WO2018025916A1 - 発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法 - Google Patents

発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法 Download PDF

Info

Publication number
WO2018025916A1
WO2018025916A1 PCT/JP2017/028072 JP2017028072W WO2018025916A1 WO 2018025916 A1 WO2018025916 A1 WO 2018025916A1 JP 2017028072 W JP2017028072 W JP 2017028072W WO 2018025916 A1 WO2018025916 A1 WO 2018025916A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
less
mol
foam molding
mass
Prior art date
Application number
PCT/JP2017/028072
Other languages
English (en)
French (fr)
Inventor
久保 昌宏
匡貴 岡野
望 藤井
洋平 郡
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017126428A external-priority patent/JP2018024837A/ja
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201780047993.XA priority Critical patent/CN109496221A/zh
Publication of WO2018025916A1 publication Critical patent/WO2018025916A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent

Definitions

  • the present invention relates to a resin composition for foam molding, a foam molded article containing the same, and a method for producing the same.
  • Polypropylene is a material excellent in heat resistance and chemical resistance, and in particular, a foamed molded product of polypropylene is excellent in light weight, buffering property, heat insulation, etc. (see, for example, Patent Document 1).
  • a foamed molded product of polypropylene is inferior in design because it is inferior in mold transferability.
  • a resin composition containing polypropylene and a foaming agent is injection-molded, pressure is released at the flow end of the resin composition, and bubbles grow greatly. The bubbles are stretched by being subjected to a large shear, and finally burst to form irregularities in the form of streaks, whereby foam marks called swirl marks are formed on the surface of the molded body.
  • the appropriate core back timing width is narrow, and there is a case where the foamability inside the molded body becomes non-uniform when trying to obtain a sufficient appearance of the molded product (gloss).
  • the problem to be solved by the present invention is to provide a resin composition for foam molding that is excellent in mold transferability during foam molding.
  • An object of the present invention is to provide a molded article excellent in foaming uniformity and a method for producing the same.
  • ⁇ 1> (a) Using a differential scanning calorimeter (DSC), hold the sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min.
  • DSC differential scanning calorimeter
  • Olefin-based weight having a melting endotherm ( ⁇ HD) defined by the area of the peak observed on the high temperature side is 0 J / g or more and 80 J / g or less, and the molecular weight distribution (Mw / Mn) is less than 3.0 1% by mass to 20% by mass of union (A), and (b) polypropylene resin (B) (excluding those corresponding to the olefin polymer (A)) 80% by mass to 99% by mass (However, the total content of the olefin polymer (A) and the polypropylene resin (B) is 100% by mass) and the melt flow rate is from 1 g / 10 min to 100 g / 10 min. set Thing.
  • ⁇ HD melting endotherm
  • ⁇ 2> The resin composition for foam molding according to the above ⁇ 1>, wherein a half crystallization time of the resin composition is longer than a half crystallization time of the polypropylene resin (B).
  • ⁇ 3> The foam molding resin according to the above ⁇ 1> or ⁇ 2>, wherein the resin composition has a half crystallization time of 1.05 times or more as long as a half crystallization time of the polypropylene resin (B).
  • the semi-crystallization time of the resin composition is 1.05 times or more of the semi-crystallization time of the polypropylene resin (B) between 20 ° C. and 60 ° C.
  • the foaming agent (C) is further included, and the content of the foaming agent (C) is 1 part by mass or more with respect to 100 parts by mass of the total content of the olefin polymer (A) and the polypropylene resin (B).
  • olefin polymer (A) is a propylene polymer (a1) in which 50 mol% or more of monomers constituting the polymer are propylene monomers
  • the propylene polymer (a1) satisfies at least one of the following (i) and (ii).
  • the structural unit of ethylene is contained in excess of 0 mol% and 20 mol% or less.
  • 1-butene is contained in an amount of more than 0 mol% and not more than 30 mol%.
  • a foam injection-molded article comprising the resin composition according to any one of ⁇ 1> to ⁇ 13> above.
  • the resin composition for foam molding according to one aspect of the present disclosure has excellent bending strength and excellent mold transfer during foam molding.
  • the foamed molded product obtained using the resin composition has excellent appearance and excellent foaming uniformity inside the molded product, such as a cushioning material for automobile parts, a member for construction, a member for civil engineering, a food container, etc. Suitable for use.
  • Example 7 shows typically the shaping
  • Example 7 and Comparative Example 3 the molded bodies obtained at core back timings of 0 seconds and 8 seconds, respectively, were photographed with an X-ray CT apparatus (manufactured by Yamato Scientific Co., Ltd .: trade name “TDM1000-IS”). It is the image of the obtained cross section.
  • the term “A to B” relating to the description of numerical values means “A to B or less” (when A ⁇ B) or “A or less to B or more” (when A> B). .
  • the combination of a preferable aspect is a more preferable aspect.
  • “component (a)” and “olefin polymer (A)”, “(b) component” and “polypropylene resin (B)”, “(c) component” and “foaming agent ( “C)” has the same meaning.
  • the foam molding resin composition of the present invention is obtained by (a) using a differential scanning calorimeter (DSC), holding a sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then raising the temperature at 10 ° C./min.
  • the melting endotherm ( ⁇ HD) defined by the peak area observed on the highest temperature side of the obtained melting endotherm curve is 0 J / g or more and 80 J / g or less, and the molecular weight distribution (Mw / Mn) is 3 Olefin polymer (A) 0.5 mass% or more and 20 mass% or less, and (b) polypropylene resin (B) 80 mass% or more and 99.5 mass% or less that is less than 0.0.
  • the total content of the polymer (A) and the polypropylene resin (B) is 100% by mass), and the melt flow rate is 1 g / 10 min to 100 g / 10 min.
  • the polypropylene resin (B) excludes those corresponding to the olefin polymer (A).
  • the resin composition for foam molding of the present invention can provide a molded article having excellent bending strength, excellent mold transferability during foam molding, and excellent appearance without swirl marks.
  • the melting endotherm ( ⁇ HD) obtained from the melting endotherm curve obtained by raising the temperature at 0 J / g is 80 J / g or more and the molecular weight distribution (Mw / Mn) is less than 3.0.
  • the olefin polymer (A) is clearly distinguished from the polypropylene resin (B), and the polypropylene resin (B) corresponds to the olefin polymer (A). Is not included.
  • the olefin polymer (A) has a slower crystallization rate than the polypropylene resin (B).
  • the olefin polymer (A) is highly compatible with the polypropylene resin (B), and the olefin polymer (A) is compatible with the polypropylene resin (B) to suppress the crystallization rate.
  • the fluidity of the resin composition can be improved. Therefore, when the resin composition of the present invention in which a predetermined amount of the olefin polymer (A) is blended with the polypropylene resin (B) is injection-molded, the pressure is released at the flow end of the resin composition and the bubbles grow greatly. However, even if bubble rupture occurs, the resin composition has fluidity, so that formation of swirl marks can be suppressed.
  • the olefin polymer (A) is preferably an olefin polymer obtained by polymerizing one or more monomers selected from ethylene and an ⁇ -olefin having 3 to 28 carbon atoms.
  • the ⁇ -olefin having 3 to 28 carbon atoms include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1- Examples include dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-icocene.
  • ⁇ -olefins having 3 to 24 carbon atoms are preferable, ⁇ -olefins having 3 to 12 carbon atoms are more preferable, ⁇ -olefins having 3 to 6 carbon atoms are more preferable, and 3 to 4 carbon atoms are particularly preferable.
  • olefin polymer (A) an olefin polymer obtained by polymerizing one of these alone may be used, or an olefin copolymer obtained by copolymerizing two or more of them. May be used.
  • the term “olefin polymer” includes an olefin copolymer.
  • the olefin copolymer examples include an ethylene polymer in which 50 mol% or more of the monomers constituting the polymer are ethylene monomers, and a propylene polymer in which 50 mol% or more of the monomers constituting the polymer are propylene monomers ( a1), butene-based polymers in which 50 mol% or more of the monomers constituting the polymer are butene monomers.
  • the olefin polymer (A) is preferably a propylene polymer, more preferably a propylene polymer (a1).
  • propylene polymer (a1) examples include propylene homopolymer, propylene-ethylene block copolymer, propylene-butene block copolymer, propylene- ⁇ -olefin block copolymer, propylene-ethylene random copolymer, propylene -A propylene-based polymer selected from a butene random copolymer, a propylene- ⁇ -olefin random copolymer, a propylene- ⁇ -olefin graft copolymer, etc. is preferable. Ethylene block copolymers are preferred.
  • the propylene polymer (a1) is a copolymer containing an olefin having 2 carbon atoms.
  • the constituent unit of the olefin having 2 carbon atoms that is, ethylene monomer
  • the constituent unit of the olefin having 2 carbon atoms is preferably more than 0 mol% and 20 mol% or less, more preferably more than 0 mol% and 18 mol% or less, and still more preferably 0. It is more than 15 mol% and more preferably more than 0 mol% and 13 mol% or less.
  • the constituent unit of the olefin having 3 carbon atoms is preferably 50 mol% or more, more preferably 65 mol% or more. More preferably, it is 75 mol% or more, and still more preferably 80 mol% or more.
  • the content of the ⁇ -olefin having 4 or more carbon atoms is preferably more than 0 mol% and 30 mol% or less, more preferably 0 More than mol% and 27 mol% or less, more preferably more than 0 mol% and 20 mol% or less.
  • the propylene polymer (a1) is a copolymer, it is more preferable to satisfy at least one of the following (i) and (ii).
  • the structural unit of ethylene is contained in excess of 0 mol% and 20 mol% or less.
  • 1-butene is contained in an amount of more than 0 mol% and not more than 30 mol%.
  • the olefin polymer (A) is most preferably a propylene homopolymer from the viewpoint of compatibility with the main component polypropylene resin (B).
  • the polymer may be a polymer using a petroleum / coal-derived monomer or a polymer using a biomass-derived monomer.
  • the olefin polymer (A) has the following melting endotherm ( ⁇ HD) And a molecular weight distribution (Mw / Mn), preferably further having the properties described below.
  • the melting endotherm ( ⁇ HD) of the olefin polymer (A) is 0 J / g or more and 80 J / g or less.
  • the melting endotherm ( ⁇ HD) of the olefin polymer (A) is within this range, the crystallization rate is reduced with respect to the polypropylene resin (B) that is the main component of the resin composition of the present invention.
  • the fluidity can be improved while maintaining the melting point of the polypropylene resin (B).
  • the melting endotherm ( ⁇ HD) is preferably 10 J / g or more, more preferably 20 J / g or more, still more preferably 30 J / g, and preferably 70 J / g or less, more Preferably it is 60 J / g or less, More preferably, it is 50 J / g or less.
  • the melting endotherm ( ⁇ HD) can be controlled by appropriately adjusting the monomer concentration and reaction pressure.
  • the melting endotherm ( ⁇ H ⁇ D) is the melting endotherm curve obtained by DSC measurement with the line connecting the point on the low temperature side where there is no change in calorie and the point on the high temperature side where there is no change in calorie as the baseline. It is calculated by obtaining the area surrounded by the line portion including the peak observed on the highest temperature side and the base line.
  • the molecular weight distribution (Mw / Mn) of the olefin polymer (A) is less than 3.0 from the viewpoint of high strength.
