WO2018025767A1 - ブロック共重合体およびそれを用いた表面処理剤 - Google Patents

ブロック共重合体およびそれを用いた表面処理剤 Download PDF

Info

Publication number
WO2018025767A1
WO2018025767A1 PCT/JP2017/027450 JP2017027450W WO2018025767A1 WO 2018025767 A1 WO2018025767 A1 WO 2018025767A1 JP 2017027450 W JP2017027450 W JP 2017027450W WO 2018025767 A1 WO2018025767 A1 WO 2018025767A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
group
block copolymer
carbon atoms
bond
Prior art date
Application number
PCT/JP2017/027450
Other languages
English (en)
French (fr)
Inventor
前島雪絵
近藤聡
今富伸哉
山田悟
伊藤博之
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US16/322,361 priority Critical patent/US11046803B2/en
Priority to EP17836872.6A priority patent/EP3495400B1/en
Publication of WO2018025767A1 publication Critical patent/WO2018025767A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/025Polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a block copolymer useful as a surface treatment agent for a cell culture substrate that enables cell detachment in a short time.
  • proteolytic enzymes are responsible for decomposing proteins on the cell surface and breaking the bonds between cells and substrates and between cells.
  • proteolytic enzymes have a great influence on the survival rate of cells, and a technique of separating cells from a substrate without using proteolytic enzymes is important as a method that does not damage cells.
  • it is required to separate cells from the base material without damaging cells cultured outside the body, such as the base material, and return them to the living body. There is a need for a method of separating from.
  • Patent Literature 1 discloses a cell culture substrate in which a temperature-responsive polymer is coated on the substrate surface. According to such a base material, the adhesive force on the surface of the base material is weakened by the sol transition of the temperature-responsive polymer due to a temperature drop in the surrounding environment, and the cells can be detached and collected.
  • cells derived from mammals are often cultured at around 37 ° C., which is a body temperature, and after completion of the culture, a substrate capable of peeling cells at a body temperature or lower is required.
  • LCST low critical solution temperature
  • the temperature-responsive polymer When using the above temperature-responsive polymer as a cell culture substrate, it is necessary to lower the temperature of the cell culture substrate below the lower critical dissolution temperature, but depending on the time, the temperature of the cell is lowered at the same time. Since the chilling of the cells lowers the activity of the cells, it is necessary to shorten the cooling time.
  • An object of the present invention is to provide a block copolymer useful as a surface treatment agent for a cell culture substrate that enables cell detachment in a short time, and a surface treatment agent using the same.
  • the present inventors have formed a film by coating a base material with a block copolymer containing a temperature-responsive polymer, a hydrophilic polymer, and a hydrophobic polymer.
  • a temperature-responsive polymer e.g., a polystyrene
  • a hydrophilic polymer e.g., polystyrene
  • a hydrophobic polymer e.g., polystyrenethacrylate
  • the present invention includes the embodiments described in [1] to [19] below.
  • B A hydrophilic polymer block having no LCST in the range of 0 ° C. to 50 ° C. and having an HLB value (Griffin method) of 9 or more and 20 or less.
  • C A hydrophobic polymer block having no LCST in the range of 0 ° C. to 50 ° C. and having an HLB value (Griffin method) in the range of 0 to less than 9.
  • Block (A) is represented by the following general formula (1)
  • R 2 is a hydrogen atom or a methyl group, and R 3 and R 4 are each independently substituted with a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or an alkyloxy group having 1 or 2 carbon atoms
  • Block (A) is represented by the following general formula (2)
  • Block (A) is represented by the following general formula (3)
  • Block (B) is represented by the following general formula (4)
  • R 9 is a hydrogen atom or a methyl group
  • R 10 is an alkylene group having 1 to 10 carbon atoms
  • R 11 is a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • R 12 , R 13 and R 14 are each independently a hydrogen atom, a methyl group, or an ethyl group
  • a 1 is a divalent group selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond. It is a bond.
  • the block copolymer according to any one of the above [1] to [4], wherein the block copolymer is a polymer containing at least one type of repeating unit.
  • Block (B) is represented by the following general formula (5)
  • R 15 is a hydrogen atom or a methyl group
  • R 16 is — (CH 2 CH 2 O) i — (CH 2 O) j — (CH 2 CH (CH 3 ) O) k —R 17
  • R 17 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • i is an integer of 1 to 30
  • j and k are each independently an integer of 0 to 30).
  • Block (B) is represented by the following general formula (6)
  • R 19 is a hydrogen atom or a methyl group
  • R 20 is an alkylene group having 1 to 10 carbon atoms
  • R 21 is an alkylene group having 1 to 4 carbon atoms.
  • R 22 and R 23 are Each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • a 2 is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond
  • X is a sulfonic acid group, a carboxyl group, or a phosphoric acid group.
  • Block (B) is represented by the following general formula (7)
  • R 24 , R 25 and R 26 are each independently a hydrogen atom or a methyl group.
  • Block (B) is represented by the following general formula (8)
  • R 28 is a hydrogen atom or a methyl group
  • R 29 is an alkylene group having 2 to 7 carbon atoms
  • R 30 and R 31 are each independently a hydrogen atom, a methyl group, or an ethyl group.
  • a 3 is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond.
  • Block (B) is represented by the following general formula (9)
  • R 28 is a hydrogen atom or a methyl group
  • R 29 is an alkylene group having 2 to 7 carbon atoms
  • R 30 and R 31 are each independently a hydrogen atom, a methyl group, or an ethyl group.
  • R 32 is a hydrocarbon group having 1 to 4 carbon atoms, a hydroxyl group, or a hydrocarbon group having 2 to 4 carbon atoms which may be substituted with an alkyloxy group having 1 to 2 carbon atoms
  • a 3 is an ester A divalent bond selected from the group consisting of a bond, an amide bond, a urethane bond, and an ether bond
  • X ⁇ is a halide ion, a hydroxide ion, or an acetate ion.
  • Block (C) is represented by the following general formula (10)
  • R 33 is a hydrogen atom or a methyl group
  • Y is a hydrogen atom, a chlorine atom, an acetoxy group, a nitrile group, or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • Block (C) is represented by the following general formula (11)
  • R 34 is a hydrogen atom or a methyl group
  • R 35 is a hydrocarbon group having 1 to 30 carbon atoms
  • Z is selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond. A divalent bond.
  • the mol% of each block with respect to the total of the block (A), the block (B) and the block (C) constituting the block copolymer is the following (a) to (c): The block copolymer according to any one of [1] to [12].
  • (A) The ratio of block (A) is 25 mol% to 85 mol%
  • (B) The ratio of the block (B) is 2 mol% to 50 mol%
  • the ratio of the block (C) is from 10 mol% to 70 mol%
  • One or more of the blocks (A), (B) and (C) have a bond via a spacer, and at least one of the bonds via the spacer is represented by the following general formula (12) And (13)
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • a surface treatment agent for a substrate comprising the block copolymer according to any one of [1] to [15].
  • a cell culture substrate is coated with a membrane obtained from the block copolymer of the present invention, which includes a temperature-responsive polymer block, a hydrophilic polymer block, and a hydrophobic polymer block, a base caused by a temperature drop after cell culture. Hydrophilization of the material surface is promoted, and the cooling time required for cell detachment can be shortened. As a result, a cell culture substrate capable of recovering cells in a short time without damaging the cells even if the cell culture is subjected to a cooling treatment can be obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are exemplifications for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified and implemented within the scope of the gist.
  • Block copolymer The block copolymer of the present invention is a block copolymer containing the following blocks (A), (B) and (C).
  • B A hydrophilic polymer block having no LCST in the range of 0 ° C. to 50 ° C. and having an HLB value (Griffin method) of 9 or more and less than 20.
  • C A hydrophobic polymer block having no LCST in the range of 0 ° C. to 50 ° C. and having an HLB value (Griffin method) in the range of 0 to less than 9.
  • the “polymer” includes “copolymer” and “homopolymer”. That is, the number of repeating units constituting each of the blocks (A), (B), and (C) may be one, or two or more.
  • the block (A) in the present invention is a temperature-responsive polymer block having an LCST in the range of 0 ° C. to 50 ° C.
  • LCST is a lower critical solution temperature (LCST).
  • LCST critical solution temperature
  • the LCST of the block (A) needs to be in the range of 0 ° C. to 50 ° C.
  • the LCST of the block (A) is in the range of 10 ° C to 40 ° C in that cell adhesion is imparted at around 37 ° C, which is the body temperature, and the cells are detached with a drop in temperature and collected without damage.
  • it is in the range of 20 ° C to 35 ° C.
  • the block (A) constituting the block copolymer of the present invention is not particularly limited as long as it is a polymer block having an LCST in the range of 0 ° C. to 50 ° C.
  • a repeating unit constituting the block (A) A repeating unit represented by any one of the following general formulas (1) to (3) is preferable.
  • the block (A) may be composed of one type of repeating unit or may be composed of two or more types of repeating units.
  • R 2 is a hydrogen atom or a methyl group, and a hydrogen atom is preferable in that LCST is in the range of 0 ° C. to 50 ° C.
  • R 3 and R 4 are each independently a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon group having 2 to 4 carbon atoms that may be substituted with an alkyloxy group having 1 to 2 carbon atoms, A hydrocarbon group having 2 to 4 carbon atoms, furfuryl group or tetrahydrofurfuryl group which may be substituted with fluorine, and R 3 and R 4 are bonded to each other to form a pyrrolidine ring, piperidine ring or morpholine ring. Also good.
  • hydrocarbon group having 1 to 6 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-hexyl group, An example is an isohexyl group.
  • the hydrocarbon group having 2 to 4 carbon atoms which may be substituted with the above-mentioned alkyloxy group having 1 to 2 carbon atoms includes a methoxyethyl group, an ethoxyethyl group, a methoxypropyl group, an ethoxypropyl group, a methoxybutyl group.
  • An ethoxybutyl group can be exemplified.
  • examples of the hydrocarbon group having 2 to 6 carbon atoms which may be substituted with fluorine include 2-fluoroethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 3 , 3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, etc. .
  • a hydrocarbon group having 1 to 6 carbon atoms is preferably used, and an n-propyl group and an isopropyl group are more preferably used in order to make LCST in a range of 0 ° C. to 50 ° C.
  • N N-diethylacrylamide, N-ethylacrylamide, Nn-propylacrylamide, Nn-propylmethacrylamide, N-isopropylacrylamide, N -Isopropylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropylmethacrylamide, N-ethoxyethylacrylamide, N-ethoxyethylmethacrylamide, N-tetrahydrofurfurylacrylamide, N-tetrahydrofurfurylmethacrylamide, 1- (1 -Oxo-2-propenyl) pyrrolidine, 1- (1-oxo-2-methyl-2-propenyl) pyrrolidine, 1- (1-oxo-2-propenyl) piperidine, 1- (1-oxo-2-methyl- 2-prop Examples thereof include repeating units generated by polymerizing a monomer selected from (l) piperidine, 4- (1-oxo-2-propenyl)
  • R 5 represents a hydrogen atom or a methyl group
  • a hydrogen atom is used to make LCST in the range of 0 ° C. to 50 ° C.
  • R 6 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and examples of the hydrocarbon group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n- A butyl group, an isobutyl group, a tert-butyl group, an n-hexyl group, and an isohexyl group can be exemplified, but a hydrocarbon group having 1 to 3 carbon atoms is used in order to make the LCST in a range of 0 ° C.
  • the repeating unit represented by the general formula (2) in the present invention is preferably a repeating unit produced by polymerizing 2-ethoxyethyl vinyl ether so that the LCST is in the range of 10 ° C. to 40 ° C.
  • R 7 represents a hydrogen atom or a methyl group, and it is preferable to use a hydrogen atom in order to make LCST in a range of 0 ° C. to 50 ° C.
  • R 8 represents a hydrocarbon group having 1 to 6 carbon atoms, and as a hydrocarbon group having 1 to 6 carbon atoms, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group , Tert-butyl group, n-hexyl group and isohexyl group can be exemplified, but a methyl group and an ethyl group are preferably used from the viewpoint of setting the LCST in the range of 0 ° C to 50 ° C.
  • the repeating unit represented by the general formula (3) in the present invention is preferably a repeating unit produced by polymerizing methyl vinyl ether in
  • the structural unit of the block (A) constituting the block copolymer of the present invention among the repeating units represented by any one of the general formula (1) to general formula (3), It is preferable that it is a repeating unit represented by General formula (1) at the point which peelability is favorable.
  • the block (B) in the present invention is a hydrophilic polymer block having no LCST in the range of 0 ° C. to 50 ° C. and having an HLB value of 9 or more and 20 or less.
  • HLB Hydrophile Balance: HLB
  • Griffin Journal of the Society of Cosmetic Chemists, 1, 311 (1949). Is a value representing the degree of affinity for water and oil, and takes a value from 0 to 20. The closer to 0, the higher the hydrophobicity, and the closer to 20, the higher the hydrophilicity.
  • Atlas method, Griffin method, Davis method, and Kawakami method as the calculation method of HLB value by calculation formula, but in this specification, the value calculated by Griffin method is used to constitute the block copolymer of the present invention. Based on the formula amount of the hydrophilic part in the repeating unit of each block and the total formula amount of the repeating unit, it was calculated by the following formula.
  • HLB value 20 ⁇ (formula amount of hydrophilic part in repeating unit) ⁇ (total amount of repeating unit)
  • the definition of the hydrophilic part in the repeating unit of each block is as follows: sulfone part (—SO 3 —), phosphono group part (—PO 3 —), carboxyl group part (—COOH), ester part (—COO—), amide Part (—CONH—), imide part (—CON—), aldehyde group part (—CHO), carbonyl group part (—CO—), hydroxyl group part (—OH), amino group part (—NH 2 ), acetyl group part (—COCH) 3 ), ethyleneamine part (—CH 2 CH 2 N—), ethyleneoxy part (—CH 2 CH 2 O—), alkali metal ion, alkaline earth metal ion, ammonium ion, halide ion, acetate ion can do.
  • the atoms constituting the hydrophilic part must not overlap with the atoms constituting the other hydrophilic part.
  • An example of calculating the HLB value in the repeating unit is described below.
  • the hydrophilic part has an ester part of 1 part, a phosphono group part of 1 part and an ethyleneamine part of 1 part, and the hydrophilic part has a molecular weight of 181. Since it is 04, the HLB value is 12.3.
  • the hydrophilic part has an ester part of 1 part and an ethyleneamine part of 1 part, and the hydrophilic part has a molecular weight of 86.07, so the HLB value is 11.0.
  • the hydrophilic part has an ester part of 1 part and the hydrophilic part has a molecular weight of 44.01, so the HLB value is 8.8.
  • the hydrophilic part has an ester part of 1 part, and the hydrophilic part has a molecular weight of 44.01, so the HLB value is 6.2.
  • each block constituting the block copolymer of the present invention is a copolymer composed of different monomers (monomer 1, monomer 2,...)
  • the repeating unit produced by polymerization of each monomer is used.
  • the ratio (mol%) in the copolymer can be analyzed and calculated by the following formula.
  • HLB value HLB value 1 ⁇ ratio 1 + HLB value 2 ⁇ ratio 2 +...
  • the HLB value 1 is the HLB value of the polymer produced by the polymerization of the monomer 1
  • the composition 1 is the ratio (mol%) in the copolymer of the repeating units produced by the polymerization of the monomer 1
  • the HLB value 2 is the HLB value of the polymer produced by polymerization of the monomer 2
  • the composition 2 is the ratio (mol%) in the copolymer of repeating units produced by the polymerization of the monomer 2.
  • the block (B) may contain a hydrophobic monomer as long as the HLB value is 9 or more and less than 20, for example, a copolymer comprising the monomer containing the hydrophilic group and an alkyl (meth) acrylate or a styrene derivative. can do.
  • the HLB value of the block (B) in the present invention when the HLB value is less than 9, the hydrophobicity becomes high, so that the cooling time required for cell detachment becomes long, resulting in a decrease in cell activity. It must be in the range of 9 or more and less than 20. On the other hand, when the HLB value approaches 20, the hydrophilicity increases and it becomes difficult for cells to adhere. Therefore, the HLB value of the block (B) in the present invention is preferably 9 or more and less than 19, and preferably 9 or more and less than 17. It is more preferable.
  • the block (B) constituting the block copolymer of the present invention is not particularly limited as long as it is a polymer block having an HLB value of 9 or more and 20 or less, but the repeating unit constituting the block (B) is as follows.
  • the repeating unit represented by any one of the general formulas (4) to (9) is preferable.
  • the block (B) may be composed of one type of repeating unit or may be composed of two or more types of repeating units.
  • R 9 is a hydrogen atom or a methyl group.
  • R 10 is an alkylene group having 1 to 10 carbon atoms, and is preferably an alkylene group having 1 to 6 carbon atoms from the viewpoint of controlling cell adhesion and shortening the cooling time required for cell detachment. Examples of such an alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, and a hexamethylene group, and an ethylene group is more preferable.
  • R 10 is preferably a (poly) oxyethylene group in terms of controlling cell adhesion and shortening the cooling time required for cell detachment.
  • R 11 is a divalent hydrocarbon group having 1 to 4 carbon atoms, and is an alkylene group having 1 to 4 carbon atoms such as a methylene group, an ethylene group, or a propylene group in order to shorten the cooling time required for cell detachment.
  • a butylene group is preferred, and an ethylene group is more preferred.
  • R 12 , R 13 , and R 14 are each independently a hydrogen atom, a methyl group, or an ethyl group, and are capable of controlling cell adhesiveness and reducing the cooling time required for cell detachment. 12 , R 13 and R 14 are preferably simultaneously a hydrogen atom or a methyl group, more preferably a methyl group at the same time.
  • a 1 is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond, and is capable of controlling cell adhesion and shortening the cooling time required for cell detachment.
  • An ester bond and an amide bond are preferable, and an ester bond is more preferable.
  • Examples of the repeating unit represented by the general formula (4) in the present invention include 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine, 3- (meth) acryloyloxypropyl phosphorylcholine, 4- (meth) acryloyloxybutylphosphorylcholine.
  • R 15 is a hydrogen atom or a methyl group.
  • R 16 is a (poly) oxyalkylene group containing an alkylene group having 1 to 3 carbon atoms, and — (CH 2 CH 2 O) i — (CH 2 O) j — (CH 2 CH (CH 3 ) O) k -R 17 (wherein R 17 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a furfuryl group, or a tetrahydrofurfuryl group, i is an integer of 1 to 30, and j and k are 0 to 30) It is an integer.
  • the repeating unit represented by the general formula (5) in the present invention includes polyethylene glycol methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxymethyl acrylate, hydroxymethyl methacrylate, 2-methoxyethyl acrylate, 2-methoxy
  • Examples thereof include a repeating unit produced by polymerizing a monomer selected from ethyl methacrylate, furfuryl acrylate, furfuryl methacrylate, tetrahydrofurfuryl acrylate and tetrahydrofurfuryl methacrylate.
  • repeating units it is a repeating unit formed by polymerizing polyethylene glycol methacrylate, 2-methoxyethyl acrylate or tetrahydrofurfuryl acrylate in that it can control cell adhesion and shorten the cooling time required for cell detachment.
  • it is a unit.
  • R 19 is a hydrogen atom or a methyl group.
  • R 20 is an alkylene group having 1 to 10 carbon atoms, and can methylene group, ethylene group, propylene group, butylene group, pentamethylene group because it can control cell adhesion and shorten the cooling time required for cell detachment.
  • An alkylene group having 1 to 6 carbon atoms such as a hexamethylene group or the like, more preferably an ethylene group or a propylene group.
  • R 21 is an alkylene group having 1 to 4 carbon atoms, and is an alkylene group such as a methylene group, an ethylene group, a propylene group, or a butylene group in that it can control cell adhesion and shorten the cooling time required for cell detachment. It is preferably a group, more preferably an ethylene group or a propylene group.
  • R 22 and R 23 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, from the viewpoint of shortening the cooling time required for a point and cell detachment can control the cell adhesion, R 22 And R 23 are preferably simultaneously a hydrogen atom or a methyl group, more preferably a methyl group.
  • a 2 is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond.
  • An ester bond or an amide bond is preferable, and an ester bond is more preferable.
  • X is preferably a sulfonic acid group, a carboxyl group, or a phosphoric acid group.
  • Examples of the repeating unit represented by the general formula (6) in the present invention include dimethyl (2-methacryloyloxyethyl) (carboxylatomethyl) aminium, dimethyl (2-methacryloyloxyethyl) (2-carboxylatoethyl) aminium, dimethyl (2-acryloyloxyethyl) (2-carboxylatoethyl) aminium, dimethyl (2-methacryloyloxyethyl) (3-carboxylatopropyl) aminium, dimethyl (2-acryloyloxyethyl) (3-carboxylatopropyl) aminium, Dimethyl (3-methacryloylaminopropyl) (3-sulfonatopropyl) aminium, dimethyl (3-methacryloylaminopropyl) (4-sulfonatobutyl) aminium, dimethyl (2-methacryloyloxyethyl) ) (2-sul
  • R 24 is a hydrogen atom or a methyl group.
  • R 25 and R 26 are each independently a hydrogen atom or a methyl group.
  • repeating unit represented by the general formula (7) in the present invention a repeating unit produced by polymerizing acrylamide or N, N-dimethylacrylamide can be used.
  • R 28 is a hydrogen atom or a methyl group, and it is preferable to use a methyl group from the viewpoint of controlling cell adhesion and shortening the cooling time required for cell detachment.
  • R 29 is an alkylene group having 2 to 7 carbon atoms, and is preferably an alkylene group having 2 to 4 carbon atoms from the viewpoint of controlling cell adhesion and shortening the cooling time required for cell detachment. More preferably, it is an ethylene group.
  • R 30 and R 31 are each independently a hydrogen atom, a methyl group, or an ethyl group, and R 30 and R 31 are simultaneously a hydrogen atom or a methyl group in that the cooling time required for cell detachment is shortened.
  • a 3 is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond, and is capable of controlling cell adhesion and shortening the cooling time required for cell detachment.
  • An ester bond or an amide bond is preferable, and an ester bond is more preferable.
  • Examples of the repeating unit represented by the general formula (8) in the present invention include aminoethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, and 3-aminopropyl (meth).
  • R 28 is a hydrogen atom or a methyl group, and it is preferable to use a methyl group from the viewpoint of controlling cell adhesion and shortening the cooling time required for cell detachment.
  • R 29 is an alkylene group having 2 to 7 carbon atoms, and is preferably an alkylene group having 2 to 4 carbon atoms from the viewpoint of controlling cell adhesion and shortening the cooling time required for cell detachment. More preferably, it is an ethylene group.
  • R 30 and R 31 are each independently a hydrogen atom, a methyl group, or an ethyl group, and R 30 and R 31 are simultaneously a hydrogen atom or a methyl group in that the cooling time required for cell detachment is shortened.
  • R 32 is a hydrocarbon group having 1 to 4 carbon atoms, a hydroxyl group or a hydrocarbon group having 2 to 4 carbon atoms which may be substituted with a hydroxyl group or an alkyloxy group having 1 to 2 carbon atoms, and cooling required for cell detachment. From the viewpoint of shortening the time, an ethylene group which may be substituted with a methyl group, an ethyl group, a hydroxyl group or a methoxy group is preferable.
  • a 3 is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond, and is capable of controlling cell adhesion and shortening the cooling time required for cell detachment.
  • An ester bond or an amide bond is preferable, and an ester bond is more preferable.
  • X ⁇ is a halide ion, hydroxide ion, or acetate ion, and is preferably a halide ion or hydroxide ion from the viewpoint of shortening the cooling time required for cell detachment.
  • Examples of the repeating unit represented by the general formula (9) in the present invention include trimethyl-2-methacryloyloxyethylammonium chloride, trimethyl-2-methacryloyloxyethylammonium bromide, trimethyl-3-methacryloyloxypropylammonium chloride, Repeating units produced by polymerizing trimethyl-3-methacryloyloxyethylammonium bromide as a monomer, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 3-dimethylaminopropyl (meth) acrylate , 3-diethylaminopropyl (meth) acrylate, dimethyl [(meth) acrylamidoethyl] amine, diethyl [(meth) acrylamidoethyl] amine, dimethyl [3- (meth) acrylate Luamidopropyl]
  • the repeating unit represented by any one of the general formulas (4) to (9) cell adhesion can be controlled and cells
  • the repeating unit represented by the general formula (4), the general formula (5), the general formula (6), or the general formula (8) is preferable and has excellent cell adhesiveness. It is more preferable that it is a repeating unit represented by General formula (5) or General formula (8) at a point.
  • the block (C) in the present invention is a hydrophobic polymer block having no LCST in the range of 0 ° C. to 50 ° C. and having an HLB value of 0 or more and less than 9.
  • the block (C) is a block that contributes to adhesion of the block copolymer of the present invention to the substrate.
  • the HLB value in this specification is as above-mentioned.
  • the HLB value of the block (C) in the present invention When the HLB value of the block (C) in the present invention is 9 or more, it is easy to peel off in water when applied to a substrate, and a stable film cannot be obtained. Therefore, the HLB value of the block (C) in the present invention needs to be in the range of 0 or more and less than 9, and it is 0 or more and 8 or less in terms of obtaining a stable film that does not peel off in water when applied to a substrate. It is preferably in the range, and more preferably in the range of 0 or more and 7 or less.
  • the block (C) in the present invention may contain a monomer containing the aforementioned hydrophilic part as long as the HLB value is in the range of 0 or more and less than 9, for example, a monomer containing the aforementioned hydrophilic part and an alkyl ( A copolymer with a meth) acrylate or a styrene derivative can be exemplified.
  • the block (C) constituting the block copolymer of the present invention is not particularly limited as long as it is a polymer block having an HLB value of 0 or more and less than 9, but the repeating unit constituting the block (C) is as follows:
  • the repeating unit represented by the general formula (10) or (11) is preferable.
  • the block (C) may consist of one type of repeating unit, or may consist of two or more types of repeating units.
  • R 33 is a hydrogen atom or a methyl group.
  • Y can exemplify a hydrogen atom, a chlorine atom, an acetoxy group, a nitrile group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, and a hydrogen atom, a chlorine atom, It is preferable to use an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms include phenyl group, 1-naphthalene group, 2-naphthalene group, 9-anthracene group, 1-pyrene group and derivatives thereof.
  • the repeating unit represented by the general formula (10) in the present invention is selected from ethylene, vinyl chloride, vinyl acetate, acrylonitrile, styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, 9-vinylanthracene, and 1-vinylpyrene.
  • polymerizing the monomer made can be illustrated. Among these, it is a repeating unit formed by polymerizing styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, 9-vinylanthracene and 1-vinylpyrene in terms of adhesion when applied to a substrate.
  • a repeating unit formed by polymerizing styrene is more preferable.
  • R 34 is a hydrogen atom or a methyl group.
  • R 35 is a hydrocarbon group having 1 to 30 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-hexyl group. And isohexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-hexadecyl group, n-octadecyl group and the like.
  • n-butyl, isobutyl, tert-butyl, n-hexyl, isohexyl, n-octyl, n-decyl, n-dodecyl, n- A hexadecyl group or an n-octadecyl group is preferably used.
  • Z is a divalent bond selected from the group consisting of an ester bond, an amide bond, a urethane bond, and an ether bond, and may be an ester bond or an amide bond from the viewpoint of obtaining a stable film that does not peel in water. Preferably, it is an ester bond.
  • Examples of the repeating unit represented by the general formula (11) in the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
  • polymerizing the monomer selected from a compound can be illustrated.
  • ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, n-pentyl (meth) acrylate, and n-hexyl are preferable in that a stable film that does not peel in water is obtained.
  • N-alkylmaleimide compounds such as N-cyclohexylmaleimide and N-phenylmaleimide, di-tert-butyl fumarate, di-n-butyl fumarate, etc.
  • a polymer containing at least one monomer selected from a fumaric acid diester compound, N-vinylimidazole, N-vinylcarbazole and the like can be used.
  • Each block of the block (A), block (B) and block (C) constituting the block copolymer of the present invention may be directly bonded or may be bonded via a low molecular spacer. Good.
  • the number of atoms of the spacer is not particularly limited as long as the effect of the present invention is not impaired, and is preferably 2 to 30 atoms.
  • the structure of the spacer is not particularly limited as long as the effects of the present invention are not impaired, and may be any of linear, branched, and cyclic.
  • at least one of the bonds between the blocks is represented by the following general formula (12 )
  • the divalent bond represented by the general formula (13) may be a divalent bond including at least one type of bond.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and examples of the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • An isobutyl group, an n-hexyl group, and an n-octyl group can be exemplified, but R 1 is preferably a hydrogen atom in that the bond between the blocks is stable.
  • the order of arrangement of the block (A), block (B) and block (C) constituting the block copolymer of the present invention is not particularly limited, and (A)-(B)-(C), (A)-(C )-(B), (B)-(A)-(C).
  • the block copolymer of this invention may contain each block (A), (B) and (C) twice or more, and each block may be arranged at random. For example, (A)-(B)-(A)-(C), (A)-(B)-(C)-(A), etc. are allowed.
  • the block copolymer of the present invention may contain other polymer block (X) in addition to the block (A), block (B) and block (C) constituting the block copolymer,
  • the specific sequence in this case includes (A)-(B)-(C)-(X), (A)-(B)-(X)-(C), (A)-(C)- (B)-(X), (A)-(C)-(X)-(B), (A)-(X)-(B)-(C), (A)-(X)-(C )-(B), (B)-(A)-(C)-(X), (B)-(A)-(X)-(C), (B)-(C)-(A)- (X), (B)-(X)-(A)-(B)-(X), (C)-(B)-(A)-(X ).
