A (ja) | 1984-11-28 | 1986-06-18 | Kobe Steel Ltd | 伸びフランジ性のすぐれたフエライト・ベイナイト組織高強度熱延鋼板及びその製造方法 |
JPH0826433B2 (ja) | 1992-12-28 | 1996-03-13 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた高強度熱延鋼板 |
JP3233743B2 (ja) | 1993-06-28 | 2001-11-26 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた高強度熱延鋼板 |
JP3536412B2 (ja) | 1995-03-30 | 2004-06-07 | Jfeスチール株式会社 | 加工性に優れる高強度熱延鋼板およびその製造方法 |
JP3172505B2 (ja) | 1998-03-12 | 2001-06-04 | 株式会社神戸製鋼所 | 成形性に優れた高強度熱延鋼板 |
JP3602350B2 (ja) | 1998-11-06 | 2004-12-15 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた高強度熱延鋼板及びその製造方法 |
JP3725367B2 (ja) * | 1999-05-13 | 2005-12-07 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた超微細フェライト組織高強度熱延鋼板およびその製造方法 |
JP4265133B2 (ja) * | 1999-09-28 | 2009-05-20 | Jfeスチール株式会社 | 高張力熱延鋼板およびその製造方法 |
EP1195447B1 (en) * | 2000-04-07 | 2006-01-04 | JFE Steel Corporation | Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production |
JP4313591B2 (ja) | 2003-03-24 | 2009-08-12 | 新日本製鐵株式会社 | 穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法 |
JP4291711B2 (ja) | 2004-03-03 | 2009-07-08 | 新日本製鐵株式会社 | 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法 |
WO2006103991A1 (ja) | 2005-03-28 | 2006-10-05 | Kabushiki Kaisha Kobe Seiko Sho | 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法 |
-
2008
- 2008-11-12 MX MX2010010386A patent/MX2010010386A/es active IP Right Grant
- 2008-11-12 EP EP08873613A patent/EP2267175B1/en not_active Not-in-force
- 2008-11-12 WO PCT/JP2008/070612 patent/WO2009118945A1/ja active Application Filing
- 2008-11-12 US US12/934,039 patent/US8657970B2/en not_active Expired - Fee Related
- 2008-11-12 JP JP2010505269A patent/JP4593691B2/ja active Active
- 2008-11-12 CA CA2718098A patent/CA2718098C/en not_active Expired - Fee Related
- 2008-11-12 BR BRPI0822384A patent/BRPI0822384B1/pt not_active IP Right Cessation
- 2008-11-12 CN CN2008801281683A patent/CN101978083B/zh not_active Expired - Fee Related
- 2008-11-12 KR KR1020107021118A patent/KR101103203B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004131802A (ja) * | 2002-10-10 | 2004-04-30 | Sumitomo Metal Ind Ltd | 高強度鋼材及びその製造方法 |
JP2005082841A (ja) * | 2003-09-05 | 2005-03-31 | Nippon Steel Corp | Bh性と伸びフランジ性を兼ね備えた熱延鋼板およびその製造方法 |
JP2006274317A (ja) * | 2005-03-28 | 2006-10-12 | Kobe Steel Ltd | 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011126154A1 (ja) * | 2010-04-09 | 2011-10-13 | Jfeスチール株式会社 | 温間加工性に優れた高強度鋼板およびその製造方法 |
JP2011219826A (ja) * | 2010-04-09 | 2011-11-04 | Jfe Steel Corp | 温間加工性に優れた高強度鋼板およびその製造方法 |
CN102834539A (zh) * | 2010-04-09 | 2012-12-19 | 杰富意钢铁株式会社 | 温加工性优良的高强度钢板及其制造方法 |
US20130192725A1 (en) * | 2010-04-09 | 2013-08-01 | Jfe Steel Corporation | High strength steel sheet having excellent warm stamp formability and method for manufacturing the same |
TWI485261B (zh) * | 2010-04-09 | 2015-05-21 | Jfe Steel Corp | 溫間加工性優異之高強度鋼板及其製造方法 |
EP2557193A4 (en) * | 2010-04-09 | 2017-04-19 | JFE Steel Corporation | High-strength steel sheet having excellent hot rolling workability, and process for production thereof |
WO2013150669A1 (ja) * | 2012-04-06 | 2013-10-10 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 |
JP5339005B1 (ja) * | 2012-04-06 | 2013-11-13 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 |
CN104364408A (zh) * | 2012-04-06 | 2015-02-18 | 新日铁住金株式会社 | 合金化热浸镀锌热轧钢板及其制造方法 |