  • the molecular weight distribution (Mw / Mn) of the olefin polymer (A) is preferably 2.5 or less, more preferably 2.2 or less. From the viewpoint of ease of molding, preferably 1 .2 or more, more preferably 1.5 or more.
  • the molecular weight distribution (Mw / Mn) is a value calculated from the polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography (GPC).
  • the olefin polymer (A) and the propylene polymer (a1) are preferably propylene polymers satisfying either one or both of the following (1) and (2), more preferably the following ( It further satisfies at least one of 3) to (5), and more preferably satisfies all of the following (1) to (5).
  • (1) Mesopentad fraction [mmmm] is 20 mol% or more and 60 mol% or less.
  • DSC differential scanning calorimeter
  • the mesopentad fraction [mmmm] is an index representing the stereoregularity of the olefin polymer (A) and the propylene polymer (a1), and the stereoregularity increases as the mesopentad fraction [mmmm] increases.
  • the olefin polymer (A) is a propylene homopolymer
  • the mesopentad fraction [mmmm] is the handleability of the propylene polymer and the propylene polymer when added in a small amount to the polypropylene resin (B).
  • it is preferably 20 mol% or more, more preferably 25 mol% or more, still more preferably 30 mol% or more, and preferably 60 mol% or less, more preferably It is 57.5 mol% or less, More preferably, it is 55 mol% or less.
  • the olefin polymer (A) which is the main component of the resin composition of the present invention, can be given fluidity without being sticky, and 60 mol % Or less, it is not eutectic with the main component polypropylene resin (B), and is compatible with the amorphous part of the main component polypropylene resin (B), and has good mechanical properties. can get.
  • the melting point (Tm-D) of the olefin polymer (A) and the propylene polymer (a1) is preferably higher from the viewpoint of strength and moldability. Preferably it is 0 ° C. or higher, more preferably 50 ° C. or higher, still more preferably 55 ° C. or higher, even more preferably 60 ° C. or higher, and preferably 120 ° C. or lower, more preferably 100 ° C. or lower, still more preferably 90 ° C. Hereinafter, it is more preferably 80 ° C. or lower.
  • a differential scanning calorimeter manufactured by Perkin Elmer, “DSC-7”
  • DSC-7 Perkin Elmer, “DSC-7”
  • 10 mg of a sample is held at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min.
  • Tm-D melting point
  • the melting point can be controlled by appropriately adjusting the monomer concentration and reaction pressure.
  • the value of [rrrr] / (100- [mmmm]) in the olefin polymer (A) and the propylene polymer (a1) is preferably 0.1 or less, more preferably 0.8, from the viewpoint of stickiness. 05 or less, more preferably 0.04 or less. Although a lower limit is not specifically limited, Preferably it is 0.001 or more, More preferably, it is 0.01 or more.
  • the mesopentad fraction [mmmm], the racemic pentad fraction [rrrr], and the racemic mesoracemi mesopentad fraction [rmrm] described below are described in “Macromolecules, 6, 925 (1973) ”, the meso fraction, the racemic fraction, and the racemic meso-racemic meso in pentad units in the polypropylene molecular chain measured by the signal of the methyl group in the 13 C-NMR spectrum. It is a fraction. As the mesopentad fraction [mmmm] increases, the stereoregularity increases. Further, triad fractions [mm], [rr] and [mr] described later are also calculated by the above method.
  • Racemic meso racemic meso pentad fraction [rmrm] is an index representing the randomness of the stereoregularity of polypropylene, and the randomness of polypropylene increases as the value increases.
  • the racemic meso racemic meso pentad fraction [rmrm] of the olefin polymer (A) and the propylene polymer (a1) is preferably more than 2.5 mol%.
  • the racemic meso racemic meso pentad fraction [rmrm] of the olefin polymer (A) and the propylene polymer (a1) is more preferably 2.6 mol% or more, and still more preferably 2. 7 mol% or more.
  • the upper limit is usually about 10 mol%, and the racemic meso racemic meso pentad fraction [rmrm] is more preferably 7 mol% or less, still more preferably 5 mol% or less, still more preferably 4 mol% or less. is there.
  • the weight average molecular weight (Mw) of the olefin polymer (A) is preferably 10,000 or more, more preferably 20,000 or more, still more preferably 30,000 or more, and preferably from the viewpoint of strength. 500,000 or less, more preferably 200,000 or less, and still more preferably 100,000 or less.
  • the weight average molecular weight is within the above range in the olefin polymer (A)
  • an improvement in fluidity is imparted without reducing the rigidity of the polypropylene resin (B) which is the main component of the resin composition of the present invention. be able to.
  • the weight average molecular weight (Mw) is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the melt flow rate (MFR) of the olefin polymer (A) is preferably 1 g / 10 min or more, more preferably 10 g / 10 min or more, further preferably 15 g / 10 min or more, more preferably 18 g / 10 min or more, and Preferably, it is 5,000 g / 10 min or less, more preferably 2,500 g / 10 min or less, still more preferably 1,000 g / 10 min or less, and most preferably 500 g / 10 min or less.
  • MFR is measured by a measuring method defined in JIS K7210. For example, when the olefin polymer (A) is a propylene polymer, the measurement is performed under conditions of a temperature of 230 ° C. and a load of 21.18 N.
  • the olefin polymer (A) can be produced using, for example, a metallocene catalyst as described in WO2003 / 087172.
  • a metallocene catalyst as described in WO2003 / 087172.
  • those using a transition metal compound in which a ligand forms a cross-linked structure via a cross-linking group are preferred, and in particular, a transition metal compound that forms a cross-linked structure via two cross-linking groups and Metallocene catalysts obtained by combining promoters are preferred.
  • (I) General formula (I) [In the formula, M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a heterocyclopentadienyl group, respectively.
  • a ligand selected from a substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group, and a silicon-containing group, which forms a cross-linked structure through A 1 and A 2 They may be the same or different from each other, X represents a sigma-binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , It may be cross-linked with E 2 or Y.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • a ligand (1,2 ′) (2,1 ′) double-bridged transition metal compound is preferable.
  • the compound of component (ii-1) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl tetraphenylborate (tri- n-butyl) ammonium, benzyl tetraphenylborate (tri-n-butyl) ammonium, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, tetra Benzylpyridinium phenylborate, methyl tetraphenylborate (2-cyanopyridinium), tetrakis (p
  • Examples of the aluminoxane as the component (ii-2) include known chain aluminoxanes and cyclic aluminoxanes.
  • An olefin-based polymer (A) may be produced using a combination of these organoaluminum compounds.
  • the content of the olefin polymer (A) in the resin composition of the present invention is the olefin polymer (from the viewpoint of improving mold transferability during foam molding while maintaining the mechanical strength of the resin composition. 0.5% by mass or more, preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass with respect to 100% by mass of the total content of A) and the polypropylene resin (B). % Or more, and 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less.
  • the content of the olefin polymer (A) in the resin composition is less than 0.5% by mass, the mold transfer at the time of foam molding cannot be improved, and if it exceeds 20% by mass, the resin composition machine The mechanical strength is reduced. Moreover, by setting it as the said range, the surface gloss of the molded object obtained can be improved.
  • the polypropylene resin (B) that is the component (b) used in the present invention is clearly distinguished from the olefin polymer (A).
  • the polypropylene resin (B) contains an olefin polymer ( Items that fall under A) are not included.
  • a differential scanning calorimeter (DSC) was used, and the sample was held at ⁇ 10 ° C.
  • the melting point (Tm-D) defined as the peak top observed on the highest temperature side of the melting endothermic curve obtained by raising the temperature at 0 ° C./min exceeds 120 ° C.
  • the melting point of the polypropylene resin (B) is more preferably 140 ° C. or higher, further preferably 150 ° C. or higher, and still more preferably 160 ° C. or higher.
  • the melting point (Tm-D) is a value measured by the same method as the melting point of the olefin polymer (A).
  • the polypropylene resin (B) may be a propylene homopolymer or a copolymer.
  • the copolymerization ratio of propylene units is 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, and 90 It is more preferably at least mol%, particularly preferably at least 95 mol%.
  • the copolymerizable monomer include ethylene, ⁇ -olefins having 2 or 4 to 20 carbon atoms such as 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene, methyl acrylate, etc.
  • Acrylic acid ester, vinyl acetate, and the like are preferable, and a propylene homopolymer is preferable from the viewpoint of moldability.
  • the melt flow rate (MFR) of the polypropylene resin (B) is preferably 1 g / 10 min or more, more preferably 10 g / 10 min or more, further preferably 15 g / 10 min or more, more preferably 18 g / 10 min or more, and Preferably it is 200 g / 10min or less, More preferably, it is 180 g / 10min or less, More preferably, it is 150 g / 10min or less.
  • the MFR is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 230 ° C. and a load of 21.18N.
  • the polypropylene resin (B) is not particularly limited, and commercially available products such as “PP3155” (manufactured by ExxonMobil Chemical), “Y2005GP”, and “S119” (all manufactured by Prime Polymer Co., Ltd.) can be used. .
  • an olefin polymer (A) and a polypropylene resin (B) are used. 99.5% by mass or less, preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 97% by mass or less, and 80% by mass or more with respect to the total content of 100% by mass. And preferably 85% by mass or more, more preferably 90% by mass or more.
  • the resin composition of this invention may contain the foaming agent (C) which is (c) component.
  • the foaming agent (C) is not particularly limited as long as it can be normally used for injection foam molding, such as a chemical foaming agent and a physical foaming agent.
  • the chemical foaming agent decomposes to generate a gas such as carbon dioxide, and can be supplied to an injection molding machine after being mixed in advance with a resin.
  • a gas such as carbon dioxide
  • Examples of the chemical foaming agent include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide and N, N′-dinitrosopentamethylenetetramine. These may be used alone or in combination of two or more.
  • a physical foaming agent is injected into a molten resin in a cylinder of a molding machine as a gaseous or supercritical fluid, dispersed or dissolved, and functions as a foaming agent by being released from pressure after being injected into a mold.
  • Physical foaming agents include aliphatic hydrocarbons such as propane and butane; alicyclic hydrocarbons such as cyclobutane and cyclopentane; halogenated hydrocarbons such as chlorodifluoromethane and dichloromethane; nitrogen, carbon dioxide, air, etc. Inorganic gas. These may be used alone or in combination of two or more.
  • foaming agents a normal injection molding machine can be used safely and uniform fine bubbles are easily obtained.
  • an inorganic chemical foaming agent is preferable, and as a physical foaming agent, nitrogen, Inorganic gases such as carbon dioxide and air are preferred.
  • foaming agents include, for example, foaming aids such as organic acids such as citric acid, talc, lithium carbonate, etc.
  • foaming aids such as organic acids such as citric acid, talc, lithium carbonate, etc.
  • a nucleating agent such as inorganic fine particles may be added.
  • a foaming agent (C) suitably with the foaming magnification of the foaming molding obtained, the kind of foaming agent, and the resin temperature at the time of shaping
  • a foaming agent (C) suitably with the foaming magnification of the foaming molding obtained, the kind of foaming agent, and the resin temperature at the time of shaping
