WO2018021319A1 - 吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体 - Google Patents

吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体 Download PDF

Info

Publication number
WO2018021319A1
WO2018021319A1 PCT/JP2017/026884 JP2017026884W WO2018021319A1 WO 2018021319 A1 WO2018021319 A1 WO 2018021319A1 JP 2017026884 W JP2017026884 W JP 2017026884W WO 2018021319 A1 WO2018021319 A1 WO 2018021319A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sound
insulating material
fibers
molded body
Prior art date
Application number
PCT/JP2017/026884
Other languages
English (en)
French (fr)
Inventor
達彦 稲垣
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201780044457.4A priority Critical patent/CN109478401A/zh
Priority to JP2017539474A priority patent/JP6772152B2/ja
Priority to EP17834321.6A priority patent/EP3493199A4/en
Publication of WO2018021319A1 publication Critical patent/WO2018021319A1/ja
Priority to US16/257,209 priority patent/US20190156810A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties

Definitions

  • the present invention relates to a fiber for absorbing / sound-insulating material suitable for forming a fiber assembly effective for absorbing / insulating sound having a frequency of 1000 Hz or less, use of the fiber, a method for producing a fiber for absorbing / sound-insulating material, and absorbing / sound insulating.
  • the present invention relates to a fiber molded body for a material, and relates to a fiber for an absorbent / sound insulating material and a fiber molded body for an absorbent / sound insulating material, which are used for interior and exterior materials of a car body such as an automobile or a house, and increase indoor quietness.
  • Absorption and sound insulation materials are used in a wide range of fields, from parts for vehicles used in railway vehicles and automobiles to electrical appliances such as vacuum cleaners.
  • a noise that flows into the interior of an automobile is divided into a noise that is generated by the engine through the vehicle body and a noise that is generated when the tire contacts the road surface. It is done.
  • Sound insulation means that the generated acoustic energy is reflected and blocked by the shield, and sound absorption means that the generated acoustic energy is converted into thermal energy and disappears while being transmitted along the internal path of the material. It is.
  • the transmitted sound from the dash portion of the engine sound that accounts for 50% or more of the interior noise is mainly in the frequency range of about 100 to 1000 Hz, and it is required to efficiently absorb and shield the sound in this region. ing.
  • Patent Document 1 proposes that synthetic short fibers be molded into a mat shape to form a sound absorbing material. Synthetic fibers of 1 to 50 denier are used instead of the commonly used glass fibers, but the weight increases to exert the sound absorbing effect, which is contrary to the weight reduction of automobile bodies such as automobiles. .
  • Patent Document 2 proposes a soundproofing material containing polyester fibers having a single fiber fineness of 0.6 dtex, but the sound absorbing effect is not sufficient. Further, when the single fiber fineness is reduced, there is a problem that the manufacturing cost becomes too high.
  • Patent Document 3 provides a sound-absorbing sheet in which glass fibers and cellulose fibers are combined, but the sound-absorbing performance is changed by controlling the physical quantity of the sheet, and the weight cannot be reduced.
  • An object of the present invention is to provide a fiber for a sound-absorbing / sound-insulating material having a single fiber fineness of 0.01 to 0.5 dtex, which can be used for a sound-absorbing / sound-insulating material, and to obtain a fiber assembly having an excellent sound-absorbing / sound insulating effect
  • An object of the present invention is to provide a fiber molded body for a sound absorbing and sound insulating material using the fiber suitable for a sound absorbing effect of sound of 1000 Hz or less.
  • Fiber for wood. (Fiber molded body) 70% by mass of a fiber for absorbing and sound insulating material having a fiber length of 40 mm, 30% by mass of polyester heat-bonded fiber having a single fiber fineness of 2.2 dtex, a fiber length of 51 mm, and a melting point of 110 ° C. Heat at 20 ° C. for 20 minutes and then cool to obtain a fiber molded body having a thickness of 30 mm and a basis weight of 1200 g / m 2 . 2.
  • the fiber for absorbing and sound insulating material according to 1 or 2 wherein when the fiber molded body is used, an average value of the normal incident sound absorption coefficient in a sound having a frequency of 400 to 630 Hz is 38% or more. 4).
  • the fiber for absorbing and sound insulating material according to any one of 1 to 7, wherein an average value of normal incident transmission loss in a sound having a frequency of 200 to 1000 Hz is 6.3 dB or more.
  • a spinning solution having an acrylonitrile copolymer dissolved in a solvent and having a solid content concentration of 10 to 30% by mass in an aqueous solution having a temperature of 20 to 60 ° C. and a solvent concentration of 25 to 50% by mass from the discharge hole of the spinning nozzle.
  • For producing a fiber for absorbing and sound-insulating material having a single fiber fineness of 0.01 to 0.5 dtex. 10.
  • the average value of the normal incident sound absorption coefficient of the fiber molded body at a frequency of 200 to 1000 Hz is 40% or more. ⁇
  • Sound insulation 70% by mass of a fiber for absorbing and sound insulating material having a fiber length of 40 mm, 30% by mass of polyester heat-bonded fiber having a single fiber fineness of 2.2 dtex, a fiber length of 51 mm, and a melting point of 110 ° C. Heat at 20 ° C. for 20 minutes and then cool to obtain a fiber molded body having a thickness of 30 mm and a basis weight of 1200 g / m 2 . 11.
  • Fiber L Absorbing and sound insulating material fibers
  • fiber M Other fiber having a single fiber fineness of greater than 0.5 dtex and not greater than 1.0 dtex
  • the basis weight D is 400 to 2000 g / m 2
  • the thickness is 20 to 50 mm
  • the fiber C content C is 20 to 90% by mass, and the relationship between the basis weight D (g / m 2 ) and the fiber L content C (% by mass) is D ⁇ 1600-30 ⁇ C Meet.
  • the content of the fiber L is 5 to 30% by mass, further contains the fiber M, and the total content of the fiber L and the fiber M is 40 to 90% by mass. 12
  • the present invention can obtain a fiber for a sound absorbing / sound insulating material that can form a fiber molded body having a sound absorption / sound insulating property having a frequency of 1000 Hz or less. It is possible to obtain a fiber for a sound absorbing and sound insulating material that is used and can improve the quietness of the room.
  • the fiber for sound absorbing and sound insulating material of the present invention has a single fiber fineness of 0.01 to 0.5 dtex and an average value of normal incident sound absorption coefficient of 40% or more for sound having a frequency of 200 to 1000 Hz.
  • the normal incident sound absorption coefficient is measured by mixing 70% by mass of a fiber for absorbing and sound insulating material having a fiber length of 40 mm and 30% by mass of a polyester heat-bonded fiber having a fiber length of 51 mm and a melting point of 110 ° C. When heated to 170 ° C. for 20 minutes and then cooled to form a fiber molded body having a thickness of 30 mm and a basis weight of 1200 g / m 2 , the normal incident sound absorption coefficient is measured according to JIS A 1405-2.
  • the single fiber fineness is 0.01 dtex or more, the handling of the fiber during the production of the molded article is good and the production cost is not too high. If it is 0.5 dtex or less, good absorption / sound insulation performance is obtained. Obtainable. From these viewpoints, the single fiber fineness is more preferably 0.05 to 0.4 dtex, and further preferably 0.1 to 0.3 dtex.
  • the average value of the normal incidence sound absorption coefficient in a sound having a frequency of 200 to 1000 Hz is 40% or more, the effect of reducing engine sound and transmitted sound from the dash portion is excellent. From this viewpoint, the average value of the normal incidence sound absorption coefficient is more preferably 43% or more, and further preferably 46% or more.
  • the average value of the normal incident sound absorption coefficient for sound having a frequency of 315 to 800 Hz is 40% or more.
  • the fiber for a sound absorbing / sound insulating material of the present invention is particularly excellent in the normal incident sound absorption rate in a sound having a frequency of 315 to 800 Hz, and is excellent in absorbing and insulating engine sound. From this viewpoint, it is more preferable that the average value of the normal incident sound absorption coefficient in a sound having a frequency of 315 to 800 Hz is 45% or more, and more preferably 50% or more.
  • the average value of the normal incident sound absorption coefficient in a sound having a frequency of 400 to 630 Hz is 38% or more.
  • the fiber for absorbing and sound insulating material according to the present invention is particularly excellent in the above-mentioned normal incident sound absorption coefficient for sound having a frequency of 400 to 630 Hz, and excellent in absorbing and insulating engine sound.
  • the average value of the normal incidence sound absorption coefficient in a sound having a frequency of 400 to 630 Hz is 45% or more, and more preferably 50% or more.
  • the fibers used for the fibers for the sound absorbing and sound insulating material of the present invention are not particularly limited, but preferably synthetic fibers such as acrylic fibers, polyester fibers and nylon fibers, semi-synthetic fibers such as acetate and promix, etc. Can be used.
  • acrylic fibers and nylon fibers having a small specific gravity can be used more suitably from the viewpoint of weight reduction, and acrylic fibers can be more suitably used from the viewpoint of sound absorption and productivity of fineness fibers.
  • acrylic fibers and nylon fibers having a small specific gravity can be used more suitably from the viewpoint of weight reduction, and acrylic fibers can be more suitably used from the viewpoint of sound absorption and productivity of fineness fibers.
