WO2018021893A1 - D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법 - Google Patents

D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법 Download PDF

Info

Publication number
WO2018021893A1
WO2018021893A1 PCT/KR2017/008240 KR2017008240W WO2018021893A1 WO 2018021893 A1 WO2018021893 A1 WO 2018021893A1 KR 2017008240 W KR2017008240 W KR 2017008240W WO 2018021893 A1 WO2018021893 A1 WO 2018021893A1
Authority
WO
WIPO (PCT)
Prior art keywords
serine
acid
amino acid
epimerase
hexuronic
Prior art date
Application number
PCT/KR2017/008240
Other languages
English (en)
French (fr)
Inventor
양성재
이영미
박일향
이찬형
조현국
김성보
김양희
박승원
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to JP2018512126A priority Critical patent/JP6538968B2/ja
Priority to US15/759,511 priority patent/US10544439B2/en
Priority to CN201780003316.8A priority patent/CN109415715B/zh
Priority to EP17834833.0A priority patent/EP3333261B1/en
Publication of WO2018021893A1 publication Critical patent/WO2018021893A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/02Racemaces and epimerases (5.1) acting on hydroxy acids and derivatives (5.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)

Definitions

  • the present application relates to a hexuronic acid C4-epimerase variant with improved D-tagatose conversion activity and a method for preparing D-tagatose using the same.
  • Tagatose is similar to sugar in foods such as milk, cheese and cacao, and natural sweeteners present in small amounts in sweet natural fruits such as apples and tangerines.
  • Tagatose has a calories of 1.5 kcal / g, 1/3 of sugar, and GI (Glycemic Index) is 3, which is 5% of sugar, whereas sugar has a similar sweetness and various health functions. It can be used as an alternative sweetener that can satisfy both health and taste at the time of application.
  • the present inventors have reported a method for preparing tagatose in fructose using a novel hexuronic acid C4-epimerase (Korean Patent Publication No. 10-2014-0143109), but it is converted to tagatose for industrial production. There is a need for the development of higher activity enzymes.
  • the present inventors completed the present invention by confirming that the mutation activity of fructose to tagatose was significantly increased as compared to the wild type when mutating the amino acid at a specific position of the hexuronic acid C4-epimerase.
  • the object of the present application is to prepare a hexuronic acid C4-epimerization, wherein the 403 tyrosine (Y) amino acid residue is mutated from the N-terminus of the Hexuronate C4-epimerase having the amino acid sequence of SEQ ID NO: 1 It is to provide enzyme variants.
  • Another object of the present application is to hexuronic acid C4-epi, wherein the 272 threonine (T) amino acid residue is mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 It is to provide a merization enzyme variant.
  • Hexuronic Acid C4- wherein 185 Serine (S) amino acid residue is mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 It is to provide an epimerase enzyme variant.
  • Hexuronic Acid C4- wherein 77 amino acid Leucine (L) amino acid residue is mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 It is to provide an epimerase enzyme variant.
  • Another object of the present application is to hexuronic acid C4-, wherein the amino acid residue 158 alanine (A) is mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 It is to provide an epimerase enzyme variant.
  • Still another object of the present application is to provide a hexuronic acid C4-, wherein the amino acid residue 351 of proline (P) is mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1. It is to provide an epimerase enzyme variant.
  • Another object of the present application is the 125 serine (S), 164 lysine (K), 168 from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 It is to provide a hexuronic acid C4-epimerase variant mutated aspartic acid (D) and glutamic acid (E) amino acid residue 175.
  • Another object of the present application is the 125 Serine (S), 149 Glutamine (Q) and 267 from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 It is to provide a hexuronic acid C4-epimerase enzyme mutated valine (V) amino acid residues.
  • Another object of the present application is to provide a nucleic acid encoding a hexuronic acid C4-epimerase variant disclosed herein, a transformant comprising the nucleic acid, a microorganism expressing the variant herein or a culture thereof, or a hexuronic acid herein. It is to provide a composition for producing D- tagatose comprising a C4-epimerase enzyme variant.
  • Still another object of the present application is a hexuronic acid C4-epimerase enzyme variant of the present application, a transformant of the present application, a microorganism or a culture thereof expressing the variant of the present application, or a composition for producing tagatose of the present application, and a D-frug It is to provide a method for producing D- tagatose, including contacting toss (D-fructose).
  • the present application is directed to a hexuronic acid C4-epimerization wherein a 403 tyrosine (Y) amino acid residue is mutated from the N-terminus of a Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO.
  • Y tyrosine
  • the 403 tyrosine (Y) amino acid residue is alanine (A), cysteine (C), aspartic acid (D), glutamic acid (E), phenylalanine (F), glycine (G), histidine (H), isoleucine (I) , Lysine (K), leucine (L), methionine (M), asparagine (N), proline (P), glutamine (Q), arginine (R), serine (S), threonine (T), valine (V) Or tryptophan (W), more specifically phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V), alanine (A), or isoleucine (I). .
  • the hexuronic acid C4-epimerase variant of the present application is a serine (S) amino acid residue 125 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to the position 403 May be further mutated.
  • the Serine (S) amino acid residue No. 125 may be substituted with aspartic acid (D), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N), cysteine (C), or tyrosine (Y) have.
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid residue 403 of phenylalanine (F), serine (S), threonine (T), glutamine (Q) or valine It may be a variant substituted with (V) and a serine (S) amino acid residue at position 125 is replaced with aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application is a hexuronic acid C4-epimerization consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the 403 tyrosine (Y) and the serine (S) amino acid residues From the N-terminus of the enzyme it consists of 185 serine (S), 267 valine (V), 268 serine (S), 272 threonine (T), 306 tryptophan (W), and 386 arginine (R)
  • SEQ ID NO: 1 the amino acid sequence of SEQ ID NO: 1
  • S serine amino acid residues From the N-terminus of the enzyme it consists of 185 serine (S), 267 valine (V), 268 serine (S), 272 threonine (T), 306 tryptophan (W), and 386 arginine (R)
  • One or more amino acid residues selected from the group may be further mutated.
  • Serine (S) 185 may be substituted with lysine (K), arginine (R), histidine (H), glutamine (Q), alanine (A) or glycine (G);
  • the 267 valine (V) may be substituted with methionine (M);
  • Serine (S) 268 may be substituted with cysteine (C) or threonine (T);
  • Threonine 272 (T) is alanine (A), aspartic acid (D), glutamic acid (E), phenylalanine (F), glycine (G), histidine (H), isoleucine (I), lysine (K), leucine (L), methionine (M), asparagine (N), proline (P), glutamine (Q), arginine (R), serine (S), valine (V) or tyrosine (Y);
  • the 306 tryptophan (W) may be substituted with phenylalanine (F
  • the present application in addition to the mutation of the 403 tyrosine (Y) and 125 serine (S) amino acid residues, the 185 serine (S), the 267 valine (V), the 268 serine (S), the 272 th threonine (T), the 306 tryptophan (W), it can provide a variant mutated at any one of the position 386 arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid residue of 403, phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No. 403 is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V) , Alanine (A), or isoleucine (I), wherein the serine (S) amino acid residue No.
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No. 403 is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V) , Alanine (A), or isoleucine (I), the serine (S) amino acid residue 125 is substituted with aspartic acid (D), the serine (S) 268 is cysteine (C) or threonine (T) It may be a variant substituted with).
  • the hexuronic acid C4-epimerase variant of the present application wherein the amino acid residue of 403 tyrosine (Y) is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V) ), Alanine (A), or isoleucine (I), the serine (S) amino acid residue 125 is substituted with aspartic acid (D), the threonine (T) 272 is substituted with aspartic acid (D) It may be a variant.
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No.
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No.
  • the hexuronic acid C4-epimerase variant of the present application is additionally the serine (S) 185 and the 267, in addition to the 403 tyrosine (Y) and the 125 serine (S) amino acid residues. It may be a variant substituted at any two positions selected from valine (V), the 268 serine (S), the 272 threonine (T), the 306 tryptophan (W), and the 386 arginine (R). .
  • the transition position is 185 and 267, 185 and 268, 185 and 272, 185 and 306, 185 and 386, 267 and 267.
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid residue of 403, phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No.
  • the hexuronic acid C4-epimerase variant of the present application wherein the amino acid residue of 403 tyrosine (Y) is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V) ), Alanine (A), or isoleucine (I), the serine (S) amino acid residue of No. 125 is substituted with aspartic acid (D), and the serine (S) residue of 185 is lysine (K), histidine (H), or glutamine (Q), and threonine 272 (T) may be a variant substituted with aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No. 403 is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V) , Alanine (A), or isoleucine (I), the serine (S) amino acid residue of No. 125 is replaced with aspartic acid (D), and the serine (S) of 268 is cysteine (C) or threonine (T) ) And the 306 tryptophan (W) may be a variant substituted with phenylalanine (F), histidine (H), methionine (M) or valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is that the amino acid residue of No. 403 is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V) , Alanine (A), or isoleucine (I), the serine (S) amino acid residue of No. 125 is replaced with aspartic acid (D), and the serine (S) of 268 is cysteine (C) or threonine (T) )
  • Substituted with 386 arginine (R) may be a variant substituted with proline (P) or valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is additionally the serine (S) 185 and the 267, in addition to the 403 tyrosine (Y) and the 125 serine (S) amino acid residues. It may be a variant substituted at any three positions selected from valine (V), threonine 272 (T), tryptophan 306 (W), and arginine (R) 386.
  • the mutation position may be, for example, the 185, 267 and 268; 185, 267 and 272; 185, 267 and 306; 185, 267 and 386; 185, 268 and 272; 185, 268 and 306; 185, 268 and 386; 185, 272 and 306; 185, 272 and 386; 267, 268 and 272; 267, 268 and 306; 267, 268 and 386; 267, 272 and 306; 267, 272 and 386; 267, 386 and 306; The 268, the 272 and the 306; The 268, the 272 and the 386; The 268, the 306 and the 386; Or 272, 306 and 386.
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid residue of 403, phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V). , Alanine (A), or isoleucine (I), the serine (S) amino acid residue 125 is substituted with aspartic acid (D), the serine (S) residue 185 is lysine (K), histidine ( H), or a variant that was substituted with glutamine (Q), 267 valine (V) was substituted with methionine (M), and 268 serine (S) was substituted with cysteine (C) or threonine (T) Can be.
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid residue of 403, phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V). , Alanine (A), or isoleucine (I), the serine (S) amino acid residue 125 is substituted with aspartic acid (D), the serine (S) residue 185 is lysine (K), histidine ( H), or glutamine (Q), 267 valine (V) is substituted with methionine (M), and 272 threonine (T) may be a variant substituted with aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid residue 403 of phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V).
  • Alanine (A), or isoleucine (I) the serine (S) amino acid residue 125 is substituted with aspartic acid (D)
  • the serine (S) residue 185 is lysine (K), histidine ( H), or glutamine (Q)
  • 267 valine (V) is substituted with methionine (M)
  • 306 tryptophan (W) is phenylalanine (F), histidine (H), methionine (M) Or a variant substituted with valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is additionally the serine (S) 185 and the 267, in addition to the 403 tyrosine (Y) and the 125 serine (S) amino acid residues.
  • S serine
  • Y tyrosine
  • S 125 serine
  • R arginine
  • the hexuronic acid C4-epimerase variant of the present application has an amino acid sequence of SEQ ID NO: 1 in addition to the 403 tyrosine (Y), the 125 serine (S), and the 268 serine (S) amino acid residues From the N-terminus of the constructed hexuronic acid C4-epimerase, 164 lysine (K), 168 aspartic acid (D), 175 glutamic acid (E), 297 asparagine (N) and 388 isoleucine (I) were additionally added. It may be mutated.
  • the 164 lysine (K) is methionine (M)
  • the 168 aspartic acid (D) is glutamic acid (E)
  • the 175 glutamic acid (E) is glycine (G)
  • the 297 asparagine (N) Is lysine (K) may be substituted with valine (V).
  • the hexuronic acid C4-epimerase variant of the example of the above embodiment is the tyrosine (Y) amino acid residue 403 is phenylalanine (F), serine (S), threonine (T), glutamine (Q), valine (V), alanine (A), or isoleucine (I), the serine (S) amino acid residue of No.
  • 125 is substituted with aspartic acid (D), and the serine (S) of 268 is replaced with cysteine (C) or threonine (T) 164 lysine (K) to methionine (M), 168 aspartic acid (D) to glutamic acid (E), 175 glutamic acid (E) to glycine (G), 297 asparagine (N) is lysine (K), the 388 isoleucine (I) may be a variant substituted with valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 267 valine (V) and the 386 arginine (R) amino acid residues
  • proline No. 351 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 may be further mutated.
  • the proline No. 351 (P) may be substituted with serine (S).
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V) and the Glutamic acid (E) 68 may be further mutated from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to the amino acid residue of 306 tryptophan (W).
  • Glutamic acid (68) may be substituted with glycine (G).
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 267 valine (V), the 268 serine (S) and the Glutamic acid (E), 202 methionine (M), 202 methionine (M) and 221 tyrosine (Y) from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to the arginine (R) amino acid residue 386; Tyrosine (Y) amino acid residue 242 may be an additional mutation.
  • E is aspartic acid (D)
  • 202 methionine (M) is threonine (T)
  • 221 tyrosine (Y) is phenylalanine (F)
  • 242 tyrosine (Y) May be substituted with phenylalanine (F).
  • the hexuronic acid C4-epimerase variant of the present application in addition to the 403 tyrosine (Y) and the 125 serine (S) amino acid residues, the 185 serine (S), the 267 valine (V ), 268 serine (S), 272 threonine (T), 306 tryptophan (W), and at least one amino acid residue selected from the group consisting of 386 arginine (R) may be further mutated.
  • the hexuronic acid C4-epimerase variant is leucine 91 (L), 141 aspartic acid (D) and 176 glycine (G) from the N-terminal end of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1
  • One or more amino acid residues selected from the group consisting of may be additionally mutated.
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V), the 268
  • the leucine 91 (L), the 141 aspartic acid (D) or the 176 glycine (G) amino acid residues may be further mutated.
  • 91 (L) is tryptophan (W), isoleucine (I) or asparagine (N), 141 aspartic acid (D) is phenylalanine (F), 176 glycine (G) is histidine (H), It may be substituted with phenylalanine (F) or tyrosine (Y).
  • the hexuronic acid C4-epimerase variant of the present application in addition to the 403 tyrosine (Y) and the 125 serine (S) amino acid residues, the 267 valine (V), the 268 serine (S ),
  • the at least one amino acid residue selected from the group consisting of threonine (272) and tryptophan (306) (306) may be further mutated, and such a hexuronic acid C4-epimerase variant may be selected from the amino acid sequence of SEQ ID NO: 1).
  • the amino acid residues 284 valine (V) and 415 valine (V) may be further mutated from the N-terminus of the constructed hexuronic acid C4-epimerase.
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 267 valine (V), the 268 serine (S), the 272
  • the 284 valine (V) and the 415 valine (V) amino acid residues may be further mutated.
  • 284 valine (V) may be substituted with alanine (A)
  • 415 valine (V) may be substituted with glutamic acid (E).
  • the hexuronic acid C4-epimerase variant of the present application in addition to the 403 tyrosine (Y), the 125 serine (S) amino acids, the 185 serine (S), the 267 valine (V) ,
  • One or more amino acid residues selected from the group consisting of Serine No. 268, Threonine No. 272 and Tryptophan No. 306 may be further mutated, and such hexuronic acid C4-epimerase enzyme variants Proline No. 166 (P) or No. 231 Aspartic Acid (D) may be additionally mutated from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1.
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V), the 268
  • the 166 proline (P) or the 231 aspartic acid (D) may be further mutated.
  • Proline 166 (P) may be substituted with arginine (R), and aspartic acid (D) 231 with arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application in addition to the 403 tyrosine (Y) and the 125 serine (S) amino acid residues, the 185 serine (S), the 267 valine (V ), The 268 serine (S), the 272 threonine (T) and the 386 tryptophan (W) amino acid residues may be further mutated, such hexuronic acid C4-epimerase variant is the amino acid sequence of SEQ ID NO: 1 126 valine (V) may be additionally mutated from the N-terminus of the hexuronic acid C4-epimerase.
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V), the 268
  • the serine (S), the threonine 272 (T) and the 386 tryptophan (W) amino acid residue may be a further mutated valine 126 (V).
  • the 126 valine (V) is alanine (A) , Phenylalanine (F), glycine (G), isoleucine (I), leucine (L), proline (P), asparagine (R) or threonine (T).
  • the hexuronic acid C4-epimerase variant of the present application is 403 from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence set forth in SEQ ID NO: 1.
  • the hexuronic acid C4-epimerase variant of the present application is 403 tyrosine (Y), 125 serine (S), 185 serine (S), 267 valine (V), 268 of SEQ ID NO: 1
  • serine (S), threonine (T) 272 and tryptophan (W) amino acid residues 386 threonine (T), 126 valine (V), 145 tryptophan (W), and 163 valine (V) 164 lysine (K), 166 proline (P), 231 aspartic acid (D), 241 valine (V), 276 threonine (T), 337 lysine (K), 366 alanine (A) , 402 serine (S), 429 aspartic acid (D) or 440 tyrosine (Y) amino acid residues may be further mutated.