US10351942B2 (en) | 2012-04-06 | 2019-07-16 | Nippon Steel & Sumitomo Metal Corporation | Hot-dip galvannealed hot-rolled steel sheet and process for producing same |
CN115161548A (zh) * | 2022-05-25 | 2022-10-11 | 昆明理工大学 | 一种Ti-Zr复合微合金化700MPa级高强度高韧性钢板及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110017360A1 (en) | 2011-01-27 |
MX2010010386A (es) | 2010-10-15 |
CA2718098C (en) | 2012-06-19 |
BRPI0822384A2 (pt) | 2019-11-12 |
CN101978083B (zh) | 2012-08-29 |
EP2267175B1 (en) | 2013-02-13 |
US8657970B2 (en) | 2014-02-25 |
JP4593691B2 (ja) | 2010-12-08 |
KR20100116679A (ko) | 2010-11-01 |
CN101978083A (zh) | 2011-02-16 |
CA2718098A1 (en) | 2009-10-01 |
EP2267175A4 (en) | 2012-01-25 |
BRPI0822384B1 (pt) | 2020-06-09 |
JPWO2009118945A1 (ja) | 2011-07-21 |
KR101103203B1 (ko) | 2012-01-05 |
EP2267175A1 (en) | 2010-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4593691B2 (ja) | 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 | |
JP4894863B2 (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
KR102159872B1 (ko) | 고강도 강판 및 그 제조 방법 | |
JP5251208B2 (ja) | 高強度鋼板とその製造方法 | |
JP5114747B2 (ja) | 穴拡げ性と延性のバランスが極めて良好な高強度鋼板の製造方法と亜鉛めっき鋼板の製造方法 | |
JP4790639B2 (ja) | 伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板及びその製造方法 | |
JP4501699B2 (ja) | 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法 | |
JP2008156680A (ja) | 高降伏比を有する高強度冷延鋼板及びその製造方法 | |
KR20140007476A (ko) | 재질 안정성, 가공성 및 도금 외관이 우수한 고강도 용융 아연 도금 강판의 제조 방법 | |
KR20140030335A (ko) | 냉연 강판 | |
WO2013005670A1 (ja) | 溶融めっき冷延鋼板およびその製造方法 | |
JP2008056993A (ja) | 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JP2011168879A (ja) | 加工性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP2008274416A (ja) | 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法 | |
JP5664482B2 (ja) | 溶融めっき冷延鋼板 | |
JP2004250749A (ja) | バーリング性高強度薄鋼板およびその製造方法 | |
JP2010106313A (ja) | 延性に優れた高降伏比超高張力鋼板およびその製造方法 | |
JP5609793B2 (ja) | 溶融めっき冷延鋼板の製造方法 | |
JP5971281B2 (ja) | 加工性および靭性に優れた高強度熱延鋼板の製造方法 | |
WO2018051402A1 (ja) | 鋼板 | |
JP5825204B2 (ja) | 冷延鋼板 | |
JP6326837B2 (ja) | 冷延鋼板 | |
JP5644704B2 (ja) | 冷延鋼板の製造方法 | |
JP5910396B2 (ja) | 溶融めっき鋼板およびその製造方法 | |
JP2015145523A (ja) | 冷延鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880128168.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08873613 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010505269 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2718098 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6553/DELNP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20107021118 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008873613 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12934039 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/010386 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: PI0822384 Country of ref document: BR Free format text: NUMERAR AS PRIMEIRAS FOLHAS DO RELATORIO DESCRITIVO, DAS REIVINDICACOES E DO RESUMO. |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01Y Ref document number: PI0822384 Country of ref document: BR Free format text: ANULADA A PUBLICACAO CODIGO 1.5 NA RPI NO 2540 DE 10/09/2019 POR TER SIDO INDEVIDA. |
|
ENP | Entry into the national phase |
Ref document number: PI0822384 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100923 |