  • the sound absorbing property of sound having a frequency of 200 to 1000 Hz can be improved.
  • the fibers for the sound absorbing / sound insulating material of the present invention preferably have a single fiber length of 3 to 60 mm.
  • the fiber length is 3 to 60 mm, the dispersibility of the fibers is good and the molded body is easy to mold, more preferably 15 to 40 mm, and still more preferably 20 to 35 mm.
  • the fibers for the sound absorbing and sound insulating material of the present invention preferably have a crimp number of 8 to 14 pieces / 25 mm and a crimp rate of 5 to 9%.
  • the moldability when forming a fiber assembly will be good.
  • an average value of normal incident transmission loss in a sound having a frequency of 200 to 4000 Hz is 9.0 dB or more.
  • the method of measuring the normal incident transmission loss is to mix 70% by mass of a fiber for absorbing and sound insulating material having a fiber length of 40 mm and 30% by mass of a polyester heat-bonded fiber having a fiber length of 51 mm and a melting point of 110 ° C. was heated at 170 ° C. 20 min, then cooled to thickness 30 mm, when the fiber molded body having a basis weight of 1200 g / m 2, in conformity with ASTM E2611, to measure the normal incidence transmission loss.
  • the average value of normal incidence transmission loss for sound with a frequency of 200 to 4000 Hz is 9.0 dB or more, the transmitted sound from the outside of the vehicle or from the engine room to the inside of the vehicle can be efficiently reduced.
  • the average value of the normal incident transmission loss is more preferably 10.0 dB or more, and further preferably 11.0 dB or more.
  • the fibers for the sound absorbing / sound insulating material of the present invention preferably have an average value of normal incident transmission loss of 6.3 dB or more when the frequency is 200 to 1000 Hz.
  • the average value of normal incidence transmission loss in a sound with a frequency of 200 to 1000 Hz is 6.3 dB or more, engine sound from the dash portion is easily insulated. From this viewpoint, the average value of the normal incident transmission loss is more preferably 6.5 dB or more, and further preferably 7.0 dB or more.
  • a spinning solution in which an acrylonitrile copolymer is dissolved in a solvent and has a solid content concentration of 10 to 30% by mass is discharged from a discharge hole of a spinning nozzle at a temperature of 20 to It is discharged into an aqueous solution at 60 ° C. and a solvent concentration of 25 to 50% by mass, and the single fiber fineness is set to 0.01 to 0.5 dtex.
  • the solid content concentration of the spinning solution is 10% by mass or more, solvent replacement in the coagulation bath is performed quickly, and if it is 30% by mass or less, the viscosity of the spinning solution does not become too high, and yarn breakage hardly occurs. Therefore, it is preferable. From these viewpoints, the solid content concentration of the spinning solution is preferably 15 to 28% by mass, and more preferably 18 to 25% by mass.
  • the fiber of the present invention having a single fiber fineness of 0.01 to 0.5 dtex and a frequency of 200 to 1000 Hz and having an average value of the normal incident sound absorption coefficient of the fiber molded body of 40% or more is used as a sound absorbing and sound insulating material. It is preferable to do.
  • a fiber having a single fiber fineness of 0.01 to 0.5 dtex is excellent in absorption and sound insulation, and can be suitably used as an absorption and sound insulation material.
  • acrylic fibers can be suitably used as the fibers for the sound absorbing / sound insulating material of the present invention, but the following description will be given by taking the case of using acrylic fibers as an example.
  • the acrylic fiber in the present invention comprises acrylonitrile and an unsaturated monomer that can be polymerized therewith.
  • unsaturated monomers include acrylic acid, methacrylic acid, or alkyl esters thereof, vinyl acetate, acrylamide, vinyl chloride, vinylidene chloride, and depending on the purpose, vinyl benzene sulfonic acid soda, methallyl sulfonic acid soda, Ionic unsaturated monomers such as sodium allyl sulfonate, sodium acrylamidomethylpropane sulfonate, sodium parasulfophenyl methallyl ether and the like can be used.
  • the content of acrylonitrile units in the polymer is preferably 80% or more, particularly preferably 85% or more, and the upper limit is preferably 99% or less.
  • vinyl monomers may be used alone or in combination of two or more.
  • the acrylonitrile-based polymer constituting the acrylic fiber of the present invention may be composed of one kind of polymer or a mixture of two or more kinds of polymers having different acrylonitrile contents.
  • the polymerization method of the acrylic polymer can be selected from suspension polymerization and solution polymerization, but is not particularly limited.
  • the molecular weight of the acrylic polymer is not particularly limited as long as it is within the range usually used for the production of acrylic fibers.
  • the reduced viscosity at 25 ° C. is 1.5 to It is preferably in the range of 3.0.
  • the spinning dope is prepared by dissolving an acrylic polymer in a solvent so as to be 15% by mass to 28% by mass. If the concentration is 15% by mass or more, there is a large difference between the shape of the nozzle hole and the shape of the fiber cross section during solidification. It is easy to obtain the desired cross-sectional shape. On the other hand, when the content is 28% by mass or less, the spinning stock solution has good temporal stability and good spinning stability.
  • organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, nitric acid, rhodate aqueous solution, zinc chloride aqueous solution and the like can be used, but when the cross-sectional shape is to be controlled by the nozzle hole, Organic solvents are advantageously used.
  • a good spinning state can be maintained by spinning and taking a spinning draft defined by the ratio of the take-up speed of the coagulated yarn and the discharge linear speed of the spinning dope so as to be in the range of 0.7 to 3.0.
  • the spinning draft is 0.7 or more, there is little difference between the shape of the nozzle hole and the shape of the fiber cross section at the time of solidification, and the desired cross-sectional shape can be easily obtained, and cross-sectional unevenness can be suppressed.
  • it if it is 3.0 or less, the yarn breakage in the coagulation bath liquid is small, and it becomes easy to obtain the fiber itself.
  • the obtained coagulated yarn is drawn, washed and dried by a known method and conditions, and the obtained fiber can be cut into a predetermined length according to the intended use to obtain a raw cotton.
  • the fiber molded body for an absorbent / sound insulating material includes a fiber L (fiber for absorbent / sound insulating material having a single fiber fineness of 0.01 to 0.5 dtex) and the like partially made of heat-sealing fibers such as polyester fiber. It has been fused.
  • the fiber molded body for the sound-absorbing and sound-insulating material of the present invention has a fiber M (single fiber fineness other than the fiber L and the heat-bonded fiber is greater than 0.5 dtex and 1.0 dtex or less. Certain other fibers).
  • the fiber molded body for an absorbent / sound insulating material according to the present invention has a basis weight D of 400 to 2000 g / m 2 and a thickness of 20 to 50 mm, and satisfies the following (1) or (2): It is.
  • the fiber C content C is 20 to 90% by mass, and the relationship between the basis weight D (g / m 2 ) and the fiber L content C (% by mass) is D ⁇ 1600-30 ⁇ C Meet.
  • the content of the fiber L is 5 to 30% by mass, further contains the fiber M, and the total content of the fiber L and the fiber M is 40 to 90% by mass.
  • the fiber molded body for the sound absorbing / sound insulating material of the present invention is excellent in sound insulating property and sound absorbing property and is lightweight, and therefore can be suitably used for applications such as prevention of in-vehicle noise in automobiles.
  • the fabric weight of the fiber molded body for the sound absorbing / sound insulating material of the present invention is 400 g / m 2 or more, the sound absorbing / sound insulating performance tends to be good, and if it is 2000 g / m 2 or less, the weight can be easily reduced.
  • the basis weight is more preferably 500 to 1800 g / m 2 , and further preferably 600 to 1500 g / m 2 .
  • the thickness of the fiber molded body for the sound absorbing / sound insulating material of the present invention is 20 mm or more, the sound absorbing / sound insulating performance tends to be good, and if it is 50 mm or less, the weight can be easily reduced. From these viewpoints, the thickness is more preferably 23 to 40 mm, and further preferably 25 to 35 mm.
  • the content C of the fiber L in (1) above if the content C of the fiber L is 20% by mass or more, the sound absorption / sound insulation performance tends to be good, and if it is 90% by mass or less, the heat-sealing fiber. And fibers N (fibers having a single fiber fineness greater than 1.0 dtex other than heat-fusion fibers) can be obtained, and form stability can be easily obtained, and the cost can be easily reduced.
  • the content C of the fiber L is more preferably 30 to 80% by mass, and further preferably 40 to 60% by mass.
  • the content rate C of the fiber L is small. Needs to have a larger basis weight, and if the basis weight is small, the content C of the fiber L needs to be increased.
  • the fiber M when the content C of the fiber L is relatively small as 5 to 30% by mass, the fiber M is further contained, and the total content of the fiber L and the fiber M is 40% by mass or more. Therefore, if it is 90% by mass or less, the content of the heat-fusible fiber does not decrease too much, so it is easy to obtain form stability and easily reduce the cost. .
  • the fiber molded body for a sound absorbing / sound insulating material of the present invention preferably has an average value of normal incident sound absorption coefficient of 40% or more in a sound having a frequency of 200 to 1000 Hz.