  • the threonine (T) 97 may be substituted with alanine (A) or leucine (L); Valine 126 (V) is substituted with phenylalanine (F), leucine (L), proline (P), isoleucine (I), threonine (T), alanine (A), glycine (G) or arginine (R) Can; Tryptophan (W) 145 may be substituted with alanine (A); Valine 163 may be substituted with alanine (A), methionine (M) or glutamine (Q); 164 lysine (K) may be substituted with methionine (M); Proline 166 (P) may be substituted with arginine (R); Aspartic acid (D) 231 may be substituted with arginine (R); The 241 valine (V) may be substituted with asparagine (N), threonine (T) or serine (S); The threonine 276
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V), the N of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to serine 268 (S), threonine 272 (T), tryptophan 386 (W) and threonine (T) 97
  • the amino acid residue of 164 lysine (K), 166 aspartic acid (D) or 231 aspartic acid (D) from the terminal may be further mutated.
  • 164 lysine (K) may be substituted with methionine (M);
  • Aspartic acid 166 (D) may be substituted with arginine (R);
  • Aspartic acid (D) 231 may be substituted with arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V), the Of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the serine (S) 268, threonine (272), tryptophan (386), and valine (V) 163 (V) amino acid residues Aspartic acid (D) amino acid residue No. 231 from the N-terminus may be further mutated. Aspartic acid (D) 231 may be substituted with arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application is the 403 tyrosine (Y), the 125 serine (S), the 185 serine (S), the 267 valine (V), the Of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the serine (S) 268, threonine (272), tryptophan (386) and lysine (K) 337; 157 glycine (G), 160 alanine (A), 167 glutamic acid (E), 177 phenylalanine (F), 218 glycine (G), 295 phenylalanine (F), 302 phenylalanine (N-terminal) F), 361 phenylalanine (F), 366 alanine (A) or 441 glycine (G) amino acid residues may be further mutated.
  • Glycine (G), 157, may be substituted with arginine (R);
  • the alanine (A) may be substituted with leucine (L), phenylalanine (F), arginine (R) or tyrosine (Y);
  • Glutamic acid (E) may be substituted with alanine (A), tryptophan (W), isoleucine (I), lysine (K), methionine (M), valine (V) or serine (S); 177 phenylalanine (F) may be substituted with tyrosine (Y), histidine (H) or leucine (L);
  • Glycine (G) may be substituted with isoleucine (I), serine (S), leucine (L), phenylalanine (F) or cysteine (C);
  • the 295 phenylalanine (F) may be substituted with cysteine (C), arginine (R) or tyrosine (Y);
  • the hexuronic acid C4-epimerase variant of the present application is a hexuronic acid C4-epimerization consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the 403 tyrosine (Y) and serine (S) amino acid residues From the N-terminus of the enzyme, the amino acid residues of leucine 77, alanine 158, or a combination thereof may be further mutated.
  • the leucine No. 77 may be substituted with proline (P) or arginine (R), and the alanine no. 158 with threonine (T).
  • the hexuronic acid C4-epimerase variant mutated from the 403 tyrosine (Y), the 125 serine (S), the leucine (L) amino acid residue and the alanine (A) amino acid residue 158 is SEQ ID NO: 1 Arginine (R) amino acid residue No. 386 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of may be further mutated. Arginine (R) 386 may be substituted with proline (P) or valine (V).
  • the present application is directed to a hexuronic acid C4-epi mutated by serine (S) amino acid residue No. 185 from the N-terminus of a Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO.
  • S serine
  • the 185 serine amino acid residue may be substituted with alanine (A), glycine (G), histidine (H), lysine (K), glutamine (Q), or arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application may be an additional mutation of the serine (S) amino acid residue No. 125 in addition to the 185 position.
  • the Serine (S) amino acid residue No. 125 may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D) have.
  • the hexuronic acid C4-epimerase variant of the present application is a serine (S) amino acid residue of No.
  • hexuronic acid C4-epimerase variant of the present application is a serine (S) amino acid residue of No.
  • 185 is alanine (A), glycine (G), histidine (H), lysine (K), glutamine (Q) Or may be a variant substituted with arginine (R) and a serine (S) amino acid residue at position 125 is replaced with aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application is a hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the 185 serine (S) and 125 serine (S) positions
  • the serine (S) amino acid residue at position 268 from the N-terminal of may be further mutated.
  • Serine (S) 268 may be substituted with cysteine (C) or threonine (T).
  • the present application is directed to a hexuronic acid C4-, wherein a 272 threonine (T) amino acid residue is mutated from the N-terminus of a Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO.
  • Epimerase enzyme variants are provided.
  • Threonine 272 is alanine (A), aspartic acid (D), glutamic acid (E), phenylalanine (F), glycine (G), histidine (H), isoleucine (I), lysine (K), leucine (L), methionine (M), asparagine (N), proline (P), glutamine (Q), arginine (R), serine (S), valine (V) or tyrosine (Y).
  • the hexuronic acid C4-epimerase variant of the present application may be an additional mutation of the 125 serine (S) residue in addition to the threonine (T) amino acid residue 272.
  • Serine No. 125 may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D).
  • cysteine (C) cysteine
  • Y tyrosine
  • Q glutamine
  • E glutamic acid
  • T threonine
  • N asparagine
  • D aspartic acid
  • the hexuronic acid C4-epimerase variant of the present application is the threonine (T) No.
  • the hexuronic acid C4-epimerase variant of the present application is the threonine (T) No. 272 serine (S), proline (P), aspartic acid (D), histidine (H), glutamine (Q), It may be a variant substituted with asparagine (N), lysine (K), or tyrosine (Y), and serine (S) is substituted with aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application is a hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the threonine (272) and serine (S) residues 272
  • the 185 serine (S) residue from the N-terminal of may be further mutated.
  • Serine (S) 185 may be substituted with alanine (A), glycine (G), histidine (H), lysine (K), glutamine (Q) or arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), Glutamine (Q), or a serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is a variant substituted with lysine (K) Can be.
  • the hexuronic acid C4-epimerase variant of the present application has the amino acid sequence of SEQ ID NO: 1, in addition to the threonine 272, the 125 serine (S), and the 185 serine (S) residue
  • One or more amino acid residues of the group consisting of 267 valine (V), 268 serine (S) and 306 tryptophan (W) may be additionally mutated from the N-terminus of the hexuronic acid C4-epimerase.
  • the 267 valine (V) may be substituted with methionine (M), the 268 serine (S) may be substituted with cysteine (C) or threonine (T), the 306 tryptophan (W) is phenylalanine It may be a variant substituted with (F), histidine (H), methionine (M) or valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K),
  • the 267 valine (V) may be a variant substituted with methionine (M).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K),
  • the serine (S) 268 may be a variant substituted with cysteine (C) or threonine (T).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K),
  • the 306 tryptophan (W) may be a variant substituted with phenylalanine (F), histidine (H), methionine (M) or valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K), 267 valine (V) is substituted with methionine (M), and 268 serine (S) may be a variant substituted with cysteine (C) or threonine (T).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K),
  • the 267 valine (V) is substituted with methionine (M)
  • the 306 tryptophan (W) may be a variant substituted with phenylalanine (F), histidine (H), methionine (M) or valine (V). .
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K), The 268 serine (S) is substituted with cysteine (C) or threonine (T), the 306 tryptophan (W) is substituted with phenylalanine (F), histidine (H), methionine (M) or valine (V) It may be a variant.
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q) or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 185 serine (S) is substituted with lysine (K), 267 valine (V) is substituted with methionine (M), 268 serine (S) is substituted with cysteine (C) or threonine (T), and 306 tryptophan (W) is phenylalanine (F), It may be a variant substituted with histidine (H), methionine (M) or valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is in addition to the threonine (T) and the serine (S) residues 272, 267 valine (V) residues, 268 serine (S) or
  • the combination of the 267 valine (V) residue and the 268 serine (S) residue may be an additionally mutated variant.
  • the 267 valine (V) residue may be substituted with methionine (M), and the 268 serine (S) may be substituted with cysteine (C) or threonine (T).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q), or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the valine (V) residue 267 is substituted with methionine (M)
  • the 268 serine (S) may be a variant substituted with cysteine (C) or threonine (T).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) and the 125 serine (S); And in addition to the 267 valine (V) and / or the 268 serine (S), aspartic acid (D) and 386 arginine (R) from the N-terminus of the hexuronic acid C4-epimerase of SEQ ID NO: 1 ) Residues or combinations thereof may be further mutated variants. Aspartic acid (D) 231 may be substituted with arginine (R), and arginine (R) 386 may be substituted with proline (P) or valine (V).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q), or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the valine (V) residue 267 is substituted with methionine (M) , Serine 268 (S) may be substituted with cysteine (C) or threonine (T), the aspartic acid 231 is replaced with arginine (R), or the 386 arginine (R) is proline (P) or valine (V), or both 231 and 386 may be a variant substituted with arginine (R), or proline (P) or valine (V), respectively.
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T), the 125 serine (S), the 267 valine (V), the 268 serine (S) and the In addition to the arginine (R) residues No. 386, threonine (T), 149 glutamine (Q), 166 proline (P), or 97 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1
  • One or more amino acid residues selected from the group consisting of proline (P) No. 351 may be additionally mutated variants.
  • the 97 threonine (T) may be substituted with alanine (A) or leucine (L), the 149 glutamine (Q) may be substituted with arginine (R), the 166 proline (P) is arginine It may be substituted with (R), the proline No. 351 (P) may be substituted with serine (S).
  • the hexuronic acid C4-epimerase variant of the present application is the 272 threonine (T) is aspartic acid (D), valine (V), isoleucine (I), leucine (L), methionine ( M), glutamine (Q), or serine (S), the 125 serine (S) is substituted with aspartic acid (D), the valine (V) residue 267 is substituted with methionine (M) , Serine 268 (S) is substituted with cysteine (C) or threonine (T), the 386 arginine (R) is substituted with valine (V), the 97 threonine (T) is alanine (A) Or leucine (L), glutamine 149 (Q) is substituted with arginine (R), proline 166 (P) is substituted with arginine (R), or 351 proline (P) is serine It may be substituted with (S).
  • the hexuronic acid C4-epimerase variant of the present application is threonine 272 and 125 serine (S), and 267 valine (V) and / or 268 serine (S) ) From the group consisting of 164 lysine (K), 168 aspartic acid (D) and 175 glutamic acid (E) from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1) One or more amino acid residues selected may be further mutated.
  • the 164 lysine (K) may be substituted with methionine (M), the 168 aspartic acid (D) may be substituted with glutamic acid (E), the 175 glutamic acid (E) is glycine (G) Can be substituted.
  • the present application is directed to a hexuronic acid C4-epi mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO.
  • the leucine No. 77 may be substituted with proline (P) or arginine (R).
  • the hexuronic acid C4-epimerase variant of the present application is 125 times from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the 77 leucine (L) amino acid residue
  • the serine (S) amino acid residue may be further mutated.
  • Serine No. 125 may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application is a hexuronic acid C4-epimerase enzyme consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the leucine (L) and serine (S) amino acid residues 77 From the N-terminus of the 158 alanine (A), 351 proline (P) or a combination of amino acid residues may be further mutated.
  • Alanine No. 158 (A) may be substituted with threonine (T)
  • Proline No. 351 may be substituted with serine (S).
  • Hexuronic acid C4-epimerase variant of the present application is a hexuronic acid C4 consisting of the amino acid sequence of SEQ ID NO: 1, in addition to the leucine 77 (L), the serine (S) 125 and alanine (A) 158 amino acid residues At least one amino acid residue selected from the group consisting of histidine 9 (H), glutamic acid (E) and valine (V) 415 from the N-terminus of the epimerase may be further mutated.
  • the hexuronic acid C4-epimerase variant of the present application is the leucine No. 77 (L), the Serine No. 125 (S), the 158 Alanine (A), the No.
  • the ninth histidine (H) may be substituted with tyrosine (Y)
  • the 60-glutamic acid (E) may be substituted with aspartic acid (D)
  • the 415 valine (V) is glutamic acid (E) Can be substituted.
  • the present application is directed to a hexuronic acid C4-epi mutated with alanine (A) amino acid residue No. 158 from the N-terminus of a hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1.
  • A amino acid residue No. 158 from the N-terminus of a hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1.
  • Alanine (A) No. 158 may be substituted with threonine (T).
  • the hexuronic acid C4-epimerase variant of the present application is serine 125 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to the alanine (A) amino acid residue 158 (S)
  • the amino acid residue may be further mutated.
  • the 125 serine (S) may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D).
  • alanine (A) 158 in the amino acid sequence of SEQ ID NO: 1 is replaced with threonine (T), and serine (S) 125 is cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid ( E), threonine (T), asparagine (N) or aspartic acid (D).
  • the hexuronic acid C4-epimerase variant of the present application comprises a hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to the alanine (A) and serine (S) amino acid residues 158 above
  • One or more amino acid residues selected from the group consisting of glutamine 149 (Q), valine 267 (V) and proline 351 (P) from the N-terminal of may be further mutated.
  • the glutamine (Q) No. 149 may be substituted with arginine (R), the valine (V) 267 may be substituted with methionine (M), the proline No. 351 is substituted with serine (S) Can be.
  • amino acid residue of alanine 158 is substituted with threonine (T)
  • serine (S) is substituted with aspartic acid (D)
  • glutamine (Q) is replaced with arginine (R).
  • 267 valine (V) is substituted with methionine (M) or 351 proline (P) is substituted with serine (S).
  • the present application is directed to a hexuronic acid C4-epi, wherein the amino acid residue 351 is mutated from the N-terminus of Hexuronate C4-epimerase consisting of the amino acid sequence of SEQ ID NO.
  • Proline 351 may be substituted with serine (S).
  • the hexuronic acid C4-epimerase variant of the present application is serine 125 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 in addition to the amino acid residue of 351 proline (P) (S)
  • the amino acid residue may be further mutated.
  • the 125 serine (S) may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D).
  • the 351 proline (P) is substituted with serine (S), the 125 serine (S) is cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T)
  • Variants substituted with asparagine (N) or aspartic acid (D) may be provided.
  • the hexuronic acid C4-epimerase variant of the present application may be additionally mutated 267 valine (V) amino acid residues in addition to the 351 proline (P) and 125 serine (S) amino acid residues. .
  • the valine 267 may be substituted with methionine (M).
  • This hexuronic acid C4-epimerase variant is further mutated by one or more amino acid residues selected from the group consisting of tyrosine (Y), 62 valine (V), 149 glutamine (Q) and 316 leucine (L). It may have been.
  • the 21 tyrosine (Y) may be substituted with phenylalanine (F)
  • 62 valine (V) may be substituted with isoleucine (I)
  • 149 glutamine (Q) may be substituted with arginine (R)
  • 316 leucine (L) may be substituted with phenylalanine (F).
  • the 351 proline (P) is substituted with serine (S), the 125 serine (S) is substituted with aspartic acid (D), the 267 valine (V) is methionine ( M), 21 tyrosine (Y) is substituted with phenylalanine (F), 62 valine (V) is substituted with isoleucine (I), and 149 glutamine (Q) is arginine (R)
  • Substituted with, 316 leucine (L) may be a variant substituted with phenylalanine (F).
  • the present application provides the following methods: Serine (S), 164 lysine (K), and 168 aspartic acid (D) from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 And hexuronic acid C4-epimerase enzyme variants wherein glutamic acid (E) amino acid residue at position 175 is mutated.
  • Serum (S) 125 may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D), and Lysine No. 164 (K) may be substituted with methionine (M), aspartic acid (D) 168 with glutamic acid (E), and glutamic acid (E) with no. 175 with glycine (G).
  • the hexuronic acid C4-epi mutated the 125 serine (S), 164 lysine (K), 168 aspartic acid (D) and 175 glutamic acid (E) amino acid residues of the present application
  • the merization enzyme variant consists of leucine (L), 386 arginine (R), 268 serine (S), and 297 asparagine (140) from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1.
  • One or more amino acid residues selected from the group consisting of N) may be further mutated.
  • the leucine No. 140 (L) is proline (P), the arginine (R) No.
  • the 386 can be substituted with proline (P) or valine (V), the 268 serine (S) is cysteine (C) or With threonine (T), the 297 asparagine (N) may be substituted with lysine (K).
  • the 125 serine (S) is aspartic acid (D)
  • the 164 lysine (K) is methionine (M)
  • the 168 aspartic acid (D) is glutamic acid (E)
  • the 175 glutamic acid (E) may be a variant substituted with glycine (G), the leucine 140 with proline (P), and the arginine (R) 386 with proline (P).
  • Hexuronic acid C4-epimerase variant of the present application is the serine (S) is 125 aspartic acid (D), 164 lysine (K) is methionine (M), 168 Aspartic acid (D) is glutamic acid (E), 175 glutamic acid (E) is glycine (G), 268 serine (S) is threonine (T), and 297 asparagine (N) is lysine It may be a variant substituted with (K).
  • the hexuronic acid C4-epimerase variant of the present application is a serine (S), No. 125 from the N-terminus of the hexuronic acid C4-epimerase consisting of the amino acid sequence of SEQ ID NO: 1 Provides a hexuronic acid C4-epimerase variant with mutated glutamine (Q) and valine (V) amino acid residues 267.