  • the polymer block (X) may be any of the block (A), the block (B), and the block (C) in the present invention, as long as the effects of the present invention are not impaired.
  • a temperature-responsive block having an LCST of more than 50 ° C. a hydrophilic polymer block having an LCST in the range of 0 ° C. to 50 ° C. and an HLB value (Griffin method) of 9 to 20
  • It may be a hydrophobic polymer block having an LCST in the range of 0 ° C. to 50 ° C. and an HLB value (Griffin method) in the range of 0 or more and less than 9.
  • the temperature-responsive polymer block (A) and the hydrophilic polymer block (B) are not continuous in that the cooling time required for cell detachment can be shortened. That is, (A)-(C)-(B), (A)-(C)-(B)-(X), (A)-(C)-(X)-(B), (A) -(X)-(B)-(C), (A)-(X)-(C)-(B), (B)-(C)-(A)-(X), (B)-( X)-(A)-(C) is preferred, and (A)-(C)-(B), (A)-(C)-(B)-(X), (B)-(C)-( A)-(X) is more preferable.
  • partial copolymer refers to a copolymer lacking any one of the essential blocks (A), (B) and (C).
  • (A)-(B), (A)-(C), (A)-(B)-(X), (A)-(X)-(C), and the like are applicable.
  • the ratio of the block (A) to the total of the block (A), the block (B) and the block (C) constituting the block copolymer of the present invention is not particularly limited as long as it is 1 to 90 mol%. 25 to 85 mol% in terms of imparting cell adhesion to a cell culture substrate coated with a surface treatment agent containing a block copolymer and reducing the cooling time required for cell detachment. Preferably, it is 45 to 65 mol%. If the ratio of the block (A) to the above-mentioned all repeating units is less than 1 mol%, the cell adhesiveness decreases, and if it exceeds 90 mol%, the cooling time required for cell detachment becomes longer.
  • the ratio of the block (B) to the total of the block (A), block (B) and block (C) constituting the block copolymer of the present invention is not particularly limited as long as it is 1 to 90 mol%. 2-50 mol% in terms of imparting cell adhesion to a cell culture substrate coated with a surface treatment agent containing a block copolymer and reducing the cooling time required for cell detachment. Preferably, it is 5 to 30 mol%. If the ratio of the block (B) to all the repeating units is less than 1 mol%, the cooling time required for cell detachment becomes longer, and if it exceeds 90 mol%, the cell adhesiveness decreases.
  • the ratio of block (C) to the total of block (A), block (B) and block (C) constituting the block copolymer of the present invention is not particularly limited as long as it is 1 to 90 mol%.
  • the base material is coated with a surface treatment agent containing the block copolymer, it is 10 to 70 mol% in terms of providing adhesion to the base material and shortening the cooling time required for cell detachment. Is more preferable, and 20 to 50 mol% is more preferable. If the ratio of the block (C) with respect to all the above repeating units is less than 1 mol%, the adhesiveness to a base material will fall, and a block copolymer will elute in a culture medium at the time of cooling. If it exceeds 90 mol%, the cooling time required for cell detachment will become longer.
  • the ratio of each block of the block (A), block (B) and block (C) constituting the block copolymer of the present invention is not particularly limited as long as it is within the range of the ratio of each block to the above-mentioned all repeating units.
  • the ratio of the block (A) to the block (B) is 0.5: 1 to 50: in terms of imparting cell adhesion to the cell culture substrate and shortening the cooling time required for cell detachment. It is preferably in the range of 1, more preferably in the range of 1.5: 1 to 15: 1.
  • the ratio of the block (A) to the block (C) is from 0.25: 1 in terms of imparting adhesiveness to the substrate of the block copolymer of the present invention and shortening the cooling time required for cell detachment. It is preferably in the range of 10: 1, more preferably in the range of 0.5: 1 to 5: 1. Furthermore, in the point which gives the cell adhesiveness to the above-mentioned cell culture base material and the adhesiveness to the base material of the block copolymer of this invention, and shortens the cooling time required for cell peeling, a block (B) and The ratio of block (C) is preferably in the range of 0.01: 1 to 5: 1, and more preferably in the range of 0.1: 1 to 2: 1.
  • the number average molecular weight (Mn) of the block copolymer of the present invention is in the range of 3,000 to 1,000,000, preferably 4,000 to 500,000, more preferably 5,000 to 200,000. 000 or less. In the case of less than 3,000, even if the cell culture substrate is coated, it is eluted from the substrate into the medium during cell culture. On the other hand, when it exceeds 1,000,000, the solution viscosity becomes high and it becomes difficult to coat the cell culture substrate.
  • the block copolymer of the present invention can be produced by a method comprising steps including the following steps (1) to (3).
  • Each block constituting the block copolymer of the present invention is preferably produced by living polymerization such as living cationic polymerization, living anionic polymerization or living radical polymerization in that block copolymerization with different types of monomers can be performed.
  • living polymerization such as living cationic polymerization, living anionic polymerization or living radical polymerization in that block copolymerization with different types of monomers can be performed.
  • living radical polymerization because the polymerization reaction can be easily controlled.
  • “Radic Polymerization Handbook” published by NTS Corporation, p. 161 to 225 (2010), and it is more preferable to produce using the living radical polymerization technique.
  • living radical polymerization techniques include atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer polymerization (RAFT), and nitroxide-mediated polymerization (NMP). It is preferable to produce the polymer by RAFT polymerization because it is not necessary to use a metal having high versatility and cytotoxicity.
  • ATRP atom transfer radical polymerization
  • RAFT reversible addition-fragmentation chain transfer polymerization
  • NMP nitroxide-mediated polymerization
  • the block copolymer of the present invention As a specific method for producing the block copolymer of the present invention, after the monomer that forms the block (A) is polymerized, the monomer that generates the block (B) is polymerized, and then the block (C) is generated.
  • Method for polymerizing monomer (ABC) after polymerizing the monomer for generating block (A), polymerizing the monomer for generating block (C), and then polymerizing the monomer for generating block (B) (ACB), a method of polymerizing a monomer that forms the block (B), a method of polymerizing a monomer that forms the block (A), and a method of polymerizing the monomer that forms the block (C) ( B--A--C), the monomer that forms block (B) is polymerized, the monomer that forms block (C) is polymerized, and then the monomer that forms block (A) is polymerized Method (BCA), a method of polymerizing a monomer that forms block
  • the block copolymer of the present invention includes other blocks (X) in addition to the block (A), block (B), and block (C) constituting the block copolymer of the present invention.
  • the monomer that generates the block (A) is polymerized, the monomer that generates the block (B) is polymerized, and then the monomer that generates the block (C)
  • a method for polymerizing a monomer for producing the block (X) ABSC
  • a monomer for producing the block (A) a monomer for producing the block (A)
  • a monomer for producing the block (B) a monomer for producing the block (B).
  • the method of polymerizing the monomer that produces (ACXB), the monomer that produces the block (A), the monomer that produces the block (X), and then the block (B) A method for polymerizing the monomer to be produced, a method for polymerizing the monomer for producing the block (C) (AXBC), a method for polymerizing the monomer for producing the block (A), and then the block (X) A method of polymerizing the monomer to be produced, then polymerizing the monomer to produce the block (C), and further polymerizing the monomer to produce the block (B) (AXCB), block (B) A method of polymerizing the monomer to form the block (A) after polymerizing the monomer to be produced, then polymerizing the monomer to produce the block (C), and then polymerizing the monomer to produce the block (X) (B -ACX), after polymerizing the monomer forming the block (B), polymerizing the monomer generating the block (A), then polymerizing the monomer generating the
  • a method for polymerizing a monomer and further polymerizing a monomer for producing a block (A) (BXCA), a monomer for polymerizing a monomer for producing a block (C), and then a monomer for producing a block (A)
  • BXCA a method for polymerizing the monomer for forming the block (B), polymerizing the monomer for removing the unreacted monomer, and then polymerizing the monomer for forming the block (X)
  • CABX the block
  • the monomer producing C) is polymerized, the monomer producing the block (A) is polymerized, then the monomer producing the block (X) is polymerized, and further the monomer producing the block (B) is polymerized Method (CA—X—B), after polymerizing the monomer forming block (C), polymerizing the monomer generating block (B), and then polymerizing the monomer generating block (A)
  • CBAX for polymerizing a monomer for producing the block (X)
  • each block at the intermediate stage in the production of the block copolymer of the present invention a part of the reaction solution is collected and 1 H-NMR is collected at the stage where the polymerization of the monomer that forms each block is completed.
  • the remaining amount of the unreacted monomer is measured by the method, and each generated block may be purified according to the remaining amount of the unreacted monomer, or used for the polymerization of the monomer that generates the next block without purification. Also good. For example, when there is a large amount of unreacted monomer remaining at the stage where the polymerization for producing each block of the intermediate stage is completed, and it is considered that the unreacted monomer adversely affects the polymerization for producing the next block.
  • the block produced by the above step may be used for polymerization of a monomer that produces the next block without purification. Specifically, when the unreacted monomer remaining amount is less than 20%, preferably less than 15% of the monomer charge, it is used for the polymerization of the monomer that produces the next block without purifying the block produced by the polymerization. May be.
  • a monomer that forms the block (B) is polymerized to form a terminal copolymer.
  • a method of reacting a block (C) having an azide group (or alkynyl group) at the terminal ((AB) + C) and a monomer for forming the block (B) is polymerized to alkynyl at the terminal
  • a block (B) having a group (or an azide group) is synthesized, and a monomer that forms the block (C) is further polymerized to form a block (B) side end.
  • a method of reacting a block (A) having a terminal azide group (or alkynyl group) after synthesizing a partial block body having a alkynyl group (or azide group) (A + (BC)), block (C)
  • the resulting monomer is polymerized to synthesize a block (C) having an alkynyl group (or azide group) at the terminal, and the monomer that generates block (A) is further polymerized to form an alkynyl group at the terminal on the block (C) side.
  • the monomer is polymerized to synthesize a block (C) having an alkynyl group (or azide group) at the terminal, and the monomer that forms the block (B) is further polymerized to form a block.
  • a method of reacting (B) (B + (CA)) a monomer that forms the block (A) is polymerized to synthesize a block (A) having an alkynyl group (or azide group) at the terminal, After the monomer producing C) is polymerized
  • a monomer that generates the block (C) is polymerized to synthesize a partial block body having an alkynyl group (or azide group) at the terminal on the block (B) side, and then an azide group (or alkynyl group) at the terminal
  • a monomer that forms the block (B) is polymerized to form an alkynyl group (or an azide group) at the terminal
  • the monomer that forms the block (A) is polymerized to synthesize a partial block body having an alkynyl group (or azide group) at the terminal on the block (B) side, And a method of reacting a block (C) having an azide group (or alkynyl group) with (C + (BA)).
  • the block copolymer of the present invention is produced by the click reaction using the block formed by the polymerization of the monomer.
  • At least one of the blocks in the block copolymer of the present invention includes the general formula (1) or ( The divalent bond shown in 2) is introduced.
  • the substrate surface treatment agent of the present invention contains the block copolymer of the present invention.
  • it is a surface treatment agent for cell culture base materials, such as a petri dish, a multiwell plate, a flask, a microcarrier.
  • the surface treatment agent of the present invention can be subjected to surface treatment simply by being applied to a substrate.
  • the surface treatment agent of the present invention may contain a solvent capable of dissolving the block copolymer of the present invention.
  • a solvent capable of dissolving the block copolymer of the present invention there is no particular limitation on the solvent that can dissolve the block copolymer of the present invention, but it does not dissolve the base material when applied to the base material.
  • alcohol solvents having 1 to 3 carbon atoms are preferred, and ethanol or a mixed solvent of water and ethanol is particularly preferred in that it has a small effect on cultured cells even if it remains.
  • the surface treatment agent of the present invention is usually in the form of a solution, but may be in the form of a powder that can be dissolved in the above solvent.
  • the target substrate of the surface treatment agent of the present invention is not particularly limited, various hydrophobic polymer materials are preferably used because the block copolymer adheres to the substrate by hydrophobic interaction.
  • the hydrophobic polymer material include acrylic polymers such as polymethyl methacrylate, various silicone rubbers such as polydimethylsiloxane, polystyrene, polyethylene terephthalate, and polycarbonate.
  • a metal substrate, a ceramic substrate, or a glass substrate that has been surface-treated with a silane coupling agent can also be used.
  • the shape of the substrate is not particularly limited, and examples thereof include plate-like, bead-like, and fiber-like shapes, and holes, grooves, and protrusions provided in the plate-like substrate.
  • a method for applying the surface treatment agent of the present invention to a substrate for example, brush coating, dip coating, spin coating, bar coating, flow coating, spray coating, roll coating, air knife coating, blade coating, etc. are generally known. Various methods can be used.
  • the membrane of the present invention is a membrane obtained by applying the surface treating agent of the present invention to various substrates and then drying.
  • the block copolymer of the present invention has adhesiveness to the cell culture substrate, and by including the block (A) in the block copolymer of the present invention, cell culture At a temperature of 37 ° C. or higher, the membrane surface is hydrophobic, thereby allowing attachment of proteins and the like, and cell adhesion culture is possible. Furthermore, after the cell culture, the temperature of the membrane is changed to a hydrophilic state by lowering the temperature, and cell detachment can be promoted.
  • the block (B) in the block copolymer of the present invention it is necessary for detachment. It is possible to shorten the cooling time.
  • the thickness of the film of the present invention is 1 nm or more and 10 ⁇ m or less, preferably 10 nm or more and 5 ⁇ m or less, more preferably 30 nm or more and 500 nm or less, and further preferably 50 nm or more and 200 nm or less.
  • the thickness is less than 1 nm, the cooling time required for cell detachment becomes long when the cell culture substrate is coated.
  • the thickness exceeds 10 ⁇ m, the adhesion of cells decreases when the cell culture substrate is coated.
  • the cell culture substrate of the present invention is a cell culture substrate in which the surface of the substrate is coated with the membrane of the present invention.
  • Cell culture using the cell culture substrate of the present invention is performed at a temperature higher than the LCST of the block copolymer coated on the surface of the culture substrate, but when human-derived cells are used, high culture efficiency is obtained.
  • it is preferably carried out near the human body temperature, more preferably in the temperature range of 35 to 39 ° C, and further preferably in the temperature range of 36 to 38 ° C.
  • the other culture conditions are not particularly limited, and the culture may be performed under conditions normally performed in this field.
  • the medium may be a medium supplemented with serum such as fetal bovine serum or a serum-free medium.
  • the ambient temperature is lower than the LCST of the block (A) constituting the block copolymer of the present invention, preferably 10 ° C. lower than the LCST.
  • Cell detachment from the cell culture substrate by cooling below LCST can be performed in the culture medium in which the cells are cultured, in other media or phosphate buffer, and is selected according to the purpose. be able to.
  • the cell culture substrate may be tapped or shaken, or the medium may be stirred using a pipette or the like.
  • the cultured cells can be detached with a maximum diameter of 5 ⁇ m to 300 ⁇ m only by cooling. More preferably, it can be detached in the form of a single cell only by cooling.
  • the size and shape of exfoliated cells can be adjusted by selecting the composition and molecular weight of the block copolymer, the structure of the cell culture substrate, the cell culture substrate production method, the cell culture method, and the type of cells to be cultured. . For example, by increasing the ratio of the block (B) in the block copolymer, increasing the thickness of the block copolymer by the cell culture substrate production method, and increasing the unevenness of the culture substrate surface The size of the cell aggregate can be reduced, and the cells can be detached with a single cell.
  • the cells cultured using the cell culture substrate of the present invention are not particularly limited as long as they can adhere to the surface of the cell culture substrate before applying a stimulus due to a temperature drop.
  • human bone marrow-derived mesenchymal stem cells human adipose tissue-derived mesenchymal stem cells, human lung-derived fibroblasts, human skin fibroblasts, Chinese hamster ovary-derived CHO cells, mouse connective tissue L929 cells, human fetal kidney-derived cells
  • epithelial cells and endothelial cells constituting each tissue and organ in vivo, skeletal muscle cells exhibiting contractility, smooth muscle cells, myocardium Cells, neuronal cells that make up the nervous system, glial cells, fibroblasts, liver parenchymal cells involved in biological metabolism, liver non-parenchymal cells and adipocytes, stem cells that exist in various tissues as
  • the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were measured by gel permeation chromatography (GPC).
  • the GPC apparatus uses HLC-8320GPC manufactured by Tosoh Corporation, the column uses two TSKgel Super AWM-H manufactured by Tosoh Corporation, the column temperature is set to 40 ° C., and the eluent is 1,1 containing 10 mM sodium trifluoroacetate. 1,3,3,3-hexafluoro-2-propanol or N, N-dimethylformamide containing 10 mM lithium bromide.
  • a measurement sample was prepared and measured at 1.0 mg / mL.
  • polymethyl methacrylate manufactured by Polymer Laboratories having a known molecular weight was used.
  • ⁇ Contact angle of water on substrate surface The bubble contact angle ( ⁇ ) (°) at 40 ° C. and 20 ° C. in water was measured, and the water contact angle (180 ⁇ ) (°) at 40 ° C. and 20 ° C. was calculated.
  • the contact angle of 3 ⁇ L of bubbles in water was measured using a contact angle meter DM300 manufactured by Kyowa Interface Science Co., Ltd. It can be said that the greater the difference in the contact angle with water at 40 ° C. and 20 ° C., the higher the temperature responsiveness, that is, the ability to detach cells due to temperature changes.
  • the hydrophilic unit amount of the repeating unit of the 2-methacryloyloxyethyl phosphorylcholine polymer block (B) is a total of 20 carbons, 8 hydrogens, 1 nitrogen, 6 oxygens and 1 phosphorus (209.1).
  • the repeating unit total formula weight was 295.3, and the HLB value (Griffin method) was 14.
  • the reaction solution was poured into 300 mL of hexane, and the deposited pale yellow solid was filtered and dried under reduced pressure for 1 day to give 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and n-butyl methacrylate polymer block (C).
  • a partial block copolymer was obtained.
  • the repeating unit of the n-butyl methacrylate polymer block (C) has a hydrophilic part formula amount of 1 carbon and 2 oxygens in total (44.0), the repeating unit total formula amount of 142.2, and an HLB value. (Griffin method) was 6.
  • a 0.02 wt% surface treatment agent 1 mL of a 0.2 wt% ethanol solution and 9 mL of ethanol were mixed to prepare a 0.02 wt% surface treatment agent.
  • 0.2 mL of the obtained surface treatment agent was added to each well of a 6-well plate made of polystyrene for cell culture manufactured by Corning, and dried at room temperature. Further, drying under reduced pressure was carried out for 6 hours, and a block copolymer consisting of 2-methacryloyloxyethyl phosphorylcholine polymer block (B), n-butyl methacrylate polymer block (C) and N-isopropylacrylamide polymer block (A) on the surface.
  • B 2-methacryloyloxyethyl phosphorylcholine polymer block
  • C n-butyl methacrylate polymer block
  • A N-isopropylacrylamide polymer block
  • a cell culture substrate into which a membrane made of coalescence was introduced was prepared.
  • the thickness of the film was 50 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • Cell culture evaluation and exfoliation evaluation The surface is made of a block copolymer comprising 2-methacryloyloxyethyl phosphorylcholine polymer block (B), n-butyl methacrylate polymer block (C) and N-isopropylacrylamide polymer block (A) on the surface.
  • Mouse connective tissue L929 cells (100 cells / mm 2 ) were cultured at 37 ° C. and CO 2 concentration of 5% using the cell culture substrate into which the membrane was introduced.
  • As the culture solution Dulbecco's Forked modified Eagle's minimum essential medium (10 vol% FBS / DMEM) containing 10 vol% fetal bovine serum was used.
  • the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. The cells were detached 100% by cooling for 15 minutes.
  • Example 1 [Synthesis of surface treatment agent]
  • Example 1 [Synthesis of Partial Block Copolymer]
  • a partial block copolymer comprising a 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and an n-butyl methacrylate polymer block (C) synthesized in Example 1 is a block copolymer. Except that it was used instead of, synthesis was carried out in the same manner as in Example 1 [Preparation of surface treatment agent] to prepare a 0.02 wt% surface treatment agent.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above-mentioned surface treatment agent was used, and 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and A cell culture substrate into which a membrane made of a partial block copolymer consisting of an n-butyl methacrylate polymer block (C) was introduced was prepared.
  • the thickness of the film was 50 nm.
  • the water contact angle was evaluated at 40 ° C. and 20 ° C., but at the same contact angle (15 °), both showed high hydrophilicity and no temperature responsiveness.
  • Example 2 [Cell culture evaluation and exfoliation evaluation] A block made of 2-methacryloyloxyethyl phosphorylcholine polymer block (B), n-butyl methacrylate polymer block (C) and N-isopropylacrylamide polymer block (A) produced on Example 1 [Film Evaluation] Using a cell culture substrate introduced with a copolymer membrane, Chinese hamster ovary-derived CHO cells (100 cells / mm 2 ) are used instead of mouse connective tissue L929 cells (100 cells / mm 2 ).
  • Example 1 Evaluation of cell culture and exfoliation except that 10 vol% FBS / Ham's F-12 was used instead of 10 vol% FBS / DMEM, cell proliferation was confirmed. . Moreover, after culture
  • Reference example 2 [Cell culture evaluation] A film made of a partial block copolymer consisting of a 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and an n-butyl methacrylate polymer block (C), which was produced in Reference Example 1 [Membrane Evaluation], was introduced on the surface.
  • a cell culture substrate was used, Chinese hamster ovary-derived CHO cells (100 cells / mm 2 ) were used instead of mouse connective tissue L929 cells (100 cells / mm 2 ), and 10 vol% instead of 10 vol% FBS / DMEM as the culture medium.
  • Cell culture evaluation was performed for 5 days in the same manner as in Example 1 [Cell culture evaluation and peeling evaluation] except that% FBS / Ham's F-12 was used. could not be confirmed.
  • Example 3 [Synthesis of polymer block (B)] Except that 43 mg (106 ⁇ mol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid and 1.7 mg (10 ⁇ mol) of azobisisobutyronitrile were reacted for 14 hours. Synthesis was performed in the same manner as in Example 1 [Synthesis of polymer block (B)] to obtain a polymer of 2-methacryloyloxyethyl phosphorylcholine (polymer block (B)).
  • Table 1 shows the composition, Mn, and Mw / Mn of the obtained block copolymer.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above-mentioned surface treatment agent was used, and 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and A cell culture substrate into which a membrane made of a block copolymer consisting of an n-butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared. The thickness of the film was 100 nm. Table 1 shows water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C.
  • a partial block copolymer composed of a 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and an n-butyl methacrylate polymer block (C) synthesized in Example 3 [Synthesis of a partial block copolymer] is a block copolymer.
  • a surface treatment agent of 0.02 wt% was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that it was used instead of.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above-mentioned surface treatment agent was used, and 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and A cell culture substrate into which a membrane made of a partial block copolymer consisting of an n-butyl methacrylate polymer block (C) was introduced was prepared.
  • the thickness of the film was 50 nm.
  • the water contact angle was evaluated at 40 ° C. and 20 ° C., but at the same contact angle (23 °), both showed high hydrophilicity and no temperature responsiveness.
  • Example 4 [Cell culture evaluation and exfoliation evaluation] Chinese hamster ovary-derived CHO cells (100) were used instead of mouse connective tissue L929 cells (100 cells / mm 2 ) using the cell culture substrate in which a temperature-responsive membrane was introduced on the surface produced in Example 3 [Membrane evaluation]. 1 / mm 2 ), and 10 vol% FBS / Ham's F-12 was used instead of 10 vol% FBS / DMEM as the culture medium, and the same as in Example 1 [Cell culture evaluation and exfoliation evaluation] An evaluation was performed and cell proliferation was confirmed. Moreover, after culture
  • Reference example 4 Cell culture evaluation
  • Cell culture substrate in which a partial block copolymer comprising 2-methacryloyloxyethyl phosphorylcholine polymer block (B) and n-butyl methacrylate polymer block (B) is introduced on the surface produced in Reference Example 3 [Membrane Evaluation] the used, instead using Chinese hamster ovary-derived CHO cells (100 / mm 2) in the mouse connective tissue L929 cells (100 / mm 2), 10vol% FBS / Ham instead of 10 vol% FBS / DMEM as culture Cell culture evaluation similar to Example 1 [Cell culture evaluation and exfoliation evaluation] was performed for 5 days, except that 's F-12 was used, but the cells did not adhere to the substrate, and proliferation could not be confirmed. It was.
  • Example 5 (manufactured by click reaction) [Synthesis of n-butyl methacrylate polymer block having terminal alkynyl group]
  • a 200 mL test tube equipped with a three-way cock 0.57 g (1.8 mmol) of propargyl ester of 4-cyanopentanoic acid dithiobenzoate, 12.80 g (90 mmol) of n-butyl methacrylate, 60 mg of azobisisobutyronitrile (0 .36 mmol) was added, and then 45 mL of 1,4-dioxane and 45 mL of ethanol were added and dissolved.
  • the test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube.
  • the test tube was heated to 65 ° C. and polymerized at 65 ° C. for 24 hours.
  • the reaction solvent was distilled off under reduced pressure using a rotary evaporator, and the reaction solution was concentrated.
  • the concentrated liquid was poured into 300 mL of methanol, and a red oily substance adhering to the bottom was recovered.
  • the oily substance was washed twice with 100 mL of methanol and vacuum-dried to obtain 12.11 g of an n-butyl methacrylate polymer block (C) having a terminal alkynyl group.
  • the test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube.
  • the test tube was heated to 65 ° C. and polymerized at 65 ° C. for 43 hours.
  • the reaction solvent was distilled off under reduced pressure using a rotary evaporator, and the reaction solution was concentrated.
  • the concentrated solution was poured into 1000 mL of hexane to collect a red precipitate.
  • the resulting red product was washed twice with 500 mL of hexane and vacuum-dried.
  • the test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube.
  • the test tube was heated to 65 ° C. and polymerized at 65 ° C. for 2.5 hours.
  • the reaction solvent was distilled off under reduced pressure using a rotary evaporator, and the reaction solution was concentrated. The concentrated solution was poured into 500 mL of hexane, and a red oily substance adhering to the bottom was recovered.
  • the resulting red oily substance was washed twice with 300 mL of hexane and vacuum-dried to obtain 5.50 g of a polyethylene glycol methacrylate polymer block (B) having a terminal azide group.
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • the formula amount of the hydrophilic part in the repeating unit of the polyethylene glycol methacrylate polymer block (B) is a total of 10 carbons, 18 hydrogens and 6.5 oxygens (242.2), and the total formula amount of the repeating units is It was 298.4, and the HLB value (Griffin method) was 16.
  • a surface treatment agent was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that the above block copolymer was used.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above-mentioned surface treatment agent was used, and a polyethylene glycol methacrylate polymer block (B) and n-butyl were formed on the surface.
  • a cell culture substrate into which a block copolymer consisting of a methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared. The thickness of the film was 95 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C.
  • the water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • Cell culture evaluation and exfoliation evaluation Cell culture in which a block copolymer comprising a polyethylene glycol methacrylate polymer block (B), an n-butyl methacrylate polymer block (C), and an N-isopropylacrylamide polymer block (A) is introduced on the surface produced above. Except that the substrate was used, the same evaluation as in Example 1 [Cell culture evaluation and peeling evaluation] was performed, and cell proliferation was confirmed. Moreover, after culture
  • Example 6 (manufactured by click reaction) [Synthesis of Polymer Block (B) Having Terminal Azide Group]
  • a 200 mL test tube equipped with a three-way cock 0.20 g (0.57 mmol) of 3-cyanodopropyl ester of 4-cyanopentanoic acid dithiobenzoate, 6.28 g (40 mmol) of 2-dimethylaminoethyl methacrylate, azobisisobutyrate 18.8 mg (0.11 mmol) of ronitrile was added, and then 28 mL of 1,4-dioxane was added and dissolved.
  • the test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature.
  • the hydrophilic unit formula amount of the repeating unit of the 2-dimethylaminoethyl methacrylate polymer block (B) is the total of 3 carbons, 4 hydrogens, 1 nitrogen and 2 oxygens (86.1). The amount was 157.2 and the HLB value (Griffin method) was 11.