  • the average value of the normal incidence sound absorption coefficient in a sound having a frequency of 200 to 1000 Hz is 40% or more, the engine sound and the transmitted sound from the dash portion can be excellently reduced. From this viewpoint, the average value of the normal incidence sound absorption coefficient is more preferably 43% or more, and further preferably 46% or more.
  • the fiber L is preferably an acrylic fiber.
  • an acrylic fiber having a relatively small single fiber fineness of 0.01 to 0.5 dtex is used as the fiber L, as shown in FIG. 1, the sound absorption in sound having a frequency of 200 to 1000 Hz is good. can do.
  • the average value of normal incident transmission loss in a sound having a frequency of 200 to 4000 Hz is 9.0 dB or more.
  • the average value of normal incidence transmission loss for sound with a wave number of 200 to 4000 Hz is 9.0 dB or more, the transmitted sound from the outside of the vehicle or from the engine room to the inside of the vehicle can be efficiently reduced.
  • the average value of the normal incident transmission loss is more preferably 10.0 dB or more, and further preferably 11.0 dB or more.
  • the fiber molded body for a sound-absorbing / sound-insulating material of the present invention preferably has a heat-sealing fiber content of 10 to 50% by mass and is fixed by the heat-sealing fiber. It is preferable that the fibers constituting the molded body are fixed by heat-bonding fibers, so that even a complicated shape can be maintained.
  • the content of the heat-fusible fiber is 10% by mass or more, it becomes easy to maintain the shape of the fiber molded body, and if it is 50% by mass or less, the fiber for absorbing and sound insulating material of the present invention can be contained. It becomes easy to improve sound insulation performance.
  • the content of the heat-sealing fiber is more preferably 15 to 45% by mass, and further preferably 20 to 40% by mass.
  • the single fiber fineness of the heat-sealing fiber used in the fiber molded body for an absorbent / sound insulating material of the present invention is preferably 1 to 5 dtex.
  • the single fiber fineness of the heat-sealing fiber is 1 dtex or more, the fibers constituting the fiber molded body for the sound absorbing and sound insulating material are easily fixed to each other, and if it is 5 dtex or less, the decrease in the sound absorption rate can be reduced.
  • the single fiber fineness of the heat-sealing fiber is more preferably 1.5 to 3 dtex.
  • the fiber molded body for sound-absorbing and sound-insulating material of the present invention is obtained by partially fusing fibers L, fibers M, etc. with heat-sealing fibers.
  • the fibers N the single fiber fineness is 1.0 dtex or more. Fibers can be used and the content can be 5 to 70% by mass.
  • the fiber N can be contained in the range where the average value of the normal incident sound absorption coefficient in the sound having a frequency of 200 to 1000 Hz is 40% or more.
  • the fiber N is preferably a recycled fiber from the viewpoint of cost reduction effect.
  • the content of the fiber N is more preferably 15 to 60% by mass, and further preferably 20 to 50% by mass.
  • the fiber molded body for a sound absorbing and sound insulating material of the present invention may contain inorganic fibers such as glass fibers and mineral fibers in order to impart flame retardancy.
  • ⁇ Measurement method of single fiber fineness> The measurement was performed under the conditions of a temperature of 25 ° C. and a humidity of 65% using a motorcycle bro fineness measuring device (DenialComputer DC-11, manufactured by Search Control Electric Co., Ltd.). The measurement was performed 25 times and the average value was used.
  • a total of 72 g of mixed cotton raw materials were placed in a container having a length of 200 mm, a width of 300 mm, and a height of 50 mm, and compressed to a height of 30 mm, followed by heat molding.
  • the fiber molded body is subjected to normal incident sound absorption coefficient (hereinafter also referred to as “sound absorption coefficient”), normal incident transmission loss (hereinafter “transmission”) in a predetermined frequency range. Also referred to as “loss”).
  • sound absorption coefficient sound absorption coefficient
  • transmission normal incident transmission loss
  • loss loss
  • Example 1 A copolymer comprising 93% by mass of acrylonitrile units and 7% by mass of vinyl acetate units was obtained by aqueous suspension polymerization. The reduced viscosity at 25 ° C. of a 0.5 mass% dimethylformamide solution of this polymer was 2.0. This copolymer was dissolved in dimethylacetamide to prepare a spinning dope having a copolymer concentration of 24% by mass. The spinning solution was spun into a 50% aqueous solution of dimethylacetamide at 40 ° C. from the discharge hole of the spinning nozzle. Furthermore, it is stretched 5 times with hot water at 95 ° C., washed, applied with an oil agent, and dried with a drying roll.
  • the number of crimps is 10/25 mm, the crimp rate is 7%, and the single fiber fineness
  • the fiber A of Table 1 of 0.1 dtex was obtained.
  • the sound absorption coefficient and transmission loss of fiber A were measured by the measurement method described above. The results are shown in Table 2.
  • Example 2 (Examples 2 to 4, Reference Example 1) Fiber B to Fiber E were obtained in the same manner as in Example 1 except that the fineness obtained by changing the discharge amount of the spinning dope from the spinning nozzle was adjusted. Thereafter, a fiber molded body was produced in the same manner as in Example 1, and the sound absorption coefficient and transmission loss were measured. The results are shown in Table 2.
  • Example 1 Comparative Example 1 Using polyester (PET) fiber F having a single fiber fineness of 0.5 dtex, the sound absorption coefficient and transmission loss were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Acrylic fibers and polyester fibers are compared with the same single fiber fineness, acrylic fibers have higher sound absorption performance. However, even if it is a polyester fiber, if the single fiber fineness is made small, it is thought that the performance of a sound absorption rate can be made high. This can be inferred from the effect of sound absorption due to various single fiber finenesses of acrylic fibers.
  • Example 2 An acrylic fiber G was obtained in the same manner as in Example 1 except that the fineness obtained by changing the discharge amount of the spinning solution from the spinning nozzle was adjusted to 3.3 dtex. Thereafter, a fiber molded body was produced in the same manner as in Example 1, and the sound absorption coefficient and transmission loss were measured. The results are shown in Table 2. Since the single fiber fineness is large, both the sound absorption coefficient and the transmission loss were low.
  • Short fiber A obtained by cutting fiber A having a single fiber fineness of 0.1 dtex obtained in Example 1 into 40 mm, heat-bonded polyester short fiber (heat) having a single fiber fineness of 2.2 dtex and a fiber length of 50 mm Fused fiber) and regular acrylic short fiber (fiber N) having a single fiber fineness of 3.3 dtex and a fiber length of 50 mm, short fiber A of 50% by mass, heat-bonded polyester short fiber of 30% by mass and regular acrylic short
  • the fibers were mixed at a mixing ratio of 20% by mass and heated at 170 ° C. for 20 minutes to obtain a nonwoven fabric having a basis weight of 1200 g / m 2 and a thickness of 30 mm.
  • Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 6 A nonwoven fabric was obtained in the same manner as in Example 5 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 7 Short fiber A (fiber L), single fiber fineness 0.6 dtex, polyester short fiber (fiber M) having a fiber length of 32 mm, heat-bonded polyester short fiber (heat-bonded fiber), and regular acrylic short fiber ( A nonwoven fabric was obtained in the same manner as in Example 5 except that the fiber N) was mixed at the mixing ratio shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 8 A nonwoven fabric was obtained in the same manner as in Example 7 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 3 A nonwoven fabric was obtained in the same manner as in Example 5 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss. Since the content of the acrylic / absorbing acrylic fiber of the present invention is small, the sound absorption rate was lowered.
  • Example 4 A nonwoven fabric was obtained in the same manner as in Example 5 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • a regular acrylic fiber that does not contain the sound-absorbing and sound-insulating acrylic fiber of the present invention and has a large single fiber fineness cannot increase the sound absorption rate.
  • Example 5 A nonwoven fabric was obtained in the same manner as in Example 5 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 10 A nonwoven fabric was obtained in the same manner as in Example 5 except that the basis weight of the nonwoven fabric was changed to 600 g / m 2 .
  • Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 11 A nonwoven fabric was obtained in the same manner as in Example 10 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 7 A nonwoven fabric was obtained in the same manner as in Example 10 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss. Since the content of the acrylic / absorbing acrylic fiber of the present invention is small, the sound absorption rate was lowered.
  • Example 8 A nonwoven fabric was obtained in the same manner as in Example 10 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • Example 9 A nonwoven fabric was obtained in the same manner as in Example 10 except that the mixing ratio of the short fibers to be mixed was changed as shown in Table 3. Table 3 shows the results of measuring the sound absorption rate and transmission loss.
  • the fibers for the sound absorbing / sound insulating material of the present invention as a fiber aggregate such as a non-woven fabric, and using it as a sound absorbing material / sound insulating material, a material that is lightweight and requires quietness (automobile interior and exterior materials, residential building materials) Therefore, it is extremely useful and has high industrial applicability.