  • Serum (S) 125 may be substituted with cysteine (C), tyrosine (Y), glutamine (Q), glutamic acid (E), threonine (T), asparagine (N) or aspartic acid (D), and Glutamine (Q) 149 may be substituted with arginine (R), and valine (V) 267 may be substituted with methionine (M).
  • the hexuronic acid C4-epimerase variant of the present application is a mutated amino acid residue disclosed in Tables 2 to 9 in the amino acid sequence (SEQ ID NO: 1) of the wild type hexuronic acid C4-epimerase At least 50% inheritance compared to hexuronic acid C4-epimerase enzyme variants consisting of amino acid sequences (eg, M125 variants in Tables 2-10) derived from positions and substituted amino acid residues, or variants having such amino acid sequences Having at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 97% to 99% homology, according to one embodiment.
  • Polypeptide moieties may be included.
  • homology refers to the percent identity between two polypeptide moieties. Correspondence between sequences from one moiety to another may be determined by known techniques. For example, homology can be determined by aligning sequence information and directly aligning sequence information between two polypeptide molecules using readily available computer programs. Homology can also be determined by hybridizing polynucleotides under conditions of stable double-stranding between homologous regions followed by digestion with single-strand-specific nucleases to determine the size of the digested fragments.
  • homology includes all grammatical or spelling variant forms of superfamily-derived proteins (eg, immunoglobulin superfamily) and homologous proteins from other species (eg, myosin light chain, etc.), and “common evolution”. Origin ". Such proteins (and their coding genes) have sequence homology reflected by a high degree of sequence similarity. However, in general use and in the present invention, “homology” refers to sequence similarity when modified by an adjective such as "very high” and does not mean a common evolutionary origin.
  • sequence similarity refers to the degree of identity or correspondence between the base sequence or amino acid sequence of a protein that may or may not share a common evolutionary origin.
  • two amino acid sequences have at least 21% polypeptide match for a given length of amino acid sequence (at least about 50% according to one embodiment, at least 75%, 90%, 95 according to another embodiment) %, 96%, 97% or 99%) are "substantially homologous” or “substantially similar.”
  • Substantially homologous sequences can be identified by using standard software used in data banks or by comparing sequences by, for example, Southern hybridization experiments under stringent conditions defined for a particular system. Appropriate hybridization conditions to be defined are within the technical scope (see for example Sambrook et al., 1989, infra).
  • the hexuronic acid C4-epimerase variants described herein enhance the C4-epimerized unit activity that epimerizes the 4th carbon position of D-fructose and converts it to D-tagatose, resulting in D-fructose from D- Tagatose can be produced efficiently.
  • the hexuronic acid C4-epimerase variant of the present application is included in the genus Rhodothermus , Thermoanaerobacter , Thermotoga , or Dictyoglomus . It may be derived from hexuronic acid C4-epimerase of the high temperature microorganism. Specifically, it may be derived from the hexuronic acid C4-epimerase of the Thermotoga genus microorganism, and more specifically, the hex of Thermotoga neapolitana or Thermotoga maritima It may be derived from the lonic acid C4-epimerase.
  • the hexuronic acid C4-epimerase of the present application has the same function as the enzyme produced by mesophilic microorganisms (mesophile) and can perform the reaction stably under extreme reaction conditions (high temperature, etc.), and contaminated with mesophilic microorganisms. Because it has many advantages such as prevention, increased solubility of substances with low solubility of substrate, and increased reaction rate, there is an advantage that can overcome industrial disadvantages using mesophilic enzymes.
  • Hexlonic acid C4-epimerase variants of the present application are transformed into strains such as E. coli with DNA expressing the hexuronic acid C4-epimerase variant of the present application, and cultured to obtain a culture, and the culture By crushing water, it may be purified through a column or the like.
  • strains such as E. coli with DNA expressing the hexuronic acid C4-epimerase variant of the present application
  • E. coli DNA expressing the hexuronic acid C4-epimerase variant of the present application
  • cultured to obtain a culture, and the culture By crushing water, it may be purified through a column or the like.
  • the strain for transformation Escherichia coli , Corynebacterium glutamicum , Aspergillus duckase oryzae ), or Bacillus subtilis .
  • the present application is directed to a nucleic acid encoding a hexuronic acid C4-epimerase variant described herein, a transformant comprising said nucleic acid, or a hexuronic acid C4-epimerase variant described herein. It provides a composition for producing D- tagatose comprising a microorganism to express or a culture of the microorganism or the hexuronic acid C4-epimerase enzyme described herein.
  • vector refers to any medium for cloning and / or transferring bases to an organism, such as a host cell.
  • the vector may be a replica, in which other DNA fragments can bind to result in replication of the bound fragment.
  • a "replicating unit” is any genetic unit (eg, plasmid, phage, cosmid, chromosome, virus) that functions as an autologous unit of DNA replication in vivo, i. Say.
  • the term “vector” includes viral and nonviral mediators for introducing a base into an organism, such as a host cell, in vitro, ex vivo or in vivo.
  • the term “vector” may also include minispherical DNA.
  • nucleic acid is meant to encompass DNA or RNA molecules inclusive, and the nucleotides that are the basic structural units in nucleic acids may include not only natural nucleotides, but also analogs with modified sugar or base sites (see Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990).
  • transformation refers to an organism in which a nucleic acid fragment migrates into the genome of a host organism, resulting in genetically stable inheritance
  • transformer refers to an organism in which a nucleic acid migrates within its genome, resulting in genetically stable inheritance.
  • the transformant may be, for example, a prokaryotic or eukaryotic cell, specifically, an enterobacterial microorganism or coryneform microorganism, and more specifically, an Escherichia microorganism or Serratia microorganism. Specifically, it may be E. coli.
  • Methods for transforming into an organism include any method for introducing the nucleic acid into an organism, and may be carried out by appropriately selecting appropriate standard techniques as is known in the art. For example, electroporation, calcium phosphate co-precipitation, retroviral infection, microinjection, DEAE-dextran, cationic liposomes cationic liposome), and the like.
  • composition for producing D-tagatose comprising the hexuronic acid C4-epimerase variant may further comprise any suitable excipient commonly used in the composition for producing D-tagatose.
  • excipients may be, for example, but not limited to, preservatives, wetting agents, dispersants, suspending agents, buffers, stabilizers or isotonic agents.
  • Hexuronic acid C4-epimerase variant in the composition may be included in the range of 0.1% to 70% by weight based on the solid weight of the composition.
  • the present application is directed to a hexuronic acid C4-epimerase enzyme variant described herein, a transformant described herein, or a composition for producing tagatose described herein, and D-fructose (D- fructose) to epimerize the D-fructose, thereby providing a method for producing D-tagatose.
  • the method may include contacting D-fructose with a hexuronic acid C4-epimerase variant of the present application, a microorganism expressing the variant or a culture of the microorganism or a composition for producing D-tagatose comprising the same. have. This can epimerize the 4th carbon position of D-fructose.
  • Monosaccharides can generally be classified into aldohexose and ketohexose.
  • D-fructose which is a raw material in the present application, may be used as an example of ketohexose to prepare D-tagatose.
  • the D-fructose may be prepared by hydrolysis of sugar or may be prepared by isomerizing glucose. Through this, it is possible to manufacture tagatose in high yield using common and inexpensive raw materials such as fructose, sugar and glucose, thereby enabling mass production of tagatose.
  • Epimerizing the D-fructose of the present application may be carried out at pH 5-9 pH 6-9, pH 7-9 or pH 7.5-8.5. Epimerizing the D-fructose of the present application may be carried out at 50 °C to 85 °C, 50 °C to 75 °C or 50 °C to 70 °C.
  • the enzyme enzyme treatment of the present application at the pH or temperature conditions, the reaction can proceed at a relatively high temperature to minimize microbial contamination during the manufacturing process, increase the solubility of fructose used as a substrate, The reaction rate and conversion rate can be maximized.
  • the D-fructose concentration of the present application may be 10 to 50% (w / v). According to one embodiment, the concentration may be 20 to 50% (w / v), 20 to 40% (w / v), 20 to 30% (w / v).
  • the variant enzyme of the present application is capable of producing D-tagatose from a high concentration of D-fructose, which has the advantage of producing D-tagatose economically and efficiently.
  • Epimerizing the D-fructose of the present application may be made in the presence of a metal salt.
  • the metal of the present application may be one or more metals selected from the group consisting of Ni, Ni, Co, Mn, and Zn.
  • the metal salt of the present application may be at least one selected from the group consisting of NiSO 4 , NiCl 2 , CoCl 2 , MnCl 2 , and ZnSO 4 .
  • the preparation method of the present application may further include obtaining D-fructose by hydrolyzing sugar before contacting the present application.
  • the enzyme used for the hydrolysis is ⁇ -D-fructosidase including ⁇ -fructofuranosidase, invertase and saccharase; It may be one or more selected from the group consisting of sucrase, ⁇ -glucosidase and ⁇ -D-glucohydrolase, but is not limited thereto.
  • the preparation method of the present application may further include isomerizing glucose to obtain D-fructose before contacting the present application.
  • the isomerase may be glucose isomerase or phosphoglucoisomerase, but is not limited thereto.
  • the preparation method of the present application may further include obtaining an epimerized reactant including D-tagatose after contacting the present application.
  • the preparation method of the present application may further include purifying the epimerization reactant including D-tagatose obtained after obtaining the epimerization reactant of the present application.
  • the preparation method of the present application may further include crystallizing the epimerized reactant including the purified D-tagatose after purifying the epimerized reactant of the present application.
  • the method for purifying the epimerization reactant is not particularly limited, and a method commonly used in the art of the present application may be used. Non-limiting examples include chromatography, fractional crystallization and ion purification. Only one purification method may be performed, or two or more methods may be performed together.
  • the epimerization reaction may be purified through chromatography, and the separation of sugars by chromatography may be performed by using a weak binding force difference between the sugar to be separated and the metal ion attached to the ionic resin. .
  • the present application may further comprise performing decolorization, desalting or both before or after the purifying step of the present application.
  • decolorization desalting or both before or after the purifying step of the present application.
  • the purified epimerized reactant may be subjected to a process of crystallization after obtaining a pure tagatose solution through SMB chromatography after concentration.
  • the preparation method of the present application may further comprise the step of concentrating the separately obtained tagatose liquid before the step of crystallization of the present application.
  • the concentration may be to concentrate the concentration of the purified epimerization reactant containing D-tagatose to about 2.5 to 3 times, it can be crystallized more efficiently through the concentration step.
  • the method used in the crystallization step of the present application is not particularly limited, and can be used a crystallization method commonly used.
  • a crystallization method using a cooling crystallization method can be used.
  • After the crystallization step, finally purified D-tagatose can be obtained in high yield.
  • the preparation method of the present application may be reused in the step of contacting the unreacted D-fructose after the purification step of the present application, or after the crystallization step of the present application, the mother liquid It may further include the step of reusing to the purification step, or to carry out both.
  • the reuse step it is possible to obtain D-tagatose in a higher yield and to reduce the amount of D-fructose that is discarded.
  • n-carbon position means a carbon position determined according to a carbon numbering rule defined by IUPAC, which may be expressed as Cn.
  • n is an integer of 1 or more.
  • epimerized at carbon position 4" may be referred to as "C4-epimerized”.
  • amino acid residue (X) at position n from the N-terminus of Hexuronate C4-epimerase composed of the amino acid sequence of SEQ ID NO: 1 can be briefly represented by n X.
  • amino acid to be substituted at a mutated amino acid residue one may contemplate substitutable amino acids at amino acid residues at that position as mentioned elsewhere herein.
  • amino acids herein may be represented by the following abbreviations or amino acid names:
  • the present application provides a hexuronic acid C4-epimerase variant with improved activity for epimerizing the 4th carbon position of D-fructose to D-tagatose, thereby providing a generalized raw material D- By using Fructose to efficiently mass-produce D-tagatose, the manufacturing cost is reduced and there is an economic advantage.
  • Thermotoga Neapolitana tertiary structure of an active region of an ortholog (heterolog, homologous gene that is expected to have the same function in other microbial species) that has homology with the amino acid of hexuronic acid C4-epimerase derived from neapolitana )
  • amino acids that were predicted to be functionally important were selected first, and after analysis of alanine-scanning mutagenesis for them, refining active site structure and D-fructose docking model analysis
  • an improved target site was designed to improve the unit activity of D-fructose C4-epimerization conversion. This will be described in detail below.
  • homologous genes homologous to the wild-type amino acid sequence were selected using the GenBank gene database (sequence coverage 80% and homology 50% or more homologous genes about 60%) ]. Multiple sequence alignment analysis between amino acid sequences of selected homologous genes identified conserved amino acid residues predicted to be functionally important on the amino acid sequence of the wild type.
  • the selected amino acids were substituted with alanine to produce such recombinant mutants in E. coli, and then analyzed for the characteristics of each mutant site.
  • Improved target for improving unit activity of D-fructose C4-epimerization conversion by selecting amino acids predicted to be functionally important through redesigned active site structure and D-fructose docking simulation after analysis of alanine scanning mutation The site was designed. Amino acid sites (probably catalytic metal ion binding residues and deprotonation / protonation involvement catalytic residues) whose activity is completely lost through alanine scanning mutations are excluded from target sites for activity improvement.
  • Target sites designed in Example 1 (9, 21, 60, 62, 68, 77, 91, 97, 125, 126, 140, 141, 145, 149, from the N-terminus of the wild-type hexuronic acid C4-epimerase) 157, 158, 160, 163, 164, 166, 167, 168, 175, 176, 177, 185, 202, 218, 221, 231, 241, 242, 267, 268, 272, 276, 284, 295, 297, Single-site saturation mutagenesis library at 54 sites (302, 306, 316, 337, 351, 361, 366, 386, 388, 402, 403, 415, 429, 440 and 441) ) And the mutation sites and amino acids were screened and selected to improve the unit activity. By integrating the information of the selected improved sites, we developed a multi-mutant enzyme and improved the muta-enzyme with improved unit activity of D-fructose C4-epimerization conversion reaction.
  • Wild type enzyme gene Recombinant expression vector prepared for expression of E. coli BL21 (DE3) of wild type Introduces wild type at NdeI and XhoI restriction enzyme sites of pET21a and expresses 6xHis-tag-coupled recombinase at C-terminus of wild type
  • Inverse PCR-based saturation mutagenesis was used in consideration of variance distribution diversity and mutant yield (2014. Anal. Biochem. 449: 90-98), minimizing the screening scale of the mutated strain library (introduced during saturation) NDT, VMA, ATG, and TGG mixed primers (2012.
  • a mixed primer was prepared by using a front base 15bp of each displacement site, a base 3bp (NDT, VMA, ATG, and TGG) to replace the displacement site, and a rear base 15bp with a total length of 33bp.
  • PCR conditions were denatured for 2 minutes at 94 °C, 94 °C 30 seconds denaturation, 60 °C 30 seconds annealing, 72 °C 10 minutes elongation was repeated 30 times, the extension reaction was carried out at 72 °C 60 minutes.
  • amino acid mutation distribution was evaluated by randomly selecting mutation strains ( ⁇ 11 mutations) for each library and analyzing sequencing. Based on the analysis result, a screening scale of 90% or more of sequence coverage for each library was set (2003. Nucleic Acids Res. 15; 31: e30).
  • the first selected mutants were reacted with D-fructose using a purified (His-tag affinity chromatography) enzyme solution, and then the reaction product was analyzed by HPLC (column Shodex SUGAR SP-G, column analysis temperature 80 ° C, mobile phase H). 2 O, flow rate 0.6 ml / min, Refractive Index detector) was selected for final wild-type enzyme compared to D- fructose conversion D- tagatose produced mutant with increase activity using 236 kinds.
  • Thermotoga The relative activity of D-fructose C4-epimerization compared to wild type recombinant enzyme derived from neapolitana ) (wild type, SEQ ID NO: 1) was measured.
  • the C4-epimerase variants of the present application increased the D-fructose C4-epimerization activity than the wild-type enzyme, and in particular, the enzyme variant of M199 was analyzed to increase the activity of about 20-fold unit wild type It can be seen that the activity of tagatose production is significantly increased compared to the enzyme.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 출원은 헥수론산 C4-에피머화 효소(hexuronate C4-epimerase)의 전환 활성이 향상된, 헥수론산 C4-에피머화 효소 변이체 및 이를 이용한 D-타가토스의 제조 방법에 관한 것이다.

