WO2018021503A1 - 固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法 - Google Patents

固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2018021503A1
WO2018021503A1 PCT/JP2017/027342 JP2017027342W WO2018021503A1 WO 2018021503 A1 WO2018021503 A1 WO 2018021503A1 JP 2017027342 W JP2017027342 W JP 2017027342W WO 2018021503 A1 WO2018021503 A1 WO 2018021503A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
solid
secondary battery
electrolyte composition
Prior art date
Application number
PCT/JP2017/027342
Other languages
English (en)
French (fr)
Inventor
雅臣 牧野
宏顕 望月
稔彦 八幡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018530405A priority Critical patent/JP6595715B2/ja
Priority to EP17834505.4A priority patent/EP3493318A1/en
Priority to CN201780045347.XA priority patent/CN109478687B/zh
Publication of WO2018021503A1 publication Critical patent/WO2018021503A1/ja
Priority to US16/255,948 priority patent/US11444315B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a solid electrolyte composition, an all-solid secondary battery sheet, an all-solid secondary battery, an all-solid secondary battery sheet, and an all-solid secondary battery manufacturing method.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle, a large storage battery, and the like is expected.
  • Patent Document 1 discloses an all solid material in which at least one of a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer is formed of a solid electrolyte composition containing an inorganic solid electrolyte and a multibranched polymer.
  • a secondary battery is disclosed. This all solid state secondary battery is said to be excellent in ion conductivity.
  • Patent Document 2 discloses an all-solid lithium secondary battery using a resin having an ethylene oxide skeleton or a thermoplastic elastomer as a binder. This all solid lithium secondary battery is said to be excellent in electrochemical capacity and charge / discharge capacity.
  • An object of the present invention is to provide a solid electrolyte composition capable of realizing an all-solid-state secondary battery that hardly causes an abnormality even when used in a severe environment. Moreover, this invention makes it a subject to provide the sheet
  • the present inventors have found that a solid containing a specific sulfide-based inorganic solid electrolyte, a salt of a metal belonging to Group 1 or Group 2 of the periodic table, and a multi-branched polymer having a specific structure.
  • a solid electrolyte composition in which the metal salt of the metal salt is dissolved in the arm portion of the multi-branched polymer, the discharge capacity retention rate is high, and the discharge after storage for a certain period after manufacture. It has been found that a reduction in capacity is suppressed, and an all-solid secondary battery that is less likely to cause an abnormality even when used in a harsher environment than before can be realized.
  • the present invention has been further studied based on these findings and has been completed.
  • a sulfide-based inorganic solid electrolyte having conductivity of a metal ion belonging to Group 1 or Group 2 of the periodic table, a salt of a metal belonging to Group 1 or Group 2 of the periodic table, and hyperbranched A solid electrolyte composition comprising a polymer,
  • the multi-branched polymer has a core part and at least three arm parts bonded to the core part, and the arm part contains a metal ion of a salt of a metal belonging to Group 1 or Group 2 of the periodic table.
  • a dissolved solid electrolyte composition A dissolved solid electrolyte composition.
  • the solid electrolyte composition according to ⁇ 1> wherein the arm part includes a polymer structure containing at least one repeating unit having an alkylene oxide group, a carbonate group, an ester group, an amide group, or a silicone group.
  • R 1 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkoxy group or an aryl group.
  • R 2 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkoxy group or an aryl group.
  • L 1 represents a divalent linking group containing at least one alkylene oxide group, carbonate group, ester group, amide group or silicone group.
  • ⁇ 4> The solid electrolyte composition according to ⁇ 1> or ⁇ 2>, wherein the main chain of the polymer structure constituting the arm portion includes an alkylene oxide group, a carbonate group, and / or an ester group.
  • ⁇ 5> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 4>, wherein the arm part has a mass average molecular weight of 500 or more and 1,000,000 or less.
  • L represents an n-valent linking group.
  • P 1 represents a polymer chain.
  • n represents an integer of 3 or more.
  • the n P 1 s may be the same or different.
  • L- (X) n forms a core portion, and (P 1 ) n forms an arm portion.
  • X represents an oxygen atom, a sulfur atom or —N (R 3 ) —, and R 3 represents a hydrogen atom, an alkyl group or an aryl group.
  • ⁇ 7> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 6>, wherein the core part has a partial structure represented by any of the following formulas.
  • Rx represents a divalent substituent containing an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom. * Indicates a binding site in the hyperbranched polymer.
  • ⁇ 8> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 7>, wherein the core part is an atomic group having a molecular weight of 200 or more.
  • ⁇ 10> A total of 100% by mass of the multi-branched polymer and a salt of a metal belonging to Group 1 or Group 2 of the Periodic Table, 5% by mass to a salt of metal belonging to Group 1 or Group 2 of the Periodic Table
  • the salt of a metal belonging to Group 1 or Group 2 of the periodic table is lithium bis (trifluoromethanesulfonyl) imide, lithium bis (fluorosulfonyl) imide and / or lithium bisoxalate borate ⁇
  • the multi-branched polymer is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the sulfide-based inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table.
  • An all-solid-state secondary battery sheet having a layer of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 13> on a substrate.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is An all solid state secondary battery which is a layer of the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 13>.
  • ⁇ 16> A method for producing a sheet for an all-solid-state secondary battery, comprising a step of applying the solid electrolyte composition according to any one of ⁇ 1> to ⁇ 13> onto a substrate.
  • ⁇ 17> A method for producing an all-solid secondary battery, wherein an all-solid secondary battery is produced through the production method according to ⁇ 16>.
  • the arm part dissolves a metal ion of a metal salt belonging to Group 1 or Group 2 of the periodic table
  • the arm part chemically interacts with the metal ion.
  • the metal ions are taken into the multi-branched polymer. Therefore, even when the solid electrolyte composition of the present invention contains a salt of the metal up to 20 times by mass with respect to the multi-branched polymer, when forming each layer constituting the all-solid secondary battery, It means that salt does not precipitate.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl refers to a group of structures having an acryloyl group, and includes, for example, a structure having a substituent at the ⁇ -position.
  • methacryl those having a methyl group at the ⁇ -position are referred to as methacryl and may be referred to as (meth) acryl or the like in a sense including this.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when a plurality of substituents etc. are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like.
  • the discharge capacity retention rate is high, the reduction of the discharge capacity after storage for a certain period after production is suppressed, and it is more severe than before. It is possible to realize an all-solid-state secondary battery that is less likely to be abnormal even when charged and discharged in a harsh environment.
  • the sheet for an all-solid-state secondary battery produced using the solid electrolyte composition of the present invention has a high discharge capacity retention rate by using it as a layer of the all-solid-state secondary battery, and the discharge capacity after storage for a certain period after production.
  • the all-solid-state secondary battery produced by using the solid electrolyte composition of the present invention as a layer constituent material has a high discharge capacity maintenance rate, a reduction in discharge capacity after storage for a certain period after production is suppressed, and a harsher environment than before. Even when charged and discharged with, abnormalities are unlikely to occur.
  • seat for all-solid-state secondary batteries and all-solid-state secondary battery of this invention can each be manufactured.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing the test apparatus used in the examples.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has a laminated structure.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the solid electrolyte composition of the present invention is particularly preferably used as a molding material for the negative electrode active material layer and / or the solid electrolyte layer.
  • seat for all-solid-state secondary batteries of this invention is suitable as the said negative electrode active material layer, a positive electrode active material layer, and a solid electrolyte layer.
  • a positive electrode active material layer hereinafter also referred to as a positive electrode layer
  • a negative electrode active material layer hereinafter also referred to as a negative electrode layer
  • an electrode layer or an active material layer may be collectively referred to as an electrode layer or an active material layer.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the solid electrolyte composition of the present invention includes a sulfide-based inorganic solid electrolyte having conductivity of a metal ion belonging to Group 1 or Group 2 of the Periodic Table, and a metal belonging to Group 1 or Group 2 of the Periodic Table. And a multi-branched polymer.
  • the all-solid-state secondary battery produced by using the solid electrolyte composition of the present invention as a layer constituent material has a high discharge capacity maintenance rate, a reduction in discharge capacity after storage for a certain period after production is suppressed, and a harsher environment than before. Even when charged and discharged with, abnormalities are unlikely to occur. The reason is not clear, but it is thought as follows.
  • metal ions of a metal salt belonging to Group 1 or Group 2 of the periodic table are dissolved.
  • a multi-branched polymer with an arm as a binder the binding properties of solid particles (for example, electrode active materials and sulfide-based inorganic solid electrolytes) are improved and only the state of the solid particle interface is improved.
  • the metal ions are taken into the multi-branched polymer, it is considered that the metal ion conductivity at the interface can be improved.
  • the all-solid-state secondary battery produced using the solid electrolyte composition of the present invention is excellent in cycle characteristics and discharge capacity after storage for a certain period after production.
  • the multi-branched polymer is present at the interface between the sulfide-based inorganic solid electrolyte particles, growth during dendrite generation is suppressed, and thus it is considered that battery abnormality such as short circuit is unlikely to occur.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • inorganic electrolyte salts such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte has conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte preferably a Li—PS—based glass described later
  • the sulfide-based inorganic solid electrolyte will be described.
  • the sulfide-based inorganic solid electrolyte preferably contains a sulfur atom (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulating properties. .
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P and S, or Li—PS system glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of an element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S and P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2 —LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the volume average particle diameter of the sulfide-based inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the average particle diameter of sulfide type inorganic solid electrolyte particle is performed in the following procedures.
  • the sulfide-based inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by HORIBA
  • data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Get the diameter.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the content of the sulfide-based inorganic solid electrolyte in the solid component in the solid electrolyte composition is determined by considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. In terms of mass%, it is preferably 5 mass% or more, more preferably 10 mass% or more, and particularly preferably 20 mass% or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the sulfide inorganic solid electrolyte may be used alone or in combination of two or more.
  • solid content (solid component) refers to a component that does not volatilize or evaporate at 80 ° C. in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • the salt of a metal belonging to Group 1 or Group 2 of the periodic table used in the present invention (hereinafter also referred to as a metal salt) is not particularly limited, but lithium ion is preferred as the metal ion constituting the metal salt.
  • a bulky anion is preferable as the anion constituting the metal salt because the metal ion is easily liberated.
  • Specific examples of bulky anions include PF 6 ⁇ , BF 4 ⁇ , TFSI and BETI.
  • an organic anion is more preferable.
  • Specific examples of the organic anion include TFSI, BETI, FSI, and trifluoromethanesulfonic acid.
  • specific examples of the metal salt used in the present invention will be described.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 and LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 and LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • LiCF 3 SO 3 trifluoromethanesulfone sanlithium
  • LiBETI lithium bis (pentafluoroethanesulfonyl) imide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiBOB lithium bis) Oxalatoborates
  • metal salts belonging to Group 1 or Group 2 of the Periodic Table may be used singly or in combination of two or more.
  • the content of the salt of the metal belonging to Group 1 or Group 2 of the periodic table in the solid electrolyte composition of the present invention is not particularly limited, the multibranched polymer and the metal belonging to Group 1 or Group 2 of the periodic table In a total of 100% by mass with the salt, 5% by mass or more is preferable, 10% by mass or more is more preferable, and 20% by mass or more is particularly preferable.
  • the upper limit is preferably 90% by mass or less, more preferably 85% by mass, and particularly preferably 80% by mass.
  • the multi-branched polymer used in the present invention has a core part and at least three arm parts bonded to the core part.
  • the core part is preferably an atomic group having a molecular weight of 200 or more, and more preferably an atomic group having a molecular weight of 300 or more.
  • the upper limit is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less.
  • This core part is preferably not only tetravalent carbon atoms.
  • the core part is preferably a linking group represented by L- (X) n in the formula (B) described later.
  • the arm portion is preferably (P 1 ) n in the formula (B) described later.
  • the core part of the multi-branched polymer contains a sulfur atom
  • the core part preferably has a linking group represented by the following formula (1a).
  • n1 represents an integer of 0 to 10.
  • R f represents a hydrogen atom or a substituent, and is preferably a hydrogen atom.
  • substituents examples include a halogen atom (a fluorine atom, a chlorine atom, an iodine atom, a bromine atom), an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), an alkoxy group ( Preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an acyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 3 carbon atoms), aryl Group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms), alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 5 carbon atoms), hydroxy group, nitro group, cyano group, sulfanyl group, amino group Group, amide group, acidic group (carboxy group, phosphoric acid group,
  • the core part of the multi-branched polymer used in the present invention has a partial structure represented by any of the following formulas so that the metal ions dissolved in the arm part can be efficiently taken into the polymer. It is preferable to have.
  • Rx represents a divalent substituent containing an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom. * Indicates a binding site in the hyperbranched polymer.
  • the core part of the multi-branched polymer used in the present invention is represented by any one of the following formulas in order to more efficiently incorporate metal ions dissolved in the arm part into the polymer and to give high ionic conductivity. It is more preferable to have a partial structure. * Indicates a binding site in the hyperbranched polymer.
  • a form in which the sulfanyl group, hydroxy group or —NH 2 hydrogen atom in these specific examples is substituted with an arm portion is a multi-branched polymer.
  • this hydrogen atom becomes P 1 in the formula (B) described later or a group containing the same, a compound represented by the formula (B) described later is obtained.
  • the compound forming the core part for example, a commercially available product can be used.
  • the substrate forming the core of the multi-branched polymer is one represented by any of the following formulas (1) to (6).
  • a form in which at least three hydrogen atoms (preferably at least three hydrogen atoms present in R) are substituted with arm portions is a multi-branched polymer.
  • R is a sulfanyl group, a hydroxy group, or an alkyl group (preferably having 1 to 3 carbon atoms). However, it has three or more sulfanyl groups in the molecule.
  • T is a linking group, preferably a linking group according to any one of the following T1 to T5, or a combination thereof.
  • Z is a linking group, and is preferably a linking group represented by the following (Z1) or (Z2). The directions of T1 to T5 may be reversed according to the formula.
  • q is an integer, each preferably 0 to 14, more preferably 0 to 5, and particularly preferably 1 to 3.
  • Each m is 1 to 8, more preferably 1 to 5, and particularly preferably 1 to 3.
  • a plurality of R and T present in one molecule may be the same or different.
  • T is an oxyalkylene group
  • Z 3 is a linking group, preferably an alkylene group having 1 to 12 carbon atoms, and more preferably an alkylene group having 1 to 6 carbon atoms. Of these, a 2,2-propanediyl group is particularly preferable.
  • the hyperbranched polymer used for this invention has an arm part.
  • the structure of the arm portion a structure having a polyethylene chain as a main chain is preferable.
  • the side chain include -L 1 -R 2 in the following formula (A).
  • the mass average molecular weight of the arm part is preferably 500 or more, and more preferably 1,000 or more. As an upper limit, it is preferable that it is 1,000,000 or less, and it is more preferable that it is 500,000 or less.
  • both solubility and fluidity of metal ions can be achieved, and good characteristics (for example, ion conductivity) can be exhibited in a wide temperature range. Because.
  • the arm part preferably has a structure derived from the next compound (a structure derived from the next compound).
  • the arm part is Polymer Handbook 2nd ed. , J .; Brandrup, Wiley lnterscience (1975) Chapter 2, pages 1 to 483, and the like.
  • this compound examples include styrene compounds, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylcarbazole, acrylic acid, methacrylic acid, (meth) acrylic acid ester compounds, (meth) acrylamide compounds, allyl compounds, vinyl ethers.
  • examples thereof include compounds having one addition polymerizable unsaturated bond selected from compounds, vinyl ester compounds, dialkyl itaconate compounds, and the like.
  • styrene compound examples include styrene, vinyl naphthalene, 2,4,6-tribromostyrene, 2-phenylstyrene, 4-chlorostyrene and the like.
  • Examples of the (meth) acrylic acid esters include (meth) acrylic acid ester compounds having a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, 2-hydroxyethyl acrylate, trimethylolpropane monoacrylate, etc. (Meth) acrylic acid ester compounds having a substituent other than the addition-polymerizable functional group, (meth) acrylic acid ester compounds having an aryl group such as benzyl (meth) acrylate, methoxybenzyl (meth) acrylate, furfuryl acrylate, Examples include (meth) acrylic acid ester compounds having a heterocycle such as tetrahydrofurfuryl acrylate.