  • molding For example, with respect to 100 parts by mass of the total content of the olefin polymer (A) and the polypropylene resin (B), it is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 5 parts by mass. Part or less, more preferably 4 parts by weight or less.
  • the resin composition of the present invention is a modified polyolefin, an antioxidant, a heat stabilizer, a weather stabilizer, an antistatic agent, a slip agent, an antifogging agent, if necessary, as long as the object of the present invention is not impaired.
  • You may contain arbitrary additives, such as a lubricant, a nucleating agent (talc etc.), an antiblocking agent, dye, a pigment, natural oil, synthetic oil, wax, a filler, an elastomer.
  • the MFR of the resin composition of the present invention is 1 g / 10 min or more, preferably 5 g from the viewpoint of improving the fluidity and mold transferability of the resin composition without affecting the mechanical properties of the resin composition. / 10 min or more, more preferably 10 g / 10 min or more, further preferably 20 g / 10 min or more, and 100 g / 10 min or less, preferably 80 g / 10 min or less, more preferably 65 g / 10 min or less, still more preferably 50 g. / 10 min or less. MFR is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 230 ° C. and a load of 21.18N.
  • the half crystallization time of the resin composition of the present invention is preferably longer than the half crystallization time of the polypropylene resin (B) from the viewpoint of improving mold transferability during foam molding of the resin composition
  • the half crystallization time of the polypropylene resin (B) is preferably 1.05 times or more, more preferably 1.2 times or more, and further preferably 1.25 times or more.
  • it is preferable that the half crystallization time of the resin composition is 1.05 times or more of the half crystallization time of the polypropylene resin (B) between 20 ° C. and 60 ° C.
  • the half crystallization time of the olefin polymer (A) is a polypropylene resin (B). It is preferable that it is longer than the half crystallization time.
  • the half crystallization time is measured by the following method.
  • the resin composition of the present invention is obtained by adding and kneading the above components (a), (b) and (c) and, if necessary, additives.
  • Compounding and kneading can be performed using a commonly used apparatus such as a high-speed mixer, a Banbury mixer, a continuous kneader, a single or twin screw extruder, a roll, a Brabender plastograph, or the like. it can.
  • the resin composition of the present invention is preferably used for injection foam molding.
  • a foam-molded product having a desired shape can be obtained by a known foam-molding method.
  • injection foam moldings such as precision parts, large parts, and cases can be produced by injection foam molding.
  • a conventionally well-known method is applicable.
  • a core back method, a short shot method, a full shot method and the like can be mentioned, and among these, the core back method is preferably used.
  • foaming conditions There are no particular restrictions on the foaming conditions, but a method may be employed in which a non-foamed molded article is once molded from a resin composition to which a foaming agent has been added in advance, and then the temperature is raised to change to a foamed molded article.
  • the method of obtaining a foaming molding directly from the resin composition which added the agent may be sufficient.
  • the foaming ratio of the foamed molded product is 1.05 to 20 times, preferably 1.10 to 10 times, more preferably 1.15 to 5 times.
  • the above-described resin composition is melted, and a molten resin composition containing a physical foaming agent in a supercritical state is obtained in the above-described process.
  • a foaming step of foaming the melted resin is demonstrated.
  • FIG. 1 is a cross-sectional view schematically showing a molding apparatus for foam-molding the resin composition of the present invention.
  • a molding apparatus 1 shown in FIG. 1 includes an injection apparatus 10, a mold set 20 including a fixed mold 21 and a moving mold 22, a cylinder 30, a supercritical fluid generating / supplying apparatus 40, A critical fluid injection device 50 is provided.
  • the moving mold 22 can reciprocate in the directions indicated by arrows A and B.
  • the injection device 10 includes a barrel 12 in which a screw 11 is inserted, a rotational drive mechanism that rotationally drives the screw 11 (not shown), and a forward movement of the screw 11 to inject molten resin toward a cavity 23 in the mold set 20.
  • An injection mechanism Further, a shut-off nozzle 13 is formed at the tip of the barrel 12, and the shut-off nozzle 13 is joined to the entrance of the spool 24 of the fixed mold 21 at the time of injection.
  • the resin composition charged from the charging port 14 of the injection device 10 is sequentially heated by a heater (not shown) provided around the injection device 10 and is kneaded by the screw 11. Further, an inert gas supplied from a cylinder 30 storing an inert gas such as nitrogen and brought into a supercritical state by the supercritical fluid generating / supplying device 40 is injected into the barrel 12 by the supercritical fluid injection device 50, It is dissolved in the kneaded and melted resin composition (melting step). The resin composition in which the inert gas is dissolved is injected into the cavity 23 from the shut-off nozzle 13 through the resin passage 25 formed in the stationary mold 21 (filling step).
  • FIG. 2 is an enlarged cross-sectional view showing the mold set of FIG. 1 in an enlarged manner.
  • the resin composition (molten resin) 26 injected into the cavity 23 is cooled and solidified at the portion in contact with the mold to form a film-like skin layer (FIG. 2B).
  • the molten resin 26 covered with the skin layer is foamed to form a foam layer (foaming step).
  • a foam injection molded body is manufactured (FIG. 2C).
  • the core back timing is lengthened, the foamability inside the resulting molded body tends to be non-uniform. Therefore, in order to make the foamability inside the molded body uniform, it is necessary to shorten the core back timing, and the surface glossiness of the molded body and the foam uniformity inside the molded body are in a trade-off relationship.
  • the core back timing necessary for obtaining a foam injection molded article having excellent surface gloss can be shortened. Therefore, the process window is widened, the degree of freedom in selecting the core back timing can be increased, and a molded article having excellent surface gloss and a good foamed state can be obtained.
  • the melting endotherm ( ⁇ H ⁇ D) is a differential scanning calorimeter (manufactured by Perkin Elmer Co., Ltd.) with the line connecting the low temperature side point where there is no change in heat amount and the high temperature side point where there is no change in heat amount as the baseline. , “DSC-7”), and calculating the area surrounded by the line portion including the peak of the melting endothermic curve obtained by DSC measurement and the base line.
  • Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) measurement The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) method to determine the molecular weight distribution (Mw / Mn). For the measurement, the following equipment and conditions were used, and polystyrene-reduced weight average molecular weight and number average molecular weight were obtained.
  • the molecular weight distribution (Mw / Mn) is a value calculated from these weight average molecular weight (Mw) and number average molecular weight (Mn).
  • ⁇ GPC measurement device Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation Detector: RI detection for liquid chromatogram "WATERS 150C” manufactured by Waters Corporation ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL Injection volume: 160 ⁇ l Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
  • the mesopentad fraction [mmmm], the racemic pentad fraction [rrrr] and the racemic mesoracemi mesopentad fraction [rmrm] are described in “Macromolecules, 6, 925 (1973)” by A. Zambelli et al.
  • the meso fraction, the racemic fraction, and the racemic meso-racemic meso in the pentad unit in the polypropylene molecular chain measured by the methyl group signal in the 13 C-NMR spectrum were obtained according to the proposed method. It is a fraction.
  • the mesopentad fraction [mmmm] increases, the stereoregularity increases.
  • the triad fractions [mm], [rr] and [mr] were also calculated by the above method.
  • MFR Melt flow rate
  • the time change of the calorific value during the isothermal crystallization process at 60 ° C. or 60 ° C. was measured.
  • the integral value of the calorific value from the start of isothermal crystallization to the completion of crystallization is defined as 100%
  • the time from the start of isothermal crystallization until the integral value of the calorific value reaches 50% is defined as the half crystallization time did.
  • Production Example 1 (Production of propylene polymer (A1))
  • n-heptane was 20 L / hr
  • triisobutylaluminum was 15 mmol / hr
  • dimethylanilinium tetrakispentafluorophenylborate (1,2'-dimethylsilylene)
  • the catalyst component obtained by contacting (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in advance with propylene at a mass ratio of 1: 2: 20 is converted into zirconium.
  • Propylene and hydrogen were continuously supplied so as to keep the total pressure in the reactor at 1.0 MPa ⁇ G, and the polymerization temperature was appropriately adjusted to obtain a polymerization solution having a desired molecular weight.
  • the propylene polymer (A1) was obtained by adding an antioxidant to the obtained polymerization solution so that the content thereof was 1000 ppm by mass, and then removing n-heptane as a solvent.
  • Examples 1 to 4 and Comparative Examples 1 and 2 are as follows. ⁇ Homopolypropylene> Nippon Polypro Co., Ltd., melting point (Tm-D): 163 ° C., MFR: 20 g / 10 min ⁇ Foaming agent> Product name: “Polyslen EE25C” manufactured by Eiwa Kasei Co., Ltd.
  • A The surface of the molded body is covered with a uniform skin layer.
  • B Minute irregularities (swirl marks) exist on a part of the surface of the molded body.
  • C Concavities and convexities (swirl marks) exist on the entire surface of the molded body.
  • the resin composition of Comparative Example 1 that does not contain the olefin polymer (A) has a swirl mark on the entire surface of the molded body and is inferior in appearance. Moreover, although the resin composition of the comparative example 2 which mix
  • Injection molding machine manufactured by Nissei Plastic Industry Co., Ltd., NEX180III Supercritical fluid: Nitrogen gas Mold: Cavity size: Length 275mm, width 78mm, thickness 4 ⁇ 6mmt, 2 gates Injection temperature: 245 ° C Injection speed: 180mm / sec Core back speed: 50% Mold temperature: 40 °C Nitrogen addition amount: 0.5% Back pressure: 15 MPa
  • Example 7 the cross-sectional images of the molded bodies obtained at the core back timing of 0 seconds and 8 seconds are shown in FIG.
  • A A large number of fine bubbles having a uniform bubble diameter are present.
  • B Bubbles having a large bubble diameter are scattered.
  • C Many bubbles having a large bubble diameter exist.
  • the molded product obtained using the resin composition of the present invention is excellent in surface gloss and foam uniformity inside the molded product.
  • the resin composition for foam molding of the present invention is excellent in mold transferability during foam molding while maintaining bending strength.
  • the foamed molded product obtained using the resin composition has excellent surface gloss, has no swirl mark formed on the surface of the molded product, and has an excellent appearance. It is suitable for uses such as building members, civil engineering members, food containers and the like.
  • Molding apparatus 10. Injection device 11. Screw 12. Barrel 13. Shut off nozzle 14. Input port 20. Mold assembly 21. Fixed side mold 22. Movement side mold 23. Cavity 24. Spool 25. Resin passage 26. Resin composition (molten resin) 30. Cylinder 40. Supercritical fluid generator / supply device 50. Supercritical fluid injection device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(a)融解吸熱量(ΔH-D)が0~80J/gであり、分子量分布(Mw/Mn)が3.0未満であるオレフィン系重合体(A)0.5~20質量%、及び(b)ポリプロピレン系樹脂(B)80~99.5質量%を含み(ただし、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量を100質量%とする)、かつ、メルトフローレートが1~100g/10minである、発泡成形用樹脂組成物。