Description

D-타가토스 전환 활성이 향상된 헥수론산 C4-에피머화 효소 변이체 및 이를 이용한 D-타가토스의 제조 방법
본 출원은 D-타가토스 전환 활성이 향상된 헥수론산 C4-에피머화 효소 변이체 및 이를 이용하여 D-타가토스를 제조하는 방법에 관한 것이다.
타가토스는 우유, 치즈, 카카오 등의 식품, 사과와 귤과 같은 단맛이 나는 천연과일에 소량 존재하는 천연감미료, 물리적 성질 또한 설탕과 비슷하다. 타가토스의 칼로리는 1.5 kcal/g으로 설탕의 1/3 수준이며 GI(Glycemic index, 혈당지수)는 3으로 설탕의 5% 수준인데 반해, 설탕과 유사한 단맛을 내면서 다양한 건강 기능성을 가지고 있기 때문에 여러 제품 적용 시 건강과 맛을 동시에 만족시킬 수 있는 대체감미료로 이용될 수 있다.
종래 알려진 타가토스의 생산 방법은 갈락토스를 주원료로 한 화학적(촉매 반응)방법과 생물학적(이성화 효소반응) 방법이 있다(대한민국 공개특허 제2009-0082774호 참조). 그러나 상기 제조방법에서 갈락토스의 기초 원료가 되는 유당은 국제 시장에서의 원유(原乳) 및 유당의 생산량, 수요 및 공급량 등에 따라 가격이 불안정성하여, 타가토스 생산 원료의 안정적 수급에 한계가 있다. 따라서, 보편화된 일반당(설탕, 포도당, 과당 등)을 원료로 타가토스를 제조할 수 있는 새로운 방법이 필요하다. 이에, 본 발명자들은 신규한 헥수론산 C4-에피머화 효소를 이용하여 과당에서 타가토스를 제조하는 방법을 보고한 바 있으나(대한민국 공개특허 제10-2014-0143109호), 산업적 생산을 위하여 타가토스 전환 활성이 보다 높은 효소의 개발이 필요한 실정이다.
이러한 배경 하에, 본 발명자들은 헥수론산 C4-에피머화 효소의 특정 위치의 아미노산을 돌연변이시키는 경우 과당에서 타가토스로의 전환 활성이 야생형에 비하여 현저하게 증가함을 확인하므로써, 본 발명을 완성하였다.
본 명세서 전체에 걸쳐, 다수의 특허들 및 문헌들이 참조되고 그 인용이 괄호로 표시되어 있다. 본 발명 및 본 발명이 속하는 기술 분야의 수준을 보다 명확하게 설명하기 위하여 이러한 특허들 및 문헌들의 공개는 그 전체로서 본 명세서에 참조로 포함되어 있다.
본 출원의 목적은, 서열번호 1의 아미노산 서열을 갖는 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 403번 타이로신(Y) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 272번 트레오닌(T) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 185번 세린(S) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 77번 류신(L) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 158번 알라닌(A) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 351번 프롤린(P) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 125번 세린(S), 164번 라이신(K), 168번 아스파르트산(D) 및 175번 글루탐산(E) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 125번 세린(S), 149번 글루타민(Q) 및 267번 발린(V) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공하는 것이다.
본 출원의 또 다른 목적은, 본원에 개시된 헥수론산 C4-에피머화 효소 변이체를 암호화하는 핵산, 상기 핵산을 포함하는 형질전환체, 본원의 변이체를 발현하는 미생물 또는 이의 배양물, 또는 본원의 헥수론산 C4-에피머화 효소 변이체를 포함하는 D-타가토스 생산용 조성물을 제공하는 것이다.
본 출원의 또 다른 목적은, 본원의 헥수론산 C4-에피머화 효소 변이체, 본원의 형질전환체, 본원의 변이체를 발현하는 미생물 또는 이의 배양물, 또는 본원의 타가토스 생산용 조성물과, D-프럭토스(D-fructose)를 접촉시키는 것을 포함하는, D-타가토스의 제조 방법을 제공하는 것이다.
이하, 본 출원 내용에 대하여 보다 상세히 설명한다. 본 발명의 다른 목적 및 이점은 첨부한 청구범위와 함께 하기의 상세한 설명에 의해 보다 명확해질 것이다. 본 명세서에 기재되지 않은 내용은 본 출원의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.
본 출원의 목적을 달성하기 위하여, 본 출원은 일 양태로서 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 9번 히스티딘(H), 21번 타이로신(Y), 60번 글루탐산(E), 62번 발린(V), 68번 글루탐산(E), 77번 류신(L), 91번 류신(L), 97번 트레오닌(T), 125번 세린(S), 126번 발린(V), 140번 류신(L), 141번 아스파르트산(D), 145번 트립토판(W), 149번 글루타민(Q), 157번 글라이신(G), 158번 알라닌(A), 160번 알라닌(A), 163번 발린(V), 164번 라이신(K), 166번 프롤린(P), 167번 글루탐산(E), 168번 아스파르트산(D), 175번 글루탐산(E), 176번 글라이신(G), 177번 페닐알라닌(F), 185번 세린(S), 202번 메티오닌(M), 218번 글라이신(G), 221번 타이로신(Y), 231번 아스파트산(D), 241번 발린(V), 242번 타이로신(Y), 267번 발린(V), 268번 세린(S), 272번 트레오닌(T), 276번 트레오닌(T), 284번 발린(V), 295번 페닐알라닌(F), 297번 페닐알라닌(F), 302번 페닐알라닌(F), 306번 트립토판(W), 316번 류신(L), 337번 라이신(K), 351번 프롤린(P), 361번 페닐알라닌(F), 366번 알라닌(A), 386번 아르기닌(R), 388번 이소류신(I), 402번 세린(S), 403번 티로신(Y), 415번 발린(V), 429번 아스파르트산(D), 440번 타이로신(Y) 및 441번 글라이신(G)으로 이루어진 군으로부터 하나 이상 선택된 아미노산 잔기가 다른 아미노산 잔기로 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다[아래 표 2 내지 표 10 참조].
본 출원은 다른 양태로서, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 403번 타이로신(Y) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다.
상기 403번 타이로신(Y) 아미노산 잔기는 알라닌(A), 시스테인(C), 아스파르트산(D), 글루탐산(E), 페닐알라닌(F), 글라이신(G), 히스티딘(H), 이소류신(I), 라이신(K), 류신(L), 메티오닌(M), 아스파라긴(N), 프롤린(P), 글루타민(Q), 아르기닌(R), 세린(S), 트레오닌(T), 발린(V) 또는 트립토판(W)으로, 보다 구체적으로 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 위치 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 125번 세린(S) 아미노산 잔기는 아스파르트산(D), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N), 시스테인(C), 또는 타이로신(Y)으로 치환될 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q) 또는 발린(V)으로 치환되고, 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 및 상기 125번 세린(S) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 185번 세린(S), 267번 발린(V), 268번 세린(S), 272번 트레오닌(T), 306번 트립토판(W), 및 386번 알기닌(R)으로 이루어진 군에서 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 185번 세린(S)은 라이신(K), 아르기닌(R), 히스티딘(H), 글루타민(Q), 알라닌(A) 또는 글라이신(G)으로 치환될 수 있고; 상기 267번 발린(V)은 메티오닌(M)으로 치환될 수 있고; 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로 치환될 수 있고; 상기 272번 트레오닌(T)은 알라닌(A), 아스파르트산(D), 글루탐산(E), 페닐알라닌(F), 글라이신(G), 히스티딘(H), 이소류신(I), 라이신(K), 류신(L), 메티오닌(M), 아스파라긴(N), 프롤린(P), 글루타민(Q), 아르기닌(R), 세린(S), 발린(V) 또는 타이로신(Y)으로 치환될 수 있고; 상기 306번 트립토판(W)은 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환될 수 있고; 상기 386번 알기닌(R)은 프롤린(P) 또는 발린(V)으로 치환될 수 있다.
상기 구현예의 일 예로, 본 출원은 상기 403번 타이로신(Y) 및 상기 125번 세린(S) 아미노산 잔기의 변이 외에, 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 306번 트립토판(W), 및 상기 386번 알기닌(R) 중 어느 하나의 위치에서 변이된 변이체를 제공할 수 있다. 예를 들어, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는, 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 272번 트레오닌(T)은 아스파르트산(D)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 306번 트립토판(W)은 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 386번 알기닌(R)이 프롤린(P) 또는 발린(V)으로 치환된 변이체일 수 있다.
상기 구현예의 다른 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 및 상기 125번 세린(S) 아미노산 잔기 외에, 추가적으로 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 306번 트립토판(W), 및 상기 386번 알기닌(R) 중에서 선택된 어느 2개 위치에서 치환된 변이체일 수 있다. 상기 변이 위치는, 상기 185번과 상기 267번, 상기 185번과 상기 268번, 상기 185번과 상기 272번, 상기 185번과 상기 306번, 상기 185번과 상기 386번, 상기 267번과 상기 268번, 상기 267번과 상기 272번, 상기 267번과 상기 306번, 상기 267번과 상기 386번, 상기 268번과 상기 272번, 상기 268번과 상기 306번, 상기 268번과 상기 386번, 상기 272번과 상기 306번, 상기 272번과 상기 386번, 또는 상기 306번과 상기 386번일 수 있다. 예를 들어, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환되고, 267번 발린(V)이 메티오닌(M)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는, 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환되고, 상기 272번 트레오닌(T)은 아스파르트산(D)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)으로 치환되고, 상기 306번 트립토판(W)은 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)으로 치환되고, 상기 386번 알기닌(R)이 프롤린(P) 또는 발린(V)으로 치환된 변이체일 수 있다.
상기 구현예의 다른 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 및 상기 125번 세린(S) 아미노산 잔기 외에, 추가적으로 상기 185번 세린(S), 상기 267번 발린(V), 상기 272번 트레오닌(T), 상기 306번 트립토판(W), 및 상기 386번 알기닌(R) 중에서 선택된 어느 3개 위치에서 치환된 변이체일 수 있다. 상기 변이 위치는, 예를 들어 상기 185번, 상기 267번 및 상기 268번; 상기 185번, 상기 267번 및 상기 272번; 상기 185번, 상기 267번 및 상기 306번; 상기 185번, 상기 267번 및 상기 386번; 상기 185번, 상기 268번 및 상기 272번; 상기 185번, 상기 268번 및 상기 306번; 상기 185번, 상기 268번 및 상기 386번; 상기 185번, 상기 272번 및 상기 306번; 상기 185번, 상기 272번 및 상기 386번; 상기 267번, 상기 268번 및 상기 272번; 상기 267번, 상기 268번 및 상기 306번; 상기 267번, 상기 268번 및 상기 386번; 상기 267번, 상기 272번 및 상기 306번; 상기 267번, 상기 272번 및 상기 386번; 상기 267번, 상기 386번 및 상기 306번; 상기 268번, 상기 272번 및 상기 306번; 상기 268번, 상기 272번 및 상기 386번; 상기 268번, 상기 306번 및 상기 386번; 또는 상기 272번, 상기 306번 및 상기 386번일 수 있다. 예를 들어, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)으로 치환된 변이체일 수 있다. 예를 들어, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환되고, 상기 272번 트레오닌(T)은 아스파르트산(D)으로 치환된 변이체일 수 있다. 예를 들어, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 185번 세린(S) 잔기가 라이신(K), 히스티딘(H), 또는 글루타민(Q)으로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환되고, 상기 306번 트립토판(W)은 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다.
상기 구현예의 다른 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 및 상기 125번 세린(S) 아미노산 잔기 외에, 추가적으로 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 306번 트립토판(W), 및 상기 386번 알기닌(R) 중에서 선택된 어느 4개, 5개 또는 6개의 위치에서 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S) 및 상기 268번 세린(S) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 164번 라이신(K), 168번 아스파르트산(D), 175번 글루탐산(E), 297번 아스파라긴(N) 및 388번 이소류신(I)이 추가적으로 돌연변이된 것일 수 있다. 상기 164번 라이신(K)은 메티오닌(M)으로, 상기 168번 아스파르트산(D)은 글루탐산(E)으로, 상기 175번 글루탐산(E)은 글라이신(G)으로, 상기 297번 아스파라긴(N)은 라이신(K)으로, 상기 388번 이소류신(I)은 발린(V)으로 치환될 수 있다. 상기 구현예의 일 예의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y) 아미노산 잔기가 페닐알라닌(F), 세린(S), 트레오닌(T), 글루타민(Q), 발린(V), 알라닌(A), 또는 이소류신(I)로 치환되고, 상기 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환되고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로 치환되고, 상기 164번 라이신(K)은 메티오닌(M)으로, 상기 168번 아스파르트산(D)은 글루탐산(E)으로, 상기 175번 글루탐산(E)은 글라이신(G)으로, 상기 297번 아스파라긴(N)은 라이신(K)으로, 상기 388번 이소류신(I)은 발린(V)으로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 267번 발린(V) 및 상기 386번 아르기닌(R) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 351번 프롤린(P)이 추가적으로 돌연변이된 것일 수 있다. 구체적으로, 상기 351번 프롤린(P)은 세린(S)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V) 및 상기 306번 트립토판(W) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 68번 글루탐산(E)이 추가적으로 돌연변이된 것일 수 있다. 