  • Example 5 except that 0.60 g of 2-dimethylaminoethyl methacrylate polymer block (B) having a terminal azide group was used instead of 0.94 g of polyethylene glycol methacrylate polymer block (B) having a terminal azide group Synthesis was carried out in the same manner as in [Synthesis of block copolymer], and 2-dimethylaminoethyl methacrylate polymer block (B), n-butyl methacrylate polymer block (C) and N-isopropylacrylamide polymer block (A 0.20 g of a block copolymer consisting of Table 1 shows the composition, Mn, and Mw / Mn of the obtained block copolymer.
  • a surface treatment agent was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that the above block copolymer was used.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above-mentioned surface treatment agent was used, and a 2-dimethylaminoethyl methacrylate polymer block (B) was formed on the surface.
  • a cell culture substrate into which a block copolymer composed of an n-butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared. The thickness of the film was 80 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C.
  • the water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • a block copolymer comprising a 2-dimethylaminoethyl methacrylate polymer block (B), an n-butyl methacrylate polymer block (C), and an N-isopropylacrylamide polymer block (A) is introduced onto the surface produced above. Except for using the cell culture substrate, the same evaluation as in Example 1 [Cell culture evaluation and peeling evaluation] was performed, and cell proliferation was confirmed. Moreover, after culture
  • Example 7 (manufactured by click reaction) [Synthesis of Polymer Block (B) Having Terminal Azide Group]
  • a 200 mL test tube equipped with a three-way cock 0.20 g (0.57 mmol) of 3-azidopropyl ester of 4-cyanopentanoic acid dithiobenzoate, 5.20 g (40 mmol) of 2-methoxyethyl acrylate, azobisisobutyro 18.8 mg (0.11 mmol) of nitrile was added, and then 28 mL of 1,4-dioxane was added and dissolved.
  • the test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature.
  • Example 5 except that 0.66 g of 2-methoxyethyl acrylate polymer block (B) having a terminal azide group was used instead of 0.94 g of polyethylene glycol methacrylate polymer block (B) having a terminal azide group.
  • [Synthesis of Block Copolymer] from 2-methoxyethyl acrylate polymer block (B), n-butyl methacrylate polymer block (C), and N-isopropylacrylamide polymer block (A). As a result, 0.23 g of a block copolymer was obtained. Table 1 shows the composition, Mn, and Mw / Mn of the obtained block copolymer.
  • a surface treatment agent was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that the above block copolymer was used.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above surface treatment agent was used, and the surface was treated with 2-methoxyethyl acrylate polymer block (B) and n.
  • a cell culture substrate into which a block copolymer comprising a butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared. The thickness of the film was 48 nm. Table 1 shows water contact angles at 40 ° C and 20 ° C.
  • the water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • a block copolymer composed of a 2-methoxyethyl acrylate polymer block (B), an n-butyl methacrylate polymer block (C), and an N-isopropylacrylamide polymer block (A) was introduced on the surface produced above. Except that a cell culture substrate was used, the same evaluation as in Example 1 [Cell culture evaluation and peeling evaluation] was performed, and cell proliferation was confirmed. Moreover, after culture
  • Example 8 (manufactured by click reaction) [Synthesis of styrene polymer block having terminal alkynyl group]
  • a 200 mL test tube equipped with a three-way cock 0.10 g (0.49 mmol) of propargyl ester of 2-bromoisobutyric acid, 9.37 g (90 mmol) of styrene, 94 mg (0.6 mmol) of 2,2′-bipyridyl, copper chloride (I) 25 mg (0.25 mmol) and ascorbic acid 25 mg (0.13 mmol) were added, and then 90 mL of 1,4-dioxane was added and dissolved.
  • the test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube.
  • the test tube was heated to 65 ° C. and polymerized at 65 ° C. for 24 hours.
  • the reaction solvent was distilled off under reduced pressure using a rotary evaporator, and the reaction solution was concentrated.
  • the concentrated solution was poured into 300 mL of methanol, and an oily substance adhering to the bottom was recovered.
  • the oily substance obtained after washing twice with 100 mL of methanol was vacuum-dried to obtain a styrene polymer block (C) having a terminal alkynyl group.
  • test tube was immersed in liquid nitrogen to freeze, degassed with a vacuum pump, and returned to room temperature. This operation was repeated three times to remove dissolved oxygen in the test tube.
  • the test tube was heated to 65 ° C. and polymerized at 65 ° C. for 43 hours.
  • the reaction solvent was distilled off under reduced pressure using a rotary evaporator, and the reaction solution was concentrated. The concentrate was poured into 1000 mL of methanol, and the precipitate was collected.
  • the hydrophilic unit amount of the repeating unit of the dimethyl (3-methacryloylaminopropyl) (3-sulfonatopropyl) aminium polymer block (B) is 3 carbons, 5 hydrogens, 2 nitrogens, 4 oxygens, 1 sulfur
  • the total formula amount of repeating units was 292.4, and the HLB value (Griffin method) was 11.
  • a surface treatment agent was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that the above block copolymer was used.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above surface treatment agent was used, and dimethyl (3-methacryloylaminopropyl) (3-sulfonato) was formed on the surface.
  • a cell culture substrate into which a block copolymer comprising a propyl) aminium polymer block (B), a styrene polymer block (C), and a 2-ethoxyethyl vinyl ether polymer block (A) was introduced was prepared.
  • the film thickness was 45 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • [Cell culture evaluation and exfoliation evaluation] From the dimethyl (3-methacryloylaminopropyl) (3-sulfonatopropyl) aminium polymer block (B), styrene polymer block (C), and 2-ethoxyethyl vinyl ether polymer block (A) on the surface produced above.
  • Example 2 Evaluation of cell culture and exfoliation was performed except that the cell culture substrate into which the block copolymer was introduced was used, and cell proliferation was confirmed. Moreover, after culture
  • Example 9 (manufactured by click reaction) [Synthesis of Partial Block Copolymer Having Terminal Alkynyl Group]
  • Example 8 [Synthesis of partial block copolymer having terminal alkynyl group] except that 4.4 g (75 mmol) of methyl vinyl ether was used instead of 8.7 g (75 mmol) of 2-ethoxyethyl vinyl ether
  • the partial block copolymer having a terminal alkynyl group composed of a methyl vinyl ether polymer block (A) and a styrene polymer block (C) was obtained.
  • Table 1 shows the composition, Mn, and Mw / Mn of the obtained block copolymer.
  • a surface treatment agent was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that the above block copolymer was used.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above surface treatment agent was used, and dimethyl (3-methacryloylaminopropyl) (3-sulfonato) was formed on the surface.
  • a cell culture substrate into which a block copolymer comprising a propyl) aminium polymer block (B), a styrene polymer block (C), and a methyl vinyl ether polymer block (A) was introduced was prepared.
  • the film thickness was 45 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • Comparative Example 1 [Film evaluation] Table 1 shows the water contact angles of UpCell (R) 35 mm ⁇ dish manufactured by Cellseed Co., Ltd. at 40 ° C. and 20 ° C. The water contact angle at 20 ° C. was higher than 40 °, and it was found that the hydrophilicity at 20 ° C. was lower than that of the culture substrate of the present invention.
  • [Cell culture evaluation and exfoliation evaluation] The same evaluation as in Example 1 [Evaluation of cell culture and exfoliation] was performed except that the above-mentioned CellCell Inc. UpCell (R) 35 mm ⁇ dish was used, cell proliferation was confirmed, and cell exfoliation after cell proliferation In the evaluation, the cells were detached 30% by cooling for 3 minutes. The cells were detached by 65% by cooling for 15 minutes.
  • a surface treatment agent was prepared in the same manner as in Example 1 [Preparation of surface treatment agent] except that the partial block copolymer was used.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above surface treatment agent was used, and n-butyl methacrylate polymer block (C) and N- A cell culture substrate into which a partial block copolymer composed of the isopropylacrylamide polymer block (A) was introduced was prepared.
  • the thickness of the film was 100 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was higher than 40 °, and it was found that the hydrophilicity at 20 ° C. was lower than that of the culture substrate of the present invention.
  • Example 3 Preparation of surface treatment agent
  • Preparation was performed in the same manner as in Example 1 [Preparation of surface treatment agent], except that the partial block copolymer synthesized in Example 5 [Synthesis of partial block copolymer having terminal alkynyl group] was used.
  • a surface treatment agent was prepared.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above surface treatment agent was used, and n-butyl methacrylate polymer block (C) and N- A cell culture substrate into which a partial block copolymer composed of the isopropylacrylamide polymer block (A) was introduced was prepared. The thickness of the film was 80 nm.
  • Table 1 shows water contact angles at 40 ° C and 20 ° C.
  • the water contact angle at 20 ° C. was higher than 40 °, and it was found that the hydrophilicity at 20 ° C. was lower than that of the culture substrate of the present invention.
  • [Cell culture evaluation and exfoliation evaluation] Except that a cell culture substrate having a temperature-responsive membrane introduced on the surface produced above was used, the same evaluation as in Example 1 [Cell culture evaluation and peeling evaluation] was performed, and cell proliferation was confirmed. In the cell detachment evaluation after cell proliferation, the cells were detached 26% by cooling for 3 minutes. Further, the cells were detached 63% by cooling for 15 minutes.
  • Table 1 shows the water contact angles of Corning cell culture surface-treated 35 mm ⁇ dishes at 40 ° C and 20 ° C. 40 ° C. and 20 ° C. showed the same contact angle (48 °) and did not show temperature response.
  • [Cell culture evaluation and exfoliation evaluation] Except that the above-mentioned Corning cell culture surface treatment ⁇ 35 mm dish was used, the same evaluation as in Example 1 [Cell culture evaluation and exfoliation evaluation] was performed, and cell proliferation was confirmed. In the evaluation, cells were not detached at all even after cooling for 15 minutes.
  • Example 10 [Synthesis of polymer block (B)] In a 100 mL test tube equipped with a three-way cock, 2.4 g (16.0 mmol) of 2-dimethylaminoethyl methacrylate and 108 mg (267 ⁇ mol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid as a RAFT agent As an initiator, 8.8 mg (53 ⁇ mol) of azobisisobutyronitrile was added and dissolved in 10 mL of 1,4-dioxane. After performing argon bubbling for 10 minutes, the reaction was carried out at 65 ° C. for 29 hours.
  • the obtained white solid was dissolved in 300 mL of chloroform, 5 g of anhydrous magnesium sulfate was added to the obtained solution, and the mixture was stirred at room temperature for 30 minutes.
  • the obtained suspension was filtered to remove magnesium sulfate, and then chloroform was distilled off from the filtrate under reduced pressure using an evaporator, followed by concentration to 30 mL.
  • the obtained concentrated solution was poured into 300 mL of hexane, and the precipitated white solid was filtered.
  • the obtained white solid was dried under reduced pressure at 80 ° C.
  • the thickness of the film was 10 nm.
  • Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • [Cell culture evaluation and exfoliation evaluation] Prepared on the surface is a block copolymer comprising 2-dimethylaminoethyl methacrylate polymer block (B), n-butyl methacrylate polymer block (C) and N-isopropylacrylamide polymer block (A) on the surface.
  • Human bone marrow-derived mesenchymal stem cells (Lonza, PT-2501) (100 cells / mm 2 ) were cultured at 37 ° C. and a CO 2 concentration of 5% using the cell culture substrate into which the membrane was introduced. Lonza PT-3001 kit was used as the medium and additive factors.
  • Lonza PT-3001 kit was used as the medium and additive factors.
  • the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. By cooling for 15 minutes, the cells were detached 100% in the form of single cells.
  • Example 11 [Synthesis of polymer block (B)] 1.2 g (7.8 mmol) of 2-dimethylaminoethyl methacrylate, 50 mg (123 ⁇ mol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid, 1.7 mg (10 ⁇ mol of azobisisobutyronitrile)
  • the compound was synthesized in the same manner as in Example 10 [Synthesis of polymer block (B)] except that the reaction was carried out for 25 hours, and the amount of 2-dimethylaminoethyl methacrylate charged was 86 by 1 H-NMR.
  • a 0.5 wt% surface treatment agent was prepared in the same manner as in Example 10 [Preparation of surface treatment agent] except that the block copolymer was used.
  • a cell culture substrate was prepared by the method described in Example 10 [Membrane evaluation] except that the surface treatment agent was used. The thickness of the film was 10 nm.
  • Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • Example 12 [Cell culture evaluation and exfoliation evaluation] A block comprising a 2-dimethylaminoethyl methacrylate polymer block (B), an n-butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) synthesized on the surface of Example 11 [film evaluation].
  • Human preadipocytes (Toyobo Co., Ltd., CA802s05a) (100 cells / mm 2 ) (100 cells / mm 2 ) were cultured at 37 ° C. with a CO 2 concentration of 5% using a cell culture substrate into which a copolymer film was introduced.
  • human preadipocyte growth medium As the medium, human preadipocyte growth medium (Toyobo Co., Ltd., CA811K500) was used. When cell growth was confirmed and the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. By cooling for 15 minutes, the cells peeled 100% in a sheet form.
  • human preadipocyte growth medium Toyobo Co., Ltd., CA811K500
  • Example 13 [Synthesis of polymer block (B)] In a 100 mL test tube equipped with a three-way cock, 0.27 g (1.7 mmol) of 2-dimethylaminoethyl methacrylate, 0.16 g (1.1 mmol) of n-butyl methacrylate, 4-cyano-4-[(dodecylsulfonyl) as a RAFT agent Thiocarbonyl) sulfonyl] pentanoic acid 55 mg (135 ⁇ mol) and 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile as an initiator were added and dissolved in 15 mL of 1,4-dioxane.
  • the obtained copolymer block (B) had an HLB value of 9.0.
  • [Synthesis of partial block copolymer] To the reaction solution of the copolymer block (B) obtained above, 1,4-dioxane 5 mL, 2-dimethylaminoethyl methacrylate 0.75 g (4.8 mmol), n-butyl methacrylate 2.89 g (20.3 mmol) ), 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile was added, and argon bubbling was performed for 10 minutes, followed by reaction at 65 ° C. for 40 hours. After the reaction, a part of the reaction solution was collected and 1 H-NMR was measured.
  • the copolymer block (B) is a copolymer of 2-dimethylaminoethyl methacrylate and n-butyl methacrylate (copolymer block (C)) (2-dimethylaminoethyl methacrylate: 19 mol%, n-butyl methacrylate 81 mol). %) Can be synthesized.
  • the obtained copolymer block (C) had an HLB value of 7.0.
  • the obtained white solid was dissolved in 300 mL of chloroform, 5 g of anhydrous magnesium sulfate was added to the obtained solution, and the mixture was stirred at room temperature for 30 minutes.
  • the obtained suspension was filtered to remove magnesium sulfate, and then chloroform was distilled off from the filtrate under reduced pressure using an evaporator, followed by concentration to 30 mL.
  • the obtained concentrated solution was poured into 300 mL of hexane, and the precipitated white solid was filtered.
  • the obtained white solid was dried under reduced pressure at 80 ° C.
  • a cell culture substrate in which a membrane made of a block copolymer comprising a copolymer block (C) of 2-dimethylaminoethyl methacrylate and n-butyl methacrylate and an N-isopropylacrylamide polymer block (A) was introduced was prepared. .
  • the thickness of the film was 10 nm.
  • Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • Eagle's minimum essential medium (10 vol% FBS / EMEM) containing 10 vol% fetal bovine serum was used.
  • the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope.
  • the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. By cooling for 15 minutes, the cells peeled 100% in a sheet form.
  • Example 14 [Synthesis of polymer block (B)] The same method as in Example 13 [Synthesis of polymer block (B)] except that 1.1 g (7.0 mmol) of 2-dimethylaminoethyl methacrylate and 0.58 g (4.1 mmol) of n-butyl methacrylate were used. Was synthesized. After the reaction, a part of the reaction solution was collected and 1 H-NMR was measured. As a result, it was confirmed that 97% of the charged amount of 2-dimethylaminoethyl methacrylate and 98% of the charged amount of n-butyl methacrylate were polymerized.
  • a copolymer of 2-dimethylaminoethyl methacrylate and n-butyl methacrylate (2-dimethylaminoethyl methacrylate: 62.9 mol%, n-butyl methacrylate 37.1 mol%) (copolymer block (B)) can be synthesized. It was. The obtained polymer block (B) had an HLB value of 9.2.
  • Example 13 [Synthesis of partial block copolymer] except that 2.37 g (16.7 mmol) of n-butyl methacrylate was used and no 2-dimethylaminoethyl methacrylate was added. Synthesized in the same way.
  • Table 2 shows the composition, Mn, and Mw / Mn of the obtained block copolymer.
  • a 0.1 wt% surface treating agent was prepared in the same manner as in Example 13 [Preparation of surface treating agent] except that the above block copolymer was used.
  • [Film evaluation] Except for the use of the above surface treating agent, it was prepared by the method described in Example 13 [Film Evaluation], and a copolymer block (B) of 2-dimethylaminoethyl methacrylate and n-butyl methacrylate was formed on the surface.
  • a cell culture substrate into which a membrane made of a block copolymer consisting of a butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared.
  • the thickness of the film was 10 nm.
  • Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. By cooling for 15 minutes, the cells peeled 100% in a sheet form.
  • Example 15 [Synthesis of polymer block (B)] To a 100 mL tester equipped with a three-way cock, 0.94 g (6.0 mmol) of 2-dimethylaminoethyl methacrylate, 0.90 g (9.0 mmol) of methyl methacrylate, 4-cyano-4-[(dodecylsulfonylthiocarbonyl as a RAFT agent) ) Sulfonyl] pentanoic acid 55 mg (135 ⁇ mol) and 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile as an initiator were added and dissolved in 10 mL of 1,4-dioxane.
  • the hydrophilic part formula amount of the repeating unit produced by polymerization of methyl methacrylate is the sum of one carbon and two oxygens (44.0), the repeating unit total formula quantity is 100.1, and the HLB value (Griffin method) was 9.
  • the obtained polymer block (B) had an HLB value (Griffin method) of 10.
  • Synthesis of partial block copolymer To the reaction solution obtained above, 10 mL of 1,4-dioxane, 1.71 (12.0 mmol) of n-butyl methacrylate and 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile were added, and argon bubbling was performed for 10 minutes. And then reacted at 65 ° C for 40 hours.
  • a 0.1 wt% surface treating agent was prepared in the same manner as in Example 13 [Preparation of surface treating agent] except that the above block copolymer was used. [Film evaluation] Except that the above surface treating agent was used, it was prepared by the method described in Example 13 [Film evaluation], and a copolymer block (B) of 2-dimethylaminoethyl methacrylate and methyl methacrylate and n-butyl were formed on the surface.
  • a cell culture substrate into which a membrane made of a block copolymer comprising a methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared.
  • the thickness of the film was 11 nm.
  • Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C. and less than 40 °, indicating high hydrophilicity.
  • [Cell culture evaluation and exfoliation evaluation] Evaluation was carried out in the same manner as in Example 13 [Cell culture evaluation and peeling evaluation] except that the cell culture substrate prepared above was used. When cell growth was confirmed and the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. Upon cooling for 15 minutes, the cells were 100% detached in a sheet form.
  • Example 16 [Synthesis of polymer block (B)] To a 100 mL examiner equipped with a three-way cock, 0.70 g (5.4 mmol) of 2-methoxyethyl acrylate, 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid 55 mg (135 ⁇ mol) as a RAFT agent, As an initiator, 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile was added and dissolved in 5 mL of 1,4-dioxane. After carrying out argon bubbling for 10 minutes, the reaction was carried out at 65 ° C. for 40 hours.
  • the hydrophilic part formula amount of the repeating unit of the 2-methoxyethyl acrylate polymer block (B) is the total of 3 carbons, 4 hydrogens and 3 oxygens (88.1). Yes, the HLB value (Griffin method) was 14.
  • a partial block copolymer to which a methacrylate polymer (polymer block (C)) was bonded could be synthesized.
  • block copolymer Example 1 except that 10 mL of 1,4-dioxane, 3.30 g (29.2 mmol) of N-isopropylacrylamide, and 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile were added using the reaction solution obtained above. 13 [Synthesis of block copolymer] was synthesized in the same manner. After the reaction, a part of the reaction solution was collected and 1 H-NMR was measured.
  • a 0.1 wt% surface treating agent was prepared in the same manner as in Example 13 [Preparation of surface treating agent] except that the above block copolymer was used. [Film evaluation] Except that the above surface treating agent was used, preparation was carried out by the method described in Example 13 [Film Evaluation], and a 2-methoxyethyl acrylate polymer block (B) and an n-butyl methacrylate polymer block (C ) And an N-isopropylacrylamide polymer block (A), a cell culture substrate was prepared. The thickness of the film was 11 nm. Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C.
  • Example 17 [Synthesis of polymer block (B)] To a 100 mL tester equipped with a three-way cock, 0.70 g (5.4 mmol) of 2-methoxyethyl acrylate, 1.15 g (8.1 mmol) of n-butyl methacrylate, 4-cyano-4-[(dodecylsulfonylthio) as a RAFT agent Carbonyl) sulfonyl] pentanoic acid 55 mg (135 ⁇ mol) and 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile as an initiator were added and dissolved in 5 mL of 1,4-dioxane.
  • the obtained polymer block (B) had an HLB value of 9.1.
  • Synthesis of partial block copolymer To the reaction solution obtained above, 15 mL of 1,4-dioxane, 1.61 g (11.3 mmol) of n-butyl methacrylate and 4.4 mg (27 ⁇ mol) of azobisisobutyronitrile were added, and argon bubbling was performed for 10 minutes. And then reacted at 65 ° C. for 40 hours. After the reaction, a part of the reaction solution was collected and 1 H-NMR was measured.
  • copolymer block (B) of 2-methoxyethyl acrylate and n-butyl methacrylate and n- A cell culture substrate into which a membrane made of a block copolymer consisting of a butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced was prepared.
  • the thickness of the film was 11 nm.
  • Table 2 shows the water contact angles at 40 ° C and 20 ° C. The water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C.
  • Example 18 [Synthesis of polymer block (C)] In a 100 mL test tube equipped with a three-way cock, 3.7 g (25.8 mmol) of n-butyl methacrylate, 108 mg (267 ⁇ mol) of 4-cyano-4-[(dodecylsulfonylthiocarbonyl) sulfonyl] pentanoic acid as a RAFT agent, start As an agent, 8.8 mg (53 ⁇ mol) of azobisisobutyronitrile was added and dissolved in 10 mL of 1,4-dioxane. After carrying out argon bubbling for 10 minutes, the reaction was carried out at 65 ° C. for 30 hours.
  • the obtained white solid was dissolved in 300 mL of chloroform, 5 g of anhydrous magnesium sulfate was added to the obtained solution, and the mixture was stirred at room temperature for 30 minutes.
  • the obtained suspension was filtered to remove magnesium sulfate, and then chloroform was distilled off from the filtrate under reduced pressure using an evaporator, followed by concentration to 30 mL.
  • the obtained concentrated solution was poured into 300 mL of hexane, and the precipitated white solid was filtered.
  • the obtained white solid was dried under reduced pressure at 80 ° C.
  • n-butyl methacrylate polymer block (C), 2-dimethylaminoethyl methacrylate polymer block (B) and N-isopropylacrylamide as white powder.
  • 6.0 g of a block copolymer composed of the polymer block (A) was obtained.
  • Table 2 shows the composition, Mn, and Mw / Mn of the obtained block copolymer.
  • Comparative Example 5 [Cell culture evaluation and exfoliation evaluation] A cell culture substrate prepared in Comparative Example 2 [Membrane Evaluation], into which a partial block copolymer consisting of an n-butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced, was used. Except for the use, evaluation was performed in the same manner as in Example 10 [Cell culture evaluation and peeling evaluation]. When cell growth was confirmed and the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. The cells did not detach after cooling for 1 hour.
  • Comparative Example 6 [Cell culture evaluation and exfoliation evaluation] A cell culture substrate prepared in Comparative Example 2 [Membrane Evaluation], into which a partial block copolymer consisting of an n-butyl methacrylate polymer block (C) and an N-isopropylacrylamide polymer block (A) was introduced, was used. Except for the use, evaluation was performed in the same manner as in Example 12 [Cell culture evaluation and peeling evaluation]. When cell growth was confirmed and the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. The cells did not detach after cooling for 1 hour.
  • Comparative Example 7 [Cell culture evaluation and exfoliation evaluation] Evaluation was performed in the same manner as in Example 12 [Evaluation of cell culture and peeling evaluation] except that the CellCell Co., Ltd. UpCell (R) 35 mm ⁇ dish evaluated in Comparative Example 1 [Film Evaluation] was used.
  • the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. The cells did not detach after cooling for 1 hour.
  • a 35 mm ⁇ dish made by Corning cell culture surface treatment evaluated in Comparative Example 4 [Membrane evaluation] was used.
  • the number of cells was confirmed with a 10 ⁇ 10 magnification microscope.
  • the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. The cells did not detach after cooling for 1 hour.
  • Comparative Example 9 [Film evaluation] Table 3 shows the water contact angle at 40 ° C. and 20 ° C. of the 100 mm ⁇ dish for IWAKI tissue culture. 40 ° C. and 20 ° C. showed the same contact angle (57 °) and did not show temperature response.
  • [Cell culture evaluation and exfoliation evaluation] The same evaluation as in Example 12 [Evaluation of cell culture and exfoliation] was performed except that the above-mentioned dish for IWAKI tissue culture ( ⁇ 9 cm) was used. When cell growth was confirmed and the cultured cells were cultured until they covered 100% of the substrate, the number of cells was confirmed with a 10 ⁇ 10 magnification microscope. After cooling the substrate to 10 ° C., the detached cells were removed with an aspirator, and the number of cells was confirmed again with a 10 ⁇ 10 magnification microscope. The cells did not detach after cooling for 1 hour.
  • the ratio of each repeating unit of the obtained block copolymer was such that the repeating unit produced by polymerization of 2-methacryloyloxyethyl phosphorylcholine was 12 mol%, the repeating unit produced by polymerization of n-butyl methacrylate was 25 mol%, N -The repeating unit produced by polymerization of isopropylacrylamide was 63 mol%, which was almost the same ratio as the block copolymer synthesized in Example 1.
  • Table 3 shows Mn and Mw / Mn of the obtained block copolymer.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane evaluation] except that the above-mentioned surface treatment agent was used, and both the surface of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate were used.
  • a cell culture substrate into which a membrane made of a block copolymer consisting of a polymer block and an N-isopropylacrylamide polymer block was introduced was prepared. The thickness of the film was 100 nm.
  • Table 3 shows the contact angle with water at 40 ° C and 20 ° C. Although the water contact angle at 20 ° C. was lower than the water contact angle at 40 ° C., the water contact angle at 20 ° C.
  • Example 1 Cell culture evaluation and peeling evaluation
  • cell proliferation was confirmed.
  • the ratio of each repeating unit of the obtained copolymer was such that the repeating unit produced by polymerizing 2-methacryloyloxyethyl phosphorylcholine was 11 mol%, the repeating unit produced by polymerizing n-butyl methacrylate was 26 mol%, N- The repeating unit produced by polymerization of isopropylacrylamide was 63 mol%, and the ratio was almost the same as that of the block copolymer synthesized in Example 1.
  • Table 3 shows Mn and Mw / Mn of the obtained block copolymer.
  • a cell culture substrate was prepared in the same manner as described in Example 1 [Membrane Evaluation] except that the above surface treatment agent was used, and 2-methacryloyloxyethyl phosphorylcholine, n-butyl methacrylate, N
  • a cell culture substrate into which a membrane made of a copolymer of isopropylacrylamide was introduced was prepared.
  • the thickness of the film was 100 nm.
  • Table 3 shows the contact angle with water at 40 ° C and 20 ° C. 40 degreeC and 20 degreeC showed the equivalent contact angle, and did not show temperature responsiveness.
  • Comparative Example 12 Using a Corning cell culture surface-treated 35 mm ⁇ dish evaluated in Comparative Example 4 [membrane evaluation], Chinese hamster ovary-derived CHO cells (100 cells / mm 2 ) instead of mouse connective tissue L929 cells (100 cells / mm 2 ) Except that 10 vol% FBS / Ham's F-12 was used instead of 10 vol% FBS / DMEM as the culture solution. Proliferation was confirmed. Further, after culturing until the cultured cells covered 100% of the substrate, the substrate was cooled to 10 ° C., but the cells did not peel at all even after 15 minutes.
  • Comparative Example 13 Cell proliferation was confirmed by performing the same evaluation as in Example 13 [Cell culture evaluation and peeling evaluation] except that the 100 mm ⁇ dish for IWAKI tissue culture evaluated in Comparative Example 9 [Membrane Evaluation] was used. Further, after culturing until the cultured cells covered 100% of the substrate, the substrate was cooled to 10 ° C., but the cells did not peel at all even after 15 minutes.
  • the reaction solution was poured into 300 mL of distilled water, and the precipitated white solid was filtered.
  • the obtained white solid was dissolved in 300 mL of chloroform, 5 g of anhydrous magnesium sulfate was added to the obtained solution, and the mixture was stirred at room temperature for 30 minutes.
  • the obtained suspension was filtered to remove magnesium sulfate, and then chloroform was distilled off from the filtrate under reduced pressure using an evaporator, followed by concentration to 30 mL.
  • the obtained concentrated solution was poured into 300 mL of hexane, and the precipitated white solid was filtered.
  • the obtained white solid was dried at 80 ° C.
  • Table 3 shows the contact angle with water at 40 ° C and 20 ° C. 40 ° C. and 20 ° C. showed the same contact angle (57 °) and did not show temperature responsiveness, and were equivalent to the 100 mm ⁇ dish for IWAKI tissue culture evaluated in Comparative Example 9 [Membrane Evaluation]. It was found that the coalescence was eluted in water.
  • Tables 1 to 3 show the types of block copolymers synthesized in the above-described Examples and Comparative Examples, the composition ratio of each block, Mn and Mw / Mn, and the contact angle with water.
  • Tables 4 to 8 show the results of cell culture evaluation in the above-described Examples, Reference Examples, and Comparative Examples.
  • D human preadipocytes
  • E human fetal lung-derived normal diploid fibers Blast cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Graft Or Block Polymers (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明の課題は、短時間での細胞剥離を可能にする細胞培養基材の表面処理剤として有用なブロック共重合体を提供すること。 下記(A)および(B)および(C)のブロックを含むブロック共重合体により前記課題を解決する。 (A)水に対する下限臨界溶解温度(LCST)が0℃~50℃の範囲にある温度応答性重合体ブロック。 (B)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が9以上20未満の範囲にある親水性重合体ブロック。 (C)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が0以上9未満の範囲にある疎水性重合体ブロック。