Description

発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法
 本発明は、発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法に関する。
 ポリプロピレンは耐熱性や耐薬品性に優れた材料であり、特にポリプロピレンの発泡成形体は、軽量性、緩衝性、断熱性等に優れる(例えば特許文献1を参照)。
特開2007-291233号公報
 しかしながら、ポリプロピレンの発泡成形体は、金型転写性に劣るため意匠性に劣る。具体的には、ポリプロピレン及び発泡剤を含む樹脂組成物を射出成形すると、樹脂組成物の流動末端では圧力が開放されて気泡が大きく成長する。この気泡が大きな剪断を受けて引き伸ばされ、最終的に破裂して筋状に凹凸を生じることで、スワールマークと呼ばれる発泡痕が成形体表面に形成されてしまう。
 また、特にコアバック成形の場合、適正なコアバックのタイミングの幅が狭く、十分な成形品外観(光沢)を得ようとすると成形体内部の発泡性が不均一となる場合があった。
 したがって、本発明が解決しようとする課題は、発泡成形時の金型転写性に優れる発泡成形用樹脂組成物を提供することにあり、当該樹脂組成物によって成形品外観に優れるとともに、成形体内部の発泡均一性に優れた成形体及びその製造方法を提供することにある。
 本発明者らは、鋭意研究を重ねた結果、ポリプロピレン系樹脂(B)に対して融解吸熱量が相対的に低い特定のオレフィン系重合体(A)を所定量配合した、特定のメルトフローレートを有する発泡成形用樹脂組成物により、前記課題が解決することを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち本願開示は、以下に関する。
<1>(a)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークの面積で定義される融解吸熱量(ΔH-D)が0J/g以上80J/g以下であり、分子量分布(Mw/Mn)が3.0未満であるオレフィン系重合体(A)1質量%以上20質量%以下、及び
 (b)ポリプロピレン系樹脂(B)(ただし、オレフィン系重合体(A)に該当するものを除く)80質量%以上99質量%以下
を含み(ただし、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量を100質量%とする)、かつ、メルトフローレートが1g/10min以上100g/10min以下である、発泡成形用樹脂組成物。
<2>前記樹脂組成物の半結晶化時間が、前記ポリプロピレン系樹脂(B)の半結晶化時間より長い、上記<1>に記載の発泡成形用樹脂組成物。
<3>前記樹脂組成物の半結晶化時間が、前記ポリプロピレン系樹脂(B)の半結晶化時間の1.05倍以上である、上記<1>又は<2>に記載の発泡成形用樹脂組成物。
<4>前記樹脂組成物の半結晶化時間が、20℃から60℃までの間において、前記ポリプロピレン系樹脂(B)の半結晶化時間の1.05倍以上である、上記<3>に記載の発泡成形用樹脂組成物。
<5>発泡剤(C)を更に含み、発泡剤(C)の含有量が、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量100質量部に対して1質量部以上5質量部以下である、上記<1>~<4>のいずれか1つに記載の発泡成形用樹脂組成物。
<6>前記オレフィン系重合体(A)がプロピレン系重合体である、上記<1>~<5>のいずれか1つに記載の発泡成形用樹脂組成物。
<7>前記オレフィン系重合体(A)が、重合体を構成するモノマーの50モル%以上がプロピレンモノマーであるプロピレン系重合体(a1)である、上記<1>~<6>のいずれか1つに記載の発泡成形用樹脂組成物。
<8>前記プロピレン系重合体(a1)が下記(i)及び(ii)のうち少なくとも一つを満たす、上記<7>に記載の発泡成形用樹脂組成物。
 (i)エチレンの構成単位が0モル%を超えて、20モル%以下で含まれる。
 (ii)1-ブテンの構成単位が0モル%を超えて、30モル%以下で含まれる。
<9>前記プロピレン系重合体(a1)が下記(1)を満たす、上記<7>に記載の発泡成形用樹脂組成物。
(1)メソペンタッド分率[mmmm]が20モル%以上60モル%以下である。
<10>前記プロピレン系重合体(a1)が下記(2)を満たす、上記<7>~<9>のいずれか1つに記載の発泡成形用樹脂組成物。
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークトップとして定義される融点(Tm-D)が0℃以上120℃以下である。
<11>前記プロピレン系重合体(a1)が下記(3)を満たす、上記<9>又は<10>に記載の発泡成形用樹脂組成物。
(3)[rrrr]/(100-[mmmm])の値が0.1以下である。
<12>前記プロピレン系重合体(a1)が下記(4)を満たす、上記<9>~<11>のいずれか1つに記載の発泡成形用樹脂組成物。
(4)ラセミメソラセミメソペンタッド分率[rmrm]が2.5モル%を超える。
<13>前記プロピレン系重合体(a1)が下記(5)を満たす、上記<9>~<12>のいずれか1つに記載の発泡成形用樹脂組成物。
(5)[mm]×[rr]/[mr]2の値が2.0以下である。
<14>上記<1>~<13>のいずれか1つに記載の樹脂組成物を含む発泡射出成形体。
<15>上記<1>~<13>のいずれか1つに記載の樹脂組成物を溶融させ、溶融状態の樹脂組成物に超臨界状態の物理発泡剤を含有させる溶融工程と、
 前記工程で得られる溶融樹脂を、可動側金型と固定側金型との間に形成されるキャビティ内に充填する充填工程と、
 前記可動側金型を移動させてキャビティ容積を拡張し、前記キャビティ内に充填された前記溶融樹脂を発泡させる発泡工程と、を有する発泡射出成形体の製造方法。
 本願開示の一態様の発泡成形用樹脂組成物は、曲げ強度に優れ、かつ発泡成形時の金型転写性に優れる。当該樹脂組成物を用いて得られる発泡成形体は、外観に優れるとともに成形体内部の発泡均一性に優れるものであり、自動車部品の緩衝材や、建築用部材、土木用部材、食品容器等の用途に好適である。
本発明の樹脂組成物を発泡成形するための成形装置を模式的に示す断面図である。 図1の金型組を拡大して示す拡大断面図である。 実施例7及び比較例3において、それぞれコアバックタイミング0秒及び8秒で得られた成形体について、X線CT装置(ヤマト科学(株)製:商品名「TDM1000-IS」)で撮影し、得られた断面の画像である。
 以下、本発明について詳細に説明する。なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。本明細書中において、「(a)成分」と「オレフィン系重合体(A)」、「(b)成分」と「ポリプロピレン系樹脂(B)」、「(c)成分」と「発泡剤(C)」はそれぞれ同義である。
[発泡成形用樹脂組成物]
 本発明の発泡成形用樹脂組成物は、(a)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークの面積で定義される融解吸熱量(ΔH-D)が0J/g以上80J/g以下であり、分子量分布(Mw/Mn)が3.0未満であるオレフィン系重合体(A)0.5質量%以上20質量%以下、及び(b)ポリプロピレン系樹脂(B)80質量%以上99.5質量%以下を含み(ただし、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量を100質量%とする)、かつ、メルトフローレートが1g/10min以上100g/10min以下である。ここで、ポリプロピレン系樹脂(B)は、オレフィン系重合体(A)に該当するものを除く。本発明の発泡成形用樹脂組成物は、曲げ強度に優れ、かつ発泡成形時の金型転写性に優れ、スワールマークのない外観に優れた成形体を得ることができる。
<オレフィン系重合体(A)>
 本発明に用いられる(a)成分であるオレフィン系重合体(A)は、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)が0J/g以上80J/g以下であり、分子量分布(Mw/Mn)が3.0未満である。
 本明細書において、オレフィン系重合体(A)は、ポリプロピレン系樹脂(B)とは明確に区別されるものであり、ポリプロピレン系樹脂(B)にはオレフィン系重合体(A)に該当するものは含まれない。
 オレフィン系重合体(A)は、ポリプロピレン系樹脂(B)に比べて結晶化速度が遅い。また、オレフィン系重合体(A)は、ポリプロピレン系樹脂(B)に対して相溶性が高く、オレフィン系重合体(A)がポリプロピレン系樹脂(B)と相溶して結晶化速度を抑制し、樹脂組成物の流動性を向上させることができる。そのため、所定量のオレフィン系重合体(A)をポリプロピレン系樹脂(B)に配合した本発明の樹脂組成物を射出成形すると、樹脂組成物の流動末端では圧力が開放されて気泡が大きく成長するが、気泡破裂が生じても樹脂組成物は流動性を有しているためスワールマークの形成を抑制することができる。
 オレフィン系重合体(A)は、エチレン及び炭素数3~28のα-オレフィンから選ばれる1種以上のモノマーを重合してなるオレフィン系重合体が好ましい。
 炭素数3~28のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン及び1-イコセン等が挙げられる。これらの中でも、好ましくは炭素数3~24のα-オレフィン、より好ましくは炭素数3~12のα-オレフィン、更に好ましくは炭素数3~6のα-オレフィン、特に好ましくは炭素数3~4のα-オレフィン、最も好ましくはプロピレンである。
 オレフィン系重合体(A)としては、これらのうちの1種を単独で重合したオレフィン系重合体を使用してもよいし、2種以上を組み合わせて共重合して得られるオレフィン系共重合体を使用してもよい。なお、本明細書中において、単に「オレフィン系重合体」という場合には、オレフィン系共重合体も含まれる。オレフィン系共重合体としては、重合体を構成するモノマーの50モル%以上がエチレンモノマーであるエチレン系重合体、重合体を構成するモノマーの50モル%以上がプロピレンモノマーであるプロピレン系重合体(a1)、重合体を構成するモノマーの50モル%以上がブテンモノマーであるブテン系重合体などが挙げられる。
 主成分であるポリプロピレン系樹脂(B)との相溶性の観点から、オレフィン系重合体(A)は、好ましくはプロピレン系重合体であり、より好ましくプロピレン系重合体(a1)である。
 プロピレン系重合体(a1)としては、プロピレン単独重合体、プロピレン-エチレンブロック共重合体、プロピレン-ブテンブロック共重合体、プロピレン-α-オレフィンブロック共重合体、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、又はプロピレン-α-オレフィングラフト共重合体等から選択されるプロピレン系重合体であることが好ましく、特にプロピレン単独重合体やプロピレン-エチレンブロック共重合体が好ましい。