상기 68번 글루탐산(E)은 글라이신(G)로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S) 및 상기 386번 아르기닌(R) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 60번 글루탐산(E), 202번 메티오닌(M), 221번 타이로신(Y) 및 242번 타이로신(Y) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 60번 글루탐산(E)은 아스파르트산(D)으로, 상기 202번 메티오닌(M)은 트레오닌(T)으로, 상기 221번 타이로신(Y)는 페닐알라닌(F)으로, 상기 242번 타이로신(Y)은 페닐알라닌(F)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S) 아미노산 잔기 외에, 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 306번 트립토판(W), 및 상기 386번 알기닌(R) 으로 이루어진 군으로부터 하나 이상 선택된 아미노산 잔기가 추가적으로 돌연변이될 수 있고, 상기 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 91번 류신(L), 141번 아스파르트산(D) 및 176번 글라이신(G)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 구체적으로, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S) 및 상기 272번 트레오닌(T) 아미노산 잔기가 외에 상기 91번 류신(L), 상기 141번 아스파르트산(D) 또는 상기 176번 글라이신(G) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 91번 류신(L)는 트립토판(W), 이소류신(I) 또는 아스파라긴(N)으로, 141번 아스파르트산(D)은 페닐알라닌(F)로, 176번 글라이신(G)은 히스티딘(H), 페닐알라닌(F) 또는 타이로신(Y)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S) 아미노산 잔기 외에, 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T) 및 상기 306번 트립토판(W)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이될 수 있으며, 이러한 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 284번 발린(V) 및 415번 발린(V) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 구체적으로, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T) 및 상기 306번 트립토판(W) 아미노산 잔기 외에 상기 284번 발린(V) 및 상기 415번 발린(V) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 284번 발린(V)은 알라닌(A)으로, 그리고 상기 415번 발린(V)은 글루탐산(E)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S) 아미노산 외에, 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T) 및 상기 306번 트립토판(W)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이될 수 있으며, 이러한 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 166번 프롤린(P) 또는 231번 아스파르트산(D)이 추가적으로 돌연변이된 것일 수 있다. 구체적으로, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T) 및 상기 306번 트립토판(W) 아미노산 잔기 외에 상기 166번 프롤린(P) 또는 상기 231번 아스파르트산(D)이 추가적으로 돌연변이된 것일 수 있다. 상기 166번 프롤린(P)은 아르기닌(R)으로, 그리고 상기 231번 아스파르트산(D)은 아르기닌(R)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S) 아미노산 잔기 외에, 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T) 및 상기 386번 트립토판(W) 아미노산 잔기가 추가적으로 돌연변이될 수 있으며, 이러한 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 126번 발린(V)이 추가적으로 돌연변이된 것일 수 있다. 구체적으로, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T) 및 상기 386번 트립토판(W) 아미노산 잔기 외에 상기 126번 발린(V)이 추가적으로 돌연변이된 것일 수 있다.상기 126번 발린(V)은 알라닌(A), 페닐알라닌(F), 글라이신(G), 이소류신(I), 류신(L), 프롤린(P), 아스파라긴(R) 또는 트레오닌(T)으로 치환될 수 있다.
본 출원의 일 구현예에 따르면, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 서열번호 1로 기재된 아미노산 서열로 구성되는 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 403번 타이로신(Y) 아미노산 잔기, 125번 세린(S) 아미노산 잔기, 185번 세린(S) 아미노산 잔기, 267번 발린(V) 아미노산 잔기, 268번 세린(S) 아미노산 잔기, 272번 트레오닌(T) 아미노산 잔기, 306번 트립토판(W) 및 386번 아르기닌(R) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 403번 타이로신(Y), 125번 세린(S), 185번 세린(S), 267번 발린(V), 268번 세린(S), 272번 트레오닌(T) 및 386번 트립토판(W) 아미노산 잔기 외에, 97번 트레오닌(T), 126번 발린(V), 145번 트립토판(W), 163번 발린(V), 164번 라이신(K), 166번 프롤린(P), 231번 아스파르트산(D), 241번 발린(V), 276번 트레오닌(T), 337번 라이신(K), 366번 알라닌(A), 402번 세린(S), 429번 아스파르트산(D) 또는 440번 타이로신(Y) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 97번 트레오닌(T)은 알라닌(A) 또는 류신(L)로 치환될 수 있고; 상기 126번 발린(V)은 페닐알라닌(F), 류신(L), 프롤린(P), 이소류신(I), 트레오닌(T), 알라닌(A), 글라이신(G) 또는 아르기닌(R)으로 치환될 수 있고; 상기 145번 트립토판(W)은 알라닌(A)으로 치환될 수 있고; 상기 163번 발린(V)은 알라닌(A), 메티오닌(M) 또는 글루타민(Q)으로 치환될 수 있고; 상기 164번 라이신(K)은 메티오닌(M)으로 치환될 수 있고; 상기 166번 프롤린(P)은 아르기닌(R)으로 치환될 수 있고; 상기 231번 아스파르트산(D)은 아르기닌(R)으로 치환될 수 있고; 상기 241번 발린(V)은 아스파라긴(N), 트레오닌(T) 또는 세린(S)으로 치환될 수 있고; 상기 276번 트레오닌(T)은 글루탐산(E) 또는 알라닌(A)으로 치환될 수 있고; 상기 337번 라이신(K)은 글루탐산(E), 페닐알라닌(F), 아스파라긴(N), 프롤린(P), 세린(S), 트레오닌(T), 트립토판(W) 또는 타이로신(Y)으로 치환될 수 있고; 상기 366번 알라닌(A)은 세린(S), 글라이신(G) 또는 시스테인(C)로 치환될 수 있고; 상기 402번 세린(S)은 페닐알라닌(F), 시스테인(C) 또는 타이로신(Y)으로 치환될 수 있고; 상기 429번 아스파르트산(D)은 프롤린(P)로 치환될 수 있고, 상기 440번 타이로신(Y)은 알라닌(A)로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 386번 트립토판(W) 및 상기 97번 트레오닌(T) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 164번 라이신(K), 166번 아스파르트산(D) 또는 231번 아스파르트산(D) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 164번 라이신(K)은 메티오닌(M)으로 치환될 수 있고; 상기 166번 아스파르트산(D)은 아르기닌(R)으로 치환될 수 있고; 상기 231번 아스파르트산(D)은 아르기닌(R)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 386번 트립토판(W) 및 상기 163번 발린(V) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 231번 아스파르트산(D) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 231번 아스파르트산(D)은 아르기닌(R)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 185번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S), 상기 272번 트레오닌(T), 상기 386번 트립토판(W) 및 상기 337번 라이신(K) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 157번 글라이신(G), 160번 알라닌(A), 167번 글루탐산(E), 177번 페닐알라닌(F), 218번 글라이신(G), 295번 페닐알라닌(F), 302번 페닐알라닌(F), 361번 페닐알라닌(F), 366번 알라닌(A) 또는 441번 글라이신(G) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 157번 글라이신(G)은 아르기닌(R)으로 치환될 수 있고; 상기 160번 알라닌(A)은 류신(L), 페닐알라닌(F), 아르기닌(R) 또는 타이로신(Y)으로 치환될 수 있고; 상기 167번 글루탐산(E)은 알라닌(A), 트립토판(W), 이소류신(I), 라이신(K), 메티오닌(M), 발린(V) 또는 세린(S)으로 치환될 수 있고; 상기 177번 페닐알라닌(F)은 타이로신(Y), 히스티딘(H) 또는 류신(L)으로 치환될 수 있고; 상기 218번 글라이신(G)은 이소류신(I), 세린(S), 류신(L), 페닐알라닌(F) 또는 시스테인(C)로 치환될 수 있고; 상기 295번 페닐알라닌(F)은 시스테인(C), 아르기닌(R) 또는 타이로신(Y)으로 치환될 수 있고; 상기 302번 페닐알라닌(F)은 시스테인(C)으로 치환될 수 있고; 상기 361번 페닐알라닌(F)은 라이신(K), 글루탐산(E), 발린(V), 트립토판(W), 타이로신(Y), 메티오닌(M), 아르기닌(R), 글루타민(Q), 류신(L) 또는 시스테인(C)으로 치환될 수 있고; 상기 366번 알라닌(A)이 세린(S)으로 치환될 수 있고; 441번 글라이신(G)은 글루탐산(E), 트립토판(W), 히스티딘(H), 라이신(K), 알라닌(A), 아르기닌(R), 세린(S) 또는 페닐알라닌(F)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 403번 타이로신(Y), 상기 125번 세린(S) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 77번 류신(L), 158번 알라닌(A), 또는 이의 조합의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 77번 류신(L)은 프롤린(P) 또는 아르기닌(R)로, 그리고 상기 158번 알라닌(A)은 트레오닌(T)으로 치환될 수 있다. 상기 403번 타이로신(Y), 상기 125번 세린(S), 상기 77번 류신(L) 아미노산 잔기 및 상기 158번 알라닌(A) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 386번 아르기닌(R) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 386번 아르기닌(R)은 프롤린(P) 또는 발린(V)으로 치환될 수 있다.
본 출원은 또 다른 양태로서, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 185번 세린(S) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 185번 세린(S) 아미노산 잔기는 알라닌(A), 글라이신(G), 히스티딘(H), 라이신(K), 글루타민(Q), 또는 아르기닌(R)로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 185번 위치 외에 상기 125번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 125번 세린(S) 아미노산 잔기는, 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 185번 세린(S) 아미노산 잔기가 알라닌(A), 글라이신(G), 히스티딘(H), 라이신(K), 글루타민(Q), 또는 아르기닌(R)로 치환되고, 125번 세린(S) 아미노산 잔기가, 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환된 변이체일 수 있다. 구체적인 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 185번 세린(S) 아미노산 잔기가 알라닌(A), 글라이신(G), 히스티딘(H), 라이신(K), 글루타민(Q), 또는 아르기닌(R)으로 치환되고, 125번 세린(S) 아미노산 잔기가 아스파르트산(D)으로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 185번 세린(S) 및 상기 125번 세린(S) 위치 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 268번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로 치환될 수 있다.
본 출원은 또 다른 양태로서, 서열번호 1의 아미노산 서열로 구성되는 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 272번 트레오닌(T) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 272번 트레오닌(T)은 알라닌(A), 아스파르트산(D), 글루탐산(E), 페닐알라닌(F), 글라이신(G), 히스티딘(H), 이소류신(I), 라이신(K), 류신(L), 메티오닌(M), 아스파라긴(N), 프롤린(P), 글루타민(Q), 아르기닌(R), 세린(S), 발린(V) 또는 타이로신(Y)로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T) 아미노산 잔기 외에 상기 125번 세린(S) 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 125번 세린은 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있다. 이에, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 알라닌(A), 아스파르트산(D), 글루탐산(E), 페닐알라닌(F), 글라이신(G), 히스티딘(H), 이소류신(I), 라이신(K), 류신(L), 메티오닌(M), 아스파라긴(N), 프롤린(P), 글루타민(Q), 아르기닌(R), 세린(S), 발린(V) 또는 타이로신(Y)으로 치환되고, 상기 125번 세린(S)이 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환된 변이체일 수 있다. 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 세린(S), 프롤린(P), 아스파르트산(D), 히스티딘(H), 글루타민(Q), 아스파라긴(N), 라이신(K), 또는 타이로신(Y)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T) 및 상기 125번 세린(S) 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 185번 세린(S) 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 185번 세린(S)은 알라닌(A), 글라이신(G), 히스티딘(H), 라이신(K), 글루타민(Q) 또는 아르기닌(R)으로 치환될 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)으로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T), 상기 125번 세린(S), 및 상기 185번 세린(S) 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 267번 발린(V), 268번 세린(S) 및 306번 트립토판(W)으로 이루어진 군 중 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 267번 발린(V)은 메티오닌(M)으로 치환될 수 있고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로 치환될 수 있고, 상기 306번 트립토판(W)이 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 상기 306번 트립토판(W)이 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 267번 발린(V)이 메티오닌(M)으로 치환되고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환되고, 상기 306번 트립토판(W)이 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)으로 치환되고, 상기 306번 트립토판(W)이 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 185번 세린(S)이 라이신(K)로 치환되고, 상기 267번 발린(V)이 메티오닌(M)으로 치환되고, 상기 268번 세린(S)이 시스테인(C) 또는 트레오닌(T)으로 치환되고, 상기 306번 트립토판(W)이 페닐알라닌(F), 히스티딘(H), 메티오닌(M) 또는 발린(V)로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T) 및 상기 125번 세린(S) 잔기 외에, 267번 발린(V) 잔기, 268번 세린(S) 또는 상기 267번 발린(V) 잔기와 268번 세린(S) 잔기의 조합이 추가적으로 돌연변이된 변이체일 수 있다. 상기 267번 발린(V) 잔기는 메티오닌(M)으로 치환될 수 있고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)로 치환될 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 267번 발린(V) 잔기는 메티오닌(M)으로 치환될 수 있고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T) 및 상기 125번 세린(S); 그리고 상기 267번 발린(V) 및/또는 상기 268번 세린(S) 외에, 서열번호 1의 헥수론산 C4-에피머화 효소의 N-말단으로부터 231번 아스파트산(D), 386번 아르기닌(R) 잔기 또는 이의 조합이 추가적으로 돌연변이된 변이체일 수 있다. 상기 231번 아스파르트산(D)은 아르기닌(R)로 치환되고, 상기 386번 아르기닌(R)은 프롤린(P) 또는 발린(V)으로 치환될 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 267번 발린(V) 잔기는 메티오닌(M)으로 치환되고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)로 치환될 수 있고, 상기 231번 아스파르트산(D)이 아르기닌(R)로 치환되거나, 상기 386번 아르기닌(R)이 프롤린(P) 또는 발린(V)으로 치환되거나, 상기 231번 및 상기 386번 모두가 각각 아르기닌(R), 또는 프롤린(P) 또는 발린(V)으로 치환된 변이체일 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T), 상기 125번 세린(S), 상기 267번 발린(V), 상기 268번 세린(S) 및 상기 386번 아르기닌(R) 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 97번 트레오닌(T), 149번 글루타민(Q), 166번 프롤린(P) 또는 351번 프롤린(P)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 변이체일 수 있다. 상기 97번 트레오닌(T)은 알라닌(A) 또는 류신(L)으로 치환될 수 있고, 상기 149번 글루타민(Q)은 아르기닌(R)으로 치환될 수 있고, 상기 166번 프롤린(P)은 아르기닌(R)으로 치환될 수 있고, 상기 351번 프롤린(P)은 세린(S)으로 치환될 수 있다. 상기 구현예의 일 예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T)이 아스파르트산(D), 발린(V), 이소류신(I), 류신(L), 메티오닌(M), 글루타민(Q), 또는 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 267번 발린(V) 잔기는 메티오닌(M)으로 치환되고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)로 치환되고, 상기 386번 아르기닌(R)은 발린(V)으로 치환되고, 상기 97번 트레오닌(T)이 알라닌(A) 또는 류신(L)으로 치환되거나, 상기 149번 글루타민(Q)이 아르기닌(R)으로 치환되거나, 상기 166번 프롤린(P)이 아르기닌(R)으로 치환되거나, 상기 351번 프롤린(P)이 세린(S)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 272번 트레오닌(T) 및 상기 125번 세린(S), 그리고 상기 267번 발린(V) 및/또는 상기 268번 세린(S) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 164번 라이신(K), 168번 아스파르트산(D) 및 175번 글루탐산(E)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 164번 라이신(K)은 메티오닌(M)으로 치환될 수 있고, 상기 168번 아스파르트산(D)은 글루탐산(E)로 치환될 수 있고, 상기 175번 글루탐산(E)는 글라이신(G)으로 치환될 수 있다.