Description

ブロック共重合体およびそれを用いた表面処理剤
 本発明は、短時間での細胞剥離を可能にする細胞培養基材の表面処理剤として有用なブロック共重合体に関する。
 細胞培養は生化学的な現象の理解や有用物質の産生などに用いられ、また近年、幹細胞の発見や培養技術の進歩により、再生医療を始めとする細胞を用いた治療に大きな注目が寄せられている。
 哺乳類由来の細胞の多くは接着性を有しており、体内においてはコラーゲン、フィブロネクチン、ラミニンなどの生体高分子に接着し、増殖・分化することが知られている。同様に、細胞培養においても接着性を有する細胞の多くは、何らかの基材に接着させて培養する必要がある。従来、基材としては表面処理したガラスあるいは高分子が用いられていた。例えば、ポリスチレンにγ線照射あるいはシリコーンコーティングを行なった基材がある。また、コラーゲンやフィブロネクチンのような生体高分子を表面に塗布した基材も用いられる。
 一般的に、前記の接着性を有する動物細胞の継代培養では、基材上で増殖した細胞をタンパク質分解酵素で処理して基材から剥離させたのち、新しい基材に播種する操作が行われている。タンパク質分解酵素は細胞表面にあるタンパク質を分解し、細胞と基材の間の結合および細胞間の結合を切る役目を担っている。一方、タンパク質分解酵素は細胞の生存率に大きな影響を与えることが知られており、タンパク質分解酵素を用いずに細胞を基材から分離する手法は細胞にダメージを与えない方法として重要である。再生医療においても同様に、基材などの体外で培養した細胞にダメージを与えずに細胞を基材から分離し、生体内に戻すことが求められており、タンパク質分解酵素を用いずに基材から分離する方法が求められている。
 上記問題を解決するために、温度応答性ポリマーを基材表面に被覆した細胞培養基材が特許文献1に開示されている。このような基材によれば、周囲環境の温度降下による温度応答性ポリマーのゾル転移で基材表面の接着力を弱めて、細胞を剥離させ、回収することができる。通常、哺乳類由来の細胞は、体温である37℃付近で培養することが多く、培養終了後、体温以下で細胞を剥離できる基材が必要となる。
 文献2および3には、水中におけるゾル転移温度[下限臨界溶解温度(LCST)]が体温以下の範囲にある温度応答性ポリマーとして、ポリ(N-イソプロピルアクリルアミド)(LCST=32℃)、ポリ(N-n-プロピルアクリルアミド)(LCST=21℃)、ポリ(N-n-プロピルメタクリルアミド)(LCST=32℃)、ポリ(N-エトキシエチルアクリルアミド)(LCST=約35℃)、ポリ(N-テトラヒドロフルフリルアクリルアミド)(LCST=約28℃)、ポリ(N-テトラヒドロフルフリルメタクリルアミド)(LCST=約35℃)、及びポリ(N,N-ジエチルアクリルアミド)(LCST=32℃)等が記載されている(特許文献2および3)。
 上記温度応答性ポリマーを細胞培養基材に用いる場合、下限臨界溶解温度以下に細胞培養基材の温度を下げる必要があるが、その時間によっては同時に細胞を低温化してしまう。細胞の低温化は細胞の活性低下を及ぼすため、冷却時間の短縮が必要である。
日本国特開平2-211865号公報 日本国特開平3-266980号公報 日本国特開平5-244938号公報
 本発明の課題は、短時間での細胞剥離を可能にする細胞培養基材の表面処理剤として有用なブロック共重合体およびそれを用いた表面処理剤を提供することにある。
 本発明者らは、以上の点を鑑み、鋭意研究を重ねた結果、温度応答性重合体および親水性重合体および疎水性重合体を含むブロック共重合体を基材上に被覆し成膜することで、短時間での細胞剥離を可能にすることを見出し、本発明を完成した。
 すなわち本発明は、以下の[1]から[19]に記載した態様を包含する。
 [1]下記(A)、(B)および(C)のブロックを含むブロック共重合体。
(A)水に対する下限臨界溶解温度(LCST)が0℃~50℃の範囲にある温度応答性重合体ブロック。
(B)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が9以上20以下の範囲にある親水性重合体ブロック。
(C)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が0以上9未満の範囲にある疎水性重合体ブロック。
 [2]ブロック(A)が下記一般式(1)
Figure JPOXMLDOC01-appb-C000014
 (式中、Rは水素原子またはメチル基であり、RおよびRは各々独立して、水素原子、炭素数1~6の炭化水素基、炭素数1もしくは2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基、フッ素で置換されていてもよい炭素数2~4の炭化水素基、フルフリル基またはテトラヒドロフルフリル基であり、RとRは互いに結合してピロリジン環、ピペリジン環またはモルホリン環を形成してもよい。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、前記[1]に記載のブロック共重合体。
 [3]ブロック(A)が下記一般式(2)
Figure JPOXMLDOC01-appb-C000015
 (式中、Rは水素原子またはメチル基であり、Rは水素原子または炭素数1~6の炭化水素基であり、rは1~10の整数である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、前記[1]に記載のブロック共重合体。
 [4]ブロック(A)が下記一般式(3)
Figure JPOXMLDOC01-appb-C000016
 (式中、Rは水素原子またはメチル基であり、Rは炭素数1~6の炭化水素基である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、前記[1]に記載のブロック共重合体。
 [5]ブロック(B)が下記一般式(4)
Figure JPOXMLDOC01-appb-C000017
 (式中、Rは水素原子またはメチル基であり、R10は炭素数1~10のアルキレン基であり、R11は炭素数1~4の2価の炭化水素基である。R12、R13、及びR14は、互いに独立して、水素原子、メチル基、またはエチル基である。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、前記[1]~[4]の何れかに記載のブロック共重合体。
 [6]ブロック(B)が下記一般式(5)
Figure JPOXMLDOC01-appb-C000018
 (式中、R15は水素原子またはメチル基である。R16は-(CHCHO)-(CHO)-(CHCH(CH)O)-R17(式中、R17は水素原子または炭素数1~10のアルキル基であり、iは1~30の整数であり、jおよびkは各々独立して、0~30の整数である。)である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、前記[1]~[4]の何れかに記載のブロック共重合体。
 [7]ブロック(B)が下記一般式(6)
Figure JPOXMLDOC01-appb-C000019
 (式中、R19は水素原子またはメチル基であり、R20は炭素数1~10のアルキレン基であり、R21は炭素数1~4のアルキレン基である。R22及びR23は、各々独立して、水素原子又は炭素数1~4の炭化水素基である。Aは、エステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、Xはスルホン酸基、カルボキシル基、またはリン酸基である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする前記[1]~[4]の何れかに記載のブロック共重合体。
 [8]ブロック(B)が下記一般式(7)
Figure JPOXMLDOC01-appb-C000020
 (式中、R24、R25、およびR26は各々独立して水素原子又はメチル基である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする前記[1]~[4]の何れかに記載のブロック共重合体。
 [9]ブロック(B)が下記一般式(8)
Figure JPOXMLDOC01-appb-C000021
 (式中、R28は水素原子又はメチル基であり、R29は炭素数2~7のアルキレン基であり、R30及びR31は互いに独立して、水素原子、メチル基、またはエチル基である。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする前記[1]~[4]の何れかに記載のブロック共重合体。
 [10]ブロック(B)が下記一般式(9)
Figure JPOXMLDOC01-appb-C000022
 (式中、R28は水素原子又はメチル基であり、R29は炭素数2~7のアルキレン基であり、R30及びR31は互いに独立して、水素原子、メチル基、またはエチル基である。R32は、炭素数1~4の炭化水素基、水酸基または炭素数1~2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基である。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合である。Xはハロゲン化物イオン、水酸化物イオン、酢酸イオンである。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする前記[1]~[4]の何れかに記載のブロック共重合体。
 [11]ブロック(C)が下記一般式(10)
Figure JPOXMLDOC01-appb-C000023
(式中、R33は水素原子又はメチル基であり、Yは水素原子、塩素原子、アセトキシ基、ニトリル基、または炭素数6~30の芳香族炭化水素基である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする前記[1]~[10]の何れかに記載のブロック共重合体。
 [12]ブロック(C)が下記一般式(11)
Figure JPOXMLDOC01-appb-C000024
(式中、R34は水素原子又はメチル基であり、R35は炭素数1~30の炭化水素基であり、Zはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から
選択される2価の結合である。)
で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体あることを特徴とする前記[1]~[10]の何れかに記載のブロック共重合体。
 [13]ブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の合計に対する各ブロックのmol%が、以下の(a)から(c)であることを特徴とする、前記[1]~[12]の何れかに記載のブロック共重合体。
(a)ブロック(A)の比率が25mol%から85mol%
(b)ブロック(B)の比率が2mol%から50mol%
(c)ブロック(C)の比率が10mol%から70mol%
 [14]ブロック共重合体の数平均分子量(Mn)が3,000以上1,000,000以下であることを特徴とする前記[1]~[13]の何れかに記載のブロック共重合体。
 [15]前記ブロック(A)、(B)および(C)の間の1つ以上にスペーサーを介した結合を有しており、前記スペーサーを介した結合の少なくとも1つが下記一般式(12)および(13)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式中、Rは水素原子または炭素数1~20の炭化水素基である。)
で表される2価の結合の内、少なくとも1種類の結合を含む2価の結合であることを特徴とする前記[1]~[14]の何れかに記載のブロック共重合体。
 [16]以下の工程(1)から(3)を含む、前記[1]~[15]の何れかに記載のブロック共重合体の製造方法:
(1)前記[1]に記載の(A)、(B)および(C)のブロックのうち、何れか1種類のブロックを製造する工程、
(2)前記[1]に記載の(A)、(B)および(C)のブロックのうち、工程(1)で製造したブロックを除く1種類のブロックと、工程(1)で製造したブロックを含むブロック重合体とが結合した、部分ブロック共重合体を製造する工程、
(3)前記[1]に記載の(A)、(B)および(C)のブロックのうち、工程(2)で製造した部分ブロック共重合体を含むブロック共重合体を構成しない1種類のブロックと、工程(2)で製造した部分ブロック共重合体とが結合した、ブロック共重合体を製造する工程。
 [17]前記[1]~[15]の何れかに記載のブロック共重合体を含むことを特徴とする、基材用表面処理剤。
 [18]前記[17]に記載の表面処理剤を基材に塗布されてなる膜。
 [19]前記[18]に記載の膜で表面を被覆した細胞培養用基材。
 [20]前記[19]に記載の細胞培養基材を用いて、前記[1]に記載の温度応答性重合体ブロックのLCSTより高い温度で細胞を培養し、細胞増殖後に温度をLCSTより低くして増殖細胞を基材から剥離することを特徴とする、細胞培養方法。
 温度応答性重合体ブロックと親水性重合体ブロックと疎水性重合体ブロックを含む、本発明のブロック共重合体から得られる膜を細胞培養基材に被覆すれば、細胞培養後、温度降下による基材表面の親水化が促進され、細胞剥離に必要な冷却時間を短縮することができる。これによって、細胞培養後、冷却処理を施しても、細胞にダメージを与えることなく、短時間で細胞を回収できる細胞培養基材が得られるようになる。
 以下、本発明を実施するための形態(以下、単に「本実施の形態」という。)について詳細に説明する。以下の本実施の形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その趣旨の範囲内で適宜に変形して実施できる。
 1.ブロック共重合体
 本発明のブロック共重合体は、以下の(A)、(B)および(C)のブロックを含むブロック共重合体である。
(A)水に対する下限臨界溶解温度(LCST)が0℃~50℃の範囲にある温度応答性重合体ブロック。
(B)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が9以上20未満の範囲にある親水性重合体ブロック。
(C)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が0以上9未満の範囲にある疎水性重合体ブロック。
 以下に本発明におけるブロック(A)、ブロック(B)およびブロック(C)の詳細を説明する。なお、「重合体」とは、「共重合体」(copolymer)および「単独重合体」(homopolymer)を含む。即ち、ブロック(A)、(B)および(C)の各々を構成する繰り返し単位は、それぞれ1種類であってもよく、2種類以上であってもよい。
 本発明におけるブロック(A)はLCSTが0℃~50℃の範囲にある温度応答性重合体ブロックである。ここで、LCSTとは下限臨界溶解温度(Lower Critical Solution Temperature:LCST)であり、この温度よりも低い温度では高分子が水に溶解して透明の溶液になるが、この温度よりも高い温度では不溶化して白濁するか沈殿が生じ、相分離する温度である。
 後述する方法により作製した、本発明のブロック共重合体を含む細胞培養基材を用いて細胞を培養した場合、LCSTが0℃未満であれば細胞にダメージを与えることなく剥離することが困難となり、50℃を超えれば体温付近で細胞を接着できなくなり、細胞培養が困難となることから、ブロック(A)のLCSTは0℃~50℃の範囲にある必要がある。体温である37℃付近で細胞接着性を付与すると共に、温度降下で細胞を剥離し、ダメージを与えることなく細胞を回収する点で、ブロック(A)のLCSTは10℃~40℃の範囲にあることが好ましく、20℃~35℃の範囲にあることがさらに好ましい。
 本発明のブロック共重合体を構成するブロック(A)は、LCSTが0℃~50℃の範囲にある重合体ブロックであれば特に制限は無いが、ブロック(A)を構成する繰り返し単位としては、下記一般式(1)~(3)の何れかで表される繰り返し単位が好ましい。ブロック(A)は1種類の繰り返し単位から成っていてもよく、2種類以上の繰り返し単位から成っていてもよい。
Figure JPOXMLDOC01-appb-C000027
 式中、Rは水素原子又はメチル基であり、LCSTを0℃~50℃の範囲にする点で、水素原子が好ましい。
 RおよびRは各々独立して、水素原子、炭素数1~6の炭化水素基、炭素数1から2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基、フッ素で置換されていてもよい炭素数2~4の炭化水素基、フルフリル基またはテトラヒドロフルフリル基であり、RとRは互いに結合してピロリジン環、ピペリジン環もしくはモルホリン環を形成してもよい。前述の炭素数1~6の炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ヘキシル基、イソヘキシル基を例示できる。また、前述の炭素数1から2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基として、メトキシエチル基、エトキシエチル基、メトキシプロピル基、エトキシプロピル基、メトキシブチル基、エトキシブチル基を例示することができる。さらに、前述のフッ素で置換されていてもよい炭素数2~6の炭化水素基としては、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基などを例示することができる。これらの中では、LCSTを0℃~50℃の範囲にする点で、炭素数1~6の炭化水素基を用いることが好ましく、n-プロピル基、イソプロピル基を用いることがより好ましい。
 本発明における一般式(1)で表される繰り返し単位としては、N,N-ジエチルアクリルアミド、N-エチルアクリルアミド、N-n-プロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-イソプロピルアクリルアミド、N-イソプロピルメタクリルアミド、N-シクロプロピルアクリルアミド、N-シクロプロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-エトキシエチルメタクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミド、1-(1-オキソ-2-プロペニル)ピロリジン、1-(1-オキソ-2-メチル-2-プロペニル)ピロリジン、1-(1-オキソ-2-プロペニル)ピペリジン、1-(1-オキソ-2-メチル-2-プロペニル)ピペリジン、4-(1-オキソ-2-プロペニル)モルホリン、および4-(1-オキソ-2-メチル-2-プロペニル)モルホリンから選択されるモノマーを重合して生成する繰り返し単位を例示できる。LCSTを10℃~40℃の範囲にする点で、N,N-ジエチルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミドを重合して生成する繰り返し単位であることが好ましく、LCSTを20℃~35℃の範囲にする点で、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミドから選択されるモノマーを重合して生成する繰り返し単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000028
 式中、Rは水素原子またはメチル基を表し、LCSTを0℃~50℃の範囲にするために、水素原子が用いられる。Rは、水素原子または炭素数1~6の炭化水素基であり、炭素数1~6の炭化水素基として、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ヘキシル基、イソヘキシル基を例示できるが、LCSTを0℃~50℃の範囲にする点で、炭素数1~3の炭化水素基を用いることが好ましい。rは1~10の整数であり、LCSTを0℃~50℃の範囲にする点で、1~3の整数が好ましい。本発明における一般式(2)で表される繰り返し単位としては、LCSTを10℃~40℃の範囲にするために、2-エトキシエチルビニルエーテルを重合して生成する繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 式中、Rは水素原子またはメチル基を表し、LCSTを0℃~50℃の範囲にする点で、水素原子を用いることが好ましい。Rは炭素数1~6の炭化水素基を表し、炭素数1~6の炭化水素基としてメチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ヘキシル基、イソヘキシル基を例示できるが、LCSTを0℃~50℃の範囲にする点で、メチル基、エチル基を用いることが好ましい。本発明における一般式(3)で表される繰り返し単位としては、LCSTを10℃~40℃の範囲にする点で、メチルビニルエーテルを重合して生成する繰り返し単位であることが好ましい。
 本発明のブロック共重合体を構成するブロック(A)の構成単位としては、前記一般式(1)から一般式(3)の何れかで表される繰り返し単位の中では、温度降下による細胞の剥離性が良好である点で、一般式(1)で表される繰り返し単位であることが好ましい。
 本発明におけるブロック(B)は、0℃~50℃の範囲にLCSTを持たない、HLB値が9以上20以下の親水性重合体のブロックである。
 本明細書において、HLB値(Hydrophile-Lipophile Balance:HLB)とは、W.C.Griffin, Journal of the Society of Cosmetic Chemists, 1, 311(1949).に記載の、水と油への親和性の程度を表す値であり、0から20までの値を取り、0に近いほど疎水性が高く、20に近いほど親水性が高くなる。計算式によりHLB値を算出方法として、アトラス法、グリフィン法、デイビス法、川上法があるが、本明細書においては、グリフィン法により算出した値を使用し、本発明のブロック共重合体を構成する各ブロックの繰り返し単位中の親水部の式量と繰り返し単位の総式量を元に、下記の計算式により算出した。
 HLB値=20×(繰り返し単位中の親水部の式量)÷(繰り返し単位の総式量)
 前述の、各ブロックの繰り返し単位中の親水部の定義として、スルホン部(-SO-)、ホスホノ基部(-PO-)、カルボキシル基部(-COOH)、エステル部(-COO-)、アミド部(-CONH-)、イミド部(-CON-)、アルデヒド基部(-CHO)、カルボニル基部(-CO-)、ヒドロキシル基部(-OH)、アミノ基部(-NH)、アセチル基部(-COCH)、エチレンアミン部(-CHCHN-)、エチレンオキシ部(-CHCHO-)、アルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオン、ハロゲン化物イオン、酢酸イオンを例示することができる。
 繰り返し単位中の親水部の算出では、親水部を構成する原子が、他の親水部を構成する原子として重複してはならない。繰り返し単位中のHLB値の算出例を以下に記載した。例えば、2-メタクリロイルオキシエチルホスホリルコリン(分子量:295.27)の場合、親水部は、エステル部が1部、ホスホノ基部が1部およびエチレンアミン部が1部であり、親水部の分子量は181.04であるから、HLB値は12.3である。2-ジメチルアミノエチルメタクリレート(分子量:157.11)の場合、親水部は、エステル部が1部およびエチレンアミン部が1部であり、親水部の分子量は86.07であるから、HLB値は11.0である。メチルメタクリレート(分子量:100.12)の場合、親水部は、エステル部が1部であり、親水部の分子量は44.01であるから、HLB値は8.8である。n-ブチルメタクリレート(分子量:142.20)の場合、親水部は、エステル部が1部であり、親水部の分子量は44.01であるから、HLB値は6.2である。
 さらに、本発明のブロック共重合体を構成する各ブロックが、異なるモノマー(モノマー1、モノマー2・・・)からなる共重合体である場合は、それぞれのモノマーが重合して生成する繰り返し単位の共重合体中の比率(mol%)を分析し、下記の計算式で算出することができる。
 HLB値=HLB値×比率+HLB値×比率+・・・・
 ここで、HLB値はモノマー1が重合して生成する重合体のHLB値であり、組成はモノマー1が重合して生成する繰り返し単位の共重合体中の比率(mol%)であり、HLB値はモノマー2が重合して生成する重合体のHLB値であり、組成はモノマー2が重合して生成する繰り返し単位の共重合体中の比率(mol%)である。
 またブロック(B)は,HLB値が9以上20未満であれば疎水性のモノマーを含んでよく,例えば上記親水性基を含むモノマーとアルキル(メタ)アクリレートやスチレン誘導体からなる共重合体を例示することができる。
 本発明におけるブロック(B)は、HLB値が9未満である場合は、疎水性が高くなるため細胞剥離に必要な冷却時間が長くなり、結果として細胞の活性低下を招くことから、HLB値が9以上20未満の範囲である必要がある。一方、HLB値が20に近づくと親水性が高くなり細胞が接着しづらくなることから、本発明におけるブロック(B)のHLB値は9以上19未満であることが好ましく、9以上17未満であることがより好ましい。
 本発明のブロック共重合体を構成するブロック(B)は、HLB値が9以上20以下にある重合体ブロックであれば特に制限は無いが、ブロック(B)を構成する繰り返し単位としては、下記一般式(4)~(9)の何れかで表される繰り返し単位が好ましい。ブロック(B)は1種類の繰り返し単位から成っていてもよく、2種類以上の繰り返し単位から成っていてもよい。
Figure JPOXMLDOC01-appb-C000030
 式中、Rは水素原子又はメチル基である。R10は、炭素数1~10のアルキレン基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、炭素数1~6のアルキレン基であることが好ましい。このようなアルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基などが例示され、エチレン基であることがより好ましい。また、R10は、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で(ポリ)オキシエチレン基が好ましい。
 R11は、炭素数1~4の2価の炭化水素基であり、細胞剥離に必要な冷却時間を短縮する点で、炭素数1~4のアルキレン基、例えばメチレン基、エチレン基、プロピレン基、ブチレン基であることが好ましく、エチレン基であることがより好ましい。R12、R13、及びR14は、互いに独立して、水素原子、メチル基、又はエチル基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、R12、R13、及びR14が同時に、水素原子又はメチル基であることが好ましく、同時にメチル基であることがより好ましい。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、エステル結合、アミド結合であることが好ましく、エステル結合がより好ましい。
 本発明における一般式(4)で表される繰り返し単位としては、2-メタクリロイルオキシエチルホスホリルコリン、2-アクリロイルオキシエチルホスホリルコリン、3-(メタ)アクリロイルオキシプロピルホスホリルコリン、4-(メタ)アクリロイルオキシブチルホスホリルコリン、6-(メタ)アクリロイルオキシヘキシルホスホリルコリン、10-(メタ)アクリロイルオキシデシルホスホリルコリン、ω-(メタ)アクリロイル(ポリ)オキシエチレンホスホリルコリン、2-アクリルアミドエチルホスホリルコリン、3-アクリルアミドプロピルホスホリルコリン、4-アクリルアミドブチルホスホリルコリン、6-アクリルアミドヘキシルホスホリルコリン、10-アクリルアミドデシルホスホリルコリン、およびω-(メタ)アクリルアミド(ポリ)オキシエチレンホスホリルコリンから選択されるモノマーを重合して生成する繰り返し単位を例示できる。これらの繰返し単位の中では、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、2-メタクリロイルオキシエチルホスホリルコリンを重合して生成する繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
 式中、R15は水素原子またはメチル基である。R16は、炭素数1~3のアルキレン基を含む(ポリ)オキシアルキレン基であり、-(CHCHO)-(CHO)-(CHCH(CH)O)-R17(式中、R17は水素原子、炭素数1~10のアルキル基、フルフリル基、テトラヒドロフルフリル基であり、iは1~30の整数であり、jおよびkは0~30の整数である。)で表される。
 本発明における一般式(5)で表される繰り返し単位としては、ポリエチレングリコールメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシメチルアクリレート、ヒドロキシメチルメタクリレート、2-メトキシエチルアクリレート、2-メトキシエチルメタクリレート、フルフリルアクリレート、フルフリルメタクリレート、テトラヒドロフルフリルアクリレートおよびテトラヒドロフルフリルメタクリレートから選択されるモノマーを重合して生成する繰り返し単位を例示できる。これらの繰返し単位の中では、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、ポリエチレングリコールメタクリレート、2-メトキシエチルアクリレートまたはテトラヒドロフルフリルアクリレートを重合して生成する繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 式中、R19は水素原子またはメチル基である。R20は、炭素数1~10のアルキレン基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素数1~6のアルキレン基であることが好ましく、エチレン基、プロピレン基であることがより好ましい。
 R21は、炭素数1~4のアルキレン基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、メチレン基、エチレン基、プロピレン基、ブチレン基等のアルキレン基であることが好ましく、エチレン基、プロピレン基であることがより好ましい。R22及びR23は、各々独立して、水素原子又は炭素数1~4の炭化水素基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、R22及びR23が同時に水素原子またはメチル基であることが好ましく、同時にメチル基であることがより好ましい。
 Aは、エステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、エステル結合、アミド結合であることが好ましく、エステル結合であることがより好ましい。また、Xはスルホン酸基、カルボキシル基、若しくは、リン酸基であることが好ましい。
 本発明における一般式(6)で表される繰り返し単位としては、ジメチル(2-メタクリロイルオキシエチル)(カルボキシラトメチル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(2-カルボキシラトエチル)アミニウム、ジメチル(2-アクリロイルオキシエチル)(2-カルボキシラトエチル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(3-カルボキシラトプロピル)アミニウム、ジメチル(2-アクリロイルオキシエチル)(3-カルボキシラトプロピル)アミニウム、ジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム、ジメチル(3-メタクリロイルアミノプロピル)(4-スルホナトブチル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(2-スルホナトエチル)アミニウム、ジメチル(2-アクリロイルオキシエチル)(2-スルホナトエチル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(3-スルホナトプロピル)アミニウム、ジメチル(2-アクリロイルオキシエチル)(3-スルホナトプロピル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(2-ホスホナトエチル)アミニウム、ジメチル(2-アクリロイルオキシエチル)(2-ホスホナトエチル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(3-ホスホナトプロピル)アミニウム、およびジメチル(2-アクリロイルオキシエチル)(3-ホスホナトプロピル)アミニウムから選択されるモノマーを重合して生成する繰り返し単位を例示できるが、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、ジメチル(2-メタクリロイルオキシエチル)(カルボキシラトメチル)アミニウム、ジメチル(2-メタクリロイルオキシエチル)(2-カルボキシラトエチル)アミニウム、ジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム、ジメチル(3-メタクリロイルアミノプロピル)(4-スルホナトブチル)アミニウムまたはジメチル(2-メタクリロイルオキシエチル)(2-スルホナトエチル)アミニウムを重合して生成する繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 式中、R24は水素原子またはメチル基である。R25、R26は各々独立して水素原子又はメチル基である。
 本発明における一般式(7)で表される繰り返し単位としては、アクリルアミドまたはN,N-ジメチルアクリルアミドを重合して生成する繰り返し単位を用いることができる。
Figure JPOXMLDOC01-appb-C000034
 式中、R28は水素原子又はメチル基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、メチル基を用いることが好ましい。R29は、炭素数2~7のアルキレン基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、炭素数2~4のアルキレン基であることが好ましく、エチレン基であることがより好ましい。R30及びR31は、互いに独立して、水素原子、メチル基、エチル基であり、細胞剥離に必要な冷却時間を短縮する点で、R30及びR31が同時に、水素原子又はメチル基であることが好ましく、同時にメチル基であることがより好ましい。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、エステル結合、アミド結合であることが好ましく、エステル結合であることがより好ましい。
 本発明における一般式(8)で表される繰り返し単位としては、アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、3-アミノプロピル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、3-ジエチルアミノプロピル(メタ)アクリレート、(メタ)アクリルアミドエチルアミン、ジメチル[(メタ)アクリルアミドエチル]アミン、ジエチル[(メタ)アクリルアミドエチル]アミン、3-(メタ)アクリルアミドプロピルアミン、ジメチル[3-(メタ)アクリルアミドプロピル]アミン、およびジエチル[3-(メタ)アクリルアミドプロピル]アミンをモノマーとして重合して生成する繰り返し単位を例示できるが、細胞剥離に必要な冷却時間を短縮する点で、2-ジメチルアミノメチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、ジメチル[(メタ)アクリルアミドメチル]アミン、またはジメチル[(メタ)アクリルアミドエチル]アミンを重合して生成する繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 式中、R28は水素原子又はメチル基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、メチル基を用いることが好ましい。R29は、炭素数2~7のアルキレン基であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、炭素数2~4のアルキレン基であることが好ましく、エチレン基であることがより好ましい。R30及びR31は、互いに独立して、水素原子、メチル基、エチル基であり、細胞剥離に必要な冷却時間を短縮する点で、R30及びR31が同時に、水素原子又はメチル基であることが好ましく、同時にメチル基であることがより好ましい。R32は、炭素数1~4の炭化水素基、水酸基または炭素数1~2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基であり、細胞剥離に必要な冷却時間を短縮する点で、メチル基、エチル基、水酸基またはメトキシ基で置換されていてもよいエチレン基であることが好ましい。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、エステル結合、アミド結合であることが好ましく、エステル結合であることがより好ましい。Xはハロゲン化物イオン、水酸化物イオン、酢酸イオンであり、細胞剥離に必要な冷却時間を短縮する点で、ハロゲン化物イオン、水酸化物イオンであることが好ましい。
 本発明における一般式(9)で表される繰り返し単位としては、トリメチル-2-メタクロイルオキシエチルアンモニウムクロリド、トリメチル-2-メタクロイルオキシエチルアンモニウムブロミド、トリメチル-3-メタクロイルオキシプロピルアンモニウムクロリド、トリメチル-3-メタクロイルオキシエチルアンモニウムブロミドをモノマーとして重合して生成する繰り返し単位や、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、3-ジエチルアミノプロピル(メタ)アクリレート、ジメチル[(メタ)アクリルアミドエチル]アミン、ジエチル[(メタ)アクリルアミドエチル]アミン、ジメチル[3-(メタ)アクリルアミドプロピル]アミン、ジエチル[3-(メタ)アクリルアミドプロピル]アミンをモノマーとして重合して生成する繰り返し単位と、炭素数1~4のハロゲン化アルキル、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2-クロロエチルメチルエーテルとを反応させて生成する繰り返し単位を例示できる。これらの繰り返し単位の中では、細胞剥離に必要な冷却時間を短縮する点および合成が容易な点で、2-ジメチルアミノエチル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、ジメチル[(メタ)アクリルアミドエチル]アミン、ジメチル[3-(メタ)アクリルアミドプロピル]アミン、をモノマーとして重合して生成する繰り返し単位と、炭素数1~4のハロゲン化アルキル、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2-クロロエチルメチルエーテルとを反応させて生成する繰り返し単位であることが好ましい。
 本発明のブロック共重合体を構成するブロック(B)として、前記一般式(4)から一般式(9)の何れかで表される繰り返し単位の中では、細胞接着性を制御できる点および細胞剥離に必要な冷却時間を短縮する点で、一般式(4)、一般式(5)、一般式(6)、または一般式(8)で表される繰り返し単位が好ましく、細胞接着性に優れる点で、一般式(5)または一般式(8)で表される繰り返し単位であることがより好ましい。
 本発明におけるブロック(C)は、0℃~50℃の範囲にLCSTを持たない、HLB値が0以上9未満の疎水性重合体ブロックである。ブロック(C)は、本発明のブロック共重合体の基材への接着に寄与するブロックである。なお、本明細書におけるHLB値は前述のとおりである。
 本発明におけるブロック(C)のHLB値が9以上である場合は、基材に塗布した場合に水中で剥離しやすく安定な膜を得ることができない。従って、本発明におけるブロック(C)のHLB値は0以上9未満の範囲にある必要があり、基材に塗布した場合に水中で剥離しない安定な膜が得られる点で、0以上8以下の範囲に有ることが好ましく、0以上7以下の範囲にあることがより好ましい。
 また、本発明におけるブロック(C)は、HLB値が0以上9未満の範囲にあれば、前述の親水性部を含むモノマーを含んでよく、例えば、前述の親水部を含むモノマーと、アルキル(メタ)アクリレートやスチレン誘導体との共重合体を例示することができる。
 本発明のブロック共重合体を構成するブロック(C)は、HLB値が0以上9未満にある重合体ブロックであれば特に制限は無いが、ブロック(C)を構成する繰り返し単位としては、下記一般式(10)または(11)で表される繰り返し単位が好ましい。ブロック(C)は1種類の繰り返し単位から成っていてもよく、2種類以上の繰り返し単位から成っていてもよい。
Figure JPOXMLDOC01-appb-C000036
 式中、R33は水素原子またはメチル基である。Yは水素原子、塩素原子、アセトキシ基、ニトリル基、炭素数6~30の芳香族炭化水素基を例示することができ、水中で剥離しない安定な膜を得る点で、水素原子、塩素原子、炭素数6~30の芳香族炭化水素基を用いることが好ましい。炭素数6~30の芳香族炭化水素基としてはフェニル基、1-ナフタレン基、2-ナフタレン基、9-アントラセン基、1-ピレン基およびその誘導体を例示することができる。
 本発明における一般式(10)で表される繰り返し単位としては、エチレン、塩化ビニル、酢酸ビニル、アクリロニトリル、スチレン、1-ビニルナフタレン、2-ビニルナフタレン、9-ビニルアントラセン、および1-ビニルピレンから選択されるモノマーを重合して生成する繰り返し単位を例示できる。これらの中では、基材に塗布した場合の接着性の点で、スチレン、1-ビニルナフタレン、2-ビニルナフタレン、9-ビニルアントラセン、1-ビニルピレンを重合して生成する繰り返し単位であることが好ましく、スチレンを重合して生成する繰り返し単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000037
 式中、R34は水素原子またはメチル基である。R35は炭素数1~30の炭化水素基であり、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ヘキシル基、イソヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ヘキサデシル基、n-オクタデシル基などを例示することができる。水中で剥離しない安定な膜を得る点で、n-ブチル基、イソブチル基、tert-ブチル基、n-ヘキシル基、イソヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ヘキサデシル基、n-オクタデシル基が用いられることが好ましい。
 Zは、エステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、水中で剥離しない安定な膜を得る点で、エステル結合、アミド結合であることが好ましく、エステル結合であることがより好ましい。
 本発明における一般式(11)で表される繰り返し単位としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-デシル(メタ)アクリレート、n-ウンデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、n-ヘキサデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、n-エイコシル(メタ)アクリレートなどの(メタ)アクリレート化合物、N-n-オクチル(メタ)アクリルアミド、N-n-デシル(メタ)アクリルアミド、N-n-ドデシル(メタ)アクリルアミド、N-n-ヘキサデシル(メタ)アクリルアミド、N-n-オクタデシル(メタ)アクリルアミドなどの(メタ)アクリルアミド化合物、N-ビニル-n-オクチルアミド、N-ビニル-n-デシルアミド、N-ビニル-n-ドデシルアミド、N-ビニル-n-ヘキサデシルアミドなどのN-ビニルアミド化合物から選択されるモノマーを重合して生成する繰り返し単位を例示できる。これらの中では、水中で剥離しない安定な膜を得る点で、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-トリデシル(メタ)アクリレートなどの(メタ)アクリレート化合物を重合して生成する繰り返し単位であることが好ましい。
 さらに、本発明におけるブロック(C)としては、上記以外にも、N-シクロヘキシルマレイミド、N-フェニルマレイミドなどのN-アルキルマレイミド化合物、フマル酸ジ-tert-ブチル、フマル酸ジ-n-ブチルなどのフマル酸ジエステル化合物、N-ビニルイミダゾール、N-ビニルカルバゾールなどから選ばれる少なくとも1つのモノマーを含む重合体を用いることができる。
 本発明のブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の各ブロックは、直接結合していてもよいし、低分子のスペーサーを介して結合していてもよい。スペーサーの原子数は、前述の本発明の効果を損なわない限り特に制限はなく、2原子から30原子であることが好ましい。また、スペーサーの構造も本発明の効果を損なわない限り特に制限はなく、直鎖状、分岐状、環状のいずれであってもよく、例えば、ブロック間の結合の少なくとも1つが下記一般式(12)および一般式(13)で表される2価の結合の内、少なくとも1種類の結合を含む2価の結合であってもよい。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 式中、Rは水素原子または炭素数1~20の炭化水素基であり、炭素数1~20の炭化水素基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ヘキシル基、n-オクチル基を例示することができるが、各ブロック間の結合が安定である点で、Rは水素原子であることが好ましい。
 本発明のブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の配列順に特に制限はなく、(A)-(B)-(C)、(A)-(C)-(B)、(B)-(A)-(C)を例示することができる。また、本発明のブロック共重合体は、各ブロック(A),(B)および(C)を2回以上含んでいてもよく、各ブロックはランダムに配列されていてもよい。例えば、(A)-(B)-(A)-(C)、(A)-(B)-(C)-(A)なども許容される。
 また、本発明のブロック共重合体は、ブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)以外に他の重合体ブロック(X)を含んでいてもよく、その場合の具体的な配列順としては、(A)-(B)-(C)-(X)、(A)-(B)-(X)-(C)、(A)-(C)-(B)-(X)、(A)-(C)-(X)-(B)、(A)-(X)-(B)-(C)、(A)-(X)-(C)-(B)、(B)-(A)-(C)-(X)、(B)-(A)-(X)-(C)、(B)-(C)-(A)-(X)、(B)-(X)-(A)-(C)、(C)-(A)-(B)-(X)、(C)-(B)-(A)-(X)を例示することができる。ここで、重合体ブロック(X)は、前述の本発明の効果を損なわない限り、本発明におけるブロック(A)、ブロック(B)、ブロック(C)の何れかであってもよく、これら以外のブロック、例えば、LCSTが50℃を超える温度応答性ブロックや、0℃~50℃の範囲にLCSTを持つ、HLB値(グリフィン法)が9以上20以下の範囲にある親水性重合体ブロックや、0℃~50℃の範囲にLCSTを持つ、HLB値(グリフィン法)が0以上9未満の範囲にある疎水性重合体ブロックであってもよい。これらの配列の中では、細胞剥離に必要な冷却時間が短縮できる点で、温度応答性重合体ブロックであるブロック(A)と親水性重合体ブロックであるブロック(B)が連続していない配列、すなわち、(A)-(C)-(B)、(A)-(C)-(B)-(X)、(A)-(C)-(X)-(B)、(A)-(X)-(B)-(C)、(A)-(X)-(C)-(B)、(B)-(C)-(A)-(X)、(B)-(X)-(A)-(C)が好ましく、(A)-(C)-(B)、(A)-(C)-(B)-(X)、(B)-(C)-(A)-(X)であることがより好ましい。 本明細書における、「部分共重合体」との用語は、必須のブロック(A)、(B)および(C)のうちいずれか1種が欠けている共重合体をいう。例えば、(A)-(B)、(A)-(C)、(A)-(B)-(X)、(A)-(X)-(C)などが該当する。
 本発明のブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の合計に対するブロック(A)の比率は、1~90mol%であれば特に制限はないが、本発明のブロック共重合体を含む表面処理剤で基材を被覆した細胞培養基材に細胞接着性を付与すると共に、細胞剥離に必要な冷却時間を短縮する点で、25~85mol%であることが好ましく、45~65mol%であることがより好ましい。前述の全繰り返し単位に対するブロック(A)の比率が1mol%未満であれば細胞接着性が低下し、90mol%を超えれば細胞剥離に必要な冷却時間が長くなる。