 また、本発明の樹脂組成物において、主成分であるポリプロピレン系樹脂(B)との相溶性の観点から、プロピレン系重合体(a1)は、炭素数が2のオレフィンを含有する共重合体の場合には、炭素数が2のオレフィン(すなわち、エチレンモノマー)の構成単位が、好ましくは0モル%を超え20モル%以下、より好ましくは0モル%を超え18モル%以下、更に好ましくは0モル%を超え15モル%以下、より更に好ましくは0モル%を超え13モル%以下である。また、炭素数が3のオレフィンを含有する共重合体の場合には、炭素数が3のオレフィン(すなわち、プロピレンモノマー)の構成単位が、好ましくは50モル%以上、より好ましくは65モル%以上、更に好ましくは75モル%以上、より更に好ましくは80モル%以上である。また、炭素数が4以上のαオレフィンを含有する共重合体の場合には、炭素数が4以上のα-オレフィン含有量が、好ましくは0モル%を超え30モル%以下、より好ましくは0モル%を超え27モル%以下、更に好ましくは0モル%を超え20モル%以下である。
 前記プロピレン系重合体(a1)が共重合体である場合は、下記(i)及び(ii)のうち少なくとも一つを満たすことがより好ましい。
 (i)エチレンの構成単位が0モル%を超えて、20モル%以下で含まれる。
 (ii)1-ブテンの構成単位が0モル%を超えて、30モル%以下で含まれる。
 また、本発明の樹脂組成物において、主成分であるポリプロピレン系樹脂(B)との相溶性等の観点から、オレフィン系重合体(A)は、最も好ましくはプロピレン単独重合体である。なお、上記の重合体は、石油・石炭由来のモノマーを用いた重合体でもよいし、バイオマス由来のモノマーを用いた重合体でもよい。
 樹脂組成物の力学特性に影響を与えることなく、樹脂組成物の流動性及び金型転写性を大幅に改善する観点から、オレフィン系重合体(A)は、下記融解吸熱量(ΔH-D)及び分子量分布(Mw/Mn)を有し、好ましくは更に後述の特性を有する。
(融解吸熱量(ΔH-D))
 オレフィン系重合体(A)の融解吸熱量(ΔH-D)は、0J/g以上80J/g以下である。オレフィン系重合体(A)の融解吸熱量(ΔH-D)が当該範囲内である場合、本発明の樹脂組成物の主成分であるポリプロピレン系樹脂(B)に対して結晶化速度を低減させ、ポリプロピレン系樹脂(B)の融点を維持しつつ、流動性を向上させることができる。このような観点から、融解吸熱量(ΔH-D)は、好ましくは10J/g以上、より好ましくは20J/g以上、更に好ましくは30J/gであり、そして、好ましくは70J/g以下、より好ましくは60J/g以下、更に好ましくは50J/g以下である。
 融解吸熱量(ΔH-D)は、モノマー濃度や反応圧力を適宜調整することで制御することができる。
 なお、上記融解吸熱量(ΔH-D)は、熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線をベースラインとして、DSC測定により得られた融解吸熱カーブの最も高温側に観測されるピークを含むライン部分と当該ベースラインとで囲まれる面積を求めることで算出される。
(分子量分布(Mw/Mn))
 オレフィン系重合体(A)の分子量分布(Mw/Mn)は、高強度の観点から3.0未満である。分子量分布(Mw/Mn)が3.0未満であれば、樹脂組成物の力学特性に与える影響が少ない。このような観点から、オレフィン系重合体(A)の分子量分布(Mw/Mn)は、好ましくは2.5以下、より好ましくは2.2以下であり、成形容易性の観点から、好ましくは1.2以上、より好ましくは1.5以上である。
 本発明において、分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定したポリスチレン換算の重量平均分子量Mw及び数平均分子量Mnより算出した値である。
 オレフィン系重合体(A)及びプロピレン系重合体(a1)は、好ましくは下記(1)若しくは(2)のいずれか1つ、又はその両方を満たすプロピレン系重合体であり、より好ましくは下記(3)~(5)の少なくとも1つを更に満たし、更に好ましくは下記(1)~(5)のすべてを満たす。
 (1)メソペンタッド分率[mmmm]が20モル%以上60モル%以下である。
 (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークトップとして定義される融点(Tm-D)が0℃以上120℃以下である。
 (3)[rrrr]/(100-[mmmm])の値が0.1以下である。
 (4)ラセミメソラセミメソペンタッド分率[rmrm]が2.5モル%を超える。
 (5)[mm]×[rr]/[mr]2の値が2.0以下である。
(1)メソペンタッド分率[mmmm]
 メソペンタッド分率[mmmm]は、オレフィン系重合体(A)及びプロピレン系重合体(a1)の立体規則性を表す指標であり、メソペンタッド分率[mmmm]が大きくなると、立体規則性が高くなる。
 オレフィン系重合体(A)がプロピレン単独重合体である場合、そのメソペンタッド分率[mmmm]は、プロピレン系重合体の取り扱い性及びポリプロピレン系樹脂(B)へ少量添加した際のプロピレン系重合体の結晶化速度の遅化の改良効果の観点から、好ましくは20モル%以上、より好ましくは25モル%以上、更に好ましくは30モル%以上であり、そして、好ましくは60モル%以下、より好ましくは57.5モル%以下、更に好ましくは55モル%以下である。メソペンタッド分率[mmmm]が20モル%以上であると、本発明の樹脂組成物の主成分である、オレフィン系重合体(A)べた付かせずに流動性を付与することができ、60モル%以下であると、主成分であるポリプロピレン系樹脂(B)と共晶化せず、主成分であるポリプロピレン系樹脂(B)の非晶部分に相溶することができ、良好な機械物性が得られる。
(2)融点(Tm-D)
 オレフィン系重合体(A)及びプロピレン系重合体(a1)の融点(Tm-D)は、強度や成形性の観点から高い方が好ましい。好ましくは0℃以上、より好ましくは50℃以上、更に好ましくは55℃以上、より更に好ましくは60℃以上であり、そして、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは90℃以下、より更に好ましくは80℃以下である。
 なお、本発明では、示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップを融点(Tm-D)とする。融点は、モノマー濃度や反応圧力を適宜調整することで制御可能である。
(3)[rrrr]/(100-[mmmm])
 [rrrr]/(100-[mmmm])の値は、メソペンタッド分率[mmmm]及びラセミペンタッド分率[rrrr]から求められ、ポリプロピレンの規則性分布の均一さを示す指標である。[rrrr]/(100-[mmmm])のこの値が大きくなると既存触媒系を用いて製造される従来のポリプロピレンのように高立体規則性ポリプロピレンとアタクチックポリプロピレンの混合物となり、成形後のポリプロピレン成形物のべたつきの原因となる。なお、上記における[rrrr]及び[mmmm]の単位は、モル%である。
 オレフィン系重合体(A)及びプロピレン系重合体(a1)における[rrrr]/(100-[mmmm])の値は、べたつきの観点から、好ましくは0.1以下であり、より好ましくは0.05以下、更に好ましくは0.04以下である。下限値は特に限定されないが、好ましくは0.001以上、より好ましくは0.01以上である。
 ここで、メソペンタッド分率[mmmm]、ラセミペンタッド分率[rrrr]、及び後述するラセミメソラセミメソペンタッド分率[rmrm]は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠し、13C-NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのメソ分率、ラセミ分率、及びラセミメソラセミメソ分率である。メソペンタッド分率[mmmm]が大きくなると、立体規則性が高くなる。また、後述するトリアッド分率[mm]、[rr]及び[mr]も上記方法により算出される。
(4)ラセミメソラセミメソペンタッド分率[rmrm]
 ラセミメソラセミメソペンタッド分率[rmrm]は、ポリプロピレンの立体規則性のランダム性を表す指標であり、値が大きいほどポリプロピレンのランダム性が増加する。
 オレフィン系重合体(A)及びプロピレン系重合体(a1)のラセミメソラセミメソペンタッド分率[rmrm]は、好ましくは2.5モル%を超える。オレフィン系重合体(A)及びプロピレン系重合体(a1)の[rmrm]が2.5モル%を超えることにより、ランダム性が増し、本発明の樹脂組成物の主成分であるポリプロピレン系樹脂(B)と共晶化し難くなり、その結果、樹脂組成物の耐熱性や剛性の低下が抑制される。このような観点から、オレフィン系重合体(A)及びプロピレン系重合体(a1)のラセミメソラセミメソペンタッド分率[rmrm]は、より好ましくは2.6モル%以上、更に好ましくは2.7モル%以上である。その上限は、通常10モル%程度であり、ラセミメソラセミメソペンタッド分率[rmrm]は、より好ましくは7モル%以下、更に好ましくは5モル%以下、より更に好ましくは4モル%以下である。
 (5)[mm]×[rr]/[mr]
 トリアッド分率[mm]、[rr]及び[mr]から算出される[mm]×[rr]/[mr]2の値は、重合体のランダム性の指標を表し、1に近いほどランダム性が高くなり、本発明の樹脂組成物の主成分であるポリプロピレン系樹脂(B)と共晶化が起こらず、ポリプロピレン系樹脂(B)に対して効率的に非晶の量を増やすことができる。オレフィン系重合体(A)及びプロピレン系重合体(a1)は、上式の値が通常2.0以下、好ましくは1.8以下、更に好ましくは1.6以下である。下限値は特に限定されないが、好ましくは0.5以上である。なお、上記における[mm]及び[rr]の単位は、モル%である。
(重量平均分子量(Mw))
 オレフィン系重合体(A)の重量平均分子量(Mw)は、強度の観点から、好ましくは10,000以上、より好ましくは20,000以上、更に好ましくは30,000以上であり、そして、好ましくは500,000以下、より好ましくは200,000以下、更に好ましくは100,000以下である。オレフィン系重合体(A)において重量平均分子量が当該範囲内であると、本発明の樹脂組成物の主成分であるポリプロピレン系樹脂(B)の剛性を低下させずに流動性の向上を付与することができる。
 本発明において、重量平均分子量(Mw)は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定したポリスチレン換算の重量平均分子量である。
(メルトフローレート(MFR))
 オレフィン系重合体(A)のメルトフローレート(MFR)は、好ましくは1g/10min以上、より好ましくは10g/10min以上、更に好ましくは15g/10min以上、更に好ましくは18g/10min以上であり、そして、好ましくは5,000g/10min以下、より好ましくは2,500g/10min以下、更に好ましくは1,000g/10min以下、最も好ましくは500g/10min以下である。MFRは、JIS K7210で規定された測定方法により測定される。例えば、オレフィン系重合体(A)がプロピレン系重合体である場合、温度230℃、荷重21.18Nの条件で測定される。
 上記オレフィン系重合体(A)は、例えば、WO2003/087172に記載されているようなメタロセン系触媒を使用して製造することができる。特に、配位子が架橋基を介して架橋構造を形成している遷移金属化合物を用いたものが好ましく、なかでも、2個の架橋基を介して架橋構造を形成している遷移金属化合物と助触媒を組み合わせて得られるメタロセン系触媒が好ましい。
 具体的に例示すれば、
(i)一般式(I)
Figure JPOXMLDOC01-appb-C000001