본 출원은 또 다른 양태로서, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 77번 류신(L) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 77번 류신(L)는 프롤린(P) 또는 아르기닌(R)로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 77번 류신(L) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 125번 세린은 시스테인(C), 티로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 77번 류신(L) 및 125번 세린(S) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 158번 알라닌(A), 351번 프롤린(P) 또는 이의 조합의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 158번 알라닌(A)는 트레오닌(T)으로 치환될 수 있고, 상기 351번 프롤린(P)는 세린(S)으로 치환될 수 있다.
본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 77번 류신(L), 상기 125번 세린(S) 및 상기 158번 알라닌(A) 아미노산 잔기 외에, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 9번 히스티딘(H), 60번 글루탐산(E) 및 415번 발린(V)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 구체적으로, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 77번 류신(L), 상기 125번 세린(S), 상기 158번 알라닌(A), 상기 9번 히스티딘(H), 상기 60번 글루탐산(E) 및 상기 415번 발린(V) 아미노산 잔기가 돌연변이된 것일 수 있다. 상기 9번 히스티딘(H)은 타이로신(Y)로 치환될 수 있고, 상기 60번 글루탐산(E)은 아스파르트산(D)으로 치환될 수 있고, 상기 415번 발린(V)은 글루탐산(E)으로 치환될 수 있다.
본 출원은 또 다른 양태로서, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 158번 알라닌(A) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 158번 알라닌(A)은 트레오닌(T)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 158번 알라닌(A) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 125번 세린(S)은 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있다. 일 예에서, 서열번호 1의 아미노산 서열 중 158번 알라닌(A)이 트레오닌(T)으로 치환되고, 125번 세린(S)은 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있다. 일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 158번 알라닌(A) 및 상기 125번 세린(S) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 149번 글루타민(Q), 267번 발린(V) 및 351번 프롤린(P)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 149번 글루타민(Q)은 아르기닌(R)으로 치환될 수 있고, 상기 267번 발린(V)은 메티오닌(M)으로 치환될 수 있고, 상기 351번 프롤린(P)은 세린(S)으로 치환될 수 있다. 이에, 상기 158번 알라닌(A) 아미노산 잔기가 트레오닌(T)으로 치환되고, 125번 세린 (S)이 아스파르트산(D)으로 치환되고, 추가적으로 149번 글루타민(Q)은 아르기닌(R)으로 치환되거나, 267번 발린(V)이 메티오닌(M)으로 치환되거나, 351번 프롤린(P)이 세린(S)으로 치환된 변이체들이 제공될 수 있다.
본 출원은 또 다른 양태로서, 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 351번 프롤린(P) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 351번 프롤린(P)은 세린(S)으로 치환될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 351번 프롤린(P) 아미노산 잔기 외에 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 125번 세린(S)은 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있다. 이에, 상기 351번 프롤린(P)은 세린(S)으로 치환되고, 상기 125번 세린(S)이 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환된 변이체가 제공될 수 있다.
일 구현예에서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 351번 프롤린(P) 및 상기 125번 세린(S) 아미노산 잔기 외에 267번 발린(V) 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 267번 발린(V)는 메티오닌(M)으로 치환될 수 있다. , 이러한 헥수론산 C4-에피머화 효소 변이체는 21번 타이로신(Y), 62번 발린(V), 149번 글루타민(Q) 및 316번 류신(L)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 21번 타이로신(Y)은 페닐알라닌(F)으로 치환될 수 있고, 62번 발린(V)은 이소류신(I)으로 치환될 수 있고, 149번 글루타민(Q)은 아르기닌(R)으로 치환될 수 있고, 316번 류신(L)은 페닐알라닌(F)으로 치환될 수 있다. 상기 구현예의 일 예는, 상기 351번 프롤린(P)이 세린(S)으로 치환되고, 상기 125번 세린(S)이 아스파르트산(D)으로 치환되고, 상기 267번 발린(V)가 메티오닌(M)으로 치환되고, 상기 21번 타이로신(Y)가 페닐알라닌(F)로 치환되고, 상기 62번 발린(V)가 이소류신(I)으로 치환되고, 상기 149번 글루타민(Q)이 아르기닌(R)로 치환되고, 상기 316번 류신(L)이 페닐알라닌(F)로 치환된 변이체일 수 있다.
본 출원은 또 다른 양태로서, 서열번호 1의 아미노산 서열로 구성되는 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S), 164번 라이신(K), 168번 아스파르트산(D) 및 175번 글루탐산(E) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 125번 세린(S)은 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있고, 상기 164번 라이신(K)은 메티오닌(M)으로, 상기 168번 아스파르트산(D)은 글루탐산(E)으로, 그리고 상기 175번 글루탐산(E)은 글라이신(G)으로 치환될 수 있다.
일 구현예에서, 본 출원의 상기 125번 세린(S), 상기 164번 라이신(K), 상기 168번 아스파르트산(D) 및 상기 175번 글루탐산(E) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성되는 헥수론산 C4-에피머화 효소의 N-말단으로부터 140번 류신(L), 386번 아르기닌(R), 268번 세린(S) 및 297번 아스파라긴(N)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것일 수 있다. 상기 140번 류신(L)은 프롤린(P)으로, 상기 386번 아르기닌(R)이 프롤린(P) 또는 발린(V)으로 치환될 수 있고, 상기 268번 세린(S)은 시스테인(C) 또는 트레오닌(T)으로, 상기 297번 아스파라긴(N)은 라이신(K)으로 치환될 수 있다. 상기 구현예의 일 예는, 상기 125번 세린(S)이 아스파르트산(D)으로, 상기 164번 라이신(K)은 메티오닌(M)으로, 상기 168번 아스파르트산(D)은 글루탐산(E)으로, 상기 175번 글루탐산(E)은 글라이신(G)으로, 상기 140번 류신(L)은 프롤린(P)으로, 그리고 386번 아르기닌(R)은 프롤린(P)으로 치환된 변이체일 수 있다. 상기 구현예의 일 예에 따른 본 출원의 헥수론산 C4-에피머화 효소 변이체는 상기 125번 세린(S)이 아스파르트산(D)으로, 상기 164번 라이신(K)은 메티오닌(M)으로, 168번 아스파르트산(D)은 글루탐산(E)으로, 상기 175번 글루탐산(E)은 글라이신(G) 으로, 상기 268번 세린(S)은 트레오닌(T)으로, 그리고 상기 297번 아스파라긴(N)이 라이신(K)으로 치환된 변이체일 수 있다.
본 출원은 또 다른 양태로서, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 서열번호 1의 아미노산 서열로 구성되는 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S), 149번 글루타민(Q) 및 267번 발린(V) 아미노산 잔기가 돌연변이된 헥수론산 C4-에피머화 효소 변이체를 제공한다. 상기 125번 세린(S)은 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환될 수 있고, 상기 149번 글루타민(Q)은 아르기닌(R)으로 치환될 수 있고, 상기 267번 발린(V)은 메티오닌(M)으로 치환될 수 있다.
본 출원의 일 구현예에 따르면, 본 출원의 헥수론산 C4-에피머화 효소 변이체는 야생형 헥수론산 C4-에피머화 효소의 아미노산 서열(서열번호 1)에서 표 2 내지 9에 개시되어 있는 변이된 아미노산 잔기 위치 및 치환된 아미노산 잔기로부터 도출할 수 있는 아미노산 서열(예컨대, 표 2 내지 표 10 중 M125 변이체)로 구성된 헥수론산 C4-에피머화 효소 변이체, 또는 이러한 아미노산 서열을 갖는 변이체와 비교하여 50% 이상의 유전적 상동성을 가지며, 일 구현예에 따르면 60% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 또는 97% 내지 99%의 상동성을 가지는 폴리펩티드 모이티를 포함할 수 있다.
본 출원에서 용어, "상동성"은 두 개의 폴리펩티드 모이티 사이의 동일성의 퍼센트를 말한다. 하나의 모이티로부터 다른 하나의 모이티까지의 서열 간 상응성은 알려진 당해 기술에 의해 결정될 수 있다. 예를 들면, 상동성을 서열 정보를 정렬하고 용이하게 입수 가능한 컴퓨터 프로그램을 이용하여 두 개의 폴리펩티드 분자 간의 서열 정보를 직접 정렬하여 결정될 수 있다. 또한, 상동성은 상동 영역간의 안정된 이중가닥을 이루는 조건하에서 폴리뉴클레오티드의 혼성화한 후, 단일-가닥-특이적 뉴클레아제로 분해시켜 분해된 단편의 크기를 결정함으로써 결정할 수 있다.
본 출원에서 용어, "상동"은 모든 문법적 형태나 스펠링 변이 형태는 슈퍼패밀리 유래 단백질(예, 면역글로불린 슈퍼패밀리) 및 다른 종 유래의 상동 단백질(예, 미오신 경쇄 등)을 포함하며, "공통 진화 기원"을 갖는 단백질 간의 관계를 말한다. 그러한 단백질(및 그들의 코딩 유전자)은 높은 정도의 서열 유사성에 의해 반영되는 서열 상동성을 갖는다. 그러나, 일반적 사용과 본 발명에서 "상동"은 "매우 높은"과 같은 형용상에 의해 수식될 경우에는 서열 유사성을 말하는 것이고 공통 진화 기원을 의미하는 것은 아니다.
본 출원에서 용어, "서열 유사성"은 공통 진화 기원을 공유하거나 하지 않을 수 있는 단백질의 염기 서열이나 아미노산 서열 간의 동일성이나 상응성 정도를 말한다. 하나의 구체예에서, 두 개의 아미노산 서열이 아미노산 서열의 소정의 길이에 대해 폴리펩티드 매치가 적어도 21%(일 구현예에 따르면, 적어도 약 50%, 다른 구현예에 따르면 적어도 75%, 90%, 95%, 96%, 97% 또는 99%)일 때, "실질적으로 상동" 또는 "실질적으로 유사"하다. 실질적으로 상동인 서열은 데이터 은행에서 사용되는 표준 소프트웨어를 사용하거나, 예를 들면 특정한 시스템을 위해 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있다. 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이다(예. Sambrook et al., 1989, infra 참고).
본원에 기술된 헥수론산 C4-에피머화 효소 변이체들은 D-프럭토스의 4번 탄소 위치를 에피머화하여 D-타가토스로 전환시키는 C4-에피머화 단위활성이 향상되어, D-프럭토스로부터 D-타가토스를 효율적으로 생산할 수 있다.
본 출원의 헥수론산 C4-에피머화 효소 변이체는, 고온성 로도써머스(Rhodothermus)속, 써모언에러로박터(Thermoanaerobacter) 속, 써모토가(Thermotoga)속, 또는 디티오글로무스(Dictyoglomus)속에 포함되는, 고온성 미생물의 헥수론산 C4-에피머화 효소로부터 유래한 것일 수 있다. 구체적으로 써모토가(Thermotoga)속 미생물의 헥수론산 C4-에피머화 효소로부터 유래한 것일 수 있으며, 보다 구체적으로 써모토가 네아폴리타나(Thermotoga neapolitana) 또는 써모토가 마리티마(Thermotoga maritima)의 헥수론산 C4-에피머화 효소로부터 유래한 것일 수 있다.
본 출원의 헥수론산 C4-에피머화 효소는 중온성 미생물(mesophile)이 생산하는 효소와 동일한 기능을 가지면서 극한 반응(고온 등) 조건에서 안정하게 반응을 수행할 수 있으며, 중온성 미생물에 대한 오염방지, 기질의 용해도가 낮은 물질의 용해도 증가, 반응속도의 증가 등 많은 장점을 가지고 있기 때문에 중온성 효소를 이용한 산업적인 단점을 극복할 수 있는 장점이 있다.
본 출원의 헥수론산 C4-에피머화 효소 변이체들은 본 출원의 헥수론산 C4-에피머화 효소 변이체를 발현하는 DNA로 E. coli 등의 균주에 형질전환시키고, 이를 배양하여 배양물을 수득하고, 상기 배양물을 파쇄하여, 컬럼 등을 통해 정제한 것일 수 있다. 상기 형질전환용 균주로는 대장균(Escherichia coli), 코리네박테리움 글루타미쿰(Corynebacterum glutamicum), 아스퍼질러스 오리제(Aspergillus oryzae), 또는 바실러스 섭틸리스(Bacillus subtilis) 등이 있다.
본 출원의 다른 구현예에 따르면, 본 출원은 본원에 기재된 헥수론산 C4-에피머화 효소 변이체를 암호화하는 핵산, 상기 핵산을 포함하는 형질전환체, 또는 본원에 기재된 헥수론산 C4-에피머화 효소 변이체를 발현하는 미생물 또는 상기 미생물의 배양물 또는 본원에 기재된 헥수론산 C4-에피머화 효소 변이체를 포함하는 D-타가토스 생산용 조성물을 제공한다.
다른 구현예는, 본원에 기재된 C4-에피머화 효소 변이체를 코딩하는 핵산을 포함하는 발현벡터에 관한 것이다. 본 출원에서 용어, "벡터"는 유기체, 예컨데 숙주세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위 (replicon)일 수 있다. 여기서, "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제가능한, 임의의 유전적 단위 (예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 말한다. 용어 "벡터"는 시험관 내, 생체 외 또는 생체 내에서 유기체, 예컨데, 숙주 세포로 염기를 도입하기 위한 바이러스 및 비바이러스 매개물을 포함한다. 용어 "벡터"는 또한 미니구형 DNA를 포함할 수 있다.
본 출원에서 용어, "핵산"은 DNA 또는 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산에서 기본 구성 단위인 뉴클레오타이드는 천연 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체도 포함할 수 있다(참조문헌: Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).
본 출원에서 용어 "형질전환"은 핵산 단편이 숙주 유기체의 게놈 안으로 이동하여 유전적으로 안정한 유전을 일으키는 것을 말하고, "형질전환체"는 핵산이 이의 게놈 내 이동하여 유전적으로 안정한 유전을 일으키는 유기체를 말한다. 형질전환체는 예를 들어, 원핵세포 또는 진핵세포일 수 있으며, 구체적으로는 엔테로박테리아과 미생물 또는 코리네형 미생물 등, 더욱 구체적으로는 에스케리키아속 미생물, 세라티아속 미생물 등을 들 수 있으며, 가장 구체적으로는 대장균일 수 있다.