 本発明のブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の合計に対するブロック(B)の比率は、1~90mol%であれば特に制限はないが、本発明のブロック共重合体を含む表面処理剤で基材を被覆した細胞培養基材に細胞接着性を付与すると共に、細胞剥離に必要な冷却時間を短縮する点で、2~50mol%であることが好ましく、5~30mol%であることがより好ましい。前述の全繰り返し単位に対するブロック(B)の比率が1mol%未満であれば細胞剥離に必要な冷却時間が長くなり、90mol%を超えれば細胞接着性が低下する。
 本発明のブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の合計に対するブロック(C)の比率は、1~90mol%であれば特に制限はないが、本発明のブロック共重合体を含む表面処理剤で基材を被覆する場合に、基材への接着性を付与すると共に、細胞剥離に必要な冷却時間を短縮する点で、10~70mol%であることが好ましく、20~50mol%であることがより好ましい。前述の全繰り返し単位に対するブロック(C)の比率が1mol%未満であれば基材への接着性が低下し、冷却時にブロック共重合体が培地中に溶出する。90mol%を超えれば細胞剥離に必要な冷却時間が長くなる。
 本発明のブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の各ブロックの比率は、前述の全繰り返し単位に対する各ブロックの比率の範囲内であれば特に制限はないが、前述の細胞培養基材への細胞接着性の付与と細胞剥離に必要な冷却時間を短縮する点で、ブロック(A)とブロック(B)の比率は0.5:1から50:1の範囲にあることが好ましく、1.5:1から15:1の範囲にあることがより好ましい。また、本発明のブロック共重合体の基材への接着性の付与と細胞剥離に必要な冷却時間を短縮する点で、ブロック(A)とブロック(C)の比率は0.25:1から10:1の範囲にあることが好ましく、0.5:1から5:1の範囲にあることがより好ましい。さらに、前述の細胞培養基材への細胞接着性および本発明のブロック共重合体の基材への接着性の付与と、細胞剥離に必要な冷却時間を短縮する点で、ブロック(B)とブロック(C)の比率は0.01:1から5:1の範囲にあることが好ましく、0.1:1から2:1の範囲にあることがより好ましい。
 本発明のブロック共重合体の数平均分子量(Mn)は3,000以上1,000,000以下の範囲にあり、好ましくは4,000以上500,000以下、さらに好ましくは5,000以上200,000以下である。3,000未満の場合は細胞培養基材に被覆しても細胞培養中に基材から培地中に溶出してしまう。また、1,000,000を越える場合は溶液粘度が高くなり、細胞培養基材への被覆が困難になる。
 本発明のブロック共重合体は、以下の工程(1)から(3)を含む工程からなる方法により製造することができる。
 (1)本発明におけるブロック(A)、ブロック(B)、ブロック(C)のうち、何れか1種類のブロックを製造する工程、
 (2)本発明におけるブロック(A)、ブロック(B)、ブロック(C)のうち、工程(1)で製造したブロックを除く1種類のブロックと、工程(1)で製造したブロックを含むブロック重合体とが結合した、部分ブロック共重合体を製造する工程、
 (3)本発明におけるブロック(A)、ブロック(B)、ブロック(C)のうち、工程(2)で製造した部分ブロック共重合体を含むブロック共重合体を構成しない1種類のブロックと、工程(2)で製造した部分ブロック共重合体とが結合した、ブロック共重合体を製造する工程。
 本発明のブロック共重合体を構成する各ブロックは、異なる種類のモノマーとのブロック共重合が行える点で、リビングカチオン重合やリビングアニオン重合やリビングラジカル重合などのリビング重合により製造されることが好ましい。これらのリビング重合の中では、重合反応の制御が容易である点でリビングラジカル重合を用いることが好ましく、例えば、株式会社エヌ・ティー・エス発行、“ラジカル重合ハンドブック”、p.161~225(2010)に記載のリビングラジカル重合技術を用いて製造することがより好ましい。リビングラジカル重合技術としては、原子移動ラジカル重合法(ATRP)、可逆的付加開裂連鎖移動重合法(RAFT)、ニトロキシドを介した重合法(NMP)などを例示することができるが、これらの中では、汎用性が高く、細胞毒性を示す金属を使用しなくてもよい点でRAFT重合により製造することが好ましい。
 本発明のブロック共重合体の具体的な製造方法としては、ブロック(A)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合する方法(A-B-C)、ブロック(A)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合する方法(A-C-B)、ブロック(B)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合する方法(B-A-C)、ブロック(B)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合する方法(B-C-A)、ブロック(C)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合する方法(C-A-B)、ブロック(C)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合する方法(C-B-A)を例示することができる。
 また、前述したとおり、本発明のブロック共重合体は、本発明のブロック共重合体を構成するブロック(A)、ブロック(B)、ブロック(C)以外に他のブロック(X)を含んでいてもよく、その場合の具体的な製造方法としては、ブロック(A)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合し、さらに、ブロック(X)を生成するモノマーを重合する方法(A-B-C-X)、ブロック(A)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(X)を生成するモノマーを重合し、さらに、ブロック(C)を生成するモノマーを重合する方法(A-B-X-C)、ブロック(A)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合し、さらに、ブロック(X)を生成するモノマーを重合する方法(A-C-B-X)、ブロック(A)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(X)を生成するモノマーを重合し、さらに、ブロック(B)を生成するモノマーを重合する方法(A-C-X-B)、ブロック(A)を生成するモノマーを重合した後、ブロック(X)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合し、さらに、ブロック(C)を生成するモノマーを重合する方法(A-X-B-C)、ブロック(A)を生成するモノマーを重合した後、ブロック(X)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合し、さらに、ブロック(B)を生成するモノマーを重合する方法(A-X-C-B)、ブロック(B)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合し、さらに、ブロック(X)を生成するモノマーを重合する方法(B-A-C-X)、ブロック(B)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(X)を生成するモノマーを重合し、さらに、ブロック(C)を生成するモノマーを重合する方法(B-A-X-C)、ブロック(B)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合し、さらに、ブロック(X)を生成するモノマーを重合する方法(B-C-A-X)、ブロック(B)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(X)を生成するモノマーを重合し、さらに、ブロック(A)を生成するモノマーを重合する方法(B-C-X-A)、ブロック(B)を生成するモノマーを重合した後、ブロック(X)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合し、さらに、ブロック(C)を生成するモノマーを重合する方法(B-X-A-C)、ブロック(B)を生成するモノマーを重合した後、ブロック(X)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合し、さらに、ブロック(A)を生成するモノマーを重合する方法(B-X-C-A)、ブロック(C)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合し、未反応モノマーを除いた後、ブロック(X)を生成するモノマーを重合する方法(C-A-B-X)、ブロック(C)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(X)を生成するモノマーを重合し、さらに、ブロック(B)を生成するモノマーを重合する方法(C-A-X-B)、ブロック(C)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合し、さらに、ブロック(X)を生成するモノマーを重合する方法(C-B-A-X)、ブロック(C)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(X)を生成するモノマーを重合し、さらに、ブロック(A)を生成するモノマーを重合する方法(C-B-X-A)、ブロック(C)を生成するモノマーを重合した後、ブロック(X)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合し、さらに、ブロック(B)を生成するモノマーを重合する方法(C-X-A-B)、ブロック(C)を生成するモノマーを重合した後、ブロック(X)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合し、さらに、ブロック(A)を生成するモノマーを重合する方法(C-X-B-A)、ブロック(X)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合し、さらに、ブロック(C)を生成するモノマーを重合する方法(X-A-B-C)、ブロック(X)を生成するモノマーを重合した後、ブロック(A)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合し、さらに、ブロック(B)を生成するモノマーを重合する方法(X-A-C-B)、ブロック(X)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合し、さらに、ブロック(C)を生成するモノマーを重合する方法(X-B-A-C)、ブロック(X)を生成するモノマーを重合した後、ブロック(B)を生成するモノマーを重合し、次いで、ブロック(C)を生成するモノマーを重合し、さらに、ブロック(A)を生成するモノマーを重合する方法(X-B-C-A)、ブロック(X)を生成するモノマーを重合した後、ブロック(XCを生成するモノマーを重合し、次いで、ブロック(A)を生成するモノマーを重合し、さらに、ブロック(B)を生成するモノマーを重合する方法(X-C-A-B)、ブロック(X)を生成するモノマーを重合した後、ブロック(C)を生成するモノマーを重合し、次いで、ブロック(B)を生成するモノマーを重合し、さらに、ブロック(A)を生成するモノマーを重合する方法(X-C-B-A)を例示することができる。
 前述の、本発明のブロック共重合体の製造における中間段階の各ブロックの製造においては、各ブロックを生成するモノマーの重合が終了した段階で、反応溶液の一部を採取してH-NMRなどにより未反応モノマーの残量を測定し、未反応モノマーの残存量に応じて、生成した各ブロックを精製してもよく、精製せずに次のブロックを生成するモノマーの重合に使用してもよい。例えば、中間段階の各ブロックを生成するための重合が終了した段階での未反応モノマーの残存量が多く、未反応モノマーが次のブロックを生成するための重合に悪影響を与えると考えられる場合には、重合により生成したブロックを溶媒抽出や再沈殿、再結晶など、高分子の精製方法として公知の方法により精製することが好ましい。具体的には、未反応モノマー残存量が、モノマー仕込み量の20%以上の場合、前述の方法により重合により生成したブロックを精製することが好ましい。
 一方、中間段階の各ブロックを生成するための重合が終了した段階での未反応モノマーの残存量が少なく、次のブロックを生成するための重合に悪影響を与えないと考えられる場合には、重合により生成したブロックを精製せずに、次のブロックを生成するモノマーの重合に使用してもよい。具体的には、未反応モノマー残存量が、モノマー仕込み量の20%未満、好ましくは15%未満の場合、重合により生成したブロックを精製せずに、次のブロックを生成するモノマーの重合に使用してもよい。
 目的とする本発明のブロック共重合体の製造を終えた段階では、残存する未反応モノマーを除くため、前述の溶媒抽出や再沈殿、再結晶など、高分子の精製方法として公知の方法により、本発明のブロック共重合体を精製することが好ましい。
 さらに、本発明のブロック共重合体の製造方法としては、例えば、A. Michael, J. Prakt. Chem. 48, 94(1893)、R. Huisgen, in 1,3-Dipolar Cycloadditi-on Chemistry, ed. by A. Padwa, Wiley, New York, Vol. 1, 1-176(1984)、C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 67, 3057-3062、V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed. 41, 2596-2599(2002)に記載の、クリック反応を用いることもできる。
 クリック反応を用いた本発明のブロック共重合体の具体的な製造方法としては、例えば、前述のRAFT重合によりブロック共重合体を製造する場合、ブロック(B)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(B)を合成し、さらにブロック(A)を生成するモノマーを重合して、ブロック(B)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(C)を反応させる方法((A-B)+C)、ブロック(B)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(B)を合成し、さらにブロック(C)を生成するモノマーを重合して、ブロック(B)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(A)を反応させる方法(A+(B-C))、ブロック(C)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(C)を合成し、さらにブロック(A)を生成するモノマーを重合して、ブロック(C)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(B)を反応させる方法((A-C)+B)、ブロック(C)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(C)を合成し、さらにブロック(B)を生成するモノマーを重合して、ブロック(C)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(A)を反応させる方法(A+(C-B))、ブロック(A)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(A)を合成し、さらにブロック(B)を生成するモノマーを重合して、ブロック(A)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(C)を反応させる方法((B-A)+C)、ブロック(A)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(A)を合成し、さらにブロック(C)を生成するモノマーを重合して、ブロック(A)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(B)を反応させる方法(B+(A-C))、ブロック(C)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(C)を合成し、さらにブロック(B)を生成するモノマーを重合して、ブロック(C)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(A)を反応させる方法((B-C)+A)、ブロック(C)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(C)を合成し、さらにブロック(A)を生成するモノマーを重合して、ブロック(C)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(B)を反応させる方法(B+(C-A))、ブロック(A)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(A)を合成し、さらにブロック(C)を生成するモノマーを重合して、ブロック(A)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(B)を反応させる方法((C-A)+B)、ブロック(A)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(A)を合成し、さらにブロック(B)を生成するモノマーを重合して、ブロック(A)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(C)を反応させる方法(C+(A-B))、ブロック(B)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(B)を合成し、さらにブロック(C)を生成するモノマーを重合して、ブロック(B)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(A)を反応させる方法((C-B)+A)、ブロック(B)を生成するモノマーを重合して末端にアルキニル基(またはアジド基)を有するブロック(B)を合成し、さらにブロック(A)を生成するモノマーを重合して、ブロック(B)側の末端にアルキニル基(またはアジド基)を有する部分ブロック体を合成した後、末端にアジド基(またはアルキニル基)を有するブロック(C)を反応させる方法(C+(B-A))などを例示することができる。
 前述のクリック反応を用いた本発明のブロック共重合体の製造においては、モノマーの重合により生成したブロックを用い、クリック反応により本発明のブロック共重合体を製造することから、クリック反応時の副反応を抑制する点で、各ブロックを生成するモノマーの重合が終了した段階で、生成した各ブロックを精製することが好ましい。
 また、前述のクリック反応を用いて本発明のブロック共重合体を製造した場合には、本発明のブロック共重合体中の各ブロック間の少なくとも一つに、前述の一般式(1)または(2)に示した2価の結合が導入される。
 2.表面処理剤
 本発明の基材用表面処理剤は、本発明のブロック共重合体を含むものである。本発明の表面処理剤の用途に特に制限はないが、好ましくは、シャーレ、マルチウェルプレート、フラスコ、マイクロキャリアなどの細胞培養基材用の表面処理剤である。
 本発明の表面処理剤は、基材に塗布するだけで表面処理を行うことができるものである。本発明の表面処理剤は、本発明のブロック共重合体以外に、本発明のブロック共重合体を溶解することができる溶媒を含むものであってもよい。本発明のブロック共重合体を溶解できる溶剤に特に制限はないが、基材に塗布した際に基材を溶解することがなく、さらに、基材に塗布後に蒸発して残留しない点で、水や炭素数1~3のアルコール系溶媒が好ましく、残留しても培養細胞に及ぼす影響が小さい点で、エタノール、または、水とエタノールの混合溶媒が特に好ましい。本発明の表面処理剤は、通常、溶液状のものであるが、上記の溶媒で溶解可能な粉末状であってもよい。
 本発明の表面処理剤の対象基材に特に制限はないが、前記ブロック共重合体は疎水性相互作用で基材に接着することから、好ましくは各種疎水性ポリマー材料が用いられる。疎水性ポリマー材料としては、例えば、ポリメタクリル酸メチル等のアクリル系ポリマー、ポリジメチルシロキサン等の各種シリコーンゴム、ポリスチレン、ポリエチレンテレフタレート、ポリカーボネート等が挙げられる。また、金属基材、セラミックス基材あるいはガラス基材にシランカップリング剤で表面処理したものも用いることができる。
 また、基材の形状は、特に制限はないが、例えば、板状、ビーズ状および繊維状の形状のほか、板状の基材に設けられた穴や溝や突起なども挙げられる。本発明の表面処理剤を基材に塗布する方法としては、例えば、はけ塗り、ディップコーティング、スピンコーティング、バーコーティング、流し塗り、スプレー塗装、ロール塗装、エアーナイフコーティング、ブレードコーティングなど通常知られている各種の方法を用いることが可能である。
 3.膜
本発明の膜は、本発明の表面処理剤を各種基材に塗布した後、乾燥することによって得られる膜である。本発明のブロック共重合体中にブロック(C)を含むことで細胞培養基材に対して接着性を有するとともに、本発明のブロック共重合体中にブロック(A)を含むことで、細胞培養温度である37℃以上では膜表面は疎水性を示すことによりタンパク質などの付着を可能とし、細胞の接着培養が可能となる。さらに、細胞培養後に、温度降下させることで、膜表面が親水性に変化し、細胞剥離を促すことができ、本発明のブロック共重合体中にブロック(B)を含むことで、剥離に必要な冷却時間を短縮することが可能になる。
 本発明の膜の厚さは1nm以上10μm以下であり、好ましくは10nm以上5μm以下であり、より好ましくは30nm以上500nm以下であり、さらに好ましくは50nm以上200nm以下である。1nm未満の場合は細胞培養基材に被覆した時に細胞剥離に必要な冷却時間が長くなってしまう。10μmを越える場合は細胞培養基材に被覆した時に細胞の接着性が低下する。
 4.細胞培養用基材および細胞培養基材を用いた細胞培養方法
本発明の細胞培養用基材は、本発明の膜で基材表面を被覆した細胞培養用基材である。本発明の細胞培養基材による細胞培養は、培養基材の表面に被覆されたブロック共重合体のLCSTよりも高い温度で行われるが、ヒト由来細胞を用いる場合は、高い培養効率を得ることを目的にヒトの体温付近で行うことが好ましく、35~39℃の温度範囲で行うことがより好ましく、36~38℃の温度範囲で行うことがさらに好ましい。その他の培養条件は特に制限されず、当分野において通常行われる条件下で培養を行ってよい。例えば、培地としては、ウシ胎児血清等の血清が添加されているものでもよいし、無血清培地でもよい。
 培養後、増殖した細胞を細胞培養基材から剥離するには、周囲の温度を本発明のブロック共重合体を構成するブロック(A)のLCSTよりも低い温度、好ましくはLCSTより10℃低い温度以下に変化させるだけでよい。LCST以下に冷却することによる細胞培養基材からの細胞剥離は、細胞を培養していた培養液中においても、その他の培地或いはリン酸緩衝液中においても可能であり、目的に応じて選択することができる。その際、増殖細胞を効果的にかつ容易に剥離させるため、細胞培養基材を軽くたたいたり、揺らしたり、更にはピペット等を使用して培地を撹拌するなどしてもよい。
 本発明の細胞培養基材を用いることによって、好ましくは培養した細胞が冷却のみで最大径5μm~300μmの大きさで剥離することができる。さらに好ましくは冷却のみで単一細胞の形状で剥離することができる。剥離細胞の大きさ、形状は、ブロック共重合体の組成および分子量、細胞培養基材の構造、細胞培養基材の製造方法、細胞培養方法、培養される細胞の種類を選択することによって調整できる。例えば、ブロック共重合体の中のブロック(B)の比率を上げること、細胞培養基材の製造方法によってブロック共重合体の厚さを増加させること、培養基材表面の凹凸を増加させることによって、細胞凝集塊の大きさを小さくでき、さらに単一細胞で剥離することができる。
 本発明の細胞培養基材を用いて培養される細胞としては、温度降下による刺激付与前の細胞培養基材の表面に接着可能なものであれば特に制限されるものではない。例えば、ヒト骨髄由来間葉系幹細胞、ヒト脂肪組織由来間葉系幹細胞、ヒト肺由来線維芽細胞、ヒト皮膚線維芽細胞、チャイニーズハムスター卵巣由来CHO細胞、マウス結合組織L929細胞、ヒト胎児腎臓由来細胞HEK293細胞、ヒト子宮頸癌由来HeLa細胞等の種々の培養細胞株に加え、例えば生体内の各組織、臓器を構成する上皮細胞や内皮細胞、収縮性を示す骨格筋細胞、平滑筋細胞、心筋細胞、神経系を構成するニューロン細胞、グリア細胞、線維芽細胞、生体の代謝に関与する肝実質細胞、肝非実質細胞や脂肪細胞、分化能を有する細胞として、種々の組織に存在する幹細胞、さらにはそれらから分化誘導した細胞等を用いることができる。これら以外でも、血液、リンパ液、髄液、喀痰、尿又は便に含まれる細胞(生細胞)や、体内あるいは環境中に存在する微生物、ウイルス、原虫等を例示できる。
 以下に本発明の実施例を説明するが、本発明はこれら実施例により何ら制限されるものではない。なお、断りのない限り、試薬は市販品を用いた。
 <ブロック共重合体の組成> 
核磁気共鳴測定装置(日本電子製、商品名JNM-ECZ400S/L1)を用いたプロトン核磁気共鳴分光(H-NMR)スペクトル分析より求めた。
 <ブロック共重合体の分子量、分子量分布>
重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置は東ソー(株)製 HLC-8320GPCを用い、カラムは東ソー製 TSKgel Super AWM-Hを2本用い、カラム温度を40℃に設定し、溶離液は10mMトリフルオロ酢酸ナトリウムを含む1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールまたは10mM臭化リチウムを含むN,N-ジメチルホルムアミドを用いて測定した。測定試料は1.0mg/mLで調製して測定した。分子量の検量線は、分子量既知のポリメタクリル酸メチル(ポリマーラボラトリーズ製)を用いた。
 <基材表面の対水接触角>
水中、40℃および20℃での気泡接触角(θ)(°)を測定し、40℃および20℃の対水接触角(180-θ)(°)を算出した。θは協和界面科学(株)製接触角計DM300を用いて、水中、3μLの気泡の接触角を測定した。40℃および20℃の対水接触角の差が大きいほど、温度応答性、即ち温度変化により細胞を剥離させる能力が高いといえる。
 実施例1
[重合体ブロック(B)の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.50g(5.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド25.3mg(63μmol)、開始剤としてアゾビスイソブチロニトリル1mg(6μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液10.2mLに溶解した。窒素バブリングを30分行った後、65℃で18時間反応させた。反応後、反応溶液をアセトン:メタノール=20:1混合溶液200mLに注ぎ込み、析出した黄色固体をろ過し、1日減圧乾燥し、2-メタクリロイルオキシエチルホスホリルコリンの重合体(重合体ブロック(B))を得た。2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)の繰り返し単位の親水部式量は炭素5個、水素8個、窒素1個、酸素6個、リン1個の合計(209.1)であり、繰り返し単位総式量は295.3であり、HLB値(グリフィン法)は14であった。
[部分ブロック共重合体の合成]
試験管に上記重合体ブロック(B)1.50g、n-ブチルメタクリレート1.71g(12.0mmol)、アゾビスイソブチロニトリル2mg(13μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液12mLに溶解した。窒素バブリングを30分行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン300mLに注ぎ込み、析出した淡黄色固体をろ過し、1日減圧乾燥して、2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体を得た。n-ブチルメタクリレート重合体ブロック(C)の繰り返し単位の親水部式量は炭素1個、酸素2個の合計(44.0)であり、繰り返し単位総式量は142.2であり、HLB値(グリフィン法)は6であった。
[ブロック共重合体の合成]
試験管に上記部分ブロック共重合体0.75g、N-イソプロピルアクリルアミド0.93g(8.2mmol)、アゾビスイソブチロニトリル0.3mg(2μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液8.2mLに溶解した。窒素バブリングを30分行った後、65℃で24時間反応させた。反応後、反応溶液をヘキサン200mLに注ぎ込み、析出した白色固体をろ過し、1日減圧乾燥して、2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体を得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体0.01gをエタノール4.99gに溶解し、ブロック共重合体の0.2wt%エタノール溶液を作製した。さらに、0.2wt%エタノール溶液1mLとエタノール9mLを混合し、0.02wt%の表面処理剤を調製した。
[膜評価]
コーニング社製細胞培養用ポリスチレン製6ウェルプレートの各ウェルに、得られた表面処理剤を0.2mLずつ加え、室温で乾燥した。さらに、減圧乾燥を6時間行い、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは50nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)を、37℃、CO濃度5%で培養した。培養液は10vol%ウシ胎児血清を含むダルベッコ・フォークト変法イーグル最小必須培地(10vol%FBS/DMEM)を用いた。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞は100%剥離した。
 参考例1
[表面処理剤の合成]
実施例1[部分ブロック共重合体の合成]で合成した2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体をブロック共重合体の代わりに用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で合成を行い、0.02wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは50nmであった。40℃および20℃で対水接触角評価したが、同等の接触角(15°)で、何れも高い親水性を示し、温度応答性を示さなかった。
[細胞培養評価]
上記にて製造した表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の細胞培養評価を5日間行ったが、細胞は基材に接着せず、増殖は確認できなかった。
 実施例2
[細胞培養評価および剥離評価]
実施例1[膜評価]で製造した、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は70%剥離した。
 参考例2
[細胞培養評価]
参考例1[膜評価]で製造した、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体からなる膜が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の細胞培養評価を5日間行ったが、細胞は基材に接着せず、増殖は確認できなかった。
 実施例3
[重合体ブロック(B)の合成]
4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッドを43mg(106μmol)、アゾビスイソブチロニトリル1.7mg(10μmol)を用い、14時間反応させたこと以外は、実施例1[重合体ブロック(B)の合成]と同じ方法で合成を行い、2-メタクリロイルオキシエチルホスホリルコリンの重合体(重合体ブロック(B))を得た。
[部分ブロック共重合体の合成]
上記重合体ブロック(B)1.0g、n-ブチルメタクリレート2.40g(16.9mmol)、アゾビスイソブチロニトリル2.5mg(15μmol)、1,4-ジオキサン/エタノール=1:1混合溶液17mLを用い、30時間反応させたこと以外は、実施例1[部分ブロック共重合体の合成]と同じ方法で合成を行い、2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体を得た。
[ブロック共重合体の合成]
上記重合体部分ブロック0.50g、N-イソプロピルアクリルアミド0.62g(5.5mmol)、アゾビスイソブチロニトリル0.2mg(1μmol)、1,4-ジオキサン/エタノール=1:1混合溶液5.5mLを用いたこと以外は、実施例1[ブロック共重合体の合成]と同じ方法で合成を行い、2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体を得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の合成]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは100nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は100%剥離した。
 参考例3
[表面処理剤の合成]
実施例3[部分ブロック共重合体の合成]で合成した2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体をブロック共重合体の代わりに用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、0.02wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは50nmであった。40℃および20℃で対水接触角評価したが、同等の接触角(23°)で、何れも高い親水性を示し、温度応答性を示さなかった。
[細胞培養評価]
上記にて製造した表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の細胞培養評価を5日間行ったが、細胞は基材に接着せず、増殖は確認できなかった。
 実施例4
[細胞培養評価および剥離評価]
実施例3[膜評価]で製造した表面に温度応答性膜が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は70%剥離した。
 参考例4
[細胞培養評価]
参考例3[膜評価]で製造した表面に2-メタクリロイルオキシエチルホスホリルコリン重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(B)からなる部分ブロック共重合体が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の細胞培養評価を5日間行ったが、細胞は基材に接着せず、増殖は確認できなかった。
 実施例5(クリック反応で製造)
[末端アルキニル基を有するn-ブチルメタクリレート重合体ブロックの合成]
三方コックを備えた200mL試験管に、4-シアノペンタン酸ジチオベンゾエートのプロパルギルエステル体0.57g(1.8mmol)、n-ブチルメタクリレート12.80g(90mmol)、アゾビスイソブチロニトリル60mg(0.36mmol)を加え、次いで1,4-ジオキサン45mL、エタノール45mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で24時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をメタノール300mLに注ぎ、底に付着した赤色油状物質を回収した。メタノール100mLで2回洗浄し、得られた油状物質を真空乾燥したところ、末端アルキニル基を有するn-ブチルメタクリレート重合体ブロック(C)12.11gを得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=6850、Mw/Mn=1.14であった。
[末端アルキニル基を有する部分ブロック共重合体の合成]
三方コックを備えた300mL試験管に、末端アルキニル基を有するn-ブチルメタクリレート重合体ブロック(C)5.95g(0.7mmol)、N-イソプロピルアクリルアミド15.84g(140mmol)、アゾビスイソブチロニトリル11.5mg(0.07mmol)を加え、次いで、1,4-ジオキサン140mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で43時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン1000mLに注ぎ、赤色沈殿物を回収した。ヘキサン500mLで2回洗浄し、得られた赤色物を真空乾燥したところ、N-イソプロピルアクリルアミド重合体ブロック(A)とn-ブチルメタクリレート重合体ブロック(C)からなる末端アルキニル基を有する部分ブロック共重合体15.26gを得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=21400、Mw/Mn=1.20であった。
[末端アジド基を有する重合体ブロック(B)の合成]
三方コックを備えた200mL試験管に、4-シアノペンタン酸ジチオベンゾエートの3-アジドプロピルエステル体0.20g(0.57mmol)、ポリエチレングリコールメタクリレート(i=4.5, j=0, R16=メチル基)(Aldrich製、Mn=300)12.01g(40mmol)、アゾビスイソブチロニトリル18.8mg(0.11mmol)を加え、次いで、1,4-ジオキサン28mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で2.5時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン500mLに注ぎ、底に付着した赤色油状物を回収した。ヘキサン300mLで2回洗浄し、得られた赤色油状物を真空乾燥したところ、末端アジド基を有するポリエチレングリコールメタクリレート重合体ブロック(B)5.50gを得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=11400、Mw/Mn=1.14であった。ポリエチレングリコールメタクリレート重合体ブロック(B)の繰り返し単位中の親水部の式量は炭素10個、水素18個、酸素6.5個の合計(242.2)であり、繰り返し単位の総式量は298.4であり、HLB値(グリフィン法)は16であった。
[ブロック共重合体の合成]
三方コックを備えた50mL試験管に、前記N-イソプロピルアクリルアミド重合体ブロック(A)とn-ブチルメタクリレート重合体ブロック(C)からなる末端アルキニル基を有する部分ブロック共重合体0.50g、上記末端アジド基を有するポリエチレングリコールメタクリレート重合体ブロック(B)0.94gを加え、窒素置換を行った。窒素バブリングを行ったDMF9mLを加え溶解させた。臭化銅(I)38mg、2,2’-ビピリジル84mg、DMF1mLで別途調製した溶液を窒素気流下で試験管に加え、室温で48時間反応させた。反応終了後、三方コックを取り外し、空気に触れさせて銅触媒を失活させた。反応液を活性アルミナを詰めたカラムに通して銅触媒を取り除き、その溶液をロータリーエバポレーターで濃縮した。濃縮液を純水50mLにゆっくり注ぎ、析出した固形分を遠心分離(3000rpm×3分)により回収した。得られた固形分をメタノール2mL溶解させ、再度純水50mLにゆっくり注ぎ、析出した固形分を遠心分離(3000rpm×3分)により回収した。真空乾燥により、ポリエチレングリコールメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体0.27gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面にポリエチレングリコールメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは95nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した表面にポリエチレングリコールメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は100%剥離した。
 実施例6(クリック反応で製造)
[末端アジド基を有する重合体ブロック(B)の合成]
三方コックを備えた200mL試験管に、4-シアノペンタン酸ジチオベンゾエートの3-アジドプロピルエステル体0.20g(0.57mmol)、2-ジメチルアミノエチルメタクリレート6.28g(40mmol)、アゾビスイソブチロニトリル18.8mg(0.11mmol)を加え、次いで、1,4-ジオキサン28mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で8時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン400mL注ぎ、底に付着した赤色油状物を回収した。ヘキサン300mLで2回洗浄し、得られた赤色油状物を真空乾燥したところ、末端アジド基を有する2-ジメチルアミノエチルメタクリレート重合体ブロック(B)3.71gを得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=7000、Mw/Mn=1.12であった。2-ジメチルアミノエチルメタクリレート重合体ブロック(B)の繰り返し単位の親水部式量は炭素3個、水素4個、窒素1個、酸素2個の合計(86.1)であり、繰り返し単位総式量は157.2であり、HLB値(グリフィン法)は11であった。
[ブロック共重合体の合成]
末端アジド基を有するポリエチレングリコールメタクリレート重合体ブロック(B)0.94gの代わりに上記末端アジド基を有する2-ジメチルアミノエチルメタクリレート重合体ブロック(B)0.60gを用いたこと以外は実施例5[ブロック共重合体の合成]と同様の方法で合成を行い、2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体0.20gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは80nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した表面に2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は100%剥離した。
 実施例7(クリック反応で製造)
[末端アジド基を有する重合体ブロック(B)の合成]
三方コックを備えた200mL試験管に、4-シアノペンタン酸ジチオベンゾエートの3-アジドプロピルエステル体0.20g(0.57mmol)、2-メトキシエチルアクリレート5.20g(40mmol)、アゾビスイソブチロニトリル18.8mg(0.11mmol)を加え、次いで、1,4-ジオキサン28mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で9時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン600mL注ぎ、底に付着した赤色油状物を回収した。ヘキサン300mLで2回洗浄し、得られた赤色油状物を真空乾燥したところ、末端アジド基を有するメトキシエチルアクリレート重合体ブロック(B)2.48gを得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=8100、Mw/Mn=1.09であった。2-メトキシエチルアクリレート重合体ブロック(B)の繰り返し単位の親水部式量は炭素3個、水素4個、酸素3個の合計(88.1)であり、繰り返し単位総式量は130.1であり、HLB値(グリフィン法)は14であった。
[ブロック共重合体の合成]
末端アジド基を有するポリエチレングリコールメタクリレート重合体ブロック(B)0.94gの代わりに上記末端アジド基を有する2-メトキシエチルアクリレート重合体ブロック(B)0.66gを用いたこと以外は実施例5[ブロック共重合体の合成]と同様の方法で合成を行い、2-メトキシエチルアクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体0.23gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-メトキシエチルアクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは48nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した表面に2-メトキシエチルアクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は80%剥離した。
 実施例8(クリック反応で製造)
[末端アルキニル基を有するスチレン重合体ブロックの合成]
三方コックを備えた200mL試験管に、2-ブロモイソ酪酸のプロパルギルエステル体0.10g(0.49mmol)、スチレン9.37g(90mmol)、2,2‘-ビピリジル94mg(0.6mmol)、塩化銅(I)25mg(0.25mmol)、アスコルビン酸25mg(0.13mmol)を加え、次いで1,4-ジオキサン90mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で24時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をメタノール300mLに注ぎ、底に付着した油状物質を回収した。メタノール100mLで2回洗浄し、得られた油状物質を真空乾燥したところ、末端アルキニル基を有するスチレン重合体ブロック(C)を得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=19,000、Mw/Mn=1.14であった。スチレン重合体ブロック(C)の繰り返し単位の親水部は存在せず、HLB値(グリフィン法)は0であった。
[末端アルキニル基を有する部分ブロック共重合体の合成]
三方コックを備えた300mL試験管に、末端アルキニル基を有するスチレン重合体ブロック(C)6.0g、2-エトキシエチルビニルエーテル8.7g(75mmol)、2,2‘-ビピリジル94mg(0.6mmol)、塩化銅(I)25mg(0.25mmol)、アスコルビン酸25mg(0.13mmol)を加え、次いで、イソプロピルアルコール27mL、水63mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で43時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をメタノール1000mLに注ぎ、沈殿物を回収した。メタノール500mLで2回洗浄し、得られた沈殿物を真空乾燥し、2-エトキシエチルビニルエーテル重合体ブロック(A)とスチレン重合体ブロック(C)からなる末端アルキニル基を有する部分ブロック共重合体を得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=55,000、Mw/Mn=1.20であった。
[末端アジド基を有する重合体ブロック(B)の合成]
三方コックを備えた200mL試験管に、4-シアノペンタン酸ジチオベンゾエートの3-アジドプロピルエステル体0.20g(0.57mmol)、ジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム11.1g(40mmol)、アゾビスイソブチロニトリル18.8mg(0.11mmol)を加え、次いで、1,4-ジオキサン28mLを加えて溶解させた。試験管を液体窒素に浸して凍結し、真空ポンプで減圧脱気を行い、室温に戻した。この操作を3回繰り返し、試験管内の溶存酸素を除去した。試験管を65℃に昇温し、65℃で9時間重合した。反応終了後、反応溶媒をロータリーエバポレーターにて減圧留去し、反応液を濃縮した。濃縮液をヘキサン600mLに注ぎ、底に付着した赤色油状物を回収した。ヘキサン300mLで2回洗浄し、得られた赤色油状物を真空乾燥したところ、末端アジド基を有するジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)2.48gを得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=17,300、Mw/Mn=1.09であった。ジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)の繰り返し単位の親水部式量は炭素3個、水素5個、窒素2個、酸素4個、硫黄1個の合計(165.1)であり、繰り返し単位総式量は292.4であり、HLB値(グリフィン法)は11であった。