〔式中、Mは周期律表第3~10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO2-、-Se-、-NR1-、-PR1-、-P(O)R1-、-BR1-又は-AlR1-を示し、R1は水素原子、ハロゲン原子、炭素数1~20の炭化水素基又は炭素数1~20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。〕
で表される遷移金属化合物、並びに
(ii)(ii-1)該(i)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(ii-2)アルミノキサンからなる群から選ばれる少なくとも一種の成分
を含有する重合用触媒が挙げられる。
 上記(i)成分の遷移金属化合物としては、配位子が(1,2’)(2,1’)二重架橋型の遷移金属化合物が好ましく、例えば(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドが挙げられる。
 上記(ii-1)成分の化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリ-n-ブチルアンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラフェニル硼酸テトラエチルアンモニウム、テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ジメチルジフェニルアンモニウム、テトラフェニル硼酸トリフェニル(メチル)アンモニウム、テトラフェニル硼酸トリメチルアニリニウム、テトラフェニル硼酸メチルピリジニウム、テトラフェニル硼酸ベンジルピリジニウム、テトラフェニル硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸メチル(4-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム、テトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム、テトラフェニル硼酸フェロセニウム、テトラフェニル硼酸銀、テトラフェニル硼酸トリチル、テトラフェニル硼酸テトラフェニルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸(1,1’-ジメチルフェロセニウム)、テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸リチウム、テトラキス(ペンタフルオロフェニル)硼酸ナトリウム、テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン、テトラフルオロ硼酸銀、ヘキサフルオロ燐酸銀、ヘキサフルオロ砒素酸銀、過塩素酸銀、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀等を挙げることができる。
 上記(ii-2)成分のアルミノキサンとしては、公知の鎖状アルミノキサンや環状アルミノキサンが挙げられる。
 また、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、エチルアルミニウムセスキクロリド等の有機アルミニウム化合物を併用して、オレフィン系重合体(A)を製造してもよい。
 本発明の樹脂組成物中におけるオレフィン系重合体(A)の含有量は、樹脂組成物の機械的強度を維持しつつ発泡成形時の金型転写性を改善する観点から、オレフィン系重合体(A)とポリプロピレン系樹脂(B)との合計含有量100質量%に対して、0.5質量%以上であり、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上であり、そして、20質量%以下であり、好ましくは15質量%以下、より好ましくは10質量%以下である。樹脂組成物中におけるオレフィン系重合体(A)の含有量が0.5質量%未満では発泡成形時の金型転写性を改善することができず、20質量%を超えると樹脂組成物の機械的強度が低下してしまう。また、上記範囲内とすることにより、得られる成形体の表面光沢を向上させることができる。
<ポリプロピレン系樹脂(B)>
 本発明に用いられる(b)成分であるポリプロピレン系樹脂(B)は、オレフィン系重合体(A)とは明確に区別されるものであり、ポリプロピレン系樹脂(B)にはオレフィン系重合体(A)に該当するものは含まれない。
 ポリプロピレン系樹脂(B)としては、樹脂組成物の耐熱性や機械的強度の観点から、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークトップとして定義される融点(Tm-D)が120℃を超えるものであることが好ましい。ポリプロピレン系樹脂(B)の融点は、より好ましくは140℃以上、さらに好ましくは150℃以上、より更に好ましくは160℃以上である。なお、該融点(Tm-D)は、オレフィン系重合体(A)の融点と同じ方法で測定される値である。
 ポリプロピレン系樹脂(B)としては、プロピレン単独重合体であってもよく、共重合体であってもよい。ポリプロピレン系樹脂(B)が共重合体である場合、プロピレン単位の共重合比は50モル%以上であり、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、95モル%以上であることが特に好ましい。共重合可能なモノマーとしては、例えば、エチレンや、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン等の炭素数2もしくは4~20のα-オレフィン、アクリル酸メチル等のアクリル酸エステル、酢酸ビニル等が挙げられるが、成形性の観点からプロピレン単独重合体が好ましい。
 ポリプロピレン系樹脂(B)のメルトフローレート(MFR)は、好ましくは1g/10min以上、より好ましくは10g/10min以上、更に好ましくは15g/10min以上、更に好ましくは18g/10min以上であり、そして、好ましくは200g/10min以下、より好ましくは180g/10min以下、更に好ましくは150g/10min以下である。MFRは、JIS K7210で規定された測定方法により測定され、温度230℃、荷重21.18Nの条件で測定される。
 ポリプロピレン系樹脂(B)としては、特に限定されず、「PP3155」(ExxonMobil Chemical社製)、「Y2005GP」及び「S119」(いずれも(株)プライムポリマー製)等の市販品を用いることができる。
 本発明の樹脂組成物中におけるポリプロピレン系樹脂(B)の含有量としては、樹脂組成物の耐熱性及び機械的強度の観点から、オレフィン系重合体(A)とポリプロピレン系樹脂(B)との合計含有量100質量%に対して、99.5質量%以下であり、好ましくは99質量%以下、より好ましくは98質量%以下、更に好ましくは97質量%以下であり、そして、80質量%以上であり、好ましくは85質量%以上、より好ましくは90質量%以上である。
<発泡剤(C)>
 本発明の樹脂組成物は、(c)成分である発泡剤(C)を含んでいてもよい。発泡剤(C)としては、化学発泡剤、物理発泡剤等、射出発泡成形に通常使用できるものであれば特に制限されない。
 化学発泡剤は、分解して炭酸ガス等の気体を発生するものであり、樹脂と予め混合してから射出成形機に供給することができる。化学発泡剤としては、重炭酸ナトリウム、炭酸アンモニウム等の無機系化学発泡剤や、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン等の有機系化学発泡剤が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 物理発泡剤は、成形機のシリンダ内の溶融樹脂にガス状又は超臨界流体として注入され、分散または溶解されるもので、金型内に射出後、圧力開放されることによって発泡剤として機能するものである。物理発泡剤としては、プロパン、ブタン等の脂肪族炭化水素類;シクロブタン、シクロペンタン等の脂環式炭化水素類;クロロジフルオロメタン、ジクロロメタン等のハロゲン化炭化水素類;窒素、炭酸ガス、空気等の無機ガスが挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの発泡剤のうちでは、通常の射出成形機が安全に使用でき、均一微細な気泡が得られやすいものとして、化学発泡剤としては無機系化学発泡剤が好ましく、物理発泡剤としては窒素、炭酸ガス、空気等の無機ガスが好ましい。
 これらの発泡剤には、射出発泡成形体の気泡を安定的に均一微細にするために必要に応じて、例えばクエン酸のような有機酸等の発泡助剤や、タルク、炭酸リチウムのような無機微粒子等の造核剤を添加してもよい。
 発泡剤(C)の含有量は、得られる発泡成形体の発泡倍率と発泡剤の種類や成形時の樹脂温度によって適宜設定すればよい。例えば、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、そして、好ましくは5質量部以下、より好ましくは4質量部以下である。
<添加剤>
 本発明の樹脂組成物は、本発明の目的を損なわない範囲で、必要に応じてさらに、変性ポリオレフィン、酸化防止剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、防曇剤、滑剤、造核剤(タルク等)、ブロッキング防止剤、染料、顔料、天然油、合成油、ワックス、充填剤、エラストマー等の任意の添加剤を含有してもよい。
<樹脂組成物の物性>
(MFR)
 本発明の樹脂組成物のMFRは、樹脂組成物の力学特性に影響を与えることなく、樹脂組成物の流動性及び金型転写性を改善する観点から、1g/10min以上であり、好ましくは5g/10min以上、より好ましくは10g/10min以上、更に好ましくは20g/10min以上であり、そして、100g/10min以下であり、好ましくは80g/10min以下、より好ましくは65g/10min以下、更に好ましくは50g/10min以下である。MFRは、JIS K7210で規定された測定方法により測定され、温度230℃、荷重21.18Nの条件で測定される。
(半結晶化時間)
 本発明の樹脂組成物の半結晶化時間は、樹脂組成物の発泡成形時の金型転写性の改善の観点からは、ポリプロピレン系樹脂(B)の半結晶化時間よりも長いことが好ましく、ポリプロピレン系樹脂(B)の半結晶化時間の好ましくは1.05倍以上、より好ましくは1.2倍以上、更に好ましくは1.25倍以上である。特に、樹脂組成物の半結晶化時間が、20℃から60℃までの間において、ポリプロピレン系樹脂(B)の半結晶化時間の1.05倍以上であることが好ましい。本発明の樹脂組成物の半結晶化時間をポリプロピレン系樹脂(B)の半結晶化時間よりも長くする観点からは、オレフィン系重合体(A)の半結晶化時間がポリプロピレン系樹脂(B)の半結晶化時間よりも長いことが好ましい。なお、本発明において半結晶化時間は下記の方法で測定される。
半結晶化時間の測定方法
 FLASH DSC(メトラー・トレド株式会社製)を用い、試料を230℃で2分間加熱して融解させた後、2000℃/秒で所定温度(例えば20℃)まで冷却し、所定温度(例えば20℃)での等温結晶化過程における、発熱量の時間変化を測定する。等温結晶化開始時から結晶化完了時までの発熱量の積分値を100%とした時、等温結晶化開始時から発熱量の積分値が50%となるまでの時間を半結晶化時間として定義する。
<樹脂組成物の製造>
 本発明の樹脂組成物は、上記の成分(a)、(b)及び(c)、更に必要に応じて添加剤を加えて混練することにより得られる。配合及び混練は、通常用いられている機器、例えば、高速ミキサー、バンバリーミキサー、連続ニーダー、一軸又は二軸押出機、ロール、ブラベンダープラストグラフ等の通常の混合混練機を使用して行うことができる。
 本発明の樹脂組成物は射出発泡成形用に好ましく用いられる。
<成形体>
 本発明の樹脂組成物は、公知の発泡成形方法により、所望形状の発泡成形体を得ることができる。特に射出発泡成形により、精密部品,大型部品,ケース等の射出発泡成形体を作成することができる。射出発泡成形方法については特に制限はなく、従来公知の方法を適用することができる。例えば、コアバック法、ショートショット法、フルショット法等が挙げられ、中でも、コアバック法が好ましく用いられる。
 発泡条件についても特に制限はないが、予め発泡剤を添加した樹脂組成物から一旦未発泡成形体を成形し、その後温度を上げて発泡成形体へと変える方法を採用してもよく、または発泡剤を添加した樹脂組成物から直接発泡成形体を得る方法であってもよい。発泡成形体の発泡倍率は1.05~20倍、好ましくは1.10~10倍、より好ましくは1.15~5倍である。
 コアバック法による発泡射出成形体の製造方法としては、例えば、上述の樹脂組成物を溶融させ、溶融状態の樹脂組成物に超臨界状態の物理発泡剤を含有させる溶融工程と、前記工程で得られる溶融樹脂を、可動側金型と固定側金型との間に形成されるキャビティ内に充填する充填工程と、前記可動側金型を移動させてキャビティ容積を拡張し、前記キャビティ内に充填された前記溶融樹脂を発泡させる発泡工程と、を有する方法が挙げられる。