Abstract

本発明の課題は、吸・遮音材に用いられ、吸・遮音効果に優れる繊維集合体を得られる0.01~0.5dtexの繊維を提供することにあり、また、1000Hz以下の音の吸音効果に適する当該繊維を使用した吸・遮音材用繊維成型体を提供することにある。 本発明の課題は、単繊維繊度が0.01~0.5dtex、下記の繊維成型体とした時、周波数が200~1000Hzの音における前記繊維成型体の垂直入射吸音率の平均値が40%以上である吸・遮音材用繊維とすること、当該吸・遮音材用繊維を用いて吸・遮音材用繊維成型体を成型することにより、解決することができる。 (繊維成型体) 繊維長が40mmの吸・遮音材用繊維を70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とする。

Description

吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体
 本発明は周波数が1000Hz以下の音の吸・遮音に効果的な繊維集合体の形成に適した吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体に関するものであり、自動車等の車体や住宅等の内外装材に使用され室内の静粛性を高める吸・遮音材用繊維及び吸・遮音材用繊維成型体に関するものである。
技術背景
 鉄道車両や自動車等に用いられる車両用部品から掃除機等の電化製品まで幅広い分野において吸・遮音材が用いられている。
 例えば、自動車の室内に流入される騷音は、エンジンで発生した音が車体を通じて流入される騷音と、タイヤと路面との接触時に発生される騷音が車体を通じて流入される騷音に分けられる。
 このような騷音を低減する方法として、流入する騒音を遮音材によって遮る方法と、流入した騒音を吸音材に吸収させる方法がある。
 遮音とは、発生した音響エネルギーが遮蔽物によって反射され、遮断されることであり、吸音とは、発生した音響エネルギーが素材の内部経路に沿って伝達されながら熱エネルギーに変換されて消滅することである。
 吸・遮音性能向上には、吸・遮音材の重量アップを伴うことが一般的であるが、最近、特に自動車分野において、燃費向上及び省資源のニーズが急速に高まり、吸・遮音材の軽量化が強く叫ばれるようになった。
 吸・遮音性能と軽量化の相反する課題を解決させる為には、伝達音に対する優れた遮音と他の伝達経路(窓他)から流入した騒音の効率良い吸音、言い換えると吸・遮音のバランスに優れた材料が求められている。
 例えば、自動車においては車内騒音の50%以上を占めるエンジン音のダッシュ部からの透過音は100~1000Hz程度の周波数が主であり、この領域の音を効率的に吸・遮音することが求められている。
 その目的として、例えば特許文献1には、合成短繊維をマット状に成型し吸音材とすることが提案されている。一般的に用いられるガラス繊維の代わりに1~50デニールの合成繊維を使用しているが、吸音効果を発揮させるには重量が大きくなり、自動車等の車体の軽量化には相反するものである。
 特許文献2には、単繊維繊度が0.6dtexのポリエステル繊維を含む防音材料が提案されているが、吸音効果は十分ではなかった。さらに単繊維繊度を細くすると製造コストが高くなり過ぎる問題があった。
 特許文献3には、ガラス繊維とセルロース繊維を組み合わせた吸音シートが提供されているが、シートの物理量をコントロールすることにより吸音性能を変化させており、軽量化ができていないものである。
特開2002-242066号公報 特開2016-034828号公報 特表2014-521995号公報
 本発明の目的は、吸・遮音材に用いられ、吸・遮音効果に優れる繊維集合体を得られる単繊維繊度が0.01~0.5dtexの吸・遮音材用繊維及び該吸・遮音材用繊維の製造方法を提供することにあり、1000Hz以下の音の吸音効果に適する当該繊維を使用した吸・遮音材用繊維成型体を提供することにある。
1.単繊維繊度が0.01~0.5dtex、下記の繊維成型体とした時、周波数が200~1000Hzの音における前記繊維成型体の垂直入射吸音率の平均値が40%以上である吸・遮音材用繊維。
(繊維成型体)
 繊維長が40mmの吸・遮音材用繊維を70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とする。
2.前記繊維成型体とした時、周波数が315~800Hzの音における前記垂直入射吸音率の平均値が40%以上である1に記載の吸・遮音材用繊維。
3.前記繊維成型体とした時、周波数が400~630Hzの音における前記垂直入射吸音率の平均値が38%以上である1または2に記載の吸・遮音材用繊維。
4.前記吸・遮音材用繊維がアクリル繊維である1~3のいずれかに記載の吸・遮音材用繊維。
5.前記単繊維の繊維長が3~60mmである1~4のいずれかに記載の吸・遮音材用繊維。
6.捲縮数が8~14個/25mm、捲縮率が5~9%である1~5のいずれかに記載の吸・遮音材用繊維。
7.前記繊維成型体とした時、周波数が200~4000Hzの音における前記繊維成型体の垂直入射透過損失の平均値が9.0dB以上である1~6のいずれかに記載の吸・遮音材用繊維。
8.周波数が200~1000Hzの音における垂直入射透過損失の平均値が6.3dB以上である1~7のいずれかに記載の吸・遮音材用繊維。
9.アクリロニトリル共重合体を溶媒に溶解し、固形分濃度を10~30質量%とした紡糸溶液を、紡糸ノズルの吐出孔から、温度が20~60℃、溶剤濃度が25~50質量%の水溶液中に吐出し、単繊維繊度を0.01~0.5dtexとする吸・遮音材用繊維の製造方法。
10.単繊維繊度が0.01~0.5dtex、下記の繊維成型体とした時、周波数が200~1000Hzの音における前記繊維成型体の垂直入射吸音率の平均値が40%以上である繊維の吸・遮音材としての使用。
(繊維成型体)
 繊維長が40mmの吸・遮音材用繊維を70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とする。
11.単繊維繊度が0.01~0.5dtexである吸・遮音材用繊維(以下「繊維L」ともいう。)、熱融着繊維、必要に応じて、該繊維L、該熱融着繊維以外の、単繊維繊度が0.5dtexより大きく1.0dtex以下である他の繊維(以下、「繊維M」ともいう。)を含有し、
 目付Dが400~2000g/m、厚みが20~50mmであって、
 下記(1)または(2)を満たす吸・遮音材用繊維成型体。
(1)繊維Lの含有率Cが20~90質量%であり、目付D(g/m)と、繊維Lの含有率C(質量%)との関係が、D≧1600-30×Cを満たす。
(2)繊維Lの含有率が5~30質量%であり、さらに繊維Mを含有し、繊維Lと繊維Mとの合計の含有率が40~90質量%である。
12.周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上である11に記載の吸・遮音材用繊維成型体。
13.繊維Lがアクリル繊維である11または12に記載の吸・遮音材用繊維成型体。
14.周波数が200~4000Hzの音における垂直入射透過損失の平均値が9.0dB以上である11~13のいずれかに記載の吸・遮音材用繊維成型体。
15.熱融着繊維の含有率が10~50質量%であり、熱融着繊維の一部が溶融し、繊維同士が固定化されている部分を有する11~14のいずれかに記載の吸・遮音材用繊維成型体。
16.さらに、熱融着繊維以外の、単繊維繊度が1.0dtexより大きい繊維Nの含有率が5~70質量%である11~15のいずれかに記載の吸・遮音材用繊維成型体。
 本発明は、周波数が1000Hz以下の音の吸・遮音性に優れた繊維成型体を形成できる吸・遮音材用繊維を得ることができ、特に、自動車等の車体や住宅等の内外装材に使用され室内の静粛性を高めることのできる吸・遮音材用繊維を得ることができる。
 さらに、当該繊維を使用し、周波数が1000Hz以下の音の吸・遮音性に優れた繊維成型体を提供することができる。
実施例1で得られた繊維A[アクリル 0.1dtex]、参考例1で得られた繊維E[アクリル 1dtex]及び比較例1で得られた繊維F[ポリエステル(PET)0.5dtex]の垂直入射吸音率(%)の測定値を示す図である。
 以下、本発明を詳しく説明する。
 本発明の吸・遮音材用繊維は、単繊維繊度が0.01~0.5dtex、周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上である。
 垂直入射吸音率の測定方法は、繊維長が40mmの吸・遮音材用繊維を70質量%と、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とした時の、JIS A 1405-2により垂直入射吸音率を測定する。
 単繊維繊度が0.01dtex以上であれば、成型体の製造時の該繊維の取り扱いが良好であり、製造コストも高くなり過ぎず、0.5dtex以下であれば、良好な吸・遮音性能を得ることができる。これらの観点から、前記単繊維繊度は0.05~0.4dtexがより好ましく、0.1~0.3dtexがさらに好ましい。
 また、周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上であれば、エンジン音及びダッシュ部からの透過音の低減効果に優れている。この観点から、前記垂直入射吸音率の平均値は43%以上がより好ましく、46%以上がさらに好ましい。
 本発明の吸・遮音材用繊維は、周波数が315~800Hzの音における前記垂直入射吸音率の平均値が40%以上であることが好ましい。
 本発明の吸・遮音材用繊維は、周波数が315~800Hzの音における前記垂直入射吸音率に特に優れており、エンジン音の吸・遮音に優れるものである。この観点から、周波数が315~800Hzの音における前記垂直入射吸音率の平均値が45%以上であることがさらに好ましく、50%以上がさらに好ましい。
 本発明の吸・遮音材用繊維は、周波数が400~630Hzの音における前記垂直入射吸音率の平均値が38%以上であることが好ましい。
 本発明の吸・遮音材用繊維は、周波数が400~630Hzの音における前記垂直入射吸音率に特に優れており、エンジン音の吸・遮音に優れるものである。