[ブロック共重合体の合成]
三方コックを備えた50mL試験管に、2-エトキシエチルビニルエーテル重合体ブロック(A)とスチレン重合体ブロック(C)(HLB値(グリフィン法)=0)からなる末端アルキニル基を有する部分ブロック共重合体0.50g、上記末端アジド基を有するジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)0.94gを加え、窒素置換を行った。窒素バブリングを行ったDMF9mLを加え溶解させた。臭化銅(I)38mg、2,2’-ビピリジル84mg、DMF1mLで別途調製した溶液を窒素気流下で試験管に加え、室温で48時間反応させた。反応終了後、三方コックを取り外し、空気に触れさせて銅触媒を失活させた。反応液を活性アルミナを詰めたカラムに通して銅触媒を取り除き、その溶液をロータリーエバポレーターで濃縮した。濃縮液を純水50mLにゆっくり注ぎ、析出した固形分を遠心分離(3000rpm×3分)により回収した。得られた固形分をメタノール2mLに溶解させ、再度純水50mLにゆっくり注ぎ、析出した固形分を遠心分離(3000rpm×3分)により回収した。真空乾燥により、ジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)とスチレン重合体ブロック(C)と2-エトキシエチルビニルエーテル重合体ブロック(A)からなるブロック共重合体0.27gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面にジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)とスチレン重合体ブロック(C)と2-エトキシエチルビニルエーテル重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは45nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した表面にジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)とスチレン重合体ブロック(C)と2-エトキシエチルビニルエーテル重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は72%剥離した。
 実施例9(クリック反応で製造)
[末端アルキニル基を有する部分ブロック共重合体の合成]
2-エトキシエチルビニルエーテル8.7g(75mmol)の代わりにメチルビニルエーテル4.4g(75mmol)を用いたこと以外は、実施例8[末端アルキニル基を有する部分ブロック共重合体の合成]と同様の方法で合成を行い、メチルビニルエーテル重合体ブロック(A)とスチレン重合体ブロック(C)からなる末端アルキニル基を有する部分ブロック共重合体を得た。GPCを用いて、得られたポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)を求めたところ、Mn=51,000、Mw/Mn=1.20であった。
[ブロック共重合体の合成]
2-エトキシエチルビニルエーテル重合体ブロック(A)とスチレン重合体ブロック(C)からなる末端アルキニル基を有する部分ブロック共重合体0.50gの代わりにメチルビニルエーテル重合体ブロック(A)とスチレン重合体ブロック(C)からなる末端アルキニル基を有する部分ブロック共重合体0.45g、を用いたこと以外は実施例8[ブロック共重合体の合成]と同様の方法で合成を行い、ジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)とスチレン重合体ブロック(C)とメチルビニルエーテル重合体ブロック(A)からなるブロック共重合体0.20gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表1に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面にジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)とスチレン重合体ブロック(C)とメチルビニルエーテル重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは45nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて製造した表面にジメチル(3-メタクリロイルアミノプロピル)(3-スルホナトプロピル)アミニウム重合体ブロック(B)とスチレン重合体ブロック(C)とメチルビニルエーテル重合体ブロック(A)からなるブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は73%剥離した。
 比較例1
[膜評価]
セルシード(株)製UpCell(R)35mmφディッシュの、40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40°よりも高く、本発明の培養基材よりも20℃での親水性が低いことが分かった。
[細胞培養評価および剥離評価]
上述のセルシード(株)製UpCell(R)35mmφディッシュを用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認され、細胞増殖後の細胞剥離評価では、3分冷却することで細胞は30%剥離した。また15分冷却することで細胞は65%剥離した。
 比較例2
[重合体ブロック(C)の合成]
100mLの2口ナス型フラスコにn-ブチルメタクリレート2.240g、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド0.073g、アゾビスイソブチルニトリル0.004gを加え、1,4-ジオキサン10mLに溶解した。窒素バブリングを30分行った後、65℃で12時間反応させた。反応後、メタノールで再沈し、n-ブチルメタクリレートの重合体ブロック(C)を得た。
[部分ブロック共重合体の合成]
100mLの2口ナス型フラスコにn-ブチルメタクリレートの重合体ブロック(C)1.200g、N-イソプロピルアクリルアミド1.210g、アゾビスイソブチルニトリル0.004gを加え、1,4-ジオキサン/エタノール=1:2混合溶液15mLに溶解した。窒素バブリングを30分行った後、65℃で12時間反応させた。反応後、純水で再沈し、n-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなる部分ブロック共重合体を得た。
[表面処理剤の調製]
上記部分ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面にn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなる部分ブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは100nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40°よりも高く、本発明の培養基材よりも20℃での親水性が低いことが分かった。
[細胞培養評価および剥離評価]
上記にて製造した表面に温度応答性膜が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認され、細胞増殖後の細胞剥離評価では、3分冷却することで細胞は24%剥離した。また15分冷却することで細胞は60%剥離した。
 比較例3
[表面処理剤の調製]
実施例5[末端アルキニル基を有する部分ブロック共重合体の合成]で合成した部分ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面にn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなる部分ブロック共重合体が導入された細胞培養基材を調製した。膜の厚さは80nmであった。40℃および20℃での対水接触角を表1に示す。20℃での対水接触角は40°よりも高く、本発明の培養基材よりも20℃での親水性が低いことが分かった。
[細胞培養評価および剥離評価]
上記にて製造した表面に温度応答性膜が導入された細胞培養基材を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認され、細胞増殖後の細胞剥離評価では、3分冷却することで細胞は26%剥離した。また15分冷却することで細胞は63%剥離した。
 比較例4
[膜評価]
コーニング社製細胞培養表面処理35mmφディッシュの、40℃および20℃での対水接触角を表1に示す。40℃および20℃は同等の接触角(48°)を示し、温度応答性を示さなかった。
[細胞培養評価および剥離評価]
上述のコーニング製の細胞培養表面処理φ35mmディッシュを用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認されたが、細胞増殖後の細胞剥離評価では、15分冷却しても細胞は全く剥離しなかった。
 実施例10
[重合体ブロック(B)の合成]
三方コックを備えた100mL試験管に2-ジメチルアミノエチルメタクリレート2.4g(16.0mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド108mg(267μmol)、開始剤としてアゾビスイソブチロニトリル8.8mg(53μmol)を加え、1,4-ジオキサン10mLに溶解した。アルゴンバブリングを10分行った後、65℃で29時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-ジメチルアミノエチルメタクリレート仕込み量の93%が重合していることを確認し、2-ジメチルアミノエチルメタクリレートの重合体(重合体ブロック(B))を合成できた。
[部分ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン10mL、n-ブチルメタクリレート2.4g(16.9mmol)、アゾビスイソブチロニトリル8.8mg(53μmol)を加え、アルゴンバブリングを10分行った後、65℃で25時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、n-ブチルメタクリレート仕込み量の92%が重合していることを確認し、2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン20mL、N-イソプロピルアクリルアミド4.8g(42.4mmol)、アゾビスイソブチロニトリル8.8mg(53μmol)を加え、アルゴンバブリングを10分行った後、65℃で45時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。反応溶液を蒸留水300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体をクロロホルム300mLに溶解し、得られた溶液に無水硫酸マグネシウムを5g添加し、室温で30分間撹拌した。得られた懸濁液をろ過して硫酸マグネシウムを除いた後、エバポレーターを用いて、減圧下でろ液からクロロホルムを留去し、30mLまで濃縮した。得られた濃縮溶液をヘキサン300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体を減圧下、80℃で、6時間乾燥し、白色パウダーとして、2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体5.8gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体150mgをエタノール29.85gに溶解し、0.5wt%の表面処理剤を調製した。
[膜評価]
IWAKI組織培養用100mmφディッシュに、得られた表面処理剤を1mLずつ加え、室温で5分間放置した後、加えた表面処理剤をパスツールピペットで回収した。室温で1時間放置しディッシュ表面を乾燥させた後、さらに、70℃に設定したオーブンで1時間加熱し、表面に2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは10nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて調製した、表面に2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を用い、ヒト骨髄由来間葉系幹細胞(ロンザ社、PT-2501)(100個/mm)を、37℃、CO濃度5%で培養した。培地および添加因子はロンザ社PT-3001キットを用いた。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞は単一細胞の形状で100%剥離した。
 実施例11
[重合体ブロック(B)の合成]
2-ジメチルアミノエチルメタクリレート1.2g(7.8mmol)、4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド50mg(123μmol)、アゾビスイソブチロニトリル1.7mg(10μmol)を用い、25時間反応させたこと以外は、実施例10[重合体ブロック(B)の合成]と同様の方法で合成を行い、H-NMRで2-ジメチルアミノエチルメタクリレート仕込み量の86%が重合していることを確認し、2-ジメチルアミノエチルメタクリレートの重合体(重合体ブロック(B))を合成できた。
[部分ブロック共重合体の合成]
n-ブチルメタクリレート3.7g(26mmol)、アゾビスイソブチロニトリル1.8mg(11μmol)を用い、21時間反応させこと以外は、実施例10[部分ブロック共重合体の合成]と同様の方法で合成を行い、H-NMRでn-ブチルメタクリレート仕込み量の95%が重合していることを確認し、2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)からなる部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
N-イソプロピルアクリルアミド4.9g(43mmol)、アゾビスイソブチロニトリル2mg(12μmol)を用い、42時間反応させたこと以外は、実施例10[ブロック共重合体の合成]と同様の方法で合成を行い、H-NMRでN-イソプロピルアクリルアミド仕込み量の54%が重合していることを確認できた。得られた反応溶液を実施例10[ブロック共重合体の合成]に記載の方法と同様の方法で処理し、白色パウダーとして、2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体4.4gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例10[表面処理剤の調製]と同様の方法で調製を行い、0.5wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例10[膜評価]に記載の方法で細胞培養基材を調製した。膜の厚さは10nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて合成した細胞培養基材を用いたこと以外は実施例10[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞は単一細胞の形状で100%剥離した。
 実施例12
[細胞培養評価および剥離評価]
実施例11[膜評価]で合成した、表面に2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を用い、ヒト前駆脂肪細胞(東洋紡(株)、CA802s05a)(100個/mm)を、37℃、CO濃度5%で培養した。培地はヒト前駆脂肪細胞増殖培地(東洋紡(株)、CA811K500)を用いた。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞はシート状で100%剥離した。
 実施例13
[重合体ブロック(B)の合成]
 三方コックを備えた100mL試験管に2-ジメチルアミノエチルメタクリレート0.27g(1.7mmol)、n-ブチルメタクリレート0.16g(1.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド55mg(135μmol)、開始剤としてアゾビスイソブチロニトリル4.4mg(27μmol)を加え、1,4-ジオキサン15mLに溶解した。アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-ジメチルアミノエチルメタクリレート仕込み量の97%、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体(2-ジメチルアミノエチルメタクリレート:60.1mol%、n-ブチルメタクリレート39.9mol%)(共重合体ブロック(B))を合成できた。得られた共重合体ブロック(B)のHLB値は9.0であった。
[部分ブロック共重合体の合成]
 上記で得られた共重合体ブロック(B)の反応溶液に、1,4-ジオキサン5mL、2-ジメチルアミノエチルメタクリレート0.75g(4.8mmol)、n-ブチルメタクリレート2.89g(20.3mmol)、アゾビスイソブチロニトリル4.4mg(27μmol)を加え、アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-ジメチルアミノエチルメタクリレート仕込み量の97%、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、前記共重合体ブロック(B)に2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体(共重合体ブロック(C))(2-ジメチルアミノエチルメタクリレート:19mol%、n-ブチルメタクリレート81mol%)が結合した部分ブロック共重合体を合成できた。得られた共重合体ブロック(C)のHLB値は7.0であった。
[ブロック共重合体の合成]
 上記で得られた部分ブロック共重合体反応溶液に、1,4-ジオキサン15mL、N-イソプロピルアクリルアミド3.1g(27mmol)、アゾビスイソブチロニトリル4.4mg(27μmol)を加え、アルゴンバブリングを10分行った後、65℃で72時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。反応溶液を蒸留水300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体をクロロホルム300mLに溶解し、得られた溶液に無水硫酸マグネシウムを5g添加し、室温で30分間撹拌した。得られた懸濁液をろ過して硫酸マグネシウムを除いた後、エバポレーターを用いて、減圧下でろ液からクロロホルムを留去し、30mLまで濃縮した。得られた濃縮溶液をヘキサン300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体を減圧下、80℃で、6時間乾燥し、白色パウダーとして、2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(B)と2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体3.5gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
 上記ブロック共重合体30mgをエタノール30gに溶解し、0.1wt%の表面処理剤を調製した。
[膜評価]
 IWAKI組織培養用100mmφディッシュに、得られた表面処理剤を2mL加え、室温で5分間放置した後、乾燥していない余分な表面処理剤をパスツールピペットで回収した。室温で1時間放置しディッシュ表面を乾燥させた後、さらに、70℃に設定したオーブンで1時間加熱し、表面に2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(B)と2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは10nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
 上記にて調製した、表面に2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(B)と2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を用い、ヒト胎児肺由来正常二倍体線維芽細胞(JCRB細胞バンク、TIG-3-20)(100個/mm)を、37℃、CO濃度5%で培養した。培養液は10vol%ウシ胎児血清を含むイーグル最小必須培地(10vol%FBS/EMEM)を用いた。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞はシート状で100%剥離した。
 実施例14
[重合体ブロック(B)の合成]
2-ジメチルアミノエチルメタクリレート1.1g(7.0mmol)、n-ブチルメタクリレート0.58g(4.1mmol)を用いたこと以外は実施例13[重合体ブロック(B)の合成]と同様の方法で合成した。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-ジメチルアミノエチルメタクリレート仕込み量の97%、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体(2-ジメチルアミノエチルメタクリレート:62.9mol%、n-ブチルメタクリレート37.1mol%)(共重合体ブロック(B))を合成できた。得られた重合体ブロック(B)のHLB値は9.2であった。
[部分ブロック共重合体の合成]
上記で得られた反応溶液、n-ブチルメタクリレート2.37g(16.7mmol)を用い、2-ジメチルアミノエチルメタクリレートを添加しなかったこと以外は実施例13[部分ブロック共重合体の合成]と同様の方法で合成した。反応後、反応溶液の一部を採取しH-NMRを測定した結果、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、前記共重合体ブロック(B)にn-ブチルメタクリレートの重合体(重合体ブロック(C))(n-ブチルメタクリレート100mol%)が結合した部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
上記で得られた反応溶液を用いたこと以外は実施例13[ブロック共重合体の合成]と同様の方法で合成した。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。得られた反応溶液を実施例13[ブロック共重合体の合成]と同様の方法で処理し、白色パウダーとして、2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体3.0gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例13[表面処理剤の調製]と同様の方法で調製を行い、0.1wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例13[膜評価]に記載の方法で調製を行い、表面に2-ジメチルアミノエチルメタクリレートとn-ブチルメタクリレートの共重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは10nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて調製した細胞培養基材を用いたこと以外は実施例13[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞はシート状で100%剥離した。
 実施例15
[重合体ブロック(B)の合成]
三方コックを備えた100mL試験官に2-ジメチルアミノエチルメタクリレート0.94g(6.0mmol)、メチルメタクリレート0.90g(9.0mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド55mg(135μmol)、開始剤としてアゾビスイソブチロニトリル4.4mg(27μmol)を加え、1,4-ジオキサン10mLに溶解した。アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-ジメチルアミノエチルメタクリレート仕込み量の96%、メチルメタクリレート仕込み量の97%が重合していることを確認し、2-ジメチルアミノエチルメタクリレートとメチルメタクリレートの共重合体(2-ジメチルアミノエチルメタクリレート:39.8mol%、メチルメタクリレート:60.2mol%)(共重合体ブロック(B))を合成できた。メチルメタクリレートが重合して生成する繰り返し単位の親水部式量は炭素1個と酸素2個の合計(44.0)であり、繰り返し単位総式量100.1であり、HLB値(グリフィン法)は9であった。得られた重合体ブロック(B)のHLB値(グリフィン法)は10であった。
[部分ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン10mL、n-ブチルメタクリレート1.71(12.0mmol)、アゾビスイソブチロニトリル4.4mg(27μmol)を加え、アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、前記共重合体ブロック(B)にn-ブチルメタクリレート重合体(重合体ブロック(C))が結合した部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
上記で得られた反応溶液を用いたこと以外は実施例13[ブロック共重合体の合成]と同様の方法で合成した。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。得られた反応溶液を実施例13[ブロック共重合体の合成]と同様の方法で処理し、白色パウダーとして、2-ジメチルアミノエチルメタクリレートとメチルメタクリレートの共重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体3.5gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例13[表面処理剤の調製]と同様の方法で調製を行い、0.1wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例13[膜評価]に記載の方法で調製を行い、表面に、2-ジメチルアミノエチルメタクリレートとメチルメタクリレートの共重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは11nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて調製した細胞培養基材を用いたこと以外は実施例13[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。15分冷却すると細胞はシート状で100%剥離した。
 実施例16
[重合体ブロック(B)の合成]
三方コックを備えた100mL試験官に2-メトキシエチルアクリレート0.70g(5.4mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド55mg(135μmol)、開始剤としてアゾビスイソブチロニトリル4.4mg(27μmol)を加え、1,4-ジオキサン5mLに溶解した。アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-メトキシエチルアクリレート仕込み量の99%が重合していることを確認し、2-メトキシエチルアクリレートの重合体(重合体ブロック(B))を合成できた。2-メトキシエチルアクリレート重合体ブロック(B)の繰り返し単位の親水部式量は炭素3個と水素4個と酸素3個の合計(88.1)であり、繰り返し単位総式量130.1であり、HLB値(グリフィン法)は14であった。
[部分ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン15mL、n-ブチルメタクリレート2.76g(19.4mmol)、アゾビスイソブチロニトリル4.4mg(27μmol)を加え、アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、前記重合体ブロック(B)にn-ブチルメタクリレート重合体(重合体ブロック(C))が結合した部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
上記で得られた反応溶液を用い、1,4-ジオキサン10mL、N-イソプロピルアクリルアミド3.30g(29.2mmol)、アゾビスイソブチロニトリル4.4mg(27μmol)を加えたこと以外は実施例13[ブロック共重合体の合成]と同様の方法で合成した。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。得られた反応溶液を実施例13[ブロック共重合体の合成]と同様の方法で処理し、白色パウダーとして、2-メトキシエチルアクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体3.5gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例13[表面処理剤の調製]と同様の方法で調製を行い、0.1wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例13[膜評価]に記載の方法で調製を行い、表面に、2-メトキシエチルアクリレート重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは11nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて調製した細胞培養基材を用いたこと以外は実施例13[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。15分冷却すると細胞はシート状で100%剥離した。
 実施例17
[重合体ブロック(B)の合成]
三方コックを備えた100mL試験官に2-メトキシエチルアクリレート0.70g(5.4mmol)、n-ブチルメタクリレート1.15g(8.1mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド55mg(135μmol)、開始剤としてアゾビスイソブチロニトリル4.4mg(27μmol)を加え、1,4-ジオキサン5mLに溶解した。アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、2-メトキシエチルアクリレート仕込み量の99%、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、2-メトキシエチルアクリレートとn-ブチルメタクリレートの共重合体(2-メトキシエチルアクリレート:40.3mol%、n-ブチルメタクリレート59.7mol%)(共重合体ブロック(B))を合成できた。得られた重合体ブロック(B)のHLB値は9.1であった。
[部分ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン15mL、n-ブチルメタクリレート1.61g(11.3mmol)、アゾビスイソブチロニトリル4.4mg(27μmol)を加え、アルゴンバブリングを10分行った後、65℃で40時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、n-ブチルメタクリレート仕込み量の98%が重合していることを確認し、前記共重合体ブロック(B)にn-ブチルメタクリレート重合体(重合体ブロック(C))が結合した部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
上記で得られた反応溶液を用いたこと以外は実施例16[ブロック共重合体の合成]と同様の方法で合成した。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。得られた反応溶液を実施例13[ブロック共重合体の合成]と同様の方法で処理し、白色パウダーとして、2-メトキシエチルアクリレートとn-ブチルメタクリレートの共重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体3.5gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例13[表面処理剤の調製]と同様の方法で調製を行い、0.1wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例13[膜評価]に記載の方法で調製を行い、表面に、2-メトキシエチルアクリレートとn-ブチルメタクリレートの共重合体ブロック(B)とn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは11nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて調製した細胞培養基材を用いたこと以外は実施例13[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。15分冷却すると細胞はシート状で100%剥離した。
実施例18
[重合体ブロック(C)の合成]
三方コックを備えた100mL試験管にn-ブチルメタクリレート3.7g(25.8mmol)、RAFT剤として4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド108mg(267μmol)、開始剤としてアゾビスイソブチロニトリル8.8mg(53μmol)を加え、1,4-ジオキサン10mLに溶解した。アルゴンバブリングを10分行った後、65℃で30時間反応させた。反応後、反応溶液の一部を採取し1H-NMRを測定した結果、n-ブチルメタクリレート仕込み量の95%が重合していることを確認し、n-ブチルメタクリレートの重合体(重合体ブロック(C))を合成できた。
[部分ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン10mL、2-ジメチルアミノエチルメタクリレート2.7g(17.2mmol)、アゾビスイソブチロニトリル8.8mg(53μmol)を加え、アルゴンバブリングを10分行った後、65℃で30時間反応させた。反応後、反応溶液の一部を採取し1H-NMRを測定した結果、2-ジメチルアミノエチルメタクリレート仕込み量の96%が重合していることを確認し、n-ブチルメタクリレート重合体ブロック(C)と2-ジメチルアミノエチルメタクリレート重合体ブロック(B)からなる部分ブロック共重合体を合成できた。
[ブロック共重合体の合成]
上記で得られた反応溶液に、1,4-ジオキサン20mL、N-イソプロピルアクリルアミド4.8g(42.4mmol)、アゾビスイソブチロニトリル8.8mg(53μmol)を加え、アルゴンバブリングを10分行った後、65℃で45時間反応させた。反応後、反応溶液の一部を採取し1H-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の99%が重合していることを確認できた。反応溶液を蒸留水300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体をクロロホルム300mLに溶解し、得られた溶液に無水硫酸マグネシウムを5g添加し、室温で30分間撹拌した。得られた懸濁液をろ過して硫酸マグネシウムを除いた後、エバポレーターを用いて、減圧下でろ液からクロロホルムを留去し、30mLまで濃縮した。得られた濃縮溶液をヘキサン300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体を減圧下、80℃で、6時間乾燥し、白色パウダーとして、n-ブチルメタクリレート重合体ブロック(C)と2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体6.0gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表2に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例13[表面処理剤の調製]と同様の方法で調製を行い、0.1wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例13[膜評価]に記載の方法で調製を行い、表面にn-ブチルメタクリレート重合体ブロック(C)と2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは10nmであった。40℃および20℃での対水接触角を表2に示す。20℃での対水接触角は40℃での対水接触角よりも低く、40°未満であり、高い親水性を示した。
[細胞培養評価および剥離評価]
上記にて調製した細胞培養基材を用いたこと以外は実施例13[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。15分冷却することで細胞はシート状で100%剥離した。
 比較例5
[細胞培養評価および剥離評価]
比較例2[膜評価]で調製した、表面にn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなる部分ブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例10[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。1時間冷却しても細胞は剥離しなかった。
 比較例6
[細胞培養評価および剥離評価]
比較例2[膜評価]で調製した、表面にn-ブチルメタクリレート重合体ブロック(C)とN-イソプロピルアクリルアミド重合体ブロック(A)からなる部分ブロック共重合体が導入された細胞培養基材を用いたこと以外は、実施例12[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。1時間冷却しても細胞は剥離しなかった。
 比較例7
[細胞培養評価および剥離評価]
比較例1[膜評価]で評価したセルシード(株)製UpCell(R)35mmφディッシュを用いたこと以外は、実施例12[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。1時間冷却しても細胞は剥離しなかった。
 比較例8
比較例4[膜評価]で評価したコーニング社製細胞培養表面処理35mmφディッシュを用いたこと以外は実施例10[細胞培養評価および剥離評価]と同様の方法で評価した。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。1時間冷却しても細胞は剥離しなかった。
 比較例9
[膜評価]
IWAKI組織培養用100mmφディッシュの、40℃および20℃での対水接触角を表3に示す。40℃および20℃は同等の接触角(57°)を示し、温度応答性を示さなかった。
[細胞培養評価および剥離評価]
上述のIWAKI組織培養用ディッシュ(Φ9cm)を用いたこと以外は、実施例12[細胞培養評価および剥離評価]と同様の評価を行った。細胞増殖が確認され、培養細胞が基材の100%を覆うまで培養したところで、10×10倍の顕微鏡で細胞数を確認した。基材を10℃に冷却後、アスピレーターで剥離した細胞を除去し、再度10×10倍の顕微鏡で細胞数を確認した。1時間冷却しても細胞は剥離しなかった。
 比較例10
[重合体ブロックの合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.00g(3.39mmol)、n-ブチルメタクリレート1.12g(7.88mmol)、4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド24mg(59μmol)、アゾビスイソブチロニトリル1mg(6μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液20mLに溶解した。窒素バブリングを15分行った後、65℃で18時間反応させた。反応後、反応溶液をジエチルエーテル500mLに注ぎ込み、析出した白色固体をろ過、乾燥して、2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートの共重合体ブロックを得た。
[ブロック共重合体の合成]
試験管に上記共重合体ブロック1.00g、N-イソプロピルアクリルアミド1.20g(10.6mmol)、アゾビスイソブチロニトリル6mg(37μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液20mLに溶解した。窒素バブリングを15分行った後、65℃で18時間反応させた。反応後、反応溶液をジエチルエーテル500mLに注ぎ込み、析出した白色固体をろ過、乾燥して、2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートの共重合体ブロックとN-イソプロピルアクリルアミド重合体ブロックからなるブロック共重合体を得た。得られたブロック共重合体の各繰り返し単位の比率は、2-メタクリロイルオキシエチルホスホリルコリンが重合して生成する繰り返し単位が12mol%、n-ブチルメタクリレートが重合して生成する繰り返し単位が25mol%、N-イソプロピルアクリルアミドが重合して生成する繰り返し単位が63mol%であり、実施例1で合成したブロック共重合体とほぼ同一の比率であった。得られたブロック共重合体のMnおよびMw/Mnを表3に示す。
[表面処理剤の調製]
上記ブロック共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートの共重合体ブロックとN-イソプロピルアクリルアミド重合体ブロックからなるブロック共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは100nmであった。40℃および20℃での対水接触角を表3に示す。20℃での対水接触角は40℃での対水接触角よりも低く温度応答性を示したが、20℃での対水接触角は40°以上であった。
[細胞培養評価および剥離評価]
上記にて製造した表面に2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートの共重合体ブロックとN-イソプロピルアクリルアミド重合体ブロックからなるブロック共重合体が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却することによって、15分で細胞は10%剥離した。
 比較例11
[共重合体の合成]
試験管に2-メタクリロイルオキシエチルホスホリルコリン1.00g(3.39mmol)、n-ブチルメタクリレート1.12g(7.88mmol)、N-イソプロピルアクリルアミド2.00g(17.7mmol)、4-シアノ-4-[(ドデシルスルフォニルチオカルボニル)スルフォニル]ペンタノイックアシッド24mg(59μmol)、アゾビスイソブチロニトリル1.9mg(12μmol)を加え、1,4-ジオキサン/エタノール=1:1混合溶液40mLに溶解した。窒素バブリングを15分行った後、65℃で18時間反応させた。反応後、反応溶液をジエチルエーテル500mLに注ぎ込み、析出した白色固体をろ過、乾燥して、2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートとN-イソプロピルアクリルアミドの共重合体を得た。得られた共重合体の各繰り返し単位の比率は、2-メタクリロイルオキシエチルホスホリルコリンが重合して生成する繰り返し単位が11mol%、n-ブチルメタクリレートが重合して生成する繰り返し単位が26mol%、N-イソプロピルアクリルアミドが重合して生成する繰り返し単位が63mol%あり、実施例1で合成したブロック共重合体とほぼ同一の比率であった。得られたブロック共重合体のMnおよびMw/Mnを表3に示す。
[表面処理剤の調製]
上記共重合体を用いたこと以外は実施例1[表面処理剤の調製]と同様の方法で調製を行い、表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例1[膜評価]に記載の方法と同様の方法で細胞培養基材の調製を行い、表面に2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートとN-イソプロピルアクリルアミドの共重合体からなる膜が導入された細胞培養基材を調製した。膜の厚さは100nmであった。40℃および20℃での対水接触角を表3に示す。40℃および20℃は同等の接触角を示し、温度応答性を示さなかった。
[細胞培養評価および剥離評価]
上記にて製造した表面に2-メタクリロイルオキシエチルホスホリルコリンとn-ブチルメタクリレートの共重合体ブロックとN-イソプロピルアクリルアミド重合体ブロックからなるブロック共重合体が導入された細胞培養基材を用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却したが、15分経過しても細胞は全く剥離しなかった。
 比較例12
比較例4[膜評価]で評価したコーニング社製細胞培養表面処理35mmφディッシュを用い、マウス結合組織L929細胞(100個/mm)の代わりにチャイニーズハムスター卵巣由来CHO細胞(100個/mm)を用い、培養液として10vol%FBS/DMEMの代わりに10vol%FBS/Ham‘s F―12を用いたこと以外は、実施例1[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却したが、15分経過しても細胞は全く剥離しなかった。
 比較例13
比較例9[膜評価]で評価したIWAKI組織培養用100mmφディッシュを用いたこと以外は、実施例13[細胞培養評価および剥離評価]と同様の評価を行い、細胞増殖が確認された。また、培養細胞が基材の100%を覆うまで培養した後、基材を10℃に冷却したが、15分経過しても細胞は全く剥離しなかった。
 比較例14
[部分ブロック共重合体の合成]
実施例10[重合体ブロック(B)の合成]で得られた反応溶液に、1,4-ジオキサン20mL、N-イソプロピルアクリルアミド4.8g(42.4mmol)、アゾビスイソブチロニトリル8.8mg(53μmol)を加え、アルゴンバブリングを10分行った後、65℃で45時間反応させた。反応後、反応溶液の一部を採取しH-NMRを測定した結果、N-イソプロピルアクリルアミド仕込み量の98%が重合していることを確認した。反応溶液を蒸留水300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体をクロロホルム300mLに溶解し、得られた溶液に無水硫酸マグネシウムを5g添加し、室温で30分間撹拌した。得られた懸濁液をろ過して硫酸マグネシウムを除いた後、エバポレーターを用いて、減圧下でろ液からクロロホルムを留去し、30mLまで濃縮した。得られた濃縮溶液をヘキサン300mLに注ぎ込み、析出した白色固体をろ過した。得られた白色固体を減圧下、80℃で、6時間乾燥し、白色パウダーとして、2-ジメチルアミノエチルメタクリレート重合体ブロック(B)とN-イソプロピルアクリルアミド重合体ブロック(A)からなるブロック共重合体5.8gを得た。得られたブロック共重合体の組成、MnおよびMw/Mnを表3に示す。
[表面処理剤の調製]
上記部分ブロック共重合体を用いたこと以外は実施例10[表面処理剤の調製]と同様の方法で調製を行い、0.5wt%の表面処理剤を調製した。
[膜評価]
上記表面処理剤を用いたこと以外は実施例10[膜評価]に記載の方法で細胞培養基材を調製した。膜の厚さは10nmであった。40℃および20℃での対水接触角を表3に示す。40℃および20℃は同等の接触角(57°)を示し温度応答性を示さず、比較例9[膜評価]で評価したIWAKI組織培養用100mmφディッシュと同等であったことから、ブロック共重合体が水中に溶出していることがわかった。
 前述の実施例および比較例で合成したブロック共重合体の種類、各ブロックの組成比、MnおよびMw/Mn、対水接触角を表1~3に示した。また、前述の実施例、参考例および比較例における細胞培養評価の結果を表4~8に示した。なお、表4~8における培養細胞については、A:L929細胞、B:CHO細胞、C:ヒト骨髄由来間葉系幹細胞、D:ヒト前駆脂肪細胞、E:ヒト胎児肺由来正常二倍体線維芽細胞、を意味する。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2016年8月3日に出願された日本特許出願2016-152825号および2016年11月24日に出願された日本特許出願2016-228031号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (20)