 以下、図1及び図2を参照して、コアバック法による発泡射出成形体の製造方法を説明する。
 図1は、本発明の樹脂組成物を発泡成形するための成形装置を模式的に示す断面図である。図1に示す成形装置1は、射出装置10と、固定側金型21及び移動側金型22によって構成される金型組20と、ボンベ30と、超臨界流体発生・供給装置40と、超臨界流体注入装置50などを備えている。移動側金型22は、矢印A,Bで示す方向に往復移動することができる。
 射出装置10は、スクリュー11が挿入されたバレル12と、図示しないスクリュー11を回転駆動する回転駆動機構と、スクリュー11を前進動させて溶融樹脂を金型組20内のキャビティ23に向けて射出する射出機構とを備えている。また、バレル12の先端にシャットオフノズル13が形成されており、該シャットオフノズル13は、射出時に固定側金型21のスプール24の入り口部に接合される。
 射出装置10の投入口14から投入された樹脂組成物は、射出装置10の周囲に設けられた図示しない加熱ヒータによって順次加熱されると共に、スクリュー11によって混錬される。また、窒素等の不活性ガスを貯留したボンベ30から供給され超臨界流体発生・供給装置40によって超臨界状態にされた不活性ガスが、超臨界流体注入装置50によってバレル12内に注入され、混錬溶融された樹脂組成物に溶解される(溶融工程)。不活性ガスを溶解させた樹脂組成物は、シャットオフノズル13から固定側金型21に形成された樹脂通路25を通りキャビティ23内に注入される(充填工程)。
 図2は、図1の金型組を拡大して示す拡大断面図である。キャビティ23内に注入された樹脂組成物(溶融樹脂)26は、金型に接する部分が冷却固化されて膜状のスキン層が形成される(図2(b))。その状態で固定側金型21に対して移動側金型22をコアバックさせてキャビティ23内の容積を拡張すると、スキン層で覆われた溶融樹脂26が発泡して発泡層となり(発泡工程)、発泡射出成形体が製造される(図2(c))。
 一般に、コアバック法により発泡射出成形体を成形する場合、キャビティ内に溶融樹脂を注入してからコアバックするまでの時間(コアバックタイミング)が長いほど、該溶融樹脂が冷却され金型転写性が向上し、得られる発泡射出成形体の表面光沢が優れたものとなる。一方、コアバックタイミングが長くなると得られる成形体内部の発泡性は不均一になりやすい。したがって、成形体内部の発泡性を均一にするためには、コアバックタイミングを短くする必要があり、成形体の表面光沢性と成形体内部の発泡均一性とはトレードオフの関係にある。
 これに対し、本発明の発泡成形用樹脂組成物を用いると、表面光沢が優れた発泡射出成形体を得るのに必要なコアバックタイミングを短くすることができる。そのため、プロセスウィンドウが広がり、コアバックタイミング選択の自由度を高めることができ、表面光沢が優れるとともに良好な発泡状態の成形体を得ることができる。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
〔DSC測定〕
 示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから融解吸熱量(ΔH-D)として求めた。また、得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップから融点(Tm-D)を求めた。
 なお、融解吸熱量(ΔH-D)は、熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線をベースラインとして、示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用いた、DSC測定により得られた融解吸熱カーブのピークを含むライン部分と当該ベースラインとで囲まれる面積を求めることで算出される。
〔重量平均分子量(Mw)、分子量分布(Mw/Mn)測定〕
 ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。測定には、下記の装置および条件を使用し、ポリスチレン換算の重量平均分子量および数平均分子量を得た。分子量分布(Mw/Mn)は、これらの重量平均分子量(Mw)及び数平均分子量(Mn)より算出した値である。
<GPC測定装置>
カラム     :東ソー(株)製「TOSO GMHHR-H(S)HT」
検出器     :液体クロマトグラム用RI検出 ウォーターズ・コーポレーション製「WATERS 150C」
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0mL/分
 試料濃度   :2.2mg/mL
 注入量    :160μl
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
〔NMR測定〕
 以下に示す装置および条件で、13C-NMRスペクトルの測定を行った。なお、ピークの帰属は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案された方法に従った。
 装置:日本電子(株)製、「JNM-EX400型13C-NMR装置」
 方法:プロトン完全デカップリング法
 濃度:220mg/mL
 溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
 温度:130℃
 パルス幅:45°
 パルス繰り返し時間:4秒
 積算:10000回
<計算式>
 M=m/S×100
 R=γ/S×100
 S=Pββ+Pαβ+Pαγ
 S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
 Pββ:19.8~22.5ppm
 Pαβ:18.0~17.5ppm
 Pαγ:17.5~17.1ppm
 γ:ラセミペンタッド連鎖:20.7~20.3ppm
 m:メソペンタッド連鎖:21.7~22.5ppm
 メソペンタッド分率[mmmm]、ラセミペンタッド分率[rrrr]およびラセミメソラセミメソペンタッド分率[rmrm]は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠して求めたものであり、13C-NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのメソ分率、ラセミ分率、およびラセミメソラセミメソ分率である。メソペンタッド分率[mmmm]が大きくなると、立体規則性が高くなる。また、トリアッド分率[mm]、[rr]および[mr]も上記方法により算出した。
〔メルトフローレート(MFR)測定〕
 JIS K7210に準拠し、温度230℃、荷重21.18Nの条件で測定した。
〔半結晶化時間〕
 ポリプロピレン系樹脂(B)及び樹脂組成物の半結晶化時間をそれぞれ測定し、ポリプロピレン系樹脂(B)の半結晶化時間に対する樹脂組成物の半結晶化時間の倍数を算出した。なお、ポリプロピレン系樹脂(B)及び樹脂組成物の半結晶化時間は、それぞれ下記の方法により測定した。
 FLASH DSC(メトラー・トレド株式会社製)を用い、試料を230℃で2分間加熱して融解させた後、2000℃/秒で20℃、40℃又は60℃まで冷却し、それぞれ20℃、40℃又は60℃での等温結晶化過程における、発熱量の時間変化を測定した。等温結晶化開始時から結晶化完了時までの発熱量の積分値を100%とした時、等温結晶化開始時から発熱量の積分値が50%となるまでの時間を半結晶化時間として定義した。
製造例1
(プロピレン重合体(A1)の製造)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給し、重合温度を適宜調整し所望の分子量を有する重合溶液を得た。得られた重合溶液に、酸化防止剤をその含有割合が1000質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、プロピレン重合体(A1)を得た。
 製造例1で得られたプロピレン重合体(A1)について、上述の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~4及び比較例1~2で使用した原料は以下の通りである。
<ホモポリプロピレン>
 日本ポリプロ(株)製、融点(Tm-D):163℃、MFR:20g/10min
<発泡剤>
 永和化成(株)製、商品名:「ポリスレンEE25C」
実施例1~4及び比較例1~2
 表2に示した各成分を、二軸混練押出機を用いて230℃で溶融混練し、樹脂組成物をそれぞれ調製した。得られた樹脂組成物を、射出成形機(東芝機械(株)製、「EC100SX」)にて射出成形して、発泡成形体を作製した。樹脂温度170~250℃、金型温度10~90℃、成形サイクル1~40分、射出速度10~300mm/s、射出圧10~200MPaの範囲内で、成形体の発泡倍率が2倍になる成形条件で成形を行った。
 得られた成形体について以下の測定を行った。結果を表2に示す。
(1)外観観察
 成形体の外観を目視で観察し、以下の評価基準により評価した。「A」又は「B」の評価であれば合格レベルである。
A:成形体表面が均一なスキン層で被覆されている。
B:成形体表面の一部に微小な凹凸(スワールマーク)が存在する。
C:成形体表面の全面に凹凸(スワールマーク)が存在する。
(2)曲げ強度
 曲げ試験機(エー・アンド・ディ社製、型番:「ABM-K」)にて、JIS K7203に準拠して、支持台間距離:60mm、支持台R:2mm、圧子R:5mmの室温条件で、曲げ試験を行って曲げ強度を測定し、以下の評価基準により評価した。「A」又は「B」の評価であれば合格レベルである。
A:600MPa以上
B:400MPa以上、600MPa未満
C:400MPa未満
Figure JPOXMLDOC01-appb-T000003
 オレフィン系重合体(A)を含有しない比較例1の樹脂組成物は、成形体表面の全面にスワールマークが存在し、外観に劣る。また、オレフィン系重合体(A)を過剰に配合した比較例2の樹脂組成物は、発泡成形時の金型転写性が改善されて成形体の外観は良好であるものの、曲げ強度に劣る。
 これに対して、本発明の樹脂組成物は、優れた曲げ強度を維持しつつ、発泡成形時の金型転写性に優れ、成形体の外観も優れる。
 実施例5~7及び比較例3で使用した原料は以下の通りである。
<ブロックポリプロピレン>
 プライムポリマー社製、融点(Tm-D):163℃、MFR:13g/10min
<プロピレン重合体>
 製造例1で製造したプロピレン重合体(A1)
<タルク(造核剤)>
 白石カルシウム、粒径5μm
実施例5~7及び比較例3
 表3に示した各成分を、二軸混練押出機を用いて230℃で溶融混練し、樹脂組成物をそれぞれ調製した。得られた樹脂組成物を用い、下記の条件で射出発泡成形を行い、射出発泡成形体を得た。得られた成形体について以下の測定を行った。結果を表3に示す。
 射出成形機:日精樹脂工業(株)製、NEX180III
 超臨界流体:窒素ガス
 金型:キャビティサイズ:縦275mm、横78mm、厚さ4⇒6mmt、2ゲート
 射出温度:245℃
 射出速度:180mm/秒
 コアバック速度:50%
 金型温度:40℃
 窒素添加量:0.5%
 背圧:15MPa
(3)表面光沢
 成形体の表面光沢は、ゲートから60mmの位置において、日本電色工業(株)製のPG-IIを使用し、測定角60°で測定した。なお、30%以上を合格とする。
(4)内部発泡状態
 ヤマト科学(株)製のX線CT装置:TDM1000-ISを使用し、ゲートから60mmの位置の成形体の厚み方向中央部を観察し、以下の評価基準により評価した。なお、実施例7及び比較例3において、それぞれコアバックタイミング0秒及び8秒で得られた成形体の断面画像を図3に示す。
A:気泡径の微小な気泡が均一に多数存在する。
B:気泡径の大きな気泡が点在する。
C:気泡径の大きな気泡が多数存在する。
Figure JPOXMLDOC01-appb-T000004
 本発明の樹脂組成物を用いて得られる成形体は、表面光沢に優れるとともに成形体内部の発泡均一性に優れる。
 本発明の発泡成形用樹脂組成物は、曲げ強度を維持しつつ発泡成形時の金型転写性に優れる。当該樹脂組成物を用いて得られる発泡成形体は、優れた表面光沢性を有し、スワールマークが成形体表面に形成されることがなく、外観に優れるものであり、自動車部品の緩衝材や、建築用部材、土木用部材、食品容器等の用途に好適である。
   1.成形装置
   10.射出装置
   11.スクリュー
   12.バレル
   13.シャットオフノズル
   14.投入口
   20.金型組
   21.固定側金型
   22.移動側金型
   23.キャビティ
   24.スプール
   25.樹脂通路
   26.樹脂組成物(溶融樹脂)
   30.ボンベ
   40.超臨界流体発生・供給装置
   50.超臨界流体注入装置