유기체 내로 형질전환시키는 방법은 상기 핵산을 유기체 내로 도입하는 어떠한 방법도 포함되며, 당해 분야에서 공지된 바와 같이 적합한 표준 기술을 적절히 선택하여 수행할 수 있다. 일 예로, 일렉트로포레이션(electroporation), 칼슘 포스페이트 공동-침전 (calcium phosphate co-precipitation), 레트로바이러스 감염(retroviral infection), 미세주입법(microinjection), DEAE-덱스트란 (DEAE-dextran), 양이온 리포좀(cationic liposome) 법 등이 있고, 이로 제한되지 않는다.
헥수론산 C4-에피머화 효소 변이체를 포함하는 D-타가토스 생산용 조성물은 D-타가토스 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있다. 이러한 부형제로는, 예를 들어, 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다. 상기 조성물 내 헥수론산 C4-에피머화 효소 변이체는, 조성물의 고형 중량을 기준으로 0.1 중량% 내지 70 중량% 범위로 포함될 수 있다.
본 출원의 또 다른 구현예에 따르면, 본 출원은 본원에 기재된 헥수론산 C4-에피머화 효소 변이체, 본원에 기재된 형질전환체, 또는 본원에 기재된 타가토스 생산용 조성물과, D-프럭토스(D-fructose)를 접촉시켜 상기 D-프럭토스를 에피머화시키는 단계을 포함하는, D-타가토스의 제조 방법을 제공한다.
이하, 본 출원의 양태에 따른 D-타가토스의 제조 방법에 대해 설명한다.
상기 방법은 본 출원의 헥수론산 C4-에피머화 효소 변이체, 상기 변이체를 발현하는 미생물 또는 상기 미생물의 배양물 또는 이를 포함하는 D-타가토스 생산용 조성물을 D-프럭토스와 접촉시키는 것을 포함할 수 있다. 이로써 D-프럭토스의 4번 탄소 위치를 에피머화시킬 수 있다.
단당류는 일반적으로 알도헥소오스(aldohexose)와 케토헥소오스(ketohexose)로 분류될 수 있다. 본 출원에서의 원료인 D-프럭토스는 케토헥소오스의 일 예로, 이를 사용하여, D-타가토스를 제조할 수 있다.
상기 D-프럭토스는 설탕의 가수분해에 의해 제조되거나, 포도당을 이성질화하여 제조된 것일 수 있다. 이를 통해, 프럭토스, 설탕 및 포도당과 같이 보편화되고 저렴한 원료를 사용하여 높은 수율로 타가토스를 제조할 수 있어 타가토스의 대량 생산을 가능하게 할 수 있다.
본 출원의 D-프럭토스를 에피머화시키는 단계는 pH 5 내지 9 pH 6 내지 9, pH 7 내지 9 또는 pH 7.5 내지 8.5에서 실시할 수 있다. 본 출원의 D-프럭토스를 에피머화시키는 단계는 50℃ 내지 85℃, 50℃ 내지 75℃ 또는 50℃ 내지 70℃에서 실시할 수 있다. 상기 pH 또는 온도 조건에서 본 출원의 변이체 효소처리 시, 상대적으로 고온에서 반응을 진행시킬 수 있어 제조공정 중 미생물 오염을 최소화할 수 있고, 기질로 사용되는 과당의 용해도를 증가시킬 수 있으며, 효소의 반응속도 및 전환율을 극대화할 수 있다.
또한, 본 출원의 D-프럭토스 농도가 10 내지 50 %(w/v)일 수 있다. 일 구현예에 따르면, 상기 농도는 20 내지 50 %(w/v), 20 내지 40 %(w/v), 20 내지 30 %(w/v)일 수 있다. 본 출원의 변이체 효소는 고농도의 D-프럭토스로부터 D-타가토스를 생산할 수 있어, 경제적이고 효율적으로 D-타가토스를 생산할 수 있는 장점이 있다.
상기 본 출원의 D-프럭토스를 에피머화시키는 단계는 금속염 존재 하에 이루어지는 것일 수 있다. 일 구현예에서, 본 출원의 금속은 Ni, Ni, Co, Mn, 및 Zn으로 이루어진 군으로부터 선택되는 1종 이상의 금속일 수 있다. 구체적으로, 본 출원의 금속염은 NiSO4, NiCl2, CoCl2, MnCl2, 및 ZnSO4로 이루어진 군에서 선택되는 1종 이상일 수 있다. 본 출원의 D-프럭토스를 에피머화시키는 단계가 금속염 존재 하에 이루어짐으로써, 전환활성이 향상된 효과를 얻을 수 있다.
본 출원의 일 구현예에 따르면, 본 출원 제조방법은 본 출원의 접촉시키는 단계 전 설탕을 가수분해하여 D-프럭토스를 얻는 단계를 추가적으로 포함할 수 있다. 상기 가수분해에 사용되는 효소는 β-프룩토푸라노시다아제, 인버타아제 및 사카라제 등을 포함하는 β-D-프룩토시다아제; 수크라아제, α-글루코시다아제 및 α-D-글루코하이드롤라아제로 이루어지는 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.
본 출원의 일 구현예에 따르면, 본 출원의 제조방법은 본 출원의 접촉시키는 단계 전, 포도당을 이성질화하여 D-프럭토스를 얻는 단계를 추가적으로 포함할 수 있다. 상기 이성질화 효소는 글루코스 아이소머라아제 또는 포스포글루코 아이소머라아제일 수 있으나, 이에 제한되지 않는다.
본 출원의 일 구현예에 따르면, 본 출원의 제조방법은 본 출원의 접촉시키는 단계 이후 D-타가토스를 포함하는 에피머화 반응물을 수득하는 단계를 추가적으로 포함할 수 있다.
본 출원의 일 구현예에 따르면, 본 출원의 제조방법은 본 출원의 에피머화 반응물을 수득하는 단계 이후 수득된 D-타가토스를 포함하는 에피머화 반응물을 정제하는 단계를 추가적으로 포함할 수 있다.
본 출원의 일 구현예에 따르면, 본 출원의 제조방법은 본 출원의 에피머화 반응물을 정제하는 단계 이후 상기 정제된 D-타가토스를 포함하는 에피머화 반응물을 결정화하는 단계를 추가적으로 포함할 수 있다.
상기 에피머화 반응물을 정제하는 방법은 특별히 제한되지 아니하며, 본 출원의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다. 비제한적인 예로, 크로마토그래피, 분별 결정 및 이온 정제 등을 들 수 있다. 상기 정제 방법은 하나만 실시될 수도 있으며, 두 가지 이상의 방법을 함께 실시할 수도 있다. 예를 들어, 크로마토그래피를 통해 에피머화 반응물을 정제할 수 있으며, 상기 크로마토그래피에 의한 당의 분리는 분리하고자 하는 당과 이온 수지에 부착된 금속 이온 사이의 약한 결합력의 차이를 이용하여 수행될 수 있다.
또한, 본 출원은 본 출원의 정제하는 단계의 전 또는 후에 탈색, 탈염 또는 둘 다를 실시하는 것을 추가로 포함할 수 있다. 상기 탈색 및/또는 탈염을 실시함으로써, 불순물 없이 보다 정제된 에피머화 반응물을 얻을 수 있다.
상기 정제된 에피머화 반응물은, 농축 후 SMB 크로마토그래피 공정을 통해 순수한 타가토스액을 수득한 후에 결정화하는 공정을 진행할 수 있다.
본 출원의 일 구현예에 따르면, 본 출원의 제조방법은 본 출원의 결정화하는 단계 전에 상기 분리 수득한 타가토스 액을 농축시키는 단계를 추가로 포함할 수 있다. 상기 농축은 정제된 D-타가토스 포함하는 에피머화 반응물의 농도를 약 2.5 내지 3배로 농축하는 것일 수 있으며, 상기 농축시키는 단계를 통해 보다 효율적으로 결정화를 할 수 있다.
본 출원의 결정화하는 단계에 사용되는 방법은 특별히 제한되지 아니하며, 통상적으로 사용하는 결정화 방법을 사용할 수 있다. 예를 들어, 냉각결정화 방법을 이용한 결정화 방법을 사용할 수 있다. 상기 결정화 단계를 통해, 최종적으로 정제된 D-타가토스를 고수율로 얻을 수 있다.
본 출원의 일 구현예에 따르면, 본 출원의 제조방법은 본 출원의 정제 단계 후 미반응된 D-프럭토스를 본 출원의 접촉시키는 단계에 재사용하거나, 본 출원의 결정화 단계 후 결정이 분리된 모액을 상기 정제 단계에 재사용하거나, 또는 이 둘 다를 실시하는 단계를 추가로 포함할 수 있다. 상기 재사용 단계를 통해 D-타가토스를 더욱 고수율로 수득할 수 있으며 버려지는 D-프럭토스의 양을 절감할 수 있어 경제적 이점이 있다.
본원에서 상기 용어 "n번 탄소 위치"란, IUPAC에서 규정하는 탄소 번호를 매기는 규칙에 따라 정해진 탄소 위치를 의미하며, 이는 Cn으로 표현할 수 있다. 이 때, n은 1 이상인 정수를 말한다. 예를 들어, "4번 탄소 위치에서 에피머화"되는 것을 "C4-에피머화"로 나타낼 수 있다.
본원에서 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 n번 위치의 아미노산 잔기(X)는, n X로 간략히 나타낼 수 있다.
또한, 본원에서 돌연변이되는 아미노산 잔기에서 치환되는 아미노산에 대한 언급이 별도로 없다면, 본원의 다른 부분에서 언급된 해당 위치의 아미노산 잔기에서의 치환 가능한 아미노산을 고려할 수 있다.
본원에서 아미노산은 아래와 같은 약어 또는 아미노산 명으로 표시될 수 있다:
아미노산 종류 약어
알라닌(alanine) A
아르기닌(arginine) R
아스파라긴(asparagines) N
아스파르트산(aspartic acid) D
시스테인(cystein) C
글루탐산(glutamic acid) E
글루타민(glutamine) Q
글라이신(glycine) G
히스티딘(histidine) H
이소류신(isoleucine) I
류신(leucine) L
라이신(lycine) K
메티오닌(methionine) M
페닐알라닌(phenylalanine) F
프롤린(proline) P
세린(serine) S
트레오닌(threonine) T
트립토판(tryptophan) W
타이로신(tyrosine) Y
발린(valine) V
또한, 대한민국 공개특허 제10-2014-0143109호의 개시사항은 본 명세서에 참조로서 삽입된다.
본 출원은 D-프럭토스의 4번 탄소 위치를 에피머화하여 D-타가토스로 전환하는 활성이 향상된 헥수론산 C4-에피머화 효소(hexuronate C4-epimerase) 변이체를 제공함으로써, 보편화된 원료인 D-프럭토스를 사용하여 D-타가토스를 효율적으로 대량 생산함으로써 제조원가가 절감되어 경제적인 이점이 있다.
이하, 실시예를 기술함으로써 본 출원을 보다 상세히 설명한다. 다만, 하기의 실시예는 본 출원의 일 예시에 불과하며, 본 출원의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.
실시예
실시예 1. 개량 타겟 부위 디자인 및 분석
써모토가 네아폴리타나(Thermotoga neapolitana) 유래 헥수론산 C4-에피머화 효소(이하, 야생형이라 함)의 아미노산과 상동성을 보유하는 상동유전자(ortholog, 다른 미생물 종에서 동일한 기능을 가질 것으로 예측되는 상동유전자)의 활성부위 3차 구조 모델 분석을 기초로 기능적으로 중요할 것으로 예측되는 아미노산들을 1차 선정하였고, 이들에 대한 알라닌 스캐닝 돌연변이(alanine-scanning mutagenesis) 분석 후 재설계된(refining) 활성부위 구조 및 D-프럭토스 간 도킹모델 분석 결과를 기반으로 D-프럭토스 C4-에피머화 전환반응의 단위활성 향상을 위해 개량 타겟 부위를 디자인하였다. 이를 상세하게 설명하면 하기와 같다.
1-1. 상동유전자 ( ortholog ) 분석
야생형의 아미노산 서열(서열번호 1)과 상동성을 보유하는 상동유전자(ortholog)를 GenBank 유전자 데이터베이스를 이용하여 선별[서열 범위(sequence coverage) 80% 및 호몰로지(homology) 50% 이상의 상동유전자 약 60 개]하였고. 선별된 상동유전자들의 아미노산 서열간 다중 서열 정렬(multiple sequence alignment) 분석을 통해 야생형의 아미노산 서열상 기능적으로 중요할 것으로 예측되는 보존 아미노산 잔기들을 동정하였다.
1-2. 효소 3차 구조 모델 분석
단백질 데이터 뱅크(Protein Data Bank) 데이터베이스 내에 야생형 및 상동유전자들과 30% 이상의 아미노산 서열 상동성(Identity)을 보이는 단백질 구조가 없어 호몰로지 모델링 방법에 의한 야생형의 3차 구조 모델 예측의 정확성이 낮을 것이 예상되는바, 다양한 모델링 서버(RaptorX, Robetta, ModWeb, M4T, HHpred, PHYRE2, ITASSER 및 SWISS-MODEL)를 통해 얻은 3차 구조 모델들 간의 활성부위를 비교 분석하여 동일하게 예측되는 구조부위에 대한 정보를 획득하였다.
1-3. 알라닌 스캐닝 돌연변이 및 도킹 결합 분석
상술한 상동유전자들 간의 아미노산 서열 분석 및 활성부위 3차 구조 모델 분석을 기초로 선정된 아미노산들을 알라닌으로 치환 변이하여, 이러한 재조합 변이효소들을 대장균에서 생산한 후 각 변이부위들의 특성을 분석하였다. 상기 알라닌 스캐닝 돌연변이 분석 후 재설계된 활성부위 구조 및 D-프럭토스 간 도킹 시뮬레이션을 통해 기능적으로 중요할 것으로 예측되는 아미노산들을 선별하여 D-프럭토스 C4-에피머화 전환반응의 단위활성 향상을 위해 개량 타겟 부위를 디자인하였다. 알라닌 스캐닝 돌연변이를 통해 활성이 완전 소실되는 아미노산 부위[촉매금속이온 결합 잔기 및 탈양성자화/양성자화(deprotonation/protonation) 관여 촉매 잔기로 추정]는 활성 개량을 위한 타겟 부위에서 배제하였다.
실시예 2. 변이효소 제작 및 활성개량 변이효소 선별
실시예 1에서 디자인한 타겟 부위(야생형 헥수론산 C4-에피머화 효소의 N-말단으로부터 9, 21, 60, 62, 68, 77, 91, 97, 125, 126, 140, 141, 145, 149, 157, 158, 160, 163, 164, 166, 167, 168, 175, 176, 177, 185, 202, 218, 221, 231, 241, 242, 267, 268, 272, 276, 284, 295, 297, 302, 306, 316, 337, 351, 361, 366, 386, 388, 402, 403, 415, 429, 440 및 441번 위치의 아미노산 잔기) 54곳의 단일부위 포화돌연변이 라이브러리(single-site saturation mutagenesis library)를 제작하고, 단위활성이 개량되는 변이 부위 및 아미노산들을 스크리닝 선별하였다. 선발된 개량 부위의 정보들을 통합하여 다중 변이효소를 제작 후 D-프럭토스 C4-에피머화 전환반응의 단위활성이 향상된 변이효소를 개발하였다.
2-1. 포화 돌연변이 (saturation mutagenesis )
야생형 효소 유전자 야생형의 대장균 BL21(DE3) 발현을 위해 제작된 재조합발현벡터(pET21a의 NdeI 및 XhoI 제한효소 부위에 야생형을 도입하고 야생형의 C-말단에 6xHis-tag이 결합한 재조합효소를 발현함)를 변이주 라이브러리 제작을 위한 포화돌연변이법의 주형(template)으로 사용하였다. 변이분포 다양성 및 변이체 수율 등을 고려하여 역방향(inverse) PCR 기반 포화 돌연변이법을 사용하였고(2014. Anal. Biochem. 449:90-98), 제작된 변이주 라이브러리의 스크리닝 규모를 최소화(포화돌연변이 시 도입되는 코돈 수를 최소화함)하기 위해 종결코돈을 배제하고, 대장균의 희귀코돈(rare codons)이 최소화된 NDT, VMA, ATG 및 TGG 혼합 프라이머를(2012. Biotechniques 52:149-158) 디자인하여 사용하였다. 상세하게는, 각각의 변위 부위의 앞쪽염기 15bp와 변위 부위를 치환할 염기 3bp(각각 NDT, VMA, ATG 및 TGG), 뒤쪽염기 15bp로 총 길이는 33bp로 하여 혼합 프라이머를 제작 이용하였다. PCR 조건은 94℃에서 2분간 변성 후, 94℃ 30초 변성, 60℃ 30초 어닐링, 72℃ 10분 신장을 30회 반복한 후, 72℃에서 60분간 신장반응을 수행하였다. 변이 부위별로 포화돌연변이 라이브러리를 제작 후 라이브러리별 변이주를 무작위 선발(<변이 11개)하고 염기서열을 분석하여 아미노산 변이분포를 평가하였다. 이의 분석결과를 기반으로 라이브러리별 서열 범위(sequence coverage) 90% 이상의 스크리닝 규모를 설정하였다(2003. Nucleic Acids Res. 15;31:e30)
2-2. 활성개량 변이효소 스크리닝 및 다중 변이효소 제작
제작된 포화돌연변이 라이브러리에서 활성개량 변이효소를 대량으로 고속 스크리닝 하기 위해 D-프럭토스를 특이적으로 정량화 할 수 있는 발색 측정법을 이용하였다. 상세하게는 70% 폴린-치오칼토 용액(folin-ciocalteu reagent, SIGMA-ALDRICH)과 기질반응 완료액을 15 : 1 비율로 혼합한 후 80℃에서 5분간 반응하여 900 nm에서 측정하여 OD 값으로 비교 분석하였다.
야생형 효소(서열번호 1)와 상대활성 비교 시 활성(D-프럭토스 전환 D-타가토스 생성)이 증가된 변이 부위 54곳의 변이체들을 1차 선발하였고, 해당 유전자들은 염기서열 분석 후 아미노산 변이정보를 분석하였다(표 2 내지 표 10).
상기 1차 선발된 변이효소들은 정제(His-tag 친화 크로마토그래피) 효소액을 이용하여 D-프럭토스와 반응시킨 후 반응산물을 HPLC 분석법(컬럼 Shodex SUGAR SP-G, 컬럼 분석온도 80℃, 이동상 H2O, 유속 0.6 ml/min, Refractive Index 검출기)을 이용하여 야생형 효소 대비 D-프럭토스 전환 D-타가토스 생성 활성이 증가된 변이주 236종을 최종 선발하였다.
실시예 3. 활성개량 변이효소 특성 비교 평가
단위활성이 개량된 단일부위에 대한 변이효소 및 이들이 조합된 다중부위에 대한 변이효소에 대해 D-프럭토스 C4-에피머화의 상대활성을 평가하기 위하여 각 효소를 통상적인 방법(참조: Sambrook et al. 1989)으로 대장균 BL21(DE3)에서 발현 후 정제(His-tag 친화 크로마토그래피)하였으며, NiSO4 존재하 각 효소를 10 unit/ml 농도로 25 %(w/v) D-프럭토스 기질에 첨가 후 pH 8.0[50 mM 인산칼륨(potassium phosphate) 완충액] 및 65℃에서 2시간 반응시켜 써모토가 네아폴리타나(Thermotoga neapolitana) 유래 야생형 재조합효소(야생형, 서열번호 1)와 비교한 D-프럭토스 C4-에피머화의 상대활성을 측정하였다.
[표 2]
Figure PCTKR2017008240-appb-I000001
[표 3]
Figure PCTKR2017008240-appb-I000002
[표 4]
Figure PCTKR2017008240-appb-I000003
[표 5]
Figure PCTKR2017008240-appb-I000004
[표 6]
Figure PCTKR2017008240-appb-I000005
[표 7]
Figure PCTKR2017008240-appb-I000006
[표 8]
Figure PCTKR2017008240-appb-I000007
[표 9]
Figure PCTKR2017008240-appb-I000008
[표 10]
Figure PCTKR2017008240-appb-I000009
상기 결과로부터 본 출원의 C4-에피머화 효소 변이체들이 D-프럭토스 C4-에피머화 활성이 야생형 효소보다 증가하였음을 확인할 수 있고, 특히 M199의 효소 변이체는 약 20배 단위 활성이 증가한 것으로 분석되어 야생형 효소에 비하여 타가토스 제조 활성이 현저하게 증가함을 확인할 수 있다.