  1.  下記(A)、(B)および(C)のブロックを含むブロック共重合体。
    (A)水に対する下限臨界溶解温度(LCST)が0℃~50℃の範囲にある温度応答性重合体ブロック。
    (B)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が9以上20以下の範囲にある親水性重合体ブロック。
    (C)0℃~50℃の範囲にLCSTを持たない、HLB値(グリフィン法)が0以上9未満の範囲にある疎水性重合体ブロック。
  2.  ブロック(A)が下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは水素原子またはメチル基であり、RおよびRは各々独立して、水素原子、炭素数1~6の炭化水素基、炭素数1もしくは2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基、フッ素で置換されていてもよい炭素数2~4の炭化水素基、フルフリル基またはテトラヒドロフルフリル基であり、RとRは互いに結合してピロリジン環、ピペリジン環またはモルホリン環を形成してもよい。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1に記載のブロック共重合体。
  3.  ブロック(A)が下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
     (式中、Rは水素原子またはメチル基であり、Rは水素原子または炭素数1~6の炭化水素基であり、rは1~10の整数である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1に記載のブロック共重合体。
  4.  ブロック(A)が下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
     (式中、Rは水素原子またはメチル基であり、Rは炭素数1~6の炭化水素基である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1に記載のブロック共重合体。
  5.  ブロック(B)が下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004
     (式中、Rは水素原子又はメチル基であり、R10は炭素数1~10のアルキレン基であり、R11は炭素数1~4の2価の炭化水素基である。R12、R13、及びR14は、互いに独立して、水素原子、メチル基、またはエチル基である。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~4の何れか1項に記載のブロック共重合体。
  6.  ブロック(B)が下記一般式(5)
    Figure JPOXMLDOC01-appb-C000005
     (式中、R15は水素原子またはメチル基である。R16は-(CHCHO)-(CHO)-(CHCH(CH)O)-R17(式中、R17は水素原子、炭素数1~10のアルキル基であり、iは1~30の整数であり、jおよびkは各々独立して、0~30の整数である。)である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~4の何れか1項に記載のブロック共重合体。
  7.  ブロック(B)が下記一般式(6)
    Figure JPOXMLDOC01-appb-C000006
     (式中、R19は水素原子またはメチル基であり、R20は炭素数1~10のアルキレン基であり、R21は炭素数1~4のアルキレン基である。R22及びR23は、各々独立して、水素原子または炭素数1~4の炭化水素基である。Aは、エステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合であり、Xはスルホン酸基、カルボキシル基、またはリン酸基である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~4の何れか1項に記載のブロック共重合体。
  8.  ブロック(B)が下記一般式(7)
    Figure JPOXMLDOC01-appb-C000007
     (式中、R24、R25、およびR26は各々独立して水素原子またはメチル基である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~4の何れか1項に記載のブロック共重合体。
  9.  ブロック(B)が下記一般式(8)
    Figure JPOXMLDOC01-appb-C000008
     (式中、R28は水素原子またはメチル基であり、R29は炭素数2~7のアルキレン基であり、R30及びR31は互いに独立して、水素原子、メチル基、またはエチル基である。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~4の何れか1項に記載のブロック共重合体。
  10.  ブロック(B)が下記一般式(9)
    Figure JPOXMLDOC01-appb-C000009
     (式中、R28は水素原子またはメチル基であり、R29は炭素数2~7のアルキレン基であり、R30及びR31は互いに独立して、水素原子、メチル基、またはエチル基である。R32は、炭素数1~4の炭化水素基、水酸基または炭素数1~2のアルキルオキシ基で置換されていてもよい炭素数2~4の炭化水素基である。Aはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から選択される2価の結合である。Xはハロゲン化物イオン、水酸化物イオン、酢酸イオンである。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~4の何れか1項に記載のブロック共重合体。
  11.  ブロック(C)が下記一般式(10)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R33は水素原子またはメチル基であり、Yは水素原子、塩素原子、アセトキシ基、ニトリル基、または炭素数6~30の芳香族炭化水素基である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体であることを特徴とする、請求項1~10の何れか1項に記載のブロック共重合体。
  12.  ブロック(C)が下記一般式(11)
    Figure JPOXMLDOC01-appb-C000011
    (式中、R34は水素原子またはメチル基であり、R35は炭素数1~30の炭化水素基であり、Zはエステル結合、アミド結合、ウレタン結合、及びエーテル結合からなる群から
    選択される2価の結合である。)
    で表される繰り返し単位の内、少なくとも1種類の繰り返し単位を含む重合体あることを特徴とする、請求項1~10の何れか1項に記載のブロック共重合体。
  13.  ブロック共重合体を構成するブロック(A)、ブロック(B)およびブロック(C)の合計に対する各ブロックのmol%が、以下の(a)から(c)であることを特徴とする、請求項1~12の何れか1項に記載のブロック共重合体。
    (a)ブロック(A)の比率が25mol%から85mol%
    (b)ブロック(B)の比率が2mol%から50mol%
    (c)ブロック(C)の比率が10mol%から70mol%
  14.  ブロック共重合体の数平均分子量(Mn)が3,000以上1,000,000以下であることを特徴とする、請求項1~13の何れか1項に記載のブロック共重合体。
  15.  前記ブロック(A)、(B)および(C)の間の1つ以上にスペーサーを介した結合を有しており、前記スペーサーを介した結合の少なくとも1つが下記一般式(12)および(13)
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは水素原子または炭素数1~20の炭化水素基である。)
    で表される2価の結合の内、少なくとも1種類の結合を含む2価の結合であることを特徴とする、請求項1~14の何れか1項に記載のブロック共重合体。
  16.  以下の工程(1)から(3)を含む、請求項1~15の何れか1項に記載のブロック共重合体の製造方法:
    (1)請求項1に記載の(A)、(B)および(C)のブロックのうち、何れか1種類のブロックを製造する工程、
    (2)請求項1に記載の(A)、(B)および(C)のブロックのうち、工程(1)で製造したブロックを除く1種類のブロックと、工程(1)で製造したブロックを含むブロック重合体とが結合した、部分ブロック共重合体を製造する工程、
    (3)請求項1に記載の(A)、(B)および(C)のブロックのうち、工程(2)で製造した部分ブロック共重合体を含むブロック共重合体を構成しない1種類のブロックと、工程(2)で製造した部分ブロック共重合体とが結合した、ブロック共重合体を製造する工程。
  17.  請求項1~15の何れか1項に記載のブロック共重合体を含むことを特徴とする、基材用表面処理剤。
  18.  請求項17に記載の表面処理剤を基材に塗布されてなる膜。
  19.  請求項18に記載の膜で表面を被覆した細胞培養用基材。
  20.  請求項19に記載の細胞培養基材を用いて、請求項1に記載の温度応答性重合体ブロックのLCSTより高い温度で細胞を培養し、細胞増殖後に温度をLCSTより低くして増殖細胞を基材から剥離することを特徴とする、細胞培養方法。
PCT/JP2017/027450 2016-08-03 2017-07-28 ブロック共重合体およびそれを用いた表面処理剤 WO2018025767A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/322,361 US11046803B2 (en) 2016-08-03 2017-07-28 Block copolymer and surface treatment agent using same
EP17836872.6A EP3495400B1 (en) 2016-08-03 2017-07-28 Block copolymer and surface treatment agent using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-152825 2016-08-03
JP2016152825 2016-08-03
JP2016228031 2016-11-24
JP2016-228031 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018025767A1 true WO2018025767A1 (ja) 2018-02-08