Claims (15)

  1.  (a)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークの面積で定義される融解吸熱量(ΔH-D)が0J/g以上80J/g以下であり、分子量分布(Mw/Mn)が3.0未満であるオレフィン系重合体(A)0.5質量%以上20質量%以下、及び
     (b)ポリプロピレン系樹脂(B)(ただし、オレフィン系重合体(A)に該当するものを除く)80質量%以上99.5質量%以下
    を含み(ただし、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量を100質量%とする)、かつ、メルトフローレートが1g/10min以上100g/10min以下である、発泡成形用樹脂組成物。
  2.  前記樹脂組成物の半結晶化時間が、前記ポリプロピレン系樹脂(B)の半結晶化時間より長い、請求項1に記載の発泡成形用樹脂組成物。
  3.  前記樹脂組成物の半結晶化時間が、前記ポリプロピレン系樹脂(B)の半結晶化時間の1.05倍以上である、請求項1又は2に記載の発泡成形用樹脂組成物。
  4.  前記樹脂組成物の半結晶化時間が、20℃から60℃までの間において、前記ポリプロピレン系樹脂(B)の半結晶化時間の1.05倍以上である、請求項3に記載の発泡成形用樹脂組成物。
  5.  (c)発泡剤(C)を更に含み、発泡剤(C)の含有量が、オレフィン系重合体(A)及びポリプロピレン系樹脂(B)の合計含有量100質量部に対して1質量部以上5質量部以下である、請求項1~4のいずれか1つに記載の発泡成形用樹脂組成物。
  6.  前記オレフィン系重合体(A)がプロピレン系重合体である、請求項1~5のいずれか1つに記載の発泡成形用樹脂組成物。
  7.  前記オレフィン系重合体(A)が、重合体を構成するモノマーの50モル%以上がプロピレンモノマーであるプロピレン系重合体(a1)である、請求項1~6のいずれか1つに記載の発泡成形用樹脂組成物。
  8.  前記プロピレン系重合体(a1)が下記(i)及び(ii)のうち少なくとも一つを満たす、請求項7に記載の発泡成形用樹脂組成物。
     (i)エチレンの構成単位が0モル%を超えて、20モル%以下で含まれる。
     (ii)1-ブテンの構成単位が0モル%を超えて、30モル%以下で含まれる。
  9.  前記プロピレン系重合体(a1)が下記(1)を満たす、請求項7に記載の発泡成形用樹脂組成物。
    (1)メソペンタッド分率[mmmm]が20モル%以上60モル%以下である。
  10.  前記プロピレン系重合体(a1)が下記(2)を満たす、請求項7~9のいずれか1つに記載の発泡成形用樹脂組成物。
    (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークトップとして定義される融点(Tm-D)が0℃以上120℃以下である。
  11.  前記プロピレン系重合体(a1)が下記(3)を満たす、請求項9又は10に記載の発泡成形用樹脂組成物。
    (3)[rrrr]/(100-[mmmm])の値が0.1以下である。
  12.  前記プロピレン系重合体(a1)が下記(4)を満たす、請求項9~11のいずれか1つに記載の発泡成形用樹脂組成物。
    (4)ラセミメソラセミメソペンタッド分率[rmrm]が2.5モル%を超える。
  13.  前記プロピレン系重合体(a1)が下記(5)を満たす、請求項9~12のいずれか1つに記載の発泡成形用樹脂組成物。
    (5)[mm]×[rr]/[mr]2の値が2.0以下である。
  14.  請求項1~13のいずれか1つに記載の樹脂組成物を含む発泡射出成形体。
  15.  請求項1~13のいずれか1つに記載の樹脂組成物を溶融させ、溶融状態の樹脂組成物に超臨界状態の物理発泡剤を含有させる溶融工程と、
     前記工程で得られる溶融樹脂を、可動側金型と固定側金型との間に形成されるキャビティ内に充填する充填工程と、
     前記可動側金型を移動させてキャビティ容積を拡張し、前記キャビティ内に充填された前記溶融樹脂を発泡させる発泡工程と、を有する発泡射出成形体の製造方法。
PCT/JP2017/028072 2016-08-05 2017-08-02 発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法 WO2018025916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780047993.XA CN109496221A (zh) 2016-08-05 2017-08-02 发泡成型用树脂组合物以及包含其的发泡成型体和其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-154610 2016-08-05
JP2016154610 2016-08-05
JP2017-126428 2017-06-28
JP2017126428A JP2018024837A (ja) 2016-08-05 2017-06-28 発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018025916A1 true WO2018025916A1 (ja) 2018-02-08

Family

ID=61072751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028072 WO2018025916A1 (ja) 2016-08-05 2017-08-02 発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法

Country Status (1)

Country Link
WO (1) WO2018025916A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220994A1 (ja) * 2018-05-15 2019-11-21 株式会社カネカ ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体、およびポリプロピレン系樹脂発泡粒子の製造方法
CN114539666A (zh) * 2022-01-27 2022-05-27 泉州师范学院 一种抗冲抗应力发白适合超临界发泡的聚丙烯复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348431A (ja) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc オレフィン系ブロック共重合体およびその製造方法、ならびに該共重合体を含むオレフィン系ブロック共重合体組成物
JP2005002279A (ja) * 2003-06-13 2005-01-06 Idemitsu Petrochem Co Ltd ポリオレフィン系樹脂組成物及びその成形体
WO2014065416A1 (ja) * 2012-10-25 2014-05-01 出光興産株式会社 ポリオレフィン系成形体
JP2016084410A (ja) * 2014-10-24 2016-05-19 出光興産株式会社 ポリオレフィン系組成物およびポリオレフィン延伸フィルム並びに延伸フィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348431A (ja) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc オレフィン系ブロック共重合体およびその製造方法、ならびに該共重合体を含むオレフィン系ブロック共重合体組成物
JP2005002279A (ja) * 2003-06-13 2005-01-06 Idemitsu Petrochem Co Ltd ポリオレフィン系樹脂組成物及びその成形体
WO2014065416A1 (ja) * 2012-10-25 2014-05-01 出光興産株式会社 ポリオレフィン系成形体
JP2016084410A (ja) * 2014-10-24 2016-05-19 出光興産株式会社 ポリオレフィン系組成物およびポリオレフィン延伸フィルム並びに延伸フィルムの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220994A1 (ja) * 2018-05-15 2019-11-21 株式会社カネカ ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体、およびポリプロピレン系樹脂発泡粒子の製造方法
CN112189032A (zh) * 2018-05-15 2021-01-05 株式会社钟化 聚丙烯系树脂发泡粒子、聚丙烯系树脂模内发泡成型体和聚丙烯系树脂发泡粒子的制造方法
JPWO2019220994A1 (ja) * 2018-05-15 2021-08-12 株式会社カネカ ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体、およびポリプロピレン系樹脂発泡粒子の製造方法
JP7152480B2 (ja) 2018-05-15 2022-10-12 株式会社カネカ ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体、およびポリプロピレン系樹脂発泡粒子の製造方法
CN112189032B (zh) * 2018-05-15 2023-02-03 株式会社钟化 聚丙烯系树脂发泡粒子、聚丙烯系树脂模内发泡成型体和聚丙烯系树脂发泡粒子的制造方法
CN114539666A (zh) * 2022-01-27 2022-05-27 泉州师范学院 一种抗冲抗应力发白适合超临界发泡的聚丙烯复合材料及其制备方法
CN114539666B (zh) * 2022-01-27 2023-11-28 泉州师范学院 一种抗冲抗应力发白适合超临界发泡的聚丙烯复合材料及其制备方法

Similar Documents

Publication Publication Date Title
TWI444417B (zh) Polypropylene resin foamed beads and molded articles thereof
US6946495B2 (en) Foamable composition using recycled or offgrade polypropylene
JP6482081B2 (ja) ポリオレフィン組成物およびポリオレフィン延伸フィルムとその製法
JP5770634B2 (ja) ポリプロピレン系樹脂、ポリプロピレン系樹脂組成物、および射出発泡成形体
WO1999028374A1 (fr) Perles de resine de propylene expansibles et pieces obtenues par expansion dans le moule
JP4999462B2 (ja) プロピレン系樹脂押出発泡体
JP6411134B2 (ja) ポリオレフィン系組成物、並びにそれからなる成形体、フィルム、延伸フィルム、並びにその製造方法
WO2018025916A1 (ja) 発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法
JP6386874B2 (ja) ポリオレフィン系組成物およびポリオレフィン延伸フィルム並びに延伸フィルムの製造方法
JP2013001826A (ja) 射出発泡用樹脂組成物、射出発泡成形体及び射出発泡成形体の製造方法
JP5628553B2 (ja) 射出発泡成形用熱可塑性エラストマー組成物及び該樹脂組成物からなる射出発泡成形体
JP2009001772A (ja) ポリプロピレン系樹脂射出発泡成形体
CN109937237A (zh) 发泡体用掺合物、由其制造的发泡体和包括其的物品
JP6604682B2 (ja) ポリオレフィン組成物およびポリオレフィン延伸フィルム、延伸多層フィルム、並びに延伸フィルムの製造方法
JP2014167056A (ja) 射出成形体及びその製造方法
JP2019119759A (ja) 熱可塑性樹脂組成物及び発泡成形体
JP4963266B2 (ja) ポリプロピレン系樹脂射出発泡成形体
JP2018024837A (ja) 発泡成形用樹脂組成物並びにそれを含む発泡成形体及びその製造方法
JP2016074760A (ja) 延伸フィルム、及びその製法、並びにそれを用いた包装材料
JP5841076B2 (ja) ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体
JP6702529B2 (ja) フィルム、延伸フィルムの製法、及び該フィルムを用いた包装材料
JP2011236330A (ja) 射出発泡成形用熱可塑性エラストマー組成物及び該樹脂組成物からなる射出発泡成形体
JP2013001827A (ja) ポリプロピレン系樹脂組成物および射出発泡成形体の製造方法
JP2016074091A (ja) 延伸フィルムの製造方法及びその製造方法により得られた延伸フィルムからなる包装材料
JP5638928B2 (ja) 射出発泡成形用ポリプロピレン系樹脂、およびその射出発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837018

Country of ref document: EP

Kind code of ref document: A1