 この観点から、周波数が400~630Hzの音における前記垂直入射吸音率の平均値が45%以上であることがさらに好ましく、50%以上がさらに好ましい。
 本発明の吸・遮音材用繊維に使用される繊維は特に限定されるものではないが、アクリル繊維、ポリエステル繊維、ナイロン繊維等の合成繊維、アセテート、プロミックス等の半合成繊維等を好適に用いることができる。
 中でも、軽量化の観点から、比重の小さいアクリル繊維、ナイロン繊維をより好適に用いることができ、さらに吸音性や細繊度繊維の生産性の観点から、アクリル繊維をより一層好適に用いることができる。
 本発明の吸・遮音材用繊維としてアクリル繊維を用いると、周波数が200~1000Hzの音の吸音性を良好にすることができる。
 本発明の吸・遮音材用繊維は、単繊維の繊維長が3~60mmであることが好ましい。前記繊維長が3~60mmであれば、繊維の分散性も良好で成型体が成型しやすく、より好ましくは15~40mmであり、より一層好ましくは20~35mmである。
 本発明の吸・遮音材用繊維は、捲縮数が8~14個/25mm、捲縮率が5~9%であることが好ましい。
 捲縮数が8~14個/25mm、捲縮率が5~9%であれば、繊維集合体にする時の成型性が良好になる。
 本発明の吸・遮音材用繊維は、周波数が200~4000Hzの音における垂直入射透過損失の平均値が9.0dB以上であることが好ましい。
 垂直入射透過損失の測定方法は、繊維長が40mmの吸・遮音材用繊維を70質量%と、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とした時の、ASTM E2611に準拠して、垂直入射透過損失を測定する。
 周波数が200~4000Hzの音における垂直入射透過損失の平均値が9.0dB以上であれば、車外またはエンジンルームから車内への透過音を効率良く低減できる。この観点から、前記垂直入射透過損失の平均値は10.0dB以上がより好ましく、11.0dB以上がさらに好ましい。
 本発明の吸・遮音材用繊維は、周波数が200~1000Hzの音における垂直入射透過損失の平均値が6.3dB以上であることが好ましい。
 周波数が200~1000Hzの音における垂直入射透過損失の平均値が6.3dB以上であれば、ダッシュ部からのエンジン音を遮音しやすくなる。この観点から、前記垂直入射透過損失の平均値は6.5dB以上がより好ましく、7.0dB以上がさらに好ましい。
 本発明の吸・遮音材用繊維の製造方法は、アクリロニトリル共重合体を溶媒に溶解し、固形分濃度を10~30質量%とした紡糸溶液を、紡糸ノズルの吐出孔から、温度が20~60℃、溶剤濃度が25~50質量%の水溶液中に吐出し、単繊維繊度を0.01~0.5dtexとするものである。
 紡糸溶液の固形分濃度が10質量%以上であれば、凝固浴での溶剤置換が速やかに行われ、30質量%以下であれば、紡糸溶液の粘度が高くなりすぎず、糸切れが起こりにくいので好ましい。これらの観点から、紡糸溶液の固形分濃度は、15~28質量%が好ましく、18~25質量%がさらに好ましい。
 本発明の単繊維繊度が0.01~0.5dtex、周波数が200~1000Hzの音における前記繊維成型体の垂直入射吸音率の平均値が40%以上である繊維は、吸・遮音材として使用することが好ましい。
 単繊維繊度が0.01~0.5dtexのものは、吸・遮音性に優れているため、吸・遮音材として好適に使用することができる。
 上記のように、本発明の吸・遮音材用繊維としてはアクリル繊維を好適に用いることができるが、アクリル繊維を用いる場合を例として、以下に説明を行う。
 本発明におけるアクリル繊維とは、アクリロニトリル及びこれと重合可能な不飽和単量体からなる。このような不飽和単量体として、アクリル酸、メタクリル酸、若しくはこれらのアルキルエステル類、酢酸ビニル、アクリルアミド、塩化ビニル、塩化ビニリデン、さらに目的によってはビニルベンゼンスルホン酸ソーダ、メタリルスルホン酸ソーダ、アリルスルホン酸ソーダ、アクリルアミドメチルプロパンスルホン酸ソーダ、ソディウムパラスルホフェニールメタリルエ-テル等のイオン性不飽和単量体を用いることができる。
 ポリマー中のアクリロニトリル単位の含有率は好ましくは80%以上であり、特に好ましくは85%以上であり、上限は99%以下が好ましい。
 これらのビニルモノマーは、単独或いは2種以上組み合わされていてもよい。また、本発明のアクリル繊維を構成するアクリロニトリル系ポリマーは、1種類のポリマーからなっていてもよいし、アクリロニトリル含有率の異なる2種以上のポリマーの混合物からなっていてもよい。
 上記アクリル系ポリマーの重合方法としては懸濁重合、溶液重合等が選択可能であるが特に限定しない。上記アクリル系ポリマーの分子量は通常アクリル繊維の製造に用いられる範囲の分子量であればよく、特に限定しないが、0.5重量%ジメチルホルムアミド溶液としたとき、25℃における還元粘度が1.5~3.0の範囲にあることが好ましい。
<紡糸原液>
 紡糸原液はアクリル系ポリマーを15質量%~28質量%となるように溶剤に溶解して調製するが、濃度が15質量%以上では、凝固時にノズル孔の形状と繊維断面の形状の差が大きくなく、目的の断面形状を得やすい。一方、28質量%以下の場合、紡糸原液の経時安定性が良く紡糸安定性が良好である。
 溶剤としてはジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の有機溶剤の他、硝酸、ロダン酸塩水溶液、塩化亜鉛水溶液等を用いることができるが、断面形状をノズル孔により制御しようとする場合には、有機溶剤が有利に用いられる。
<紡糸>
 凝固糸の引き取り速度と紡糸原液の吐出線速度の比で定義される紡糸ドラフトを0.7~3.0の範囲となるよう紡出、引き取りすることにより良好な紡糸状態を維持できる。紡糸ドラフトが0.7以上の場合には、凝固時にノズル孔の形状と繊維断面の形状の差が少なく目的の断面形状を得やすく、また、断面ムラも抑えられる。一方、3.0以下であれば凝固浴液中での糸切れが少なく、繊維自体を得ることが容易となる。
 得られた凝固糸は公知の方法、条件で延伸、洗浄、乾燥され、得られた繊維は用途に応じて所定の長さにカットされ原綿とすることができる。
 本発明の吸・遮音材用繊維成型体は、繊維L(単繊維繊度が0.01~0.5dtexの吸・遮音材用繊維)等を、ポリエステル繊維等の熱融着繊維で部分的に融着させたものである。本発明の吸・遮音材用繊維成型体は、繊維L、熱融着繊維以外に、繊維M(繊維L、熱融着繊維以外の、単繊維繊度が0.5dtexより大きく1.0dtex以下である他の繊維)を含有することができる。
 本発明の吸・遮音材用繊維成型体は、目付Dが400~2000g/m、厚みが20~50mmであって、下記(1)または(2)を満たす吸・遮音材用繊維成型体である。
(1)繊維Lの含有率Cが20~90質量%であり、目付D(g/m)と、繊維Lの含有率C(質量%)との関係が、D≧1600-30×Cを満たす。
(2)繊維Lの含有率が5~30質量%であり、さらに繊維Mを含有し、繊維Lと繊維Mとの合計の含有率が40~90質量%である。
 本発明の吸・遮音材用繊維成型体は、遮音性・吸音性に優れ、軽量であることから、自動車における車内騒音の防止等の用途に好適に用いることができる。
 本発明の吸・遮音材用繊維成型体の目付が400g/m以上であれば、吸・遮音性能が良好となり易く、2000g/m以下であれば、軽量化がし易くなるので好ましい。これらの観点から、前記目付は500~1800g/mがより好ましく、600~1500g/mがさらに好ましい。
 さらに、本発明の吸・遮音材用繊維成型体の厚みが20mm以上であれば、吸・遮音性能が良好となり易く、50mm以下であれば、軽量化がし易くなるので好ましい。これらの観点から、前記厚みは23~40mmがより好ましく、25~35mmがさらに好ましい。
 上記(1)における繊維Lの含有率Cについては、繊維Lの含有率Cが20質量%以上であれば、吸・遮音性能が良好となり易く、90質量%以下であれば、熱融着繊維や繊維N(熱融着繊維以外の、単繊維繊度が1.0dtexより大きい繊維)を含有することができ、形態安定が得易くなり、コストを低くし易くなる。
 これらの観点から、繊維Lの含有率Cは、30~80質量%がより好ましく、40~60質量%がさらに好ましい。
 上記(1)における目付Dと、繊維Lの含有率Cとの関係(D≧1600-30×C)については、吸・遮音性能を担保するために、繊維Lの含有率Cが少ない場合には目付を大きくする必要があり、目付が小さい場合には繊維Lの含有率Cを多くする必要がある。
 上記(2)については、繊維Lの含有率Cが5~30質量%と比較的少ない場合には、さらに繊維Mを含有させ、繊維Lと繊維Mとの合計の含有率を40質量%以上にすることにより吸・遮音性能を良好とすることができ、90質量%以下であれば、熱融着繊維の含有率が少なくなりすぎないため、形態安定が得易く、コストを低くし易くなる。
 本発明の吸・遮音材用繊維成型体は、周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上であることが好ましい。
 周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上であれば、エンジン音及びダッシュ部からの透過音を低減効果に優れたものとすることができる。この観点から、前記垂直入射吸音率の平均値は43%以上がより好ましく、46%以上がさらに好ましい。
 本発明の吸・遮音材用繊維成型体は、繊維Lがアクリル繊維であることが好ましい。繊維Lとして、単繊維繊度が0.01~0.5dtexと比較的小さいアクリル繊維を用いた場合には、図1に示すように、周波数が200~1000Hzの音における吸音性を良好なものとすることができる。
 本発明の吸・遮音材用繊維成型体は、周波数が200~4000Hzの音における垂直入射透過損失の平均値が9.0dB以上であることが好ましい。
 波数が200~4000Hzの音における垂直入射透過損失の平均値が9.0dB以上であれば、車外またはエンジンルームから車内への透過音を効率良く低減できる。この観点から、前記垂直入射透過損失の平均値は10.0dB以上がより好ましく、11.0dB以上がさらに好ましい。