Family

ID=61073779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027450 WO2018025767A1 (ja) 2016-08-03 2017-07-28 ブロック共重合体およびそれを用いた表面処理剤

Country Status (4)

Country Link
US (1) US11046803B2 (ja)
EP (1) EP3495400B1 (ja)
JP (1) JP6638706B2 (ja)
WO (1) WO2018025767A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023658A (ja) * 2018-07-25 2020-02-13 東ソー株式会社 温度応答性膜
WO2022085783A1 (ja) * 2020-10-23 2022-04-28 日産化学株式会社 コポリマーからなる生体物質低付着材料

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252225B2 (ja) * 2018-06-27 2023-04-04 テルモ株式会社 親水性共重合体および医療用具
JP2020014453A (ja) * 2018-07-13 2020-01-30 東ソー株式会社 幹細胞の培養基材及び幹細胞の製造方法
WO2020036203A2 (en) * 2018-08-16 2020-02-20 Terumo Kabushiki Kaisha Cell culture substrate
WO2020036096A1 (ja) * 2018-08-17 2020-02-20 東ソー株式会社 細胞懸濁液の製造方法
JP7262206B2 (ja) * 2018-11-07 2023-04-21 東ソー株式会社 溶出物試験方法
JP2020110140A (ja) * 2019-01-11 2020-07-27 東ソー株式会社 細胞培養方法
JP7250248B2 (ja) * 2019-03-22 2023-04-03 東ソー株式会社 ブロック共重合体、それを含む表面処理剤及び膜、並びに、それを用いた細胞培養用器材及び細胞培養方法
JP7480485B2 (ja) * 2019-04-22 2024-05-10 東ソー株式会社 細胞分離方法
JP7246248B2 (ja) * 2019-05-17 2023-03-27 三菱瓦斯化学株式会社 抗血栓性材料、及び抗血栓性材料の使用方法
JP2021023249A (ja) * 2019-08-08 2021-02-22 東ソー株式会社 細胞絆創膏
CN112831005B (zh) * 2019-11-25 2022-08-12 青岛金典生化器材有限公司 细胞培养用的温敏性智能型基材及其制备方法
JP7415485B2 (ja) * 2019-11-27 2024-01-17 東亞合成株式会社 ブロック共重合体の製造方法
IL303390A (en) 2020-12-03 2023-08-01 Battelle Memorial Institute Compositions of polymer nanoparticles and DNA nanostructures and methods for non-viral transport
US20240158730A1 (en) * 2021-03-26 2024-05-16 Tosoh Corporation Temperature-responsive polymer surface treatment agent
EP4299198A1 (en) * 2021-03-29 2024-01-03 Tosoh Corporation Surface treatment agent
AU2022253899A1 (en) 2021-04-07 2023-10-26 Battelle Memorial Institute Rapid design, build, test, and learn technologies for identifying and using non-viral carriers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343451A (ja) * 1993-06-08 1994-12-20 Yamato Kubota 固定化用器具、これを用いた生物組織の固定化法および培養法
JP2007217348A (ja) * 2006-02-17 2007-08-30 Shiseido Co Ltd 増粘剤並びにこれを含有する化粧料及び洗浄料
JP2008502785A (ja) * 2004-06-10 2008-01-31 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 新規な温度及びpHに感受性のコポリマー
JP2009167283A (ja) * 2008-01-16 2009-07-30 Kansai Paint Co Ltd 感熱応答性abaトリブロックポリマーおよびそれを含有する水性塗料組成物。
JP2014100123A (ja) * 2012-11-22 2014-06-05 Dainippon Printing Co Ltd 温度応答性を有する細胞培養基材の製造方法
JP2016193976A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 ブロック共重合体、表面処理剤、その膜、およびそれを被覆した細胞培養基材
JP2016192957A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 細胞培養基材、その製造方法、およびそれを用いた細胞培養方法
JP2016194054A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 ブロック共重合体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080234391A1 (en) 2007-03-21 2008-09-25 Mccormick Charles L Synthesis of Reversible Shell Crosslinked Nanostructures
US9469839B2 (en) * 2009-06-29 2016-10-18 General Electric Company Cell culture support and associated method for cell growth and release
EP4039236A1 (en) * 2013-02-20 2022-08-10 Cytrellis Biosystems, Inc. System for tightening a region of skin
WO2014133168A1 (ja) * 2013-02-28 2014-09-04 Sakai Hideaki 新規グラフトポリマー、それを用いた細胞培養用温度応答性基材及びその製造方法、並びに当該ポリマーが固定化された液体クロマトグラフィー担体及びそれを用いた液体クロマトグラフィー法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343451A (ja) * 1993-06-08 1994-12-20 Yamato Kubota 固定化用器具、これを用いた生物組織の固定化法および培養法
JP2008502785A (ja) * 2004-06-10 2008-01-31 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 新規な温度及びpHに感受性のコポリマー
JP2007217348A (ja) * 2006-02-17 2007-08-30 Shiseido Co Ltd 増粘剤並びにこれを含有する化粧料及び洗浄料
JP2009167283A (ja) * 2008-01-16 2009-07-30 Kansai Paint Co Ltd 感熱応答性abaトリブロックポリマーおよびそれを含有する水性塗料組成物。
JP2014100123A (ja) * 2012-11-22 2014-06-05 Dainippon Printing Co Ltd 温度応答性を有する細胞培養基材の製造方法
JP2016193976A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 ブロック共重合体、表面処理剤、その膜、およびそれを被覆した細胞培養基材
JP2016192957A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 細胞培養基材、その製造方法、およびそれを用いた細胞培養方法
JP2016194054A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 ブロック共重合体

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HUANG,YOUKE ET AL.: "Synthesis of Silica Particles Grafted with Well-Defined Living Polymeric Chains by Combination of RAFT Polymerization and Coupling Reaction", MACROMOLECULES, vol. 42, no. 15, 2009, pages 5509 - 5517, XP055164044 *
HUANG,YOUKE ET AL.: "Synthesis of silica-polymer hybrids by combination of RAFT polymerization and azide-alkyne cycloaddition 'click' reactions", POLYMER CHEMISTRY, vol. 1, no. 10, 2010, pages 1615 - 1623, XP055164055 *
LI,QUANLONG ET AL.: "Doubly thermo-responsive ABC triblock copolymer nanoparticles prepared through dispersion RAFT polymerization", POLYMER CHEMISTRY, vol. 5, no. 8, 2014, pages 2961 - 2972, XP055460589 *
QU,YAQING ET AL.: "In situ synthesis of thermo- responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization", POLYMER CHEMISTRY, vol. 5, no. 19, 2014, pages 5569 - 5577, XP055460593 *
See also references of EP3495400A4 *
URBANI,CARL N. ET AL.: "RAFT-Mediated Emulsion Polymerization of Styrene in Water using a Reactive Polymer Nanoreactor", AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 62, no. 11, 2009, pages 1528 - 1532, XP055460605 *
VALADE,DAVID ET AL.: "Influence of thr Z-Group on the RAFT-Mediated Polymerizations in Nanoreactors", JOURNAL OF POLYMER SCIENCE . PART A. POLYMER CHEMISTRY, vol. 50, no. 22, 15 November 2012 (2012-11-15), pages 4762 - 4771, XP055589996, ISSN: 0887-624X, DOI: 10.1002/pola.26300 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023658A (ja) * 2018-07-25 2020-02-13 東ソー株式会社 温度応答性膜
JP7293692B2 (ja) 2018-07-25 2023-06-20 東ソー株式会社 温度応答性膜
WO2022085783A1 (ja) * 2020-10-23 2022-04-28 日産化学株式会社 コポリマーからなる生体物質低付着材料

Also Published As

Publication number Publication date
JP6638706B2 (ja) 2020-01-29
US20190194376A1 (en) 2019-06-27
EP3495400B1 (en) 2024-08-28
US11046803B2 (en) 2021-06-29
EP3495400A1 (en) 2019-06-12
EP3495400A4 (en) 2020-04-01
JP2018087316A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6638706B2 (ja) ブロック共重合体およびそれを用いた表面処理剤
JP7127330B2 (ja) ブロック共重合体およびそれを用いた表面処理剤
JP2016192957A (ja) 細胞培養基材、その製造方法、およびそれを用いた細胞培養方法
JP6497677B2 (ja) ブロック共重合体、表面処理剤、その膜、およびそれを被覆した細胞培養基材
US11441120B2 (en) Cell culture substrate
JP2016194054A (ja) ブロック共重合体
Nagase et al. Thermoresponsive anionic copolymer brush-grafted surfaces for cell separation
WO2019035436A1 (ja) 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
Song et al. Gradient patterning and differentiation of mesenchymal stem cells on micropatterned polymer surface
JP2018154752A (ja) 共重合体およびその製造方法
US20210355424A1 (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
JP2018012811A (ja) ブロック共重合体
JP2020110140A (ja) 細胞培養方法
JP7250248B2 (ja) ブロック共重合体、それを含む表面処理剤及び膜、並びに、それを用いた細胞培養用器材及び細胞培養方法
JP7293683B2 (ja) ブロック共重合体及び培養基材、幹細胞の製造方法
JP7271870B2 (ja) 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
JP7480485B2 (ja) 細胞分離方法
JP2020014453A (ja) 幹細胞の培養基材及び幹細胞の製造方法
JP6954047B2 (ja) ブロック共重合体コートビーズおよびその製造方法
JP7018175B2 (ja) 共重合体、基材用表面処理剤および細胞培養基材
JP2021151210A (ja) マイクロキャリアおよびそれを用いた細胞の培養方法
WO2017110923A1 (ja) 樹脂組成物、基材および細胞培養方法
JP2019085520A (ja) ブロック共重合体、細胞培養基材及び細胞培養方法
JP7183612B2 (ja) 多能性幹細胞の培養基材及び多能性幹細胞の製造方法
WO2024135798A1 (ja) 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836872

Country of ref document: EP

Effective date: 20190304