  • Examples of the (meth) acrylamide compound include (meth) acrylamide, N-alkyl (meth) acrylamide (the alkyl group includes an alkyl group having 1 to 30 carbon atoms, such as a methyl group, an ethyl group, and a propyl group), N , N-dialkyl (meth) acrylamide (the alkyl group is an alkyl group having 1 to 20 carbon atoms), N-hydroxyethyl-N-methyl (meth) acrylamide, N-2-acetamidoethyl-N-acetyl (meth) acrylamide Etc.
  • N-alkyl (meth) acrylamide the alkyl group includes an alkyl group having 1 to 30 carbon atoms, such as a methyl group, an ethyl group, and a propyl group
  • N , N-dialkyl (meth) acrylamide the alkyl group is an alkyl group having 1 to 20 carbon atoms
  • allyl ester compounds eg, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, allyl lactate), allyloxyethanol Etc.
  • Examples of the vinyl ether compound include alkyl vinyl ethers (alkyl groups having 1 to 10 carbon atoms include hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethyl hexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether).
  • alkyl vinyl ethers alkyl groups having 1 to 10 carbon atoms include hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethyl hexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether).
  • vinyl ester compound examples include vinyl butyrate, vinyl isobutyrate, vinyl trimethyl acetate, vinyl diethyl acetate, vinyl valate, vinyl caproate, vinyl chloroacetate, vinyl dichloroacetate, vinyl methoxyacetate, vinyl butoxyacetate, vinyl lactate Vinyl- ⁇ -phenylbutyrate, vinylcyclohexylcarboxylate and the like.
  • dialkyl itaconate compound examples include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
  • crotonic acid examples include crotonic acid, itaconic acid, acrylonitrile, methacrylonitrile, maleilonitrile and the like.
  • the arm portion of the multi-branched polymer used in the present invention is an alkylene oxide group — ((CH 2 ) n2 —O) m2 — (n2 and m2 each independently represents a positive integer, and n2 is an integer of 2 to 6 M2 is preferably an integer of 5 to 1000)), carbonate group (—O—C ( ⁇ O) —O—), ester group (—C ( ⁇ O) —O—), amide group (—C It is preferable to contain at least one repeating unit having ( ⁇ O) —N (R 4 ) —) or a silicone group (—O—Si (OR 5 ) 2 —O—).
  • R 4 represents a hydrogen atom or a substituent (for example, substituent T).
  • R 5 represents a substituent (for example, substituent T). That is, the multi-branched polymer used in the present invention is a group that dissolves a metal ion of a salt of a metal belonging to Group 1 or Group 2 of the periodic table in the side chain of the polymer structure constituting the arm portion (hereinafter, “ Also referred to as “metal ion-soluble group.”) It preferably contains an alkylene oxide group, a carbonate group, an ester group, an amide group or a silicone group. This is because the multi-branched polymer used in the present invention contains a metal ion-soluble group in the side chain, so that the metal ion-soluble group can be held with high mobility and the metal ion can be dissolved well.
  • the arm portion containing a metal ion-soluble group in the side chain can be a strong polymer component and can exhibit good repeated battery characteristics. Therefore, at least one repeating unit represented by the following formula (A) is used.
  • a seed-containing structure is preferred.
  • the terminal of the arm part main chain other than the linking part bonded to the core part may have any structure, and examples thereof include a hydrogen atom, a methyl group, and a residue of a polymerization inhibitor.
  • -R 1 and -L 1 -R 2 are side chains of the arm part, and the other part is the arm part main chain.
  • R 1 is a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3), substituted or unsubstituted.
  • An alkoxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • a substituted or unsubstituted aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms.
  • the optional substituent include the substituent T.
  • R 2 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, 1 To 6 are more preferable, and 1 to 3 is particularly preferable.), An aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10), or a hydroxy group.
  • R 2 represents a linear or branched alkoxy group or a hydroxy group. When R 2 represents an alkyl group, an alkoxy group or an aryl group, it may further have a substituent T.
  • L 1 represents a divalent linking group containing at least one metal ion-soluble group.
  • L 1 may form a divalent linking group in combination with a group other than a metal ion-soluble group.
  • a group that forms L 1 in combination with at least one metal ion-soluble group —C ( ⁇ O) —, —O—, —NR N — (R N represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (preferably 1 to 4) or an aryl group having 6 to 14 carbon atoms), —C ( ⁇ O) O—, —OC ( ⁇ O) —, —OC ( ⁇ O) O—, —C ( ⁇ O) N (R N ) —, arylene group (preferably having 6 to 22 carbon atoms, 6 to 14 carbon atoms) More preferably) and an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), or
  • Examples thereof include a divalent linking group formed by combining the above.
  • the divalent group selected from —C ( ⁇ O) —, —C ( ⁇ O) O—, and —OC ( ⁇ O) — is a group that forms L 1 in combination with at least one metal ion-soluble group.
  • a divalent linking group formed by combining two or more of these divalent linking groups, and L 1 is —C ( ⁇ O) —, —C ( ⁇ O) O— or —OC.
  • a preferred specific example of —L 1 —R 2 is —C ( ⁇ O) — (a repeating unit containing a metal-soluble group) n3 -alkoxy group.
  • N3 represents an integer of 2 or more.
  • the ratio of the metal ion-soluble group contained in L 1 is not particularly limited, but is preferably 20% by mass or more, more preferably 50% by mass or more, and particularly preferably 70% by mass or more. There is no restriction
  • the copolymerization ratio of the repeating unit represented by the formula (A) and other repeating units is not particularly limited, but the ratio of the repeating unit represented by the formula (A) is 5% or more based on the molar ratio. It is preferably 10% or more, more preferably 20% or more. The upper limit is not particularly limited, and may be 100% or less.
  • Other repeating units to be copolymerized include Polymer Handbook 2nd ed. , J .; Brandrup, Wiley lnterscience (1975) Chapter 2, Pages 1-483.
  • the multi-branched polymer used in the present invention is not a side chain of the polymer structure constituting the arm part, but the main chain of this polymer structure itself is an alkylene oxide group, carbonate group, ester group, which is a metal ion-dissolving group, It is also preferable that it is configured to include an amide group and / or a silicone group. In this case, it is preferable that a polyalkylene oxide chain, a polycarbonate chain, a polyester chain, a polyamide chain and / or a polysiloxane chain are incorporated in the main chain of the polymer structure constituting the arm portion.
  • the arm part containing a metal ion-soluble group as a constituent component constituting the main chain of the arm part preferably has a structure represented by the following formula (C).
  • L 11 represents a divalent group having a polymer structure in which a metal ion-soluble group is incorporated in the main chain.
  • L 11 may form a divalent group in combination with a group other than a metal ion-soluble group, and is combined with the at least one metal ion-soluble group as a group that forms L 11 in combination with the above repeating unit.
  • Te forms an L 1 group (.
  • the ratio of the metal ion-soluble group contained in L 11 is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit is not limited and is 100% by mass or less.
  • R 12 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, 1 To 6 are more preferable, and 1 to 3 is particularly preferable.), An aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10), or a hydroxy group.
  • R 12 represents a linear or branched alkyl group. When R 12 represents an alkyl group, an alkoxy group, or an aryl group, it may further have a substituent T. * Indicates the site of connection with the core.
  • N4 represents an integer of 2 or more.
  • the multi-branched polymer used in the present invention can dissolve a metal ion satisfactorily when it has a substituent having a strong interaction property with the metal ion, and can improve battery performance. It is preferable to consist of the compound represented.
  • L represents a linking group having a valence of n or more.
  • the valence of L is practically 8 or less.
  • P 1 represents a polymer chain.
  • n represents an integer of 3 or more, preferably 6 or more. The n P 1 s may be the same or different.
  • P 1 constitutes the arm portion.
  • X represents an oxygen atom, a sulfur atom or —N (R 3 ) —, and R 3 represents a hydrogen atom, an alkyl group (preferably having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms) or an aryl group (preferably Represents 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • the multi-branched polymer used in the present invention is also preferably represented by the following formula (2).
  • R 6 represents a hydrogen atom or a substituent (for example, substituent T).
  • substituent T a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), a substituted or unsubstituted alkoxy group (carbon number) 1 to 12, preferably 1 to 6, more preferably 1 to 3, and a substituted or unsubstituted aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms).
  • alkyl group, alkoxy group, and aryl group may have include a substituent T, and among them, a hydroxy group is preferable.
  • the alkyl group may have an oxygen atom interposed therein, and may be, for example, an oligooxyalkylene group.
  • the oligoalkylene group is preferably one represented by the following formula (OA).
  • Examples of the alkyl group having a halogen atom include a fluoroalkyl group.
  • R f and P 1 are as defined in formulas (A) and (1a).
  • n 11 each independently represents an integer of 0 to 10, preferably 0 to 8, and more preferably 0 to 6.
  • k 1 represents an integer of 0 to 3, preferably 0 to 2.
  • l 1 represents an integer of 0 to 4, preferably 1 to 4, and more preferably 2 to 4.
  • m 1 represents an integer of 0 to 3, preferably 0 to 2, and more preferably 0 to 1.
  • k 2 represents an integer of 0 to 3, preferably 0 to 2, and more preferably 0 to 1.
  • l 2 represents an integer of 0 to 3, preferably 1 to 3, and more preferably 2 to 3.
  • m 22 represents an integer of 0 to 3, preferably 0 to 2, and more preferably 0 to 1.
  • the sum of k 1 , l 1 and m 1 is 4 or less.
  • the sum of k 2 and l 2 and m 22 is 3 or less.
  • the number of groups having P 1 is 3 or more, more preferably 4 or more. That is, l 1 + l 2 ⁇ (4-k 1 -l 1 -m 1 ) is 3 or more, and is preferably 4 or more. As an upper limit, 8 or less is preferable and 6 or less is more preferable.
  • the -SH preferably constitutes a connecting portion with the arm portion, and the core portion and the arm portion are preferably connected via -S-.
  • the mass average molecular weight of the multi-branched polymer used in the present invention is not particularly limited, but is preferably 1,700 or more, more preferably 2,000 or more, and 3,500 or more. Is particularly preferred.
  • the upper limit is preferably 3,000,000 or less, more preferably 1,500,000 or less, further preferably 1,000,000 or less, further preferably 500,000 or less, 000 or less is particularly preferable.
  • the mass average molecular weight of the multi-branched polymer used in the present invention is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a value measured by the method of Condition 1 or Condition 2 (priority) below is basically used.
  • an appropriate eluent may be selected and used depending on the polymer type.
  • 500 or more are preferable, as for the mass average molecular weight of the arm part of the multibranched polymer used for this invention, 1000 or more are preferable and 2000 or more are more preferable.
  • the upper limit is preferably 10,000,000 or less, more preferably 1,000,000 or less, and particularly preferably 100,000 or less.
  • the multi-branched polymer is preferably in the form of particles.
  • the multi-branched polymer is dispersed in a dispersion medium, and the average particle size is preferably 1 nm or more. More preferably, it is 5 nm or more, and particularly preferably 12 nm or more.
  • the upper limit is preferably 1,000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the average particle diameter of the multi-branched polymer particles used in the present invention is based on the measurement conditions and definitions described below unless otherwise specified. Dilute the 1% by weight dispersion of the multi-branched polymer particles in a 20 ml sample bottle using any solvent (dispersion medium used to prepare the solid electrolyte composition, eg, heptane). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the multi-branched polymer used in the present invention can be synthesized by an ordinary method with reference to, for example, “Synthesis of Polymer (Lower)”, Kodansha, Part IV Ring Opening Polymerization.
  • the method of synthesizing the multi-branched polymer may be a method of coupling the synthesized arm portion polymer with at least a trifunctional or higher functional core portion.
  • polymerizing sequentially from a trifunctional or more core part or chained, and forming an arm part polymer may be sufficient.
  • a method of performing radical polymerization using a chain transfer agent can also be mentioned.
  • Examples of the chain transfer agent include thiol-containing compounds, and a method of performing radical polymerization in the presence of at least a trifunctional or higher functional thiol-containing compound is preferable in terms of the process.
  • a method of performing radical polymerization in the presence of at least a trifunctional or higher functional thiol-containing compound is preferable in terms of the process.
  • the arm part and the core part are linked using the enethiol reaction, even if there is a thiol (sulfanyl) group on the substrate side of the core part, there is a thiol group on the substrate side of the arm part. Also good.
  • it is defined as having a thiol group on the substrate side of the core part for specific convenience.
  • the content of the multi-branched polymer in the solid electrolyte composition of the present invention is 0.1 part by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte (the total amount including the active material). Preferably, it is 0.5 parts by mass or more, more preferably 1 part by mass or more.
  • the upper limit is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and particularly preferably 10 parts by mass or less. This is because, when the content is within the above range, it is possible to further improve the binding property between the solid particles and between the respective layers while maintaining high ionic conductivity.
  • the content of the multi-branched polymer in all solid components of the solid electrolyte composition of the present invention is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more.
  • As an upper limit 30 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is especially preferable.
  • the solid component refers to a component that does not volatilize or evaporate when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • the above multi-branched polymers may be used alone or in combination of two or more.
  • the use of a multi-branched polymer can improve the electrode flexibility and suppress the increase in interface resistance. Although this reason includes estimation, it is considered as follows. That is, a multi-branched polymer has a single molecule with a small molecular chain spread due to the introduction of a branched structure, and is not easily entangled with other molecules. On the other hand, in a linear polymer, the entanglement with other molecules is large, and the size of the binding point tends to be large in a drying process or the like. From these differences, it is understood that by adopting the multi-branched polymer according to the present invention, the ion conductivity is improved while maintaining good flexibility and binding properties. Among these, those having an acidic group or the like in the arm portion are preferable in relation to the inorganic solid electrolyte as described above.
  • a polymerization initiator For the synthesis of the multi-branched polymer of the present invention, it is preferable to contain a polymerization initiator. Of these, a radical polymerization initiator is preferably used.
  • thermal radical polymerization initiators that generate initiation radicals by cleavage by heat include ketone peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1 Hydroperoxides such as 1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide; diisobutyryl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, lauroyl Diacyl peroxides such as peroxide, benzoyl peroxide and m-toluyl be
  • azo compound used as the azo polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), and 2,2′-azobis.
  • (2,4-dimethylvaleronitrile) (trade name V-65)
  • 1,1′-azobis-1-cyclohexanecarbonitrile dimethyl-2,2′-azobisisobutyrate
  • 4,4′-azobis- Examples include 4-cyanovaleric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A).
  • dimethyl-2,2′-azobis (2-methylpropinate) (trade name V-601, manufactured by Wako Pure Chemical Industries, Ltd.) is also preferably used.
  • radical polymerization initiator in addition to the thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
  • radical polymerization initiators include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2
  • radical polymerization initiators can be used singly or in combination of two or more.
  • the content of the polymerization initiator is preferably applied in an amount of 0.01 to 20 parts by mass with respect to 100 parts by mass of the monomer.
  • a polymerization inhibitor may be added to the synthesis of the multi-branched polymer used in the present invention.
  • the polymerization inhibitor include phenols such as hydroquinone, t-butylhydroquinone, catechol and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; coppers; 2,2,6,6-tetra Methylpiperidine 1-oxyl and the like can be used.
  • a reaction medium may be used for the synthesis of the multi-branched polymer used in the present invention.
  • Suitable media include aliphatic compound solvents, ether solvents, ester solvents, ketone solvents, toluene, n-heptane, n-hexane, cyclohexane, cyclopentane, octane, decane, dibutyl ether, Diisopropyl ether, t-butyl methyl ether, cyclohexyl methyl ether, methyl acetate, ethyl acetate, acetone, methyl ethyl ketone, cyclohexanone and the like are not particularly limited and can be used.
  • the temperature of the polymerization reaction is not particularly limited and may be adjusted depending on the monomer or reaction medium to be applied. For example, it is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and particularly preferably 60 ° C. or higher. Although there is no upper limit in particular, it is practical that it is 150 degrees C or less.
  • the solid electrolyte composition of the present invention preferably contains a dispersion medium in order to disperse the solid components.
  • a dispersion medium include the following.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol.
  • alkylene glycol alkyl ether As ether compound solvents, alkylene glycol alkyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol Monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc.), dialkyl ethers (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), alkyl aryl ethers (anisole), Tetrahydrofuran, dioxane (1,2, including 1,3- and 1,4-isomers of) include t- butyl methyl ether and cyclohexyl methyl ether.
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
  • amino compound solvent examples include triethylamine, diisopropylethylamine, and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • aromatic compound solvent examples include benzene, toluene, xylene and mesitylene.
  • Examples of the aliphatic compound solvent include hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, and cyclopentane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, and butyronitrile.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • aliphatic compound solvents and ether compound solvents are preferable, and heptane, dibutyl ether and mixed solvents thereof are more preferable.
  • the content of the dispersion medium in the solid electrolyte composition of the present invention is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material positive electrode active material, negative electrode active material
  • an electrode composition positive electrode composition, negative electrode composition
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxides having (MA) layered rock-salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 ( lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese) Lithium nickelate).
  • transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type phosphate iron salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and further 50 to 85% by mass in 100% by mass of the solid component. Preferably, it is 55 to 80% by mass.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • carbon black such as acetylene black (AB)
  • hard carbon such as acetylene black (AB)
  • graphite artificial graphite such as natural graphite and vapor-grown graphite
  • PAN polyacrylonitrile
  • furfuryl alcohol resin etc.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • hard carbon and graphite are preferably used.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, more preferably 20 to 80% by mass with respect to 100% by mass of the solid component.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li.
  • Specific examples include spinel titanate, tantalum oxide, niobium oxide, and lithium niobate compound. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention may further contain a binder as a polymer component.
  • the binder used in the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is not particularly limited, and for example, a binder made of the resin described below is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of monomers constituting these resins. Further, copolymers with other vinyl monomers are also preferably used. Examples thereof include a poly (meth) methyl acrylate-polystyrene copolymer, a poly (meth) methyl acrylate-acrylonitrile copolymer, and a poly (meth) butyl acrylate-acrylonitrile-styrene copolymer.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the shape of the binder is not particularly limited, and may be particulate or indefinite in the all solid state battery.
  • the water concentration of the polymer constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less.
  • the polymer which comprises the binder used for this invention may be used in a solid state, and may be used in the state of a polymer particle dispersion or a polymer solution.
  • the mass average molecular weight of the polymer constituting the binder used in the present invention is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the content of the binder in the solid electrolyte composition is 0.01% by mass with respect to 100% by mass of the solid component, considering good reduction in interface resistance and its maintainability when used in an all-solid secondary battery.
  • the above is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is more preferable.
  • 10 mass% or less is preferable from a viewpoint of a battery characteristic, 5 mass% or less is more preferable, and 3 mass% or less is further more preferable.
  • the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the binder [(mass of the inorganic solid electrolyte + mass of the active material) / mass of the binder] is 1,000 to 1. A range is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
  • the solid electrolyte composition of the present invention may contain a dispersant. Even when the concentration of either the electrode active material or the inorganic solid electrolyte is high by adding a dispersant, or even when the particle diameter is small and the surface area is increased, the aggregation is suppressed, and the uniform active material layer and solid electrolyte layer Can be formed.
  • a dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention may contain a conductive additive.
  • a conductive support agent What is known as a general conductive support agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. It may be used.
  • 1 type may be used among these and 2 or more types may be used.
  • the multi-branched polymer used in the present invention and a metal salt belonging to Group 1 or Group 2 of the periodic table are dispersed in the dispersion medium (for example, acetonitrile) and stirred at 20 to 60 ° C. for 5 to 120 minutes. To do. Subsequently, by drying under reduced pressure, a polymer composition containing a hyperbranched polymer and a salt of a metal belonging to Group 1 or Group 2 of the periodic table is obtained.
  • the dispersion medium for example, acetonitrile
  • the solid electrolyte composition can be prepared by dispersing the inorganic solid electrolyte and the polymer composition prepared above in the presence of a dispersion medium to form a slurry.
  • Slurry can be performed by mixing an inorganic solid electrolyte, a polymer composition, and a dispersion medium using various mixers.
  • the mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • the mixing conditions are not particularly limited. For example, when a ball mill is used, the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • a solid electrolyte composition containing components such as an active material and a particle dispersant it may be added and mixed at the same time as the dispersion step of the inorganic solid electrolyte and polymer composition described above, or added and mixed separately. May be.
  • the all-solid-state secondary battery sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
  • a sheet having a solid electrolyte layer on a substrate also referred to as a solid electrolyte sheet for an all-solid-state secondary battery
  • a sheet having an electrode active material layer or an electrode active material layer and a solid electrolyte layer on the substrate all-solid secondary battery
  • a secondary battery electrode sheet) and a sheet made of a solid electrolyte layer and / or an active material layer (electrode layer) (a sheet having no substrate).
  • these various sheets may be collectively referred to as an all-solid-state secondary battery sheet.
  • the all-solid-state secondary battery sheet is a sheet having a solid electrolyte layer or an active material layer (electrode layer).
  • the all-solid-state secondary battery sheet may have other layers as long as it has a solid electrolyte layer or an active material layer. It is classified as an electrode sheet. Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials (sheet-like bodies) such as materials, organic materials, and inorganic materials described later.
  • materials sheet-like bodies
  • examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • examples of the inorganic material include glass and ceramic.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet is the same as the thickness of the solid electrolyte layer described in the above-described all-solid-state secondary battery of the present invention.
  • This sheet is obtained by forming (coating and drying) the solid electrolyte composition of the present invention on a base material (which may be via another layer) to form a solid electrolyte layer on the base material. It is done.
  • the solid electrolyte composition of this invention can be prepared by said method, for example.
  • the electrode sheet for an all-solid-state secondary battery of the present invention (also simply referred to as “electrode sheet”) is formed on a metal foil as a current collector for forming an active material layer of the all-solid-state secondary battery of the present invention.
  • An electrode sheet having an active material layer is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • the configuration and the layer thickness of each layer constituting the electrode sheet are the same as the configuration and the layer thickness of each layer described in the above-described all solid state secondary battery of the present invention.
  • the electrode sheet is obtained by forming (coating and drying) the solid electrolyte composition containing the active material of the present invention on a metal foil to form an active material layer on the metal foil.
  • the method for preparing the solid electrolyte composition containing the active material is the same as the method for preparing the solid electrolyte composition except that the active material is used.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector.
  • At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is formed using the solid electrolyte composition of the present invention.
  • the active material layer and / or the solid electrolyte layer formed of the solid electrolyte composition are preferably the same as those in the solid content of the solid electrolyte composition with respect to the component species to be contained and the content ratio thereof.
  • the all-solid-state secondary battery sheet may contain a dispersion medium within a range that does not affect battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
  • seat for all-solid-state secondary batteries of this invention can be measured with the following method.
  • the sheet for an all-solid-state secondary battery is punched out with a 20 mm square and immersed in deuterated tetrahydrofuran in a glass bottle.
  • the obtained eluate is filtered through a syringe filter, and quantitative operation is performed by 1 H-NMR.
  • the correlation between the 1 H-NMR peak area and the amount of solvent is determined by preparing a calibration curve.
  • any of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is formed using the solid electrolyte composition of the present invention. That is, when the solid electrolyte layer 3 is formed of the solid electrolyte composition of the present invention, the solid electrolyte layer 3 includes an inorganic solid electrolyte, a salt of a metal belonging to Group 1 or Group 2 of the periodic table, A branched polymer. The solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the positive electrode active material layer 4 and the negative electrode active material layer 2 are respectively a positive electrode active material or a negative electrode. It contains an active material, and further contains an inorganic solid electrolyte, ions of a metal belonging to Group 1 or Group 2 of the periodic table, and a multi-branched polymer.
  • the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved.
  • the inorganic solid electrolyte and the multibranched polymer contained in the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 may be the same or different from each other.
  • any one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery includes a metal salt belonging to Group 1 or Group 2 of the periodic table, It is produced using a solid electrolyte composition containing a branched polymer and solid particles such as an inorganic solid electrolyte. For this reason, the binding property between solid particles can be improved, and as a result, good cycle characteristics in an all-solid secondary battery can also be realized.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • the sheet for an all-solid-state secondary battery of the present invention is formed by coating (drying) the solid electrolyte composition of the present invention on a base material (which may be through another layer), and the solid electrolyte is formed on the base material. It is obtained by forming a layer.
  • seat for all-solid-state secondary batteries which is a sheet
  • the method as described in manufacture of the following all-solid-state secondary battery can be used.
  • Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. This will be described in detail below.
  • the all-solid-state secondary battery of the present invention is produced by a method including (intervening) the step of applying the solid electrolyte composition of the present invention onto a metal foil to be a current collector and forming (forming) a coating film.
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and an all-solid secondary A positive electrode sheet for a battery is prepared.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied on a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • a dispersion medium By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • each layer or all-solid secondary battery After producing the applied solid electrolyte composition or all-solid-state secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • each composition may be applied simultaneously, and application and drying presses may be performed simultaneously and / or sequentially. You may laminate
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery in which at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer contains a conductive additive.
  • a method for producing an all-solid-state secondary battery wherein the solid electrolyte layer is wet-coated with a slurry in which a conductive additive and a sulfide-based inorganic solid electrolyte are dispersed by a dispersion medium.
  • a solid electrolyte composition containing an active material for producing the all-solid secondary battery.
  • An electrode sheet for an all-solid-state secondary battery wherein the solid electrolyte composition is applied onto a metal foil and formed into a film.
  • An all-solid secondary battery in which at least one of a solid electrolyte layer and a negative electrode active material layer is formed from the solid electrolyte composition of the present invention.
  • the preferred method for producing the all-solid-state secondary battery and the all-solid-state secondary battery electrode sheet of the present invention is a wet process. Thereby, even in a region where the content of the inorganic solid electrolyte in at least one of the positive electrode active material layer and the negative electrode active material layer is as low as 10% by mass or less, the adhesiveness between the active material and the inorganic solid electrolyte is increased, and an efficient ion conduction path. Can be maintained, and an all-solid-state secondary battery having a high energy density (Wh / kg) and high power density (W / kg) per battery mass can be manufactured.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state that uses the above-described Li—PS glass, LLT, LLZ, or the like. It is divided into secondary batteries.
  • an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or additive for a positive electrode active material, a negative electrode active material, and an inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
  • electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt An example of the electrolyte salt is LiTFSI.
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • the multibranched polymers PA-2, PA-3, PA-4, PA-6, and PA-9 to PA-12 shown in Table 1 or 2 below were synthesized in the same manner as any of the above synthesis methods.
  • Tables 1 and 2 below summarize the charge ratios and measured molecular weights of the compounds used in the synthesis of the multibranched polymer.
  • the “polymer molecular weight” and “arm molecular weight” were measured from the compounds used in the above synthesis by the method described above.
  • the charging ratio of each compound corresponds to the mass ratio of the arm portion and the core portion of the synthesized multi-branched polymer as it is.
  • ⁇ Preparation example of polymer composition> (1) Preparation of polymer composition LPA-1 In a dry atmosphere (dew point ⁇ 40 ° C.), a rotator was placed in a 200 mL eggplant flask, 8.0 g of the multi-branched polymer PA-1 synthesized above, and LiTFSI of 2. 0 g was weighed and added. Subsequently, 100 mL of dehydrated acetonitrile was added, heated to 40 ° C., and stirred for 60 minutes to obtain a polymer solution. This was poured onto an aluminum pan and dried under reduced pressure at 80 ° C. for 2 hours to prepare a polymer composition LPA-1.
  • Li-NMR measurement confirmed that the peak of LiTFSI salt was shifted to a high magnetic field and that the peak related to ethylene oxide of PA-1 was shifted to a low magnetic field by 1 H-NMR. This confirmed that lithium ions were dissolved in the arm portion of the multi-branched polymer.
  • Polymer composition LPA- was prepared in the same manner as polymer composition LPA-1, except that the compositions shown in Table 3 were changed. 2-14 and LEX-1-4 were prepared.
  • EX-1 Polymer described in Example P-1 of JP-A No. 2015-164125
  • EX-2 Polyethylene oxide (PEO) and polypropylene oxide (PPO) described in Examples of JP-A-2009-176484
  • the copolymer LEX-3 was prepared with 20% by mass of LITFSI, and precipitation of salt was observed during film formation. Therefore, the concentration of the metal salt was reduced and evaluated.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • Example 1 ⁇ Preparation example of solid electrolyte composition> (1) Preparation of Solid Electrolyte Composition S-1 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), and the sulfide-based inorganic solid electrolyte Li—PS system synthesized above. 9.7 g of glass, 0.3 g of a polymer composition described in Table 4 below as a binder, and 15 g of a mixed solvent of heptane (90 g) and dibutyl ether (10 g) as a dispersion medium were added.
  • Solid electrolyte compositions S-2 to S-14 and T-1 to T-5 were prepared.
  • solid electrolyte compositions S-1 to S-14 are the solid electrolyte compositions of the present invention
  • solid electrolyte compositions T-1 to T-5 are comparative solid electrolyte compositions.
  • composition for positive electrode Preparation of composition for positive electrode AS-1 50 zirconia beads having a diameter of 3 mm were put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 2 g of the solid electrolyte composition S-1 prepared above was added. 3 g of the positive electrode active material LCO was added thereto, and then this container was set on a planetary ball mill P-7 (manufactured by Fritsch) and stirred for 15 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm. Was prepared.
  • positive electrode compositions AS-1, AS-6, and AS-13 are solid electrolyte compositions of the present invention
  • positive electrode compositions AT-2, AT-4, and AT-5 are comparative solid electrolyte compositions. It is a thing.
  • LCO LiCoO 2 (lithium cobaltate), volume average particle size 10 ⁇ m
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobaltate), volume average particle diameter 6 ⁇ m
  • Negative electrode compositions BS-2 to BS-14 and BT-1 to BT-5 were prepared.
  • the negative electrode compositions BS-1 to BS-14 are solid electrolyte compositions of the present invention
  • the negative electrode compositions BT-1 to BT-5 are comparative solid electrolyte compositions.
  • Test No. Production of 101 all solid state secondary battery production of all solid state secondary battery sheet
  • the positive electrode composition AT-5 prepared above was applied onto an aluminum foil (current collector) having a thickness of 20 ⁇ m with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.), and 1 at 80 ° C. After heating for an hour, the composition was further heated at 110 ° C. for 1 hour to dry the positive electrode composition.
  • the positive electrode sheet for all-solid-state secondary batteries which has a laminated structure of a positive electrode active material layer / aluminum foil.
  • the thickness of the positive electrode active material layer was 90 ⁇ m.
  • the solid electrolyte composition T-5 prepared above was applied by the above-mentioned Baker type applicator, heated at 80 ° C. for 1 hour, and further heated at 100 ° C. for 1 hour. A solid electrolyte layer having a thickness of 100 ⁇ m was formed.
  • the negative electrode composition BS-1 prepared above was applied onto the obtained solid electrolyte layer with the above-described Baker type applicator, heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 1 hour to obtain a thickness. A 100 ⁇ m negative electrode active material layer was formed.
  • a 20 ⁇ m-thick copper foil is combined on the negative electrode active material layer, and heated with a heat press machine while being heated at 120 ° C. (600 MPa, 1 minute).
  • An all-solid-state secondary battery sheet having the layer configuration shown in FIG. Produced.
  • the all-solid-state secondary battery sheet obtained above was cut into a disk shape having a diameter of 14.5 mm.
  • An all solid secondary battery sheet having a diameter of 14.5 mm cut out to a diameter of 14.5 mm is placed in a stainless steel 2032 type coin case 11 shown in FIG. 2 in which a spacer and a washer (both not shown in FIG. 2) are incorporated.
  • test no. 101 all-solid-state secondary battery was produced.
  • test No. Preparation of all solid state secondary batteries of 102 to 131 and e101 to e110 In the same manner as for the all-solid-state secondary battery 101, test no. All-solid secondary batteries of 102 to 131 and e101 to e110 were produced.
  • the content ratio of the dispersion medium in each layer was 1 ppm or more and 10,000 ppm or less in the total mass.
  • the measurement of the content rate was performed with reference to the above-mentioned method.
  • Table 7 summarizes the composition of the all-solid-state secondary battery.
  • test no The all solid state secondary batteries 101 to 131 are all solid state secondary batteries of the present invention.
  • the all solid state secondary batteries e101 to e110 are comparative all solid state secondary batteries.
  • the battery was charged to 4.2 V under the condition of a charging current value of 0.35 mA, discharged to 4.1 V under the condition of a discharge current value of 0.7 mA, and then the all solid state secondary battery was removed. It was left to stand in a thermostatic bath at 0 ° C. for 1 week. One week later, the battery was discharged to 3.0 V under a discharge current value of 0.7 mA in an environment of 30 ° C., and the charge current value was 0.35 mA and the discharge current value was 0.7 mA. Charging / discharging was performed, and the discharge capacity value at that time was defined as the discharge capacity after storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polyethers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

硫化物系無機固体電解質と、周期律表第1族又は第2属に属する金属の塩と、多分岐ポリマーとを含む固体電解質組成物であって、多分岐ポリマーが、コア部と、コア部に結合する少なくとも3本のポリマー性のアーム部とを有してなり、アーム部が、周期律表第1族又は第2属に属する金属の塩の金属イオンを溶解している固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法。

Description

固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法
 本発明は、固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性のさらなる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の開発が進められている。例えば、特許文献1には、正極活物質層、負極活物質層および無機固体電解質層の少なくともいずれかが、無機固体電解質と多分岐ポリマーとを含む固体電解質組成物で構成した層とした全固体二次電池が開示されている。この全固体二次電池はイオン伝導性に優れるとされる。また、特許文献2には、結着剤として、エチレンオキシド骨格を有する樹脂または熱可塑性エラストマーを用いた全固体リチウム二次電池が開示されている。この全固体リチウム二次電池は、電気化学容量および充放電能に優れるとされる。
特開2015-164125号公報 特開2009-176484号公報
 近年、全固体二次電池の開発が急速に進行している。これに伴い、従来の全固体二次電池に求められる性能を具備した上で、より過酷な環境下において使用された場合にも優れた性能を奏する全固体二次電池が求められる。すなわち、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下が抑制され、より過酷な環境において充放電された場合にも、異常を生じにくい全固体二次電池が求められる。
 上記状況に鑑み、本発明は、全固体二次電池の層構成材料として用いることにより、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下を抑制するだけでなく、これまで以上に過酷な環境下で使用されても異常を生じにくい全固体二次電池を実現することができる固体電解質組成物を提供することを課題とする。また、本発明は、上記固体電解質組成物を層構成材料として作製した、全固体二次電池用シートおよび全固体二次電池を提供することを課題とする。さらに、本発明は、上記全固体二次電池用シート及び全固体二次電池それぞれの製造方法を提供することを課題とする。
 本発明者らは鋭意検討した結果、特定の硫化物系無機固体電解質と、周期律表第1族又は第2属に属する金属の塩と、特定の構造を有する多分岐ポリマーとを含有する固体電解質組成物であって、上記金属の塩の金属イオンを多分岐ポリマーのアーム部が溶解している固体電解質組成物を用いることにより、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下が抑制され、これまで以上に過酷な環境下で使用されても異常を生じにくい全固体二次電池を実現できることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質と、周期律表第1族又は第2属に属する金属の塩と、多分岐ポリマーとを含む固体電解質組成物であって、
 多分岐ポリマーが、コア部と、コア部に結合する少なくとも3本のアーム部とを有してなり、アーム部が、周期律表第1族又は第2属に属する金属の塩の金属イオンを溶解している固体電解質組成物。
<2>アーム部が、アルキレンオキサイド基、カーボネート基、エステル基、アミド基またはシリコーン基を有する繰り返し単位を少なくとも1種含有するポリマー構造を含む<1>に記載の固体電解質組成物。
<3>繰り返し単位が、下記式(A)で表される繰り返し単位である<2>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000005
 式中、Rは水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基またはアリール基を示す。Rは水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基またはアリール基を示す。Lは、アルキレンオキサイド基、カーボネート基、エステル基、アミド基またはシリコーン基を少なくとも1つ含む2価の連結基を示す。
<4>アーム部を構成するポリマー構造の主鎖が、アルキレンオキサイド基、カーボネート基および/またはエステル基を含んで構成される<1>または<2>に記載の固体電解質組成物。
<5>アーム部の質量平均分子量が500以上1,000,000以下である<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>多分岐ポリマーが、下記式(B)で表される<1>~<5>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000006
 式中、Lはn価の連結基を示す。Pはポリマー鎖を示す。nは3以上の整数を示す。n個のPはそれぞれ同一であっても、異なっていてもよい。L-(X)がコア部をなし、(Pがアーム部をなす。Xは酸素原子、硫黄原子または-N(R)-を示し、Rは水素原子、アルキル基またはアリール基を示す。
<7>コア部が下記いずれかの式で表される部分構造を有する<1>~<6>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000007
 式中、Rxは酸素原子、窒素原子、硫黄原子またはリン原子を含む2価の置換基を示す。*は、多分岐ポリマー中での結合部位であることを示す。
<8>コア部が、分子量200以上の原子群である<1>~<7>のいずれか1つに記載の固体電解質組成物。
<9>コア部が、下記いずれかの式で表される部分構造を有する<7>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000008
 式中、*は、多分岐ポリマー中での結合部位であることを示す。
<10>多分岐ポリマーと周期律表第1族又は第2属に属する金属の塩との合計100質量%中、周期律表第1族又は第2属に属する金属の塩を5質量%~60質量%含有する<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>周期律表第1族又は第2属に属する金属の塩が、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミドおよび/またはリチウムビスオキサレ-トボラ-トである<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>周期律表第1族または第2族に属する金属のイオンの挿入および放出可能な活物質を含む<1>~<11>のいずれか1つに記載の固体電解質組成物。
<13>周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質100質量部に対して、多分岐ポリマーを0.1質量部以上10質量部以下含有する<1>~<12>のいずれか1つに記載の固体電解質組成物。
<14> <1>~<13>のいずれか1つに記載の固体電解質組成物の層を基材上に有する全固体二次電池用シート。
<15>正極活物質層と負極活物質層と無機固体電解質層とを具備する全固体二次電池であって、正極活物質層、負極活物質層および無機固体電解質層の少なくとも1層が、<1>~<13>のいずれか1つに記載の固体電解質組成物の層である全固体二次電池。
<16> <1>~<13>のいずれか1つに記載の固体電解質組成物を基材上に適用する工程を含む全固体二次電池用シートの製造方法。
<17> <16>に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
 本明細書において、「アーム部が、周期律表第1族又は第2属に属する金属の塩の金属イオンを溶解している」とは、アーム部が金属イオンと化学的に相互作用することにより、金属イオンを多分岐ポリマーの内部に取り込むことを意味する。そのため、本発明の固体電解質組成物が、多分岐ポリマーに対して質量で20倍までの上記金属の塩を含有しても全固体二次電池を構成する各層を形成する際に、上記金属の塩が析出しないことを意味する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、「アクリル」というときにはアクリロイル基を有する構造群を広く指し、例えば、α位に置換基を有する構造を含むものとする。ただし、α位にメチル基を有するものをメタクリルと呼び、これを含む意味で(メタ)アクリルなどと称することもある。
 本明細書において、特定の符号で表示された置換基および連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
 本発明の固体電解質組成物は、全固体二次電池の層構成材料として用いることにより、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下が抑制され、かつ従来よりも過酷な環境で充放電された場合にも異常が発生しにくい全固体二次電池を実現することができる。本発明の固体電解質組成物を用いて作製した全固体二次電池用シートは、全固体二次電池の層として用いることにより、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下が抑制され、かつ従来よりも過酷な環境で充放電された場合にも異常が発生しにくい全固体二次電池を実現することができる。本発明の固体電解質組成物を層構成材料として作製した全固体二次電池は、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下が抑制され、かつ従来よりも過酷な環境で充放電された場合にも異常が発生しにくい。また、本発明の製造方法によれば、本発明の、全固体二次電池用シート及び全固体二次電池それぞれを製造することができる。
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は、実施例で使用した試験装置を模式的に示す縦断面図である。
<好ましい実施形態>
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。以下、図1の層構成を有する全固体二次電池を全固体二次電池シートと称することもある。
 本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の成形材料として好ましく用いることができる。本発明の固体電解質組成物は、上記負極活物質層および/または固体電解質層の成形材料として用いることが特に好ましい。また、本発明の全固体二次電池用シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層または活物質層と称することがある。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3および負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
<固体電解質組成物>
 本発明の固体電解質組成物は、周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質と、周期律表第1族又は第2属に属する金属の塩と、多分岐ポリマーとを含有する。本発明の固体電解質組成物を層構成材料として作製した全固体二次電池は、放電容量維持率が高く、製造後一定期間保存後の放電容量の低下が抑制され、かつ従来よりも過酷な環境で充放電された場合にも異常が発生しにくい。その理由は定かではないが、以下のように考えられる。
 全固体二次電池を構成する正極活物質層、固体電解質層および負極活物質層の少なくとも1層において、周期律表第1族又は第2属に属する金属の塩の金属イオンを溶解しているアーム部を持つ多分岐ポリマーがバインダーとして含有されることで、固体粒子(例えば、電極活物質および硫化物系無機固体電解質)の結着性が向上し、固体粒子界面の状態を良好にするだけでなく、上記金属イオンが多分岐ポリマー内部に取り込まれるため、上記界面における金属イオン伝導性を向上させることができると考えられる。その結果、本発明の固体電解質組成物を用いて作製した全固体二次電池は、サイクル特性および製造後一定期間保存後の放電容量に優れる。
 また、上記多分岐ポリマーが硫化物系無機固体電解質粒子間の界面に存在することで、デンドライト生成時の成長が抑制されるため、短絡等の電池異常が発生しにくいと考えられる。
(無機固体電解質)
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第1族または第2族に属する金属のイオンの伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質(好ましくは後述のLi-P-S系ガラス)が用いられる。以下、硫化物系無機固体電解質について記載する。
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
 例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi-P-S系ガラス、またはLi、PおよびSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 硫化物系無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、硫化物系無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。硫化物系無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 硫化物系無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 上記硫化物系無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、本明細書において固形分(固形成分)とは、窒素雰囲気下80℃で揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
 (周期律表第1族又は第2属に属する金属の塩)
 本発明に用いられる周期律表第1族又は第2属に属する金属の塩(以下、金属塩ともいう)は特に制限されないが、金属塩を構成する金属イオンとしてはリチウムイオンが好ましい。金属イオンが遊離しやすいことから、金属塩を構成するアニオンとしては、かさ高いアニオンが好ましい。かさ高いアニオンの具体例として、PF 、BF 、TFSIおよびBETIが挙げられる。本発明に用いられる多分岐ポリマーのアーム部に、金属イオンをより効率的に溶解させる観点から、有機アニオンがより好ましい。有機アニオンの具体例として、TFSI、BETI、FSIおよびトリフルオロメタンスルホン酸が挙げられる。
 以下、本発明に用いられる金属塩の具体例を記載する。
(L-1)無機リチウム塩:LiPF、LiBF、LiAsFおよびLiSbF等の無機フッ化物塩;LiClO、LiBrOおよびLiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。
(L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSOおよびLiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]およびLi[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。
(L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレートおよびリチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 本発明において、上記周期律表第1族又は第2属に属する金属の塩のうち、本発明に用いられる多分岐ポリマーのアーム部に溶解しやすいリチウムイオンを増加させることができるため、LiCFSO(トリフルオロメタンスルホンサンリチウム)、LiBETI(リチウムビス(ペンタフルオロエタンスルホニル)イミド)、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)、LiFSI(リチウムビス(フルオロスルホニル)イミド)およびLiBOB(リチウムビスオキサレ-トボラ-ト)が好ましく用いられる。
 なお、本発明において、周期律表第1族又は第2属に属する金属の塩は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の固体電解質組成物中の周期律表第1族又は第2属に属する金属の塩の含有量は特に制限されないが、多分岐ポリマーと周期律表第1族又は第2属に属する金属の塩との合計100質量%中、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が特に好ましい。一方上限は、90質量%以下が好ましく、85質量%がより好ましく、80質量%が特に好ましい。
 周期律表第1族又は第2属に属する金属の塩の含有量が上記範囲内にあることにより、本発明の固体電解質組成物を用いて全固体二次電池を構成する各層を形成する際に、金属の塩が析出することなく、多分岐ポリマーのアーム部に金属イオンを溶解させた状態で全固体二次電池を用いることが可能となり、イオン伝導性と電池性能の向上を両立することが出来る。
(多分岐ポリマー)
 本発明に用いられる多分岐ポリマーは、コア部と、上記コア部に結合する少なくとも3本のアーム部とを有してなる。このコア部は、分子量200以上の原子群であることが好ましく、分子量300以上の原子群であることがより好ましい。上限は、5,000以下であることが好ましく、4,000以下であることがより好ましく、3,000以下であることが特に好ましい。コア部の分子量が上記範囲にあることにより、多分岐ポリマーに金属の塩の金属イオンが効率的に溶解され、この金属イオンを溶解した多分岐ポリマーと無機固体電解質とがより効果的に相互作用することが可能となるからである。
 このコア部は4価の炭素原子のみでないことが好ましい。上記コア部は、後述の式(B)のL-(X)で表される連結基が好ましい。アーム部は、後述の式(B)の(Pであることが好ましい。
・コア部
 上記多分岐ポリマーのコア部に酸素原子、硫黄原子または窒素原子を含有することが好ましく、酸素原子を有することがより好ましい。アーム部との連結位置(アーム部と直結する位置)に酸素原子、硫黄原子または窒素原子を有することが好ましく、酸素原子を有することがより好ましい。
 上記多分岐ポリマーのコア部に硫黄原子を含有する場合、コア部は下記式(1a)の連結基を有することが好ましい。
 
 -(CR n1-O(C=O)-(CR n1-S- ・・・ (1a)
 
 式中n1は0~10の整数を表す。Rは水素原子または置換基を示し、水素原子が好ましい。置換基としては、ハロゲン原子(フッ素原子、塩素原子、ヨウ素原子、臭素原子)、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アシル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~10がより好ましい)、アルケニル基(炭素数2~12が好ましく、2~5がより好ましい)、ヒドロキシ基、ニトロ基、シアノ基、スルファニル基、アミノ基、アミド基、酸性基(カルボキシ基、リン酸基、スルホン酸基等)などが挙げられる(この置換基群を置換基Tとよぶ)。酸性基はそれぞれその塩でもよい。対イオンとしては、アルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられる。
 本発明に用いられる多分岐ポリマーのコア部は、アーム部に溶解されている金属イオンを効率的にポリマー内部に取り込むことができるようにするため、下記いずれかの式で表される部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、Rxは酸素原子、窒素原子、硫黄原子またはリン原子を含む2価の置換基を示す。*は、多分岐ポリマー中での結合部位であることを示す。
 本発明に用いられる多分岐ポリマーのコア部は、アーム部に溶解されている金属イオンをより効率的にポリマー内部に取り込み、高いイオン伝導度を付与するため、下記いずれかの式で表される部分構造を有することがより好ましい。*は、多分岐ポリマー中での結合部位であることを示す。
Figure JPOXMLDOC01-appb-C000010
 以下に、コア部をなす化合物(基質)の具体例を挙げるが、本発明はこれらに限定されない。なお、これらの具体例のスルファニル基、ヒドロキシ基または-NHの水素原子がアーム部により置換された形態が、多分岐ポリマーである。例えば、この水素原子が後述の式(B)におけるPまたはこれを含む基となることにより、後述の式(B)で表される化合物となる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 コア部をなす化合物としては、例えば市販品を用いることができる。
 多分岐ポリマーのコア部をなす基質は下記式(1)~(6)のいずれかで表されるものであることも好ましい。下記式(1)~(6)の化合物の各々において、少なくとも3つの水素原子(好ましくはR中に存在する少なくとも3つの水素原子)がアーム部により置換された形態が、多分岐ポリマーである。
Figure JPOXMLDOC01-appb-C000013
 式中、Rはスルファニル基、ヒドロキシ基、またはアルキル基(炭素数1~3が好ましい)である。ただし、分子内に3つ以上のスルファニル基を有する。Tは連結基であり、好ましくは下記T1~T5のいずれか、またはそれらの組合せに係る連結基である。Zは連結基であり、下記(Z1)または(Z2)で表される連結基であることが好ましい。なお、T1~T5の向きは式に合わせて逆であってもよい。
Figure JPOXMLDOC01-appb-C000014
 式中、qは整数であり、それぞれ0~14であることが好ましく、0~5がより好ましく、1~3が特に好ましい。mはそれぞれ1~8であり、1~5がより好ましく、1~3が特に好ましい。1分子内に複数存在するR、Tは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合することが好ましい。Zは連結基であり、炭素数1~12のアルキレン基であることが好ましく、炭素数1~6のアルキレン基であることがより好ましい。なかでも、2,2-プロパンジイル基であることが、特に好ましい。
・アーム部
 本発明に用いる多分岐ポリマーは、アーム部を有する。アーム部の構造としては、ポリエチレン鎖を主鎖としてもつ構造が好ましい。その側鎖としては、下記式(A)の-L-Rが挙げられる。アーム部の質量平均分子量は、500以上であることが好ましく、1,000以上であることがより好ましい。上限としては、1,000,000以下であることが好ましく、500,000以下であることがより好ましい。
 アーム部の質量平均分子量が上記範囲にあることにより、金属イオンの溶解性と流動性を両立することができ、広い温度範囲で良好な特性(例えば、イオン伝導性)を示すことが可能となるからである。
 アーム部は、次の化合物から導かれる構造(次の化合物由来の構造)を有することが好ましい。
・アルキレンオキサイド基を有する化合物
 メトキシポリエチレングリコールアクリレート、ポリエチレングリコールモノメチルエーテル、メトキシポリエチレングリコールメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、メトキシポリプロピレングリコールアクリレート、ポリプロピレングリコールモノメチルエーテル、メトキシポリプロピレングリコールメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート
・カーボネート基を有する化合物
 ビニレンカーボネート、ビニルエチレンカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、ポリエチレンカーボネート(PEC)、ポリプロピレンカーボネート、ポリブチレンカーボネート、炭素数3~6のアルキレン骨格を有するポリカーボネート
・エステル基を有する化合物
 バレロラクトン、ブチロラクトン、カプロラクトン、ポリカルボキシエチルアクリレート
・アミド基を有する化合物
 ナイロン6、ポリグリシン、ポリアラニン、ナイロン66
・シリコーン基を有する化合物
 ポリジメチルシロキサンモノメチルアクリレート、ジメチルシクロポリシロキサン、テトラメトキシシラン、ジメチルジメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン
 アーム部は、Polymer Handbook 2nd ed.,J.Brandrup,Wiley lnterscience (1975) Chapter 2 Page1~483に記載の化合物などから導かれる繰り返し構造を有することもできる。
 この化合物として具体的には、例えば、スチレン化合物、1-ビニルナフタレン、2-ビニルナフタレン、ビニルカルバゾール、アクリル酸、メタクリル酸、(メタ)アクリル酸エステル化合物、(メタ)アクリルアミド化合物、アリル化合物、ビニルエーテル化合物、ビニルエステル化合物、イタコン酸ジアルキル化合物等から選ばれる付加重合性不飽和結合を1個有する化合物等を挙げることができる。
 上記スチレン化合物としては、スチレン、ビニルナフタレン、2,4,6-トリブロモスチレン、2-フェニルスチレン、4-クロロスチレン等が挙げられる。
 上記(メタ)アクリル酸エステル類としては、炭素数1~30の直鎖状または分岐状または環状のアルキル基を有する(メタ)アクリル酸エステル化合物、2-ヒドロキシエチルアクリレート、トリメチロールプロパンモノアクリレートなどの付加重合性官能基以外の置換基を有する(メタ)アクリル酸エステル化合物、ベンジル(メタ)アクリレート、メトキシベンジル(メタ)アクリレートなどのアリール基を有する(メタ)アクリル酸エステル化合物、フルフリルアクリレート、テトラヒドロフルフリルアクリレートなどのヘテロ環を有する(メタ)アクリル酸エステル化合物等が挙げられる。
 上記(メタ)アクリルアミド化合物としては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド(アルキル基としては炭素数1~30のアルキル基が挙げられ、例えばメチル基、エチル基、プロピル基)、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては炭素数1~20のアルキル基)、N-ヒドロキシエチル-N-メチル(メタ)アクリルアミド、N-2-アセトアミドエチル-N-アセチル(メタ)アクリルアミド等が挙げられる。
 上記アリル化合物としては、アリルエステル化合物(例えば酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリルなど)、アリルオキシエタノール等が挙げられる。
 上記ビニルエーテル化合物としては、アルキルビニルエーテル(アルキル基としては炭素数1~10のアルキル基が挙げられ、例えば、ヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロロエチルビニルエーテル、1-メチル-2,2-ジメチルプロピルビニルエーテル、2-エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル等が挙げられる。
 上記ビニルエステル化合物としては、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレート、ビニルカプロエート、ビニルクロロアセテート、ビニルジクロロアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルラクテート、ビニル-β-フェニルブチレート、ビニルシクロヘキシルカルボキシレート等が挙げられる。
 上記イタコン酸ジアルキル化合物としては、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチル等が挙げられる。
 その他、クロトン酸、イタコン酸、アクリロニトリル、メタクリロニトリル、マレイロニトリル等も挙げることができる。
 本発明に用いられる多分岐ポリマーのアーム部は、アルキレンオキサイド基-((CHn2-O)m2-(n2とm2はそれぞれ独立に正の整数を示し、n2は2~6の整数が好ましく、m2は5~1000の整数が好ましい。))、カーボネート基(-O-C(=O)-O-)、エステル基(-C(=O)-O-)、アミド基(-C(=O)-N(R)-)またはシリコーン基(―O-Si(OR―O-)を有する繰り返し単位を少なくとも1つ含有することが好ましい。Rは、水素原子または置換基(例えば置換基T)を示す。Rは、置換基(例えば置換基T)を示す。
 すなわち、本発明に用いられる多分岐ポリマーは、アーム部を構成するポリマー構造の側鎖に周期律表第1族又は第2属に属する金属の塩の金属イオンを溶解する基として(以下、「金属イオン溶解基」とも称する。)アルキレンオキサイド基、カーボネート基、エステル基、アミド基またはシリコーン基を含むことが好ましい。本発明に用いられる多分岐ポリマーが側鎖に金属イオン溶解基を含むことで、金属イオン溶解基を運動性高く保持し、金属イオンを良好に溶解させることができるからである。
 側鎖に金属イオン溶解基を含むアーム部としては、頑丈なポリマー成分とすることができ、良好な繰り返し電池特性を示すことができるため、下記式(A)で表される繰り返し単位を少なくとも1種含有する構造であることが好ましい。アーム部主鎖の、コア部と結合する連結部以外の末端は任意の構造でよく、水素原子、メチル基、重合禁止剤の残基などが挙げられる。下記式(A)において、-Rおよび-L-Rがアーム部の側鎖であって、それ以外の部分がアーム部主鎖である。
Figure JPOXMLDOC01-appb-C000015
 式中、Rは水素原子、ハロゲン原子、シアノ基、置換もしくは無置換のアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、置換もしくは無置換のアルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)または置換もしくは無置換のアリール基(炭素数6~22が好ましく、6~10がより好ましい)を表す。上記任意の置換基としては上記置換基Tが挙げられる。
 Rは水素原子、ハロゲン原子、シアノ基、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~10がより好ましい)またはヒドロキシ基を示す。好ましくは、Rが直鎖状または分岐状のアルコキシ基、ヒドロキシ基を示す。Rはアルキル基、アルコキシ基またはアリール基を示す場合、さらに置換基Tを有していてもよい。
 Lは、少なくとも1つの金属イオン溶解基を含む2価の連結基を示す。Lは、金属イオン溶解基以外の基と組み合わせて2価の連結基を構成してもよく、少なくとも1つの金属イオン溶解基と組み合わされてLをなす基として、-C(=O)-、-O-、-NR-(Rは水素原子、炭素数1~6(1~4が好ましい)のアルキル基、または炭素数6~14のアリール基を表す。)、-C(=O)O-、-OC(=O)-、-OC(=O)O-、-C(=O)N(R)-、アリーレン基(炭素数6~22が好ましく、6~14がより好ましい)およびアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)から選ばれる2価の連結基、またはこれらの2価の連結基の2種以上を組み合わせてなる2価の連結基が挙げられる。なかでも、少なくとも1つの金属イオン溶解基と組み合わされてLをなす基として、-C(=O)-、-C(=O)O-および-OC(=O)-から選ばれる2価の連結基、またはこれらの2価の連結基の2種以上を組み合わせてなる2価の連結基が好ましく、Lが-C(=O)-、-C(=O)O-又は-OC(=O)-の炭素原子でアーム部主鎖の炭素原子と結合していることが好ましく、-C(=O)-の炭素原子でアーム部主鎖の炭素原子と結合していることが好ましい。
 -L-Rの好ましい具体例として、-C(=O)-(金属溶解基を含む繰り返し単位)n3-アルコキシ基が挙げられる。なお、n3は、2以上の整数を示す。
 Lに含まれる金属イオン溶解基の割合は特に制限されないが、20質量%以上が好ましく、50質量%以上がより好ましく70質量%以上が特に好ましい。上限に制限はなく、100質量%以下が好ましい。この範囲にあればポリマーの物理的特性(破断しやすさ)と金属イオン溶解を両立することが可能である。
 式(A)で表される繰り返し単位と、その他の繰り返し単位との共重合比は特に限定されないが、式(A)で表される繰り返し単位の比率がモル比基準で、5%以上であることが好ましく、10%以上であることがより好ましく、20%以上であることが特に好ましい。上限は特に限定されず、100%以下でよい。共重合させるその他の繰り返し単位としては、Polymer Handbook 2nd ed.,J.Brandrup,Wiley lnterscience (1975) Chapter 2 Page1~483に記載のものなどが挙げられる。
 また、本発明に用いられる多分岐ポリマーは、アーム部を構成するポリマー構造の側鎖ではなく、このポリマー構造の主鎖自体が、金属イオン溶解基であるアルキレンオキサイド基、カーボネート基、エステル基、アミド基および/またはシリコーン基を含んで構成されていることも好ましい。この場合、アーム部を構成するポリマー構造の主鎖中に、ポリアルキレンオキサイド鎖、ポリカーボネート鎖、ポリエステル鎖、ポリアミド鎖および/またはポリシロキサン鎖が組み込まれていることが好ましい。本発明に用いられる多分岐ポリマーがアーム部の主鎖をなす構成成分として金属イオン溶解基を含むことで、金属イオン溶解基の運動性を高めることができ、金属イオンを効率的に溶解させることができる。
 アーム部の主鎖をなす構成成分として金属イオン溶解基を含むアーム部としては、下記式(C)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式中、L11は、金属イオン溶解基が主鎖中に組み込まれてなるポリマー構造の2価の基を示す。L11は、金属イオン溶解基以外の基と組み合わせて2価の基を構成してもよく、上記繰り返し単位と組み合わされてL11をなす基として、上記少なくとも1つの金属イオン溶解基と組み合わされてLをなす基(以下、「L」とも称す。)が挙げられ、-C(=O)-、-O-、-C(=O)O-、-OC(=O)-、-OC(=O)O-およびアルキレン基から選ばれる2価の連結基、またはこれらの2価の連結基の2種以上を組み合わせてなる2価の連結基が好ましい。
 L11に含まれる金属イオン溶解基の割合は特に制限されないが、50質量%以上であることが好ましく、70質量%以上がより好ましく、90質量%以上が特に好ましい。上限は制限なく、100質量%以下である。
 R12は水素原子、ハロゲン原子、シアノ基、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~10がより好ましい)またはヒドロキシ基を示す。好ましくは、R12が直鎖状または分岐状のアルキル基を示す。R12がアルキル基、アルコキシ基またはアリール基を示す場合、さらに置換基Tを有していてもよい。
 *はコア部との連結部位を示す。
 -L11-R12の具体例として、-L-(金属溶解基を主鎖中に含む繰り返し単位)n4-アルキル基または-(金属溶解基を主鎖中に含む繰り返し単位)n4-アルコキシ基が挙げられる。なお、n4は2以上の整数を示す。
 本発明に用いられる多分岐ポリマーは、金属イオンと相互作用性が強い置換基を有すると良好に金属イオンを溶解させることができ、電池性能を向上させることができるため、下記式(B)で表される化合物からなることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式中、Lはn価以上の価数の連結基を表す。Lの価数は8価以下が実際的である。
 Pはポリマー鎖を表す。nは3以上の整数を示し、6以上が好ましい。n個のPはそれぞれ同一であっても、異なっていてもよい。Pはアーム部を構成する。Xは酸素原子、硫黄原子または-N(R)-を示し、Rは水素原子、アルキル基(好ましくは、炭素数1~3、より好ましくは炭素数1~2)またはアリール基(好ましくは、炭素数6~12、より好ましくは炭素数6~10)を示す。
 本発明に用いられる多分岐ポリマーは、下記式(2)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000018
 式中、Rは水素原子または置換基(例えば置換基T)を表す。なかでも、水素原子、ハロゲン原子、置換または無置換のアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、置換または無置換のアルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、置換または無置換のアリール基(炭素数6~22が好ましく、6~14がより好ましい)を表す。上記のアルキル基、アルコキシ基、アリール基が有しても良い置換基としては、例えば、置換基Tが挙げられ、なかでもヒドロキシ基が好ましい。上記のアルキル基は酸素原子を介在していてもよく、例えばオリゴオキシアルキレン基であってもよい。オリゴアルキレン基は後記式(OA)で表されるものが好ましい。ハロゲン原子を有するアルキル基としては、フルオロアルキル基を挙げることができる。
 R及びPは式(A)及び(1a)と同義である。
 n11はそれぞれ独立に0~10の整数を表し、0~8が好ましく、0~6がより好ましい。
 kは0~3の整数を表し、0~2が好ましい。
 lは0~4の整数を表し、1~4が好ましく、2~4がより好ましい。
 mは0~3の整数を表し、0~2が好ましく、0~1がより好ましい。
 kは0~3の整数を表し、0~2が好ましく、0~1がより好ましい。
 lは0~3の整数を表し、1~3が好ましく、2~3がより好ましい。
 m22は0~3の整数を表し、0~2が好ましく、0~1がより好ましい。
 ただし、kとlとmとの総和は4以下である。kとlとm22との総和は3以下である。Pを有する基の数は3以上であり、4以上がより好ましい。すなわち、l+l×(4-k-l-m)が3以上となり、4以上が好ましい。上限としては、8以下が好ましく、6以下がより好ましい。この-SHがアーム部との連結部を構成することが好ましく、-S-を介してコア部とアーム部とが連結されることが好ましい。
・質量平均分子量
 本発明に用いられる多分岐ポリマーの質量平均分子量は特に限定されないが、1,700以上であることが好ましく、2,000以上であることがより好ましく、3,500以上であることが特に好ましい。上限は3,000,000以下であることが好ましく、1,500,000以下であることがより好ましく、1,000,000以下であることがさらに好ましく、500,000以下がさらに好ましく、100,000以下が特に好ましい。
 本発明に用いられる多分岐ポリマーの質量平均分子量は、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定方法としては、基本として下記条件1または条件2(優先)の方法により測定した値とする。ただし、ポリマー種によっては適宜適切な溶離液を選定して用いればよい。
 なお、本発明に用いられる多分岐ポリマーのアーム部の質量平均分子量は、500以上が好ましく、1000以上が好ましく、2000以上がより好ましい。上限としては10,000,000以下であることが好ましく、1,000,000以下であることがより好ましく、100,000以下であることが特に好ましい。
(条件1)
カラム:TOSOH TSKgel Super AWM-H(商品名)をつないだカラム
キャリア:10mMLiBr/N-メチルピロリドン
(条件2)・・・優先
カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名)をつないだカラム
キャリア:テトラヒドロフラン
 上記多分岐ポリマーは粒子状であることが好ましい。上記多分岐ポリマーが分散媒体に分散しており、その平均粒径が1nm以上であることが好ましい。5nm以上であることがより好ましく、12nm以上であることが特に好ましい。上限は、1,000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましく、100nm以下であることが特に好ましい。多分岐ポリマーの平均粒径を上記の範囲とすることにより、全固体二次電池を構成する各層間および固体粒子間の良好な結着性と、全固体二次電池の良好なイオン伝導性を実現することができる。
 本発明に用いられる多分岐ポリマー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義に基づくものとする。
 多分岐ポリマー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体。例えば、ヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記多分岐ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していた多分岐ポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
<多分岐ポリマーの合成法>
 本発明に用いられる多分岐ポリマーは、例えば、「高分子の合成(下)」講談社、第IV編 開環重合の項目を参照して、通常の方法により合成することができる。
 多分岐ポリマーの合成法は、合成したアーム部ポリマーを少なくとも三官能以上のコア部とカップリングする方法であって良い。また、三官能以上のコア部から逐次又は連鎖的に重合し、アーム部ポリマーを形成する方法であってもよい。連鎖移動剤を用いてラジカル重合を行う方法も挙げることができる。連鎖移動剤としては、チオール含有化合物を挙げることができ、少なくとも三官能以上のチオール含有化合物存在下、ラジカル重合を行う方法がプロセス上簡便であり、好ましい。このように、エンチオール反応を利用してアーム部とコア部とを連結する場合には、コア部の基質側にチオール(スルファニル)基があっても、アーム部の基質側にチオール基があってもよい。本発明においては、必要により、特定の便宜からコア部の基質側にチオール基があるものとして規定する。
 本発明の固体電解質組成物中の多分岐ポリマーの含有量は、無機固体電解質(活物質を含む場合にはこれを含む総量)100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることが特に好ましい。上限としては、50質量部以下であることが好ましく、30質量部以下であることがより好ましく、10質量部以下であることが特に好ましい。含有量が上記範囲内にあることにより、高いイオン伝導度を保持しつつ、固体粒子間および各層間の結着性をより向上させることが可能となるからである。
 本発明の固体電解質組成物の全固形成分中の多分岐ポリマーの含有量は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が特に好ましい。上限としては、30質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。
 なお、本明細書において固形成分とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
 上記多分岐ポリマーは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本明細書において、化合物の置換基および連結基の選択肢を始め、温度、厚さといった各技術事項は、そのリストがそれぞれ独立に記載されていても、相互に組み合わせることができる。
 本発明の全固体二次電池においては、多分岐ポリマーを採用したことにより、電極柔軟性を向上させ、界面抵抗の上昇を抑制することができる。この理由は推定を含むが、以下のように考えられる。すなわち、多分岐ポリマーは、分岐構造の導入により、単一分子で分子鎖の広がりが小さく、他の分子と絡み合いにくい。一方、直鎖状ポリマーでは、他の分子との絡み合いが大きく、乾燥工程などで結着点のサイズが大きくなりがちである。このような相違から、本発明に係る多分岐ポリマーを採用することにより、柔軟性や結着性を良好に維持しつつ、イオン伝導性が改善されたものと解される。なかでも、そのアーム部に酸性基等をもつものが、無機固体電解質との関係で好ましいことは先に述べたとおりである。
・重合開始剤
 本発明の多分岐ポリマーの合成には、重合開始剤を含有させることが好ましい。なかでもラジカル重合開始剤が好ましく用いられる。
 熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド及びメチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド及びm-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1-ジ(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ジ-t-ブチルペルオキシシクロヘキサン及び2,2-ジ(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類;t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート及びジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類;1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート及び1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類;1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン及び(4-t-ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。
 アゾ系の重合開始剤として使用するアゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(商品名 V-65)、1,1’-アゾビス-1-シクロヘキサンカルボニトリル、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス-4-シアノバレリック酸、2,2’-アゾビス-(2-アミジノプロパン)ジハイドロクロライド等が挙げられる(特開2010-189471など参照)。あるいは、ジメチル-2,2’-アゾビス(2-メチルプロピネート)(商品名 V-601、和光純薬社製)なども好適に用いられる。
 ラジカル重合開始剤として、上記の熱ラジカル重合開始剤の他に、光、電子線又は放射線で開始ラジカルを生成するラジカル重合開始剤を用いることができる。
 このようなラジカル重合開始剤としては、ベンゾインエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔IRGACURE651、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン〔IRGACURE184、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン〔DAROCUR1173、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン〔IRGACURE2959、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン〔IRGACURE127、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔IRGACURE907、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1〔IRGACURE369、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モノホリニル)フェニル]-1-ブタノン〔IRGACURE379、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド〔DAROCUR TPO、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド〔IRGACURE819、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム〔IRGACURE784、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]〔IRGACURE OXE 01、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)〔IRGACURE OXE 02、チバ・スペシャルティ・ケミカルズ(株)製、商標〕などを挙げることができる。
 これらのラジカル重合開始剤は、一種を単独で又は二種以上を組み合わせて用いることができる。
 重合開始剤の含有量はモノマー100質量部に対して0.01質量部~20質量部の量で適用することが好ましい。
・重合禁止剤
 本発明に用いられる多分岐ポリマーの合成には、重合禁止剤を添加してもよい。上記重合禁止剤としては、例えば、ハイドロキノン、t-ブチルハイドロキノン、カテコール、ハイドロキノンモノメチルエーテル等のフェノール類;ベンゾキノン、ジフェニルベンゾキノン等のキノン類;フェノチアジン類;銅類;2,2,6,6-テトラメチルピペリジン1-オキシル等を用いることができる。
 本発明に用いられる多分岐ポリマーの合成には、反応媒体を用いてもよい。好適に用いられる媒体としては、脂肪族化合物溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒が挙げられ、トルエン、n-ヘプタン、n-ヘキサン、シクロヘキサン、シクロペンタン、オクタン、デカン、ジブチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、酢酸メチル、酢酸エチル、アセトン、メチルエチルケトン、シクロヘキサノンなど特に限定されず、用いることができる。
 重合反応の温度は特に限定されず、適用するモノマーや反応媒体によって調整すればよいが、例えば、40℃以上が好ましく、50℃以上がより好ましく、60℃以上が特に好ましい。上限は特にないが、150℃以下であることが実際的である。
(分散媒体)
 本発明の固体電解質組成物は、固形成分を分散させるため分散媒体を含有することが好ましい。分散媒体の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオールおよび1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、アルキルアリールエーテル(アニソール)、テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)、t-ブチルメチルエーテルおよびシクロヘキシルメチルエーテルが挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミドおよびヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミンおよびトリブチルアミンが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびシクロヘキサノンが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンおよびメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタンおよびシクロペンタンなどが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリルおよびブチロニトリルが挙げられる。
 分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明においては、中でも、脂肪族化合物溶媒およびエーテル化合物溶媒が好ましく、ヘプタン、ジブチルエーテルおよびこれらの混合溶媒がより好ましい。
 なお、本発明の固体電解質組成物中の分散媒体の含有量は特に制限されないが、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
(活物質)
 本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物、負極用組成物)ということがある。
 -正極活物質-
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形成分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量がさらに好ましく、55~80質量%が特に好ましい。
 -負極活物質-
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、ハードカーボン、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。本発明において、ハードカーボンおよび黒鉛が好ましく用いられる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形成分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 正極活物質および負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、SiまたはLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。
 さらに、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
(バインダー)
 本発明の固体電解質組成物は更に高分子成分としてバインダーを含有してもよい。
 本発明で使用するバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンの共重合物(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体が挙げられる。
 またそのほかのビニル系モノマーとの共重合体も好適に用いられる。例えばポリ(メタ)アクリル酸メチル-ポリスチレン共重合体、ポリ(メタ)アクリル酸メチル-アクリロニトリル共重合体、ポリ(メタ)アクリル酸ブチル-アクリロニトリル-スチレン共重合体が挙げられる。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 バインダーの形状は特に限定されず、全固体電池中において粒子状であっても不定形状であってもよい。
 本発明に用いられるバインダーを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。
 また、本発明に用いられるバインダーを構成するポリマーは、固体の状態で使用しても良いし、ポリマー粒子分散液またはポリマー溶液の状態で用いてもよい。
 本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 バインダーの固体電解質組成物中での含有量は、全固体二次電池に用いたときの良好な界面抵抗の低減性とその維持性を考慮すると、固形成分100質量%において、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。
 本発明では、バインダーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/バインダーの質量]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
(分散剤)
 本発明の固体電解質組成物は分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合や、粒子径が細かく表面積が増大する場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発および/または静電反発を意図した化合物が好適に使用される。
(導電助剤)
 本発明の固体電解質組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらの内1種を用いても良いし、2種以上を用いても良い。
(固体電解質組成物の調製)
 以下、本発明の固体電解質組成物の調製方法の一例を記載する。
 まず、上記分散媒体(例えば、アセトニトリル)に、本発明に用いられる多分岐ポリマーおよび周期律表第1族又は第2属に属する金属の塩を分散させ、20~60℃で5~120分間撹拌する。続いて、減圧乾燥することにより、多分岐ポリマーと周期律表第1族又は第2属に属する金属の塩を含むポリマー組成物を得る。
 次いで、無機固体電解質および上記で調製したポリマー組成物を分散媒体の存在下で分散して、スラリー化することで固体電解質組成物を調製することができる。
 スラリー化は、各種の混合機を用いて無機固体電解質と、ポリマー組成物と、分散媒体とを混合することにより行うことができる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
 活物質、粒子分散剤等の成分を含有する固体電解質組成物を調製する場合には、上記の無機固体電解質およびポリマー組成物の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。
[全固体二次電池用シート]
 本発明の全固体二次電池用シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、基材上に固体電解質層を有するシート(全固体二次電池用固体電解質シートともいう)、基材上に電極活物質層又は電極活物質層と固体電解質層を有するシート(全固体二次電池用電極シート)及び固体電解質層及び/又は活物質層(電極層)からなるシート(基材を有さないシート)等が挙げられる。本願明細書において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 全固体二次電池用シートは、固体電解質層又は活物質層(電極層)を有するシートである。この全固体二次電池用シートは、固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明する材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
 全固体二次電池用シートの固体電解質層の層厚は、上述の、本発明の全固体二次電池において説明した固体電解質層の層厚と同じである。
 このシートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 ここで、本発明の固体電解質組成物は、例えば、上記の方法によって調製できる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、本発明の全固体二次電池の活物質層を形成するための、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の構成および層厚は、上述の、本発明の全固体二次電池において説明した各層の構成および層厚と同じである。
 電極シートは、本発明の、活物質を含有する固体電解質組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。活物質を含有する固体電解質組成物を調製する方法は、活物質を用いること以外は、上記固体電解質組成物を調製する方法と同じである。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成される。
 固体電解質組成物で形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと同じである。
 なお、全固体二次電池用シートは、電池性能に影響を与えない範囲内で分散媒体を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。
 なお、本発明の全固体二次電池用シート中の分散媒体の含有割合は、以下の方法で測定することができる。
 全固体二次電池用シートを20mm角で打ち抜き、ガラス瓶中で重テトラヒドロフランに浸漬させる。得られた溶出物をシリンジフィルターでろ過してH-NMRにより定量操作を行う。H-NMRピーク面積と溶媒の量の相関性は検量線を作成して求める。
 以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
〔正極活物質層、固体電解質層、負極活物質層〕
 全固体二次電池10においては、正極活物質層4、固体電解質層3及び負極活物質層2のいずれかが本発明の固体電解質組成物を用いて形成されている。
 すなわち、固体電解質層3が本発明の固体電解質組成物で形成されている場合、固体電解質層3は、無機固体電解質と、周期律表第1族又は第2属に属する金属の塩と、多分岐ポリマーとを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。
 正極活物質層4及び/又は負極活物質層2が本発明の固体電解質組成物を用いて形成されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、無機固体電解質と、周期律表第1族又は第2属に属する金属のイオンと、多分岐ポリマーとを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及び多分岐ポリマーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、上記周期律表第1族又は第2属に属する金属の塩と、多分岐ポリマーと、無機固体電解質等の固体粒子とを含有する固体電解質組成物を用いて作製される。このため、固体粒子間の結着性を向上することができ、その結果、全固体二次電池における良好なサイクル特性をも実現できる。
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[全固体二次電池用シートの製造]
 本発明の全固体二次電池用シートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 上記態様により、基材と固体電解質層とを有するシートである全固体二次電池用シートを作製することができる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、集電体となる金属箔上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
〔1〕正極活物質層、固体電解質層および負極活物質層の少なくとも1層が導電助剤を含有する全固体二次電池。
〔2〕固体電解質層が、分散媒体によって、導電助剤および硫化物系無機固体電解質が分散されたスラリーを湿式塗布し製膜される全固体二次電池の製造方法。
〔3〕上記全固体二次電池作製用の活物質を含有する固体電解質組成物。
〔4〕上記固体電解質組成物を金属箔上に適用し、製膜してなる全固体二次電池用電極シート。
〔5〕上記固体電解質組成物を金属箔上に適用し、製膜する全固体二次電池用電極シートの製造方法。
〔6〕固体電解質層および負極活物質層の少なくとも1層が本発明の固体電解質組成物から形成された全固体二次電池。
 上記好ましい実施形態の〔2〕および〔5〕に記載するように、本発明の全固体二次電池および全固体二次電池用電極シートの好ましい製造方法は、いずれも湿式プロセスである。これにより、正極活物質層および負極活物質層の少なくとも1層における無機固体電解質の含有量が10質量%以下の低い領域でも、活物質と無機固体電解質の密着性が高まり効率的なイオン伝導パスを維持することができ、電池質量あたりのエネルギー密度(Wh/kg)および出力密度(W/kg)が高い全固体二次電池を製造することができる。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーや添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。
<ポリマーの合成例>
(多分岐ポリマーPA-1の合成)
 還流冷却器、ガス導入コックを付した200mL三つ口フラスコに、下記表1に示すアーム部形成化合物のモノマー1(メトキシポリエチレングリコールアクリレート(数平均分子量450)(Aldrich社製))33.0g、下記表1に示すコア形成化合物C-1(ペンタエリスリトールテトラキス(3-メルカプトプロピオネート))(和光純薬工業株式会社製))1.5g、メチルエチルケトン70.0gを添加し、2回窒素置換した。続けて、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(商品名:V-65、和光純薬工業株式会社製)3.0gを添加し、更に2回窒素置換した後、窒素気流下70℃で3時間加熱した。NMRにより、残存モノマー由来ピークの消失と、コア部であるチオール水素ピークの消失を確認するまで加熱を継続した。石油エーテルを加え、固体を析出させ、多分岐ポリマーPA-1を得た(収量:20.1g)。
(多分岐ポリマーPA-5の合成)
 還流冷却器、滴下漏斗を付した1000mL三つ口フラスコに、下記表2に示すコア形成化合物C-4(ブタンテトラカルボン酸(東京化成工業社製))1.2g、下記表2に示すアーム部形成化合物(ポリエチレングリコールモノメチルエーテル(数平均分子量5000)(Aldrich社製))120g、テトラヒドロフラン500gを添加した。別途調製したEDCI/HCl(1-エチル-3-3-ジメチルアミノプロピルカルボジイミド塩酸塩)(東京化成社製)4.3g、トリエチルアミン2.4g、テトラヒドロフラン50gの混合溶液を滴下漏斗に移し、三つ口フラスコに1時間かけて全量を滴下した。
 滴下後、50℃で12時間加熱し、NMRにより、ブタンテトラカルボン酸由来のピーク消失を確認後、反応を停止し、反応終了後、石油エーテルを加え、固体を析出させ、多分岐ポリマーPA-5を得た(収量:100g)。
(多分岐ポリマーPA-7の合成)
 還流冷却器、滴下漏斗を付した500mL三つ口フラスコを窒素置換し、ペンタエリスリトール(Aldrich社製)1.2g、ジエトキシエタン50g、NaH0.4gを添加し、80℃で2時間加熱した。滴下漏斗に、バレロラクトン30g移し、100℃で加熱した状態で4時間かけて全量を滴下した。滴下後、100℃で12時間加熱し、原料由来のピークが消失したことを確認したのち、石油エーテルを加え、固体を析出させ、PA-7を得た(収量:10g)。
(多分岐ポリマーPA-8の合成)
 還流冷却器、滴下漏斗を付した100mL三つ口フラスコを窒素置換し、ジペンタエリスリトール(Aldrich社製)0.02g、ジエトキシエタン10g、NaH0.01gを添加し、80℃で2時間加熱した。ポリプロピレンカーボネート(Aldrich社製 )10g及びジエトキシエタン50gを計量し、三角フラスコにて撹拌し、100℃で加熱した三口フラスコに4時間かけて全量を添加した。滴下後、100℃で12時間加熱し、ジペンタエリスリトールの水酸基由来のピークが消失したことを確認した後、石油エーテルを加え、固体を析出させ、PA-8を得た(収量:5.8g)。
 下記表1または2に記載した多分岐ポリマーPA-2、PA-3、PA-4、PA-6およびPA-9~PA-12は、上記いずれかの合成法と同様にして合成した。
 下記表1および表2に、上記多分岐ポリマーの合成に用いた化合物の仕込み比、測定した分子量をまとめて示す。なお、「ポリマー分子量」および「アーム部分子量」は、上記合成に用いた化合物から、上述の方法により測定した。各化合物の仕込み比は、合成した多分岐ポリマーのアーム部およびコア部の質量比にそのまま相当する。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
<表の注>
ポリマー分子量:多分岐ポリマーの質量平均分子量
アーム部分子量:多分岐ポリマーのアーム部の質量平均分子量
コア部分子量:多分岐ポリマーのコア部の分子量
C-1~C-9:下記記載の化合物
(後述のC-4'~C-9'は、C-4~C-9由来のコア部の構造を示す。波線部は、多分岐ポリマー中での結合部位であることを示す。)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
<ポリマー組成物の調製例>
(1)ポリマー組成物LPA-1の調製
 乾燥雰囲気下(露点-40℃)で200mLナスフラスコに回転子を投入し、上記で合成した多分岐ポリマーPA-1を8.0g、LiTFSIを2.0g秤量し、添加した。続いて、脱水したアセトニトリル100mLを添加し、40℃に加熱し、60分間撹拌することでポリマー液を得た。これをアルミニウム製パンの上に流し込み、80℃で2時間減圧乾燥することでポリマー組成物LPA-1を調製した。
 Li-NMR測定により、LiTFSI塩のピークが高磁場にシフトしていること並びに、H-NMRによりPA-1のエチレンオキサイドに関係するピークが低磁場にシフトしていることを確認した。これにより、多分岐ポリマーのアーム部にリチウムイオンが溶解したことを確認した。
(2)ポリマー組成物LPA-2~14およびLEX-1~4の調製
 下記表3に記載の組成に変えた以外は、上記ポリマー組成物LPA-1と同様の方法で、ポリマー組成物LPA-2~14およびLEX-1~4を調製した。
Figure JPOXMLDOC01-appb-T000024
<表の注>
EX-1:特開2015-164125号公報の実施例P-1に記載のポリマー
EX-2:特開2009-176484号公報の実施例に記載の、ポリエチレンオキシド(PEO)とポリプロピレンオキシド(PPO)との共重合体
LEX-3はLITFSI 20質量%で作製した処、成膜時に塩の析出が観察されたため、金属塩の濃度を薄くして評価した。
<硫化物系無機固体電解質の合成例>
-Li-P-S系ガラスの合成-
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンとの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃及び回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPSと表記することがある。)6.20gを得た。
[実施例1]
<固体電解質組成物の調製例>
(1)固体電解質組成物S-1の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成した硫化物系無機固体電解質Li-P-S系ガラス9.7g、バインダーとして下記表4に記載のポリマー組成物0.3g、分散媒体としてヘプタン(90g)とジブチルエーテル(10g)との混合溶媒を15g投入した。その後、この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた。このようにして、固体電解質組成物S-1を調製した。
(2)固体電解質組成物S-2~S-14およびT-1~T-5の調製
 下記表4に記載の組成に変えた以外は、上記固体電解質組成物S-1と同様の方法で、固体電解質組成物S-2~S-14およびT-1~T-5を調製した。
 ここで、固体電解質組成物S-1~S-14が本発明の固体電解質組成物であり、固体電解質組成物T-1~T-5が比較の固体電解質組成物である。
Figure JPOXMLDOC01-appb-T000025
<表の注>
LPS:上記で合成したLi-P-S系ガラス
<正極用組成物の調製例>
(1)正極用組成物AS-1の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、上記で調製した固体電解質組成物S-1を2g加えた。これに正極活物質LCOを3g加え、その後、この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで15分間攪拌を続け、正極用組成物AS-1を調製した。
(2)正極用組成物AS-6、AS-13、AT-2、AT-4およびAT-5の調製
 下記表5に記載の組成に変えた以外は、上記正極用組成物AS-1と同様の方法で、正極用組成物AS-6、AS-13、AT-2、AT-4およびAT-5を調製した。
 下記表5に、正極用組成物の組成をまとめて記載する。
 ここで、正極用組成物AS-1、AS-6およびAS-13が本発明の固体電解質組成物であり、正極用組成物AT-2、AT-4およびAT-5が比較の固体電解質組成物である。
Figure JPOXMLDOC01-appb-T000026
<表の注>
LCO:LiCoO(コバルト酸リチウム)、体積平均粒子径10μm
NMC:LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム)、体積平均粒子径6μm
<負極用組成物の調製例>
(1)負極用組成物BS-1の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、上記で調製した固体電解質組成物S-1を2g加えた。これに負極活物質として黒鉛を3g加え、その後、この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで15分間攪拌を続け、負極用組成物BS-1を調製した。
(2)負極用組成物BS-2~BS-14およびBT-1~BT-5の調製
 下記表6に記載の組成に変えた以外は、上記負極用組成物BS-1と同様の方法で、負極用組成物BS-2~BS-14およびBT-1~BT-5を調製した。
 下記表6に、負極用組成物の組成をまとめて記載する。
 ここで、負極用組成物BS-1~BS-14が本発明の固体電解質組成物であり、負極用組成物BT-1~BT-5が比較の固体電解質組成物である。
Figure JPOXMLDOC01-appb-T000027
<表の注>
ハードカーボン:体積平均粒子径5μm
黒鉛:体積平均粒子径15μm
<全固体二次電池の作製例>
(1)試験No.101の全固体二次電池の作製
(全固体二次電池シートの作製)
 上記で調製した正極用組成物AT-5を厚み20μmのアルミ箔(集電体)上に、アプリケーター(商品名 SA-201ベーカー式アプリケータ、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、正極用組成物を乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(180MPa、1分)、正極活物質層/アルミ箔の積層構造を有する全固体二次電池用正極シートを作製した。正極活物質層の厚みは90μmであった。
 次いで、得られた正極活物質層上に、上記で調製した固体電解質組成物T-5を、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、さらに100℃で1時間加熱し、厚み100μmの固体電解質層を形成した。
 次いで、得られた固体電解質層上に、上記で調製した負極用組成物BS-1を、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、厚み100μmの負極活物質層を形成した。負極活物質層上に厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、120℃加熱しながら加圧し(600MPa、1分)、図1に示す層構成を有する全固体二次電池シートを作製した。
 上記で得られた全固体二次電池シートを直径14.5mmの円板状に切り出した。直径14.5mmに切り出した直径14.5mmの全固体二次電池シートをスペーサーとワッシャー(ともに図2において図示しない)を組み込んだ、図2に示すステンレス製の2032型コインケース11に入れ、コインケース11をかしめることで、試験No.101の全固体二次電池を作製した。
(2)試験No.102~131およびe101~e110の全固体二次電池の作製
 下記表7に記載の組成に変えた以外は、上記試験No.101の全固体二次電池と同様の方法で、試験No.102~131およびe101~e110の全固体二次電池を作製した。
 各層中の分散媒体の含有割合は、いずれも全質量中1ppm以上10000ppm以下であった。なお、含有割合の測定は上述の方法を参照して行った。
 下記表7に、全固体二次電池の組成をまとめて記載する。
 ここで、試験No.101~131の全固体二次電池が本発明の全固体二次電池であり、試験No.e101~e110の全固体二次電池が比較の全固体二次電池である。
<試験>
 上記で作製した全固体二次電池について下記3つの試験を行った。以下、試験方法を記載する。また、結果を下記表7にまとめて記載する。
-4.2Vサイクル試験-
 上記で作製した全固体二次電池を用い、30℃の環境下、充電電流値0.35mAおよび放電電流値0.7mAの条件で4.2V~3.0Vの充放電を4回繰り返した。
 その後、サイクル試験として、30℃の環境下、充放電電流値0.7mAの条件で4.2V~3.0Vの充放電を繰り返す試験を実施した。
 1サイクル目の放電容量と100サイクル目の放電容量とを測定した。下記表7に、下記式により算出した放電容量維持率(%)を記載する。
  放電容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
―異常発生有無評価―
 上記で作製した全固体二次電池を用い、30℃の環境下、充電電流値0.35mAおよび放電電流値0.7mAの条件で4.2V~3.0Vの充放電を4回繰り返した。その後、0℃の環境下、充電電流値0.7mAの条件で4.2Vまで充電した後、30℃の環境下、放電電流値0.35mAの条件で3.0Vまで放電する充放電を行い、異常発生の有無について、下記基準により評価した。下記表7の異常発生評価の列に結果を示す。なお、本試験は、従来の一般的な全固体二次電池稼働の試験に比べて、厳しい条件で評価を行っている。
<評価基準>
A:10個の全固体二次電池のうち、9~10個が異常なく充放電を行った。
B:10個の全固体二次電池のうち、7~8個が異常なく充放電を行った。
C:10個の全固体二次電池のうち、5~6個が異常なく充放電を行った。
D:10個の全固体二次電池のうち、3~4個が異常なく充放電を行った。
E:10個の全固体二次電池のうち、0~2個が異常なく充放電を行った。
 「異常」とは、充電時または放電時に電池電圧が0.1V以上低下したことを意味する。
―充電時保存特性評価―
 上記で作製した全固体二次電池を用い、30℃の環境下、充電電流値0.35mAおよび放電電流値0.7mAの条件で4.2V~3.0Vの充放電を4回繰り返した。その後、30℃の環境下、充放電電流値0.7mAの条件で4.2V~3.0Vの充放電を5サイクル繰り返す試験を実施した。その後、30℃の環境下、充電電流値0.35mAの条件で4.2Vまで充電し、放電電流値0.7mAの条件で4.1Vまで放電したのち、全固体二次電池を取り外し、30℃の恒温槽中に1週間静置した。
 1週間後に、30℃の環境下、放電電流値0.7mAの条件で3.0Vまで放電し、充電電流値0.35mAおよび放電電流値0.7mAの条件で4.2V~3.0Vの充放電を行い、その際の放電容量値を保存後放電容量とした。
 下記式により算出した保存時劣化率T(%)を、下記基準により評価した。下記表7の保存特性の列に結果を示す。
  保存時劣化率T(%)=(保存前における放電容量値―保存後放電容量値)/保存前放電容量値×100
<評価基準>
A:0≦T≦15
B:15<T≦35
C:35<T≦50
D:50<T≦75
E:75<T≦100
Figure JPOXMLDOC01-appb-T000028
 表7から明らかなように、本発明の全固体二次電池は、いずれも各試験において優れた結果を示した。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年7月28日に日本国で特許出願された特願2016-148860に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 2032型コインケース
12 全固体二次電池シート
13 全固体二次電池

Claims (17)

  1.  周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質と、周期律表第1族又は第2属に属する金属の塩と、多分岐ポリマーとを含む固体電解質組成物であって、
     前記多分岐ポリマーが、コア部と、該コア部に結合する少なくとも3本のアーム部とを有してなり、前記アーム部が、前記周期律表第1族又は第2属に属する金属の塩の金属イオンを溶解している固体電解質組成物。
  2.  前記アーム部が、アルキレンオキサイド基、カーボネート基、エステル基、アミド基またはシリコーン基を有する繰り返し単位を少なくとも1種含有するポリマー構造を含む請求項1に記載の固体電解質組成物。
  3.  前記繰り返し単位が、下記式(A)で表される繰り返し単位である請求項2に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、Rは水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基またはアリール基を示す。Rは水素原子、ハロゲン原子、シアノ基、アルキル基、アルコキシ基またはアリール基を示す。Lは、アルキレンオキサイド基、カーボネート基、エステル基、アミド基またはシリコーン基を少なくとも1つ含む2価の連結基を示す。
  4.  前記アーム部を構成するポリマー構造の主鎖が、アルキレンオキサイド基、カーボネート基および/またはエステル基を含んで構成される請求項1または2に記載の固体電解質組成物。
  5.  前記アーム部の質量平均分子量が500以上1,000,000以下である請求項1~4のいずれか1項に記載の固体電解質組成物。
  6.  前記多分岐ポリマーが、下記式(B)で表される請求項1~5のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、Lはn価の連結基を示す。Pはポリマー鎖を示す。nは3以上の整数を示す。n個のPはそれぞれ同一であっても、異なっていてもよい。L-(X)がコア部をなし、(Pがアーム部をなす。Xは酸素原子、硫黄原子または-N(R)-を示し、Rは水素原子、アルキル基またはアリール基を示す。
  7.  前記コア部が下記いずれかの式で表される部分構造を有する請求項1~6のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000003
     式中、Rxは酸素原子、窒素原子、硫黄原子またはリン原子を含む2価の置換基を示す。*は、前記多分岐ポリマー中での結合部位であることを示す。
  8.  前記コア部が、分子量200以上の原子群である請求項1~7のいずれか1項に記載の固体電解質組成物。
  9.  前記コア部が、下記いずれかの式で表される部分構造を有する請求項7に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000004
     式中、*は、前記多分岐ポリマー中での結合部位であることを示す。
  10.  前記多分岐ポリマーと前記周期律表第1族又は第2属に属する金属の塩との合計100質量%中、前記周期律表第1族又は第2属に属する金属の塩を5質量%~60質量%含有する請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  前記周期律表第1族又は第2属に属する金属の塩が、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミドおよび/またはリチウムビスオキサレ-トボラ-トである請求項1~10のいずれか1項に記載の固体電解質組成物。
  12.  周期律表第1族または第2族に属する金属のイオンの挿入および放出可能な活物質を含む請求項1~11のいずれか1項に記載の固体電解質組成物。
  13.  前記周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質100質量部に対して、前記多分岐ポリマーを0.1質量部以上10質量部以下含有する請求項1~12のいずれか1項に記載の固体電解質組成物。
  14.  請求項1~13のいずれか1項に記載の固体電解質組成物の層を基材上に有する全固体二次電池用シート。
  15.  正極活物質層と負極活物質層と無機固体電解質層とを具備する全固体二次電池であって、前記正極活物質層、前記負極活物質層および前記無機固体電解質層の少なくとも1層が、請求項1~13のいずれか1項に記載の固体電解質組成物の層である全固体二次電池。
  16.  請求項1~13のいずれか1項に記載の固体電解質組成物を基材上に適用する工程を含む全固体二次電池用シートの製造方法。
  17.  請求項16に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
     
PCT/JP2017/027342 2016-07-28 2017-07-27 固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法 WO2018021503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018530405A JP6595715B2 (ja) 2016-07-28 2017-07-27 固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法
EP17834505.4A EP3493318A1 (en) 2016-07-28 2017-07-27 Solid electrolyte composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and production method for all-solid-state secondary battery sheet and all-solid-state secondary battery
CN201780045347.XA CN109478687B (zh) 2016-07-28 2017-07-27 固体电解质组合物、全固态二次电池用片材、全固态二次电池及制造方法
US16/255,948 US11444315B2 (en) 2016-07-28 2019-01-24 Solid electrolyte composition, sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing sheet for all-solid state secondary battery and all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016148860 2016-07-28
JP2016-148860 2016-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/255,948 Continuation US11444315B2 (en) 2016-07-28 2019-01-24 Solid electrolyte composition, sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing sheet for all-solid state secondary battery and all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2018021503A1 true WO2018021503A1 (ja) 2018-02-01

Family

ID=61017072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027342 WO2018021503A1 (ja) 2016-07-28 2017-07-27 固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法

Country Status (5)

Country Link
US (1) US11444315B2 (ja)
EP (1) EP3493318A1 (ja)
JP (1) JP6595715B2 (ja)
CN (1) CN109478687B (ja)
WO (1) WO2018021503A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161277A (ja) * 2019-03-26 2020-10-01 マクセルホールディングス株式会社 全固体二次電池およびその製造方法
US20210005925A1 (en) * 2018-03-26 2021-01-07 Toyota Motor Europe Solid electrolyte material for solid state batteries, solid electrolyte and solid state battery
US20210050623A1 (en) * 2018-03-19 2021-02-18 Shenzhen Capchem Technology Co., Ltd. Polymer Electrolyte for Lithium Ion Battery and Polymer Battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3098349B1 (fr) * 2019-07-04 2022-12-09 Commissariat Energie Atomique Electrolyte polymérique solide
US20220393175A1 (en) * 2019-10-31 2022-12-08 Zeon Corporation Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, solid electrolyte-containing layer, and all-solid-state secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099497A1 (ja) * 2010-02-10 2011-08-18 国立大学法人三重大学 固体電解質用組成物、固体電解質、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2015164125A (ja) * 2014-02-03 2015-09-10 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116788B2 (ja) * 2000-11-21 2008-07-09 日本曹達株式会社 スターポリマーおよび高分子電解質
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2012224509A (ja) * 2011-04-20 2012-11-15 Mitsui Chemicals Inc 金属酸化物多孔質体の製造方法
CN103608871B (zh) * 2011-06-29 2016-06-29 丰田自动车株式会社 固体电解质层、二次电池用电极层和全固体二次电池
JP6112288B2 (ja) * 2012-08-24 2017-04-12 日産化学工業株式会社 エチレンオキサイド鎖を有するハイパーブランチポリマー及びその利用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099497A1 (ja) * 2010-02-10 2011-08-18 国立大学法人三重大学 固体電解質用組成物、固体電解質、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2015164125A (ja) * 2014-02-03 2015-09-10 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DILLON ET AL.: "Ion Transport and Vibrational Spectra of Branched Polymer and Dendrimer Electrolytes", CHEM.MATER, vol. 13, April 2001 (2001-04-01), pages 1369 - 1373, XP055457318 *
See also references of EP3493318A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050623A1 (en) * 2018-03-19 2021-02-18 Shenzhen Capchem Technology Co., Ltd. Polymer Electrolyte for Lithium Ion Battery and Polymer Battery
US20210005925A1 (en) * 2018-03-26 2021-01-07 Toyota Motor Europe Solid electrolyte material for solid state batteries, solid electrolyte and solid state battery
JP2020161277A (ja) * 2019-03-26 2020-10-01 マクセルホールディングス株式会社 全固体二次電池およびその製造方法

Also Published As

Publication number Publication date
EP3493318A4 (en) 2019-06-05
JP6595715B2 (ja) 2019-10-23
JPWO2018021503A1 (ja) 2019-03-22
EP3493318A1 (en) 2019-06-05
US20190157711A1 (en) 2019-05-23
US11444315B2 (en) 2022-09-13
CN109478687A (zh) 2019-03-15
CN109478687B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
JP6110885B2 (ja) 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP6595715B2 (ja) 固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法
CN105449273B (zh) 电解质、制备该电解质的方法和含该电解质的锂二次电池
JP6096701B2 (ja) 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートの製造方法および全固体二次電池の製造方法
JP6101223B2 (ja) 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2017141735A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
CN108780918B (zh) 固体电解质组合物、含有固体电解质的片材、全固态二次电池以及这些的制造方法
JP6591687B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP2018088306A (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法
WO2016017758A1 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP7263525B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN110663085B (zh) 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
JP6245524B2 (ja) 重合硬化膜の製造方法、電池用電極シートの製造方法および全固体二次電池の製造方法
JP2016031868A (ja) 全固体二次電池、電池用電極シート、電池用電極シートの製造方法、固体電解質組成物、固体電解質組成物の製造方法、および全固体二次電池の製造方法
CN112913053A (zh) 电极用组合物、全固态二次电池用电极片及全固态二次电池、以及电极用组合物、全固态二次电池用电极片及全固态二次电池的各制造方法
JP2023112050A (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7295336B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN114631215A (zh) 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
WO2019203334A1 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
JP6595431B2 (ja) 固体電解質組成物、全固体二次電池用シートおよび全固体二次電池ならびに全固体二次電池用シートおよび全固体二次電池の製造方法
JP2018044111A (ja) ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
CN111406335B (zh) 用于锂二次电池的电极和包括该电极的锂二次电池
WO2023282333A1 (ja) 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530405

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834505

Country of ref document: EP

Effective date: 20190228