 本発明の吸・遮音材用繊維成型体は、熱融着繊維の含有率が10~50質量%であり、熱融着繊維により固着化されていることが好ましい。熱融着繊維により、成型体を構成する繊維が固着化されていることで、複雑な形状でもその形状が維持できるため好ましい。
 熱融着繊維の含有率が10質量%以上であれば、繊維成型体の形状を維持し易くなり、50質量%以下であれば、本発明の吸・遮音材用繊維を含有でき、吸・遮音性能を良好にし易くなる。
 これらの観点から、熱融着繊維の含有率は15~45質量%がより好ましく、20~40質量%がさらに好ましい。
 本発明の吸・遮音材用繊維成型体において用いられる熱融着繊維の単繊維繊度は、1~5dtexが好ましい。
 熱融着繊維の単繊維繊度が1dtex以上であれば、吸・遮音材用繊維成型体を構成する繊維同士を固着化し易くなり、5dtex以下であれば、吸音率の低下が少なくできる。
 これらの観点から、熱融着繊維の単繊維繊度は、1.5~3dtexがさらに好ましい。
 本発明の吸・遮音材用繊維成型体は、繊維L、繊維M等を熱融着繊維で部分的に融着させたものであるが、繊維Nとして、単繊維繊度が1.0dtex以上の繊維を用い、その含有率を5~70質量%とすることができる。
 コストを低減するために、吸・遮音性能において、周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上である範囲で繊維Nを含有させることができる。
 繊維Nの含有率が5質量%以上であれば、コストの低減効果が顕著となり、70質量%以下であれば、吸・遮音性能が良好である範囲を保ち易い。
 繊維Nは、コスト低減効果の観点から、リサイクル繊維を用いることが好ましい。
 これらの観点から、繊維Nの含有率は15~60質量%がより好ましく、20~50質量%がさらに好ましい。
 また、本発明の吸・遮音材用繊維成型体は、難燃性能を付与するためにガラス繊維、鉱物繊維等の無機繊維を含有させても良い。
<実施例>
 以下、本発明を実施例により具体的に説明する。尚、実施例における各項目の測定は次の方法に拠った。
<単繊維繊度の測定方法>
 オートバイブロ式繊度測定器(サーチ制御電気社製、DeniorComputerDC-11)を使用し、温度25℃、湿度65%の条件下で測定した。測定は、25回行い、平均値を使用した。
<捲縮数、捲縮率の測定方法>
 JIS L 1015(2010) 8.12に準拠して測定した。
<垂直入射吸音率・垂直入射透過損失の測定方法>
 40mmに切断した吸・遮音材用繊維を70質量%と、ポリエステル熱融着繊維(単繊維繊度:2.2dtex、繊維長51mm、融点:110℃)を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体を製造した。
 具体的には合計72gの混綿原料を縦200mm横300mm高さが50mmの容器に入れ、高さ30mmまで圧縮した後に、加熱成型を行った。
 当該繊維成型体を、JIS A 1405-2及びASTM E2611に準拠して、所定の周波数の範囲における垂直入射吸音率(以下、「吸音率」ともいう。)、垂直入射透過損失(以下、「透過損失」ともいう。)をそれぞれ測定した。測定装置は、日本音響エンジニアリング社製、型番WinZacを使用した。
(実施例1)
 アクリロニトリル単位が93質量%、酢酸ビニル単位が7質量%からなる共重合体を水系懸濁重合により得た。この重合体の0.5質量%ジメチルホルムアミド溶液、25℃における還元粘度は2.0であった。この共重合体をジメチルアセトアミドに溶解して共重合体濃度24質量%の紡糸原液とした。紡糸ノズルの吐出孔より前記紡糸原液を40℃、ジメチルアセトアミド50%水溶液中に紡糸した。さらに95℃の熱水で5倍に延伸し、洗浄、油剤付与、乾燥ロールによる乾燥を行い、更に機械捲縮により、捲縮数が10個/25mm、捲縮率が7%、単繊維繊度0.1dtexの表1記載の繊維Aを得た。
 繊維Aを前記した測定方法により、吸音率、透過損失を測定した。その結果を表2に示す。
(実施例2~4、参考例1)
 紡糸原液の紡糸ノズルからの吐出量を変更して得られる繊度を調整した以外は、実施例1と同様にして、繊維B~繊維Eを得た。
 その後は、実施例1と同様にして繊維成型体を製造し、吸音率、透過損失を測定した。その結果を表2に示す。
(比較例1)
 単繊維繊度0.5dtexのポリエステル(PET)繊維Fを使用して、実施例1と同様にして、吸音率、透過損失を測定した。その結果を表2に示す。
 アクリル繊維とポリエステル繊維とを、同じ単繊維繊度で比較すると、アクリル繊維の方が吸音率の性能は高い。
 しかしながら、ポリエステル繊維であっても、単繊維繊度を小さくすれば、吸音率の性能は高くできると考えられる。これは、アクリル繊維の種々単繊維繊度による吸音率の効果から推測できる。
(比較例2)
 紡糸原液の紡糸ノズルからの吐出量を変更して得られる繊度を3.3dtexに調整した以外は、実施例1と同様にしてアクリル繊維Gを得た。
 その後は、実施例1と同様にして繊維成型体を製造し、吸音率、透過損失を測定した。その結果を表2に示す。
 単繊維繊度が大きいため、吸音率、透過損失とも低い値であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例5)
 実施例1で得た単繊維繊度が0.1dtexの繊維Aを40mmに切断した短繊維A(繊維L)、単繊維繊度が2.2dtex、繊維長が50mmの熱融着ポリエステル短繊維(熱融着繊維)及び単繊維繊度が3.3dtex、繊維長が50mmのレギュラーアクリル短繊維(繊維N)を、短繊維Aが50質量%、熱融着ポリエスエル短繊維が30質量%及びレギュラーアクリル短繊維が20質量%の混率で混合し、170℃で20分間加熱し、目付が1200g/m、厚みが30mmの不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
(実施例6)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例5と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
(実施例7)
 前記短繊維A(繊維L)、単繊維繊度が0.6dtex、繊維長が32mmのポリエステル短繊維(繊維M)、前記熱融着ポリエステル短繊維(熱融着繊維)及び前記レギュラーアクリル短繊維(繊維N)を、表3に示す混率で混合した以外は実施例5と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
(実施例8、9)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例7と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
(比較例3)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例5と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明の吸・遮音性アクリル繊維の含有率が少ないため、吸音率が低下した。
(比較例4)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例5と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明の吸・遮音性アクリル繊維を含有しておらず、単繊維繊度の太いレギュラーアクリル繊維では、吸音率を高くできなかった。
(比較例5)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例5と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明の吸・遮音性アクリル繊維を含有しておらず、0.6dtexのポリエステル繊維では、吸音率を高くできなかった。
(実施例10)
 不織布の目付を600g/mに変えた以外は、実施例5と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
(実施例11)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例10と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
(比較例6)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例10と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明のアクリル繊維の含有率は30質量%であったが、目付が小さいため、吸音率が低下した。
(比較例7)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例10と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明の吸・遮音性アクリル繊維の含有率が少ないため、吸音率が低下した。
(比較例8)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例10と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明の吸・遮音性アクリル繊維を含有しておらず、単繊維繊度の太いレギュラーアクリル繊維では、吸音率を高くできなかった。
(比較例9)
 混合する短繊維の混率を表3に示す通りに変えた以外は、実施例10と同様にして不織布を得た。
 吸音率と透過損失を測定した結果を表3に示す。
 本発明の吸・遮音性アクリル繊維を含有しておらず、0.6dtexのポリエステル繊維では、吸音率を高くできなかった。
Figure JPOXMLDOC01-appb-T000003
 本発明の吸・遮音材用繊維を用いて不織布のような繊維集合体にし、吸音材・遮音材として利用することで、軽量で静音性が求められる素材(自動車内外装材、住宅用建材の吸・遮音材)に有利に適用できるので、極めて有用であり、産業上の利用可能性が高い。

Claims (16)

  1.  単繊維繊度が0.01~0.5dtex、下記の繊維成型体とした時、周波数が200~1000Hzの音における前記繊維成型体の垂直入射吸音率の平均値が40%以上である吸・遮音材用繊維。
    (繊維成型体)
     繊維長が40mmの吸・遮音材用繊維を70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とする。
  2.  前記繊維成型体とした時、周波数が315~800Hzの音における前記垂直入射吸音率の平均値が40%以上である請求項1に記載の吸・遮音材用繊維。
  3.  前記繊維成型体とした時、周波数が400~630Hzの音における前記垂直入射吸音率の平均値が38%以上である請求項1または2に記載の吸・遮音材用繊維。
  4.  前記吸・遮音材用繊維がアクリル繊維である請求項1~3のいずれか一項に記載の吸・遮音材用繊維。
  5.  単繊維の繊維長が3~60mmである請求項1~4のいずれか一項に記載の吸・遮音材用繊維。
  6.  捲縮数が8~14個/25mm、捲縮率が5~9%である請求項1~5のいずれか一項に記載の吸・遮音材用繊維。
  7.  前記繊維成型体とした時、周波数が200~4000Hzの音における前記繊維成型体の垂直入射透過損失の平均値が9.0dB以上である請求項1~6のいずれか一項に記載の吸・遮音材用繊維。
  8.  周波数が200~1000Hzの音における垂直入射透過損失の平均値が6.3dB以上である請求項1~7のいずれか一項に記載の吸・遮音材用繊維。
  9.  アクリロニトリル共重合体を溶媒に溶解し、固形分濃度を10~30質量%とした紡糸溶液を、紡糸ノズルの吐出孔から、温度が20~60℃、溶剤濃度が25~50質量%の水溶液中に吐出し、単繊維繊度を0.01~0.5dtexとする吸・遮音材用繊維の製造方法。
  10.  単繊維繊度が0.01~0.5dtex、下記の繊維成型体とした時、周波数が200~1000Hzの音における前記繊維成型体の垂直入射吸音率の平均値が40%以上である繊維の吸・遮音材としての使用。
    (繊維成型体)
     繊維長が40mmの吸・遮音材用繊維を70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル熱融着繊維を30質量%とを混合し、170℃で20分間加熱し、その後冷却して厚み30mm、目付1200g/mの繊維成型体とする。
  11.  単繊維繊度が0.01~0.5dtexである吸・遮音材用繊維(以下「繊維L」という。)、熱融着繊維、必要に応じて、該繊維L、該熱融着繊維以外の、単繊維繊度が0.5dtexより大きく1.0dtex以下である他の繊維(以下、「繊維M」という。)を含有し、
     目付Dが400~2000g/m、厚みが20~50mmであって、
     下記(1)または(2)を満たす吸・遮音材用繊維成型体。
    (1)繊維Lの含有率Cが20~90質量%であり、目付D(g/m)と、繊維Lの含有率C(質量%)との関係が、D≧1600-30×Cを満たす。
    (2)繊維Lの含有率が5~30質量%であり、さらに繊維Mを含有し、繊維Lと繊維Mとの合計の含有率が40~90質量%である。
  12.  周波数が200~1000Hzの音における垂直入射吸音率の平均値が40%以上である請求項11に記載の吸・遮音材用繊維成型体。
  13.  繊維Lがアクリル繊維である請求項11または12に記載の吸・遮音材用繊維成型体。
  14.  周波数が200~4000Hzの音における垂直入射透過損失の平均値が9.0dB以上である請求項11~13のいずれか一項に記載の吸・遮音材用繊維成型体。
  15.  熱融着繊維の含有率が10~50質量%であり、熱融着繊維の一部が溶融し、繊維同士が固定化されている部分を有する請求項11~14のいずれか一項に記載の吸・遮音材用繊維成型体。
  16.  さらに、熱融着繊維以外の、単繊維繊度が1.0dtexより大きい繊維Nの含有率が5~70質量%である請求項11~15のいずれか一項に記載の吸・遮音材用繊維成型体。
PCT/JP2017/026884 2016-07-27 2017-07-25 吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体 WO2018021319A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780044457.4A CN109478401A (zh) 2016-07-27 2017-07-25 吸音/隔音材用纤维、该纤维的应用、吸音/隔音材用纤维的制造方法以及吸音/隔音材用纤维成型体
JP2017539474A JP6772152B2 (ja) 2016-07-27 2017-07-25 吸・遮音材用繊維、該繊維の使用及び吸・遮音材用繊維成型体
EP17834321.6A EP3493199A4 (en) 2016-07-27 2017-07-25 FIBER FOR ABSORPTION / ACOUSTIC INSULATION MATERIAL, USE OF SAID FIBER, METHOD FOR MANUFACTURING FIBER FOR ACOUSTIC ABSORPTION / INSULATION MATERIAL, AND FIBER MOLDING PRODUCT FOR ACOUSTIC ABSORPTION / INSULATION MATERIAL
US16/257,209 US20190156810A1 (en) 2016-07-27 2019-01-25 Fiber for sound absorbing/insulating material, use of said fiber, manufacturing method for fiber for sound absorbing/insulating material, and fiber-molded product for sound absorbing/insulating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146896 2016-07-27
JP2016146896 2016-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/257,209 Continuation US20190156810A1 (en) 2016-07-27 2019-01-25 Fiber for sound absorbing/insulating material, use of said fiber, manufacturing method for fiber for sound absorbing/insulating material, and fiber-molded product for sound absorbing/insulating material

Publications (1)

Publication Number Publication Date
WO2018021319A1 true WO2018021319A1 (ja) 2018-02-01

Family

ID=61017075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026884 WO2018021319A1 (ja) 2016-07-27 2017-07-25 吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体

Country Status (5)

Country Link
US (1) US20190156810A1 (ja)
EP (1) EP3493199A4 (ja)
JP (3) JP6772152B2 (ja)
CN (1) CN109478401A (ja)
WO (1) WO2018021319A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203210A (ja) * 2018-05-22 2019-11-28 帝人フロンティア株式会社 繊維構造体
CN113802269A (zh) * 2021-08-24 2021-12-17 天津朗华科技发展有限公司 一种隔音、防火、隔热熔喷布及其制备方法和应用
EP3937164A1 (en) * 2019-03-07 2022-01-12 Toray Industries, Inc. Non-woven fabric for sound-absorbing material, sound-absorbing material, and method for producing non-woven fabric for sound-absorbing material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772152B2 (ja) * 2016-07-27 2020-10-21 三菱ケミカル株式会社 吸・遮音材用繊維、該繊維の使用及び吸・遮音材用繊維成型体
WO2021172529A1 (ja) * 2020-02-28 2021-09-02 三菱ケミカル株式会社 繊維成型体の製造方法、繊維成型体、吸音材、自動車内装材及び極細繊維

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222717A (ja) * 1998-02-04 1999-08-17 Mitsubishi Rayon Co Ltd 高強力極細アクリル繊維及びそのシート状物並びに繊維複合材料
JP2004354844A (ja) * 2003-05-30 2004-12-16 Toray Ind Inc 吸音材構成部材および吸音材
JP2006526081A (ja) * 2003-03-31 2006-11-16 リーター テクノロジーズ アー ゲー 車両の内張用の音響的効果を有する不織布
JP2008095255A (ja) * 2006-10-16 2008-04-24 Mitsubishi Rayon Co Ltd 抗ピル性アクリル系繊維とその製造方法
JP2010085873A (ja) * 2008-10-02 2010-04-15 Kuraray Kuraflex Co Ltd 複層吸音材
JP2012112072A (ja) * 2010-11-25 2012-06-14 Teijin Fibers Ltd 繊維構造体および複合繊維構造体およびクッション材および吸音材および断熱材
JP2016034828A (ja) * 2015-11-18 2016-03-17 株式会社ヒロタニ 車両用防音材の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149674B2 (ja) * 1994-03-25 2001-03-26 日産自動車株式会社 自動車用内装材
JP3170998B2 (ja) * 1994-04-18 2001-05-28 日産自動車株式会社 自動車用遮音材料
JP4167442B2 (ja) * 2002-04-05 2008-10-15 株式会社フジコー 車両用の吸音材
JP5086018B2 (ja) * 2007-09-27 2012-11-28 株式会社クラレ 緩衝材及びその製造方法
JP2009186825A (ja) * 2008-02-07 2009-08-20 Teijin Fibers Ltd 吸音構造体
JP6123886B2 (ja) * 2013-04-26 2017-05-10 株式会社オートネットワーク技術研究所 吸音材付きワイヤーハーネス
JP5844339B2 (ja) * 2013-11-25 2016-01-13 株式会社ヒロタニ 車両用防音材の製造方法
JP6362400B2 (ja) * 2014-05-02 2018-07-25 スリーエム イノベイティブ プロパティズ カンパニー 不織布ウェブ
JP6772152B2 (ja) * 2016-07-27 2020-10-21 三菱ケミカル株式会社 吸・遮音材用繊維、該繊維の使用及び吸・遮音材用繊維成型体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222717A (ja) * 1998-02-04 1999-08-17 Mitsubishi Rayon Co Ltd 高強力極細アクリル繊維及びそのシート状物並びに繊維複合材料
JP2006526081A (ja) * 2003-03-31 2006-11-16 リーター テクノロジーズ アー ゲー 車両の内張用の音響的効果を有する不織布
JP2004354844A (ja) * 2003-05-30 2004-12-16 Toray Ind Inc 吸音材構成部材および吸音材
JP2008095255A (ja) * 2006-10-16 2008-04-24 Mitsubishi Rayon Co Ltd 抗ピル性アクリル系繊維とその製造方法
JP2010085873A (ja) * 2008-10-02 2010-04-15 Kuraray Kuraflex Co Ltd 複層吸音材
JP2012112072A (ja) * 2010-11-25 2012-06-14 Teijin Fibers Ltd 繊維構造体および複合繊維構造体およびクッション材および吸音材および断熱材
JP2016034828A (ja) * 2015-11-18 2016-03-17 株式会社ヒロタニ 車両用防音材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493199A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203210A (ja) * 2018-05-22 2019-11-28 帝人フロンティア株式会社 繊維構造体
JP7184537B2 (ja) 2018-05-22 2022-12-06 帝人フロンティア株式会社 繊維構造体
EP3937164A1 (en) * 2019-03-07 2022-01-12 Toray Industries, Inc. Non-woven fabric for sound-absorbing material, sound-absorbing material, and method for producing non-woven fabric for sound-absorbing material
EP3937164A4 (en) * 2019-03-07 2022-11-09 Toray Industries, Inc. NON-WOVEN FABRIC FOR SOUND ABSORBING MATERIAL, SOUND ABSORBING MATERIAL AND METHOD FOR PRODUCTION OF A NON-WOVEN FABRIC FOR SOUND ABSORBING MATERIAL
CN113802269A (zh) * 2021-08-24 2021-12-17 天津朗华科技发展有限公司 一种隔音、防火、隔热熔喷布及其制备方法和应用

Also Published As

Publication number Publication date
JP2019168711A (ja) 2019-10-03
US20190156810A1 (en) 2019-05-23
EP3493199A4 (en) 2019-10-16
JP2021193465A (ja) 2021-12-23
EP3493199A1 (en) 2019-06-05
CN109478401A (zh) 2019-03-15
JPWO2018021319A1 (ja) 2018-08-02
JP6772152B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2018021319A1 (ja) 吸・遮音材用繊維、該繊維の使用、吸・遮音材用繊維の製造方法及び吸・遮音材用繊維成型体
CN102329080B (zh) 一种玄武岩纤维材料的生产方法
KR101836623B1 (ko) 자동차 외장용 부직포 보드 및 이의 제조방법
KR20160070052A (ko) 고흡음 계수의 e-PTFE 복합 섬유면
US20200071865A1 (en) Dimensionally-stable, fire-resistant melt-blown fibers and nonwoven structures including a flame retarding polymer
WO2014038722A1 (ja) 不織布構造体およびその製造方法
JP5863474B2 (ja) メルトブローン不織布、その用途、及びその製造方法
KR102113351B1 (ko) 전자파 차폐 및 흡음성능이 우수한 복합섬유집합체 및 이의 제조방법
CN104339782A (zh) 一种车用吸音隔热材料及制备方法、制备的车用隔音垫
CA3105336A1 (en) Fiber aggregate for sound insulation, sound absorbing/insulating material, and sound absorbing/insulating material for vehicle
KR102415147B1 (ko) 압축성형체용 숏컷 섬유, 이를 이용한 압축성형체 및 이의 제조방법
WO2021177274A1 (ja) 吸音/遮音材用繊維成型体
CN105624918A (zh) 一种厨房用吸油棉及其制备方法
KR101720162B1 (ko) 압축회복률 및 흡음특성이 우수한 극세사 흡음재 및 이의 제조방법 및 이를 포함하는 흡음재
JP2021101053A (ja) 異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材
KR20120131972A (ko) 경량성이 우수한 복합부직포
KR101875928B1 (ko) 압축회복력이 우수한 흡음성 섬유집합체
WO2021172529A1 (ja) 繊維成型体の製造方法、繊維成型体、吸音材、自動車内装材及び極細繊維
KR20220021068A (ko) 내열 흡음재 및 그 제조방법
KR101958482B1 (ko) 흡음성능이 우수한 섬유집합체 및 그 제조방법
JPH03234819A (ja) 軽量海島複合型ポリエステル繊維
CN113802269A (zh) 一种隔音、防火、隔热熔喷布及其制备方法和应用
KR102484011B1 (ko) 습식 부직포, 이를 포함하는 흡음성 복합재 및 이의 제조방법
CN109762304A (zh) 一种汽车内饰用吸音、隔热棉及其制备方法
CN117488423A (zh) 一种无源降温光热调控纤维及织物的制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017539474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834321

Country of ref document: EP

Effective date: 20190227