Claims (15)

  1. 서열번호 1의 아미노산 서열로 구성된 헥수론산 C4-에피머화 효소(Hexuronate C4-epimerase)의 N-말단으로부터 403번 타이로신(Y) 아미노산 잔기가 돌연변이된, 헥수론산 C4-에피머화 효소 변이체.
  2. 제1항에 있어서, 상기 403번 타이로신(Y) 아미노산 잔기는 알라닌(A), 시스테인(C), 아스파르트산(D), 글루탐산(E), 페닐알라닌(F), 글라이신(G), 히스티딘(H), 이소류신(I), 라이신(K), 류신(L), 메티오닌(M), 아스파라긴(N), 프롤린(P), 글루타민(Q), 아르기닌(R), 세린(S), 트레오닌(T), 발린(V) 또는 트립토판(W)으로 치환된 것인, 헥수론산 C4-에피머화 효소 변이체.
  3. 제1항에 있어서, 상기 헥수론산 C4-에피머화 효소 변이체는 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 125번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  4. 제3항에 있어서, 상기 125번 세린(S) 아미노산 잔기는 시스테인(C), 타이로신(Y), 글루타민(Q), 글루탐산(E), 트레오닌(T), 아스파라긴(N) 또는 아스파르트산(D)으로 치환된 것인, 헥수론산 C4-에피머화 효소 변이체.
  5. 제3항에 있어서, 상기 헥수론산 C4-에피머화 효소 변이체는 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 (i) 185번 세린(S) 아미노산 잔기, 267번 발린(V) 아미노산 잔기, 268번 세린(S) 아미노산 잔기, 272번 트레오닌(T) 아미노산 잔기, 306번 트립토판(W) 아미노산 잔기 및 386번 알르기닌(R) 아미노산 잔기로 구성된 군으로부터 선택된 1개 내지 5개의 아미노산 잔기, 또는 (ii) 77번 류신(L) 아미노산 잔기, 158번 알라닌(A) 아미노산 잔기, 또는 이의 조합의 아미노산 잔기가 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  6. 제5항에 있어서, 상기 268번 세린(S) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 164번 라이신(K), 168번 아스파르트산(D), 175번 글루탐산(E), 297번 아스파라긴(N) 및 388번 이소류신(I)으로 이루어진 군으로부터 선택된 하나 이상의 아미노산 잔기가 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  7. 제5항에 있어서, 상기 267번 발린(V) 및 386번 알기닌(R) 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 351번 프롤린(P)이 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  8. 제5항에 있어서, 상기 185번 세린(S), 267번 발린(V) 및 306번 트립토판(W) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 68번 글루탐산(E)이 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  9. 제5항에 있어서, 상기 267번 발린(V), 268번 세린(S) 및 386번 아르기닌(R) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 60번 글루탐산(E), 202번 메티오닌(M), 221번 타이로신(Y) 및 242번 타이로신(Y)으로 이루어진 군으로부터 하나 이상 선택된 아미노산 잔기가 추가적으로 돌연변이된, 헥수론산 C4-에피머화 효소 변이체.
  10. 제5항에 있어서, 상기 185번 세린(S), 267번 발린(V), 268번 세린(S) 및 272번 트레오닌(T) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 91번 류신(L), 141번 아스파르트산(D) 및 176번 글라이신(G)으로 이루어진 군으로부터 하나 이상 선택된 아미노산 잔기가 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  11. 제5항에 있어서, 상기 267번 발린(V), 268번 세린(S), 272번 트레오닌(T) 및 306번 트립토판(W) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 284번 발린(V) 및 415번 발린(V)으로 이루어진 군으로부터 하나 이상 선택된 아미노산 잔기가 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  12. 제5항에 있어서, 상기 185번 세린(S), 267번 발린(V), 268번 세린(S), 272번 트레오닌(T) 및 306번 트립토판(W) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 166번 프롤린(P) 및 231번 아스파르트산(D)로 이루어진 군으로부터 하나 이상 선택된 아미노산 잔기가 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  13. 제5항에 있어서, 상기 185번 세린(S), 267번 발린(V), 268번 세린(S), 272번 트레오닌(T) 및 386번 트립토판(W) 아미노산 잔기가 추가적으로 돌연변이된 헥수론산 C4-에피머화 효소 변이체는, 상기 헥수론산 C4-에피머화 효소의 N-말단으로부터 126번 발린(V)이 추가적으로 돌연변이된 것인, 헥수론산 C4-에피머화 효소 변이체.
  14. 제1항 내지 제13항 중 어느 하나의 항에 따른 헥수론산 C4-에피머화 효소 변이체를 암호화하는 핵산.
  15. 제1항 내지 제13항 중 어느 하나의 항에 따른 헥수론산 C4-에피머화 효소 변이체, 상기 변이체를 발현하는 미생물 또는 상기 미생물의 배양물과 D-프럭토스(D-fructose)를 접촉시키는 단계를 포함하는 D-타가토스 제조방법.
PCT/KR2017/008240 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법 WO2018021893A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018512126A JP6538968B2 (ja) 2016-07-29 2017-07-31 D−タガトース転換活性が高められたヘキスロン酸c4−エピメラーゼ変異体及びこれを用いたd−タガトースの製造方法
US15/759,511 US10544439B2 (en) 2016-07-29 2017-07-31 Hexuronate C4-epimerase variant having improved D-tagatose conversion activity, and D-tagatose production method using same
CN201780003316.8A CN109415715B (zh) 2016-07-29 2017-07-31 己糖醛酸酯c4-差向异构酶变异体、核酸和制造d-塔格糖的方法
EP17834833.0A EP3333261B1 (en) 2016-07-29 2017-07-31 Hexuronate c4-epimerase variant with improved d-tagatose production activity, and d-tagatose production method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160097500 2016-07-29
KR10-2016-0097500 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021893A1 true WO2018021893A1 (ko) 2018-02-01

Family

ID=61017137

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2017/008245 WO2018021896A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
PCT/KR2017/008240 WO2018021893A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
PCT/KR2017/008243 WO2018021895A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
PCT/KR2017/008241 WO2018021894A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008245 WO2018021896A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/KR2017/008243 WO2018021895A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
PCT/KR2017/008241 WO2018021894A1 (ko) 2016-07-29 2017-07-31 D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법

Country Status (7)

Country Link
US (5) US11306303B2 (ko)
EP (4) EP3492589A4 (ko)
JP (4) JP6647405B2 (ko)
KR (4) KR101946157B1 (ko)
CN (4) CN108368497B (ko)
HK (3) HK1254901A1 (ko)
WO (4) WO2018021896A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3161897A1 (en) 2015-10-02 2017-04-06 Bonumose Llc Enzymatic production of d-tagatose
KR101946157B1 (ko) * 2016-07-29 2019-02-11 씨제이제일제당 (주) D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
KR101940785B1 (ko) * 2017-11-21 2019-01-21 (주)케비젠 써모토가 페트로필라 유래의 헥수론산 c4-에피머화 변이체 효소 및 이의 용도
KR102131638B1 (ko) * 2018-12-12 2020-07-08 대상 주식회사 과당으로부터 타가토스로의 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체
CN110396513B (zh) * 2019-07-19 2022-01-11 天津科技大学 一种d-阿洛酮糖-3-差向异构酶的突变体及其应用
CN113122528A (zh) * 2019-12-31 2021-07-16 中国科学院天津工业生物技术研究所 D-木酮糖4-差向异构酶、其突变体及其用途
KR102399441B1 (ko) * 2020-01-20 2022-05-18 씨제이제일제당 주식회사 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조 방법
CN112342178B (zh) 2020-11-05 2022-02-25 中国科学院天津工业生物技术研究所 重组微生物、其制备方法及在生产塔格糖中的应用
CN112342179B (zh) 2021-01-05 2021-04-06 中国科学院天津工业生物技术研究所 产塔格糖的枯草芽孢杆菌基因工程菌及制备塔格糖的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140143109A (ko) * 2013-06-05 2014-12-15 씨제이제일제당 (주) 타가토스의 제조방법
KR20160047361A (ko) * 2014-10-22 2016-05-02 씨제이제일제당 (주) 타가토스 제조용 조성물 및 과당으로부터 타가토스를 제조하는 방법
KR20170015250A (ko) * 2015-07-29 2017-02-08 씨제이제일제당 (주) 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964091B1 (ko) 2008-01-28 2010-06-16 씨제이제일제당 (주) 대두 올리고당을 이용한 타가토스의 제조 방법
US8778650B2 (en) * 2009-04-30 2014-07-15 Kao Corporation Alkaline protease variants
KR101203856B1 (ko) * 2011-08-24 2012-11-21 씨제이제일제당 (주) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
WO2015016544A1 (ko) * 2013-07-29 2015-02-05 건국대학교 산학협력단 알돌레이즈, 알돌레이즈 돌연변이체 및 이를 이용한 타가토스 생산 방법과 생산용 조성물
KR101480422B1 (ko) 2013-07-29 2015-01-13 건국대학교 산학협력단 효소조합 반응에 의한 과당으로부터 타가토스 생산 방법 및 그 조성물
KR101868194B1 (ko) * 2013-11-19 2018-06-18 씨제이제일제당 (주) 호열균 유래 당 에피머화효소를 포함하는, 비인산헥소오스의 에피머화용 조성물
KR101946157B1 (ko) * 2016-07-29 2019-02-11 씨제이제일제당 (주) D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140143109A (ko) * 2013-06-05 2014-12-15 씨제이제일제당 (주) 타가토스의 제조방법
KR20160047361A (ko) * 2014-10-22 2016-05-02 씨제이제일제당 (주) 타가토스 제조용 조성물 및 과당으로부터 타가토스를 제조하는 방법
KR20170015250A (ko) * 2015-07-29 2017-02-08 씨제이제일제당 (주) 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [O] 21 May 2013 (2013-05-21), "hypothetical protein [Thermotoga neapolitana]", XP055300277, Database accession no. WP_015918744.1 *
KIM, HYE-JUNG ET AL.: "Novel Activity of UDP-galactose-4-epimerase for Free Monosaccharide and Activity Improvement by Active Site-saturation Mutagenesis", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 163, 2011, pages 444 - 451, XP055300273 *
RODIONOVA, IRINA A. ET AL.: "Tagaturonate-fructuronate Epimerase UxaE, a Novel Enzyme in the Hexuronate Catabolic Network in Thermotoga Maritima", ENVIRONMENTAL MICROBIOLOGY, vol. 14, no. 11, 2012, pages 2920.2934, XP055300286 *

Also Published As

Publication number Publication date
JP6629987B2 (ja) 2020-01-15
EP3333261C0 (en) 2023-11-15
CN109415715B (zh) 2022-08-23
CN108884454B (zh) 2022-08-30
CN108368497B (zh) 2022-05-06
US10947524B2 (en) 2021-03-16
JP2019507601A (ja) 2019-03-22
EP3492589A4 (en) 2020-11-04
US20190338329A1 (en) 2019-11-07
WO2018021894A1 (ko) 2018-02-01
EP3492587A4 (en) 2020-06-10
US20190112589A1 (en) 2019-04-18
KR101946157B1 (ko) 2019-02-11
JP6538968B2 (ja) 2019-07-03
JP2018526011A (ja) 2018-09-13
KR20180013815A (ko) 2018-02-07
EP3333261A1 (en) 2018-06-13
KR101905468B1 (ko) 2018-10-10
KR20180013814A (ko) 2018-02-07
JP2018536425A (ja) 2018-12-13
CN109415715A (zh) 2019-03-01
US11306303B2 (en) 2022-04-19
CN108368498A (zh) 2018-08-03
WO2018021896A1 (ko) 2018-02-01
JP2018536422A (ja) 2018-12-13
KR101955103B1 (ko) 2019-03-06
HK1257779A1 (zh) 2019-10-25
US10544439B2 (en) 2020-01-28
KR20180013813A (ko) 2018-02-07
KR101905469B1 (ko) 2018-10-10
US20190390188A1 (en) 2019-12-26
EP3492587A1 (en) 2019-06-05
US20210147824A1 (en) 2021-05-20
HK1254900A1 (zh) 2019-08-02
CN108368498B (zh) 2022-06-14
CN108884454A (zh) 2018-11-23
EP3492589A1 (en) 2019-06-05
KR20180013812A (ko) 2018-02-07
EP3492588A1 (en) 2019-06-05
HK1254901A1 (zh) 2019-08-02
CN108368497A (zh) 2018-08-03
US11499147B2 (en) 2022-11-15
JP6647405B2 (ja) 2020-02-14
EP3333261A4 (en) 2019-01-02
US20210017559A1 (en) 2021-01-21
WO2018021895A1 (ko) 2018-02-01
EP3333261B1 (en) 2023-11-15
JP6639674B2 (ja) 2020-02-05
US10801020B2 (en) 2020-10-13
EP3492588A4 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2017018863A1 (ko) 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
WO2018021893A1 (ko) D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
WO2014196811A1 (ko) 타가토스의 제조방법
WO2012030068A2 (ko) 1-데옥시노지리마이신 합성관련 폴리펩타이드 및 이의 용도
WO2019027173A2 (ko) 신규한 싸이코스-6-인산 탈인산효소, 상기 효소를 포함하는 사이코스 생산용 조성물, 상기 효소를 이용하여 사이코스를 제조하는 방법
WO2020196993A1 (ko) 변이형 포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2015009074A2 (ko) 신규 변이 오르니틴 디카복실레이즈 단백질 및 이의 용도
WO2020067781A1 (ko) 신규 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법
WO2014137148A1 (ko) 향상된 전환 활성을 가지는 l-아라비노스 이성화효소 변이체 및 이를 이용한 d-타가토스의 생산 방법
WO2020067786A1 (ko) 신규 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법
WO2018230953A1 (ko) 글루코실글리세롤 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 글루코실글리세롤 제조방법
WO2021029688A1 (ko) 신규 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법
WO2020067788A1 (ko) 신규 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법
WO2011049409A2 (ko) 신규한 만노스-6-인산 이성화효소, 그 돌연변이체 및 그 용도
WO2018230952A1 (ko) 투라노스 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 투라노스 제조방법
WO2012008748A9 (ko) 지오바실러스 써모디니트리피칸스 유래 만노스-6-인산 이성화효소의 변이체 및 이를 이용한 엘-리보스 생산방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512126

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017834833

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE