WO2018021260A1 - 作業車両の負荷演算システム - Google Patents

作業車両の負荷演算システム Download PDF

Info

Publication number
WO2018021260A1
WO2018021260A1 PCT/JP2017/026744 JP2017026744W WO2018021260A1 WO 2018021260 A1 WO2018021260 A1 WO 2018021260A1 JP 2017026744 W JP2017026744 W JP 2017026744W WO 2018021260 A1 WO2018021260 A1 WO 2018021260A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
electric motor
current value
actuators
work vehicle
Prior art date
Application number
PCT/JP2017/026744
Other languages
English (en)
French (fr)
Inventor
洋幸 林
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Publication of WO2018021260A1 publication Critical patent/WO2018021260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment

Definitions

  • the present invention relates to a load calculation system for work vehicles.
  • a winch control device using a variable capacity winch motor capable of switching the rotational speed with respect to the amount of supplied oil to the low speed mode or the high speed mode by switching the capacity per rotation is known.
  • the winch control device disclosed in Patent Document 1 performs high / low speed switching according to the load of the suspended load and the spool opening calculated based on the boom length, boom angle, moment, and the like.
  • an expensive overload prevention device is required for the determination of switching between high and low speeds, and it is also necessary to measure the load with a load meter (see FIGS. 4 and 5).
  • an object of the present invention is to provide a load calculation system for a work vehicle that can estimate a load with a simple configuration.
  • a load calculation system for a work vehicle is a load calculation system for a work vehicle, comprising a plurality of actuators, a power distribution device that distributes power to the plurality of actuators, and the power An electric motor serving as a power source for the plurality of actuators via a distribution device; a current detector for detecting a current value of the electric motor; and a determination unit for determining a load of the actuator based on the detected current value; It is equipped with.
  • the load calculation system for a work vehicle includes a plurality of actuators, a plurality of power distribution devices, an electric motor, a current detector that detects a current value of the electric motor, and a detected current value.
  • a determination unit that determines the load of the actuator based on the determination unit. According to such a configuration, the load can be estimated with an inexpensive and simple configuration. As a result, the operation speed can be automatically switched between high speed and low speed based on the load of the suspended load.
  • FIG. 2 is an explanatory diagram of a configuration of a hydraulic system according to Embodiment 1.
  • FIG. FIG. 2 is a block diagram of a configuration of a control system according to the first embodiment. It is explanatory drawing of the structure of the hydraulic system of a prior art example. It is a block diagram of the structure of the control system of a prior art example. It is explanatory drawing of the structure of the load calculation system of Example 2.
  • FIG. It is explanatory drawing of the structure of the load calculation system of Example 3.
  • FIG. It is a graph which shows the relationship between the operation amount of the load calculation system of Example 3, and the maximum speed.
  • (A) is a case where it changes stepwise
  • (b) is a case where it changes inversely.
  • the loading-type truck crane 1 includes a vehicle body 10 having a traveling function, an outrigger 11 that prevents the vehicle body 10 from overturning, a post 12 that is slidably provided on the vehicle body 10, and a post 12 that can be raised and lowered.
  • the loading-type truck crane 1 includes a telescopic cylinder 72 that is disposed inside the boom 13 and expands and contracts the boom 13 as a plurality of hydraulically driven actuators, and the boom 13 and the post. And a turning motor 73 for turning 12 together.
  • a winch 48 and a speed reducer 47 are arranged inside the post 12, and the wire 15 can be wound or fed out by rotation of a variable capacity winch motor 44 as an actuator. .
  • the boom 13 includes a first boom 131 whose base end portion is supported by the post 12 so as to be raised and lowered, a second boom 132 inserted into the first boom 131, a third boom 133 inserted into the second boom 132, Is configured in a nested manner.
  • the hydraulic circuit including the load calculation system 2 of the working vehicle includes a hydraulic pump 41 that supplies pressure oil to a plurality of actuators, a relief valve 42, a directional flow control valve 43, and a variable displacement winch motor 44.
  • the switching valve 45, the tilt angle control cylinder 46, the speed reducer 47, and the winch 48 are included.
  • the directional flow control valve 43 is a 6-port manual switching valve. When the operator manually operates the operation lever 49 as a winch operation means, the direction and flow rate of the hydraulic oil are adjusted in proportion to the operation amount.
  • the variable capacity winch motor 44 is supplied.
  • a differential transformer 54 is attached to the directional flow control valve 43 as an operation amount detector that detects the spool position.
  • the directional flow control valve 43 can be operated by operating a remote operation terminal (not shown).
  • the variable capacity winch motor 44 is a swash plate type or oblique axis type axial piston motor, and rotates in a low speed mode or a high speed mode according to an instruction from the controller 3. Specifically, when the switching valve 45 that has been instructed by the controller 3 is switched to the OFF position, the pressure oil in the tilt angle control cylinder 46 is released and the internal spring moves to the large capacity position (low speed mode). Become. On the other hand, when the switching valve 45 is switched to the ON position, the drive pressure of the variable displacement winch motor 44 is supplied to the tilt angle control cylinder 46 via the shuttle valve to enter the small displacement position (high speed mode). .
  • the controller 3 indicates the operating direction and the operating speed of the hoisting cylinder 71, the telescopic cylinder 72, and the turning motor 73 by operating each directional flow control valve manually (or remotely).
  • the hydraulic pump 41 supplies pressure oil to the plurality of actuators 71, 72, 73, 44.
  • the electric motor 60 that rotationally drives the hydraulic pump 41 may receive loads from the plurality of actuators 71, 72, 73, 44 simultaneously.
  • the work vehicle load calculation system 2 includes the electric motor 60 that drives the hydraulic pump 41 to rotate.
  • the motor current flowing through the electric motor 60 is supplied from a battery (battery) and is monitored and controlled by the inverter 61. That is, the load-type truck crane 1 as the work vehicle of the present embodiment does not take out the rotational power of the engine via the PTO as a power source of the hydraulic pump 41 that operates the plurality of actuators as in the related art.
  • a motor 60 is used.
  • the electric motor 60 is a so-called AC motor, and by using the inverter 61, the torque, the rotational speed, and the like can be finely controlled.
  • the AC motor any of a synchronous motor, an induction motor, and an AC commutator motor may be used.
  • the inverter 61 converts DC power from the battery into AC power.
  • the inverter 61 adjusts the frequency and the amount of current for the electric motor 60 when converting from direct current to alternating current. That is, the inverter 61 controls the rotational speed of the electric motor 60 while allowing an appropriate current to flow through the electric motor 60.
  • the inverter 61 also has a function as a current detector that measures the motor current flowing through the electric motor 60.
  • the inverter 61 of this embodiment includes a storage unit 61a that stores a predetermined current threshold value in advance, and a determination unit 61b that compares and determines the stored current threshold value with an actual motor current. A signal is transmitted to the controller 3. This determination may be, for example, simply determining two steps (magnitude relation with respect to the current threshold) or determining a plurality of steps.
  • the controller 3 which received the determination result signal from the inverter 61 is based on the determination result signal from the inverter 61 and the determination result signal of the spool position P based on the determination result signal from the inverter 61 as described below. Which of these is to be instructed, the switch valve 45 is instructed to be off (low speed mode) or on (high speed mode).
  • the controller 3 as a control unit of the present embodiment is a general-purpose microcomputer, and includes a position determination unit 34, a switching position storage unit 35, a mode determination unit 36, and an output unit 37. That is, unlike the prior art, the load calculation unit (31), the load determination unit (32), and the switching load storage unit (33) are not provided (see also FIG. 5).
  • the position determination unit 34 indirectly determines the operation amount of the operation lever 49 based on the spool position P of the directional flow control valve 43 detected by the differential transformer 54. That is, the position determination unit 34 determines the magnitude relationship between the switching position PX stored in the switching position storage unit 35 and the detected spool position P.
  • the switching position PX is determined so that the fine movement area can be secured while suppressing the shock in consideration of the impact due to the speed difference when switching between the high speed mode and the low speed mode and the size of the fine movement operation area.
  • the mode determination unit 36 determines whether to instruct the low speed mode or the high speed mode based on the determination result of the inverter 61 and the determination result of the spool position P. More specifically, since the mode determination unit 36 is considered to have an intention to perform a fine movement operation when the spool position P is less than the switching position PX, the low speed mode is set regardless of the magnitude of the motor current and the current threshold value. Is determined.
  • the mode determination unit 36 is likely to move at high speed, so the mode to be applied is changed depending on the magnitude relationship between the motor current and the current threshold. That is, when the spool position P is greater than or equal to the switching position PX, if the motor current is less than the current threshold, the intention of high-speed movement is prioritized and the high-speed mode is determined. The low speed mode is determined giving priority to the performance.
  • a storage unit 38 for storing the current value of the electric motor 60 before operation of a certain actuator is further mounted, and the controller 3 stores the current value of the electric motor 60 during operation of the certain actuator.
  • a load of a certain actuator can be determined based on a difference between the current value of the electric motor 60 before the operation of the certain actuator.
  • the controller 3 is based on the difference between the current value of the electric motor 60 during operation of the variable capacity winch motor 44 and the stored current value of the electric motor 60 before operation of the variable capacity winch motor 44.
  • the load of the variable capacity winch motor 44 can be determined.
  • the load calculation system 2 for the work vehicle according to the present embodiment includes the hoisting cylinder 71, the telescopic cylinder 72, the turning motor 73, and the variable displacement winch motor 44, which are a plurality of hydraulically driven actuators.
  • a hydraulic pump 41 that supplies pressure oil to the plurality of actuators 71 to 73, 44, an electric motor 60 that drives the hydraulic pump 41, and a current detector that detects a current value of the electric motor 60,
  • an inverter 61 having a function of a determination unit 61b that determines the load of the actuator based on the detected current value.
  • the configuration of the present embodiment it is possible to estimate the load with an inexpensive and simple configuration even in a model without an overload prevention device. That is, it is not necessary to add a new pressure sensor or load cell to measure the load. As a result, the operating speed can be automatically switched between high speed and low speed based on the actual load of the suspended load.
  • a storage unit 38 that stores a current value of the electric motor 60 before operation of one actuator and a controller 3 as a control unit that controls a plurality of actuators are further provided. Based on the difference between the current value of the electric motor 60 during operation of one actuator and the stored current value of the electric motor 60 before operation of one actuator, the load of one actuator is determined. It has become. For this reason, even when a plurality of actuators are operated at the same time, it is possible to calculate the load acting on one actuator by removing the influence of the loads of other actuators.
  • the storage unit 38 includes: The current value of the electric motor 60 before operation of the variable capacity winch motor 44 is stored, and the controller 3 stores the current value of the electric motor 60 during operation of the variable capacity winch motor 44 and the stored variable capacity winch motor.
  • the load of the variable capacity winch motor 44 is determined based on the difference between the current value of the electric motor 60 before the operation 44. For this reason, even if the raising / lowering cylinder 71, the telescopic cylinder 72, the turning cylinder 73, etc. are operated simultaneously, the load acting on the variable capacity winch motor 44 can be accurately calculated by removing the influence of the load of these actuators. become.
  • the controller 3 controls the variable capacity winch motor 44 based on the calculated load determination result of the variable capacity winch motor 44 and the operation amount of the operation lever of the variable capacity winch motor 44. It is configured to switch to the high speed mode or the low speed mode. For this reason, the mode is determined in consideration of both the load of the suspended load estimated by the inverter 61 and the spool position P proportional to the operation amount of the operation lever based on the operator's intention, thereby improving safety and operability. Can be harmonized.
  • the mode is determined based only on the load of the suspended load with priority given to safety, the high speed mode is set when the load of the suspended load is small, and fine movement operation in the low speed mode is not possible even if the operation amount is reduced. The operability will be poor.
  • the mode is determined based on only the operation amount giving priority to operability, the high-speed mode may occur when the operation amount is large even if the load of the suspended load is large, which may impair safety. Therefore, operability and safety can be harmonized by determining the mode based on both the load of the suspended load and the operation amount.
  • the work vehicle load calculation system 2A includes an electric motor 60 that is rotationally driven by a battery current, an inverter 61 of the electric motor 60, and a differential that distributes the rotational power of the electric motor 60 as it is.
  • a power distribution mechanism 81 such as a planetary gear mechanism, a high / low speed switching mechanism 82 that switches the rotational power transmitted through the power distribution mechanism 81 to high speed or low speed and transmits it to the speed reducer 47, and an operation lever 84. I have.
  • another load 83 that uses rotational power as rotational power is connected to the power distribution mechanism 81.
  • the inverter 61 includes a storage unit 61a that stores a predetermined current threshold value in advance, and a determination unit 61b that compares and determines the stored current threshold value with an actual motor current. A result signal is transmitted to the controller 3.
  • the controller 3 that has received the determination result signal from the inverter 61 is based on the determination result signal from the inverter 61 and the determination result signal of the position of the operation lever 84 in substantially the same manner as in the first embodiment. Alternatively, it is determined which one of the high speed mode is to be instructed, and the low speed mode or the high speed mode is instructed to the high / low speed switching mechanism 82. (Action / Effect)
  • the work vehicle load calculation system 2A includes a plurality of actuators 48, 72, and 83, and a power distribution mechanism 81 that distributes power to the plurality of actuators 48, 72, and 83.
  • An electric motor 60 that serves as a power source for the plurality of actuators 48, 72, and 83 via the power distribution mechanism, a current detector that detects the current value of the electric motor 60 (built in the inverter 61), and the detected current value
  • a determination unit 61b that determines the loads of the actuators 48, 72, and 83 based on the determination unit 61b.
  • the present embodiment it is possible to estimate the load with an inexpensive and simple configuration even in a model without an overload prevention device. That is, it is not necessary to add a new pressure sensor or load cell to measure the load. As a result, the operating speed can be automatically switched between high speed and low speed based on the actual load of the suspended load.
  • the present invention can also be applied when distributing rotational power to a plurality of actuators 48, 72, and 83 that are used as they are.
  • the storage unit 61a that stores the current value of the electric motor 60 before the operation of the winch 48 as one actuator, and the controller 3 that controls the plurality of actuators 48, 72, and 83 are further provided.
  • the controller 3 calculates the load on the winch 48 based on the difference between the current value of the electric motor 60 during operation of the winch 48 and the current value of the electric motor 60 before operation. For this reason, even when a plurality of actuators 48, 72, 83 are operated at the same time, the load acting on the winch 48 can be calculated by removing the influence of the loads of the other actuators 72, 83.
  • the load calculation system 2 ⁇ / b> B of the working vehicle includes an electric motor 60 that is rotationally driven by a battery current, a winch 48 that is directly connected to the electric motor 60, an operation lever 84, It has. Further, the inverter 61 has a built-in controller 30 so that storage and / or determination can be performed inside the inverter 61.
  • the inverter 61 having the function of the determination unit 61b and the controller 3 as the control unit has been described.
  • the present invention is not limited to this, and the determination is performed with one piece of hardware. It can also serve as the function of the control unit.
  • the current threshold storage unit 61a and the storage unit 38 that stores the current value of the electric motor 60 before operation of a certain actuator may be the same hardware.
  • the load of the variable capacity winch motor 44 that rotates the winch 48 is determined.
  • the present invention is not limited to this, and the present invention is controlled according to the load current of the electric motor 60. It can be widely applied to the configuration for switching between.
  • the present invention can also be applied to the case where the winch 48 is directly rotated by the electric motor 60 (see Example 3).
  • the present invention is not limited to this.
  • the present invention can be widely applied to any work machine that uses a hydraulic pump 41 that is rotationally driven by the electric motor 60 as a power source.
  • the present invention can also be applied to a work machine that mechanically distributes and uses the power of the electric motor 60 (see Example 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

簡易な構成によって荷重を推定することができる、作業車両の負荷演算システムを提供する。作業車両の負荷演算システム2である。作業車両の負荷演算システム2は、油圧で駆動される複数のアクチュエータ71~73、44と、複数のアクチュエータ71~73、44へ圧油を供給する油圧ポンプ41と、油圧ポンプ41を駆動する電動モータ60と、電動モータ60の電流値を検出する電流検出器61と、検出された電流値に基づいてアクチュエータ71~73、44の負荷を判定する判定部61bと、を備えている。

Description

作業車両の負荷演算システム
 本発明は、作業車両の負荷演算システムに関するものである。
 従来から、1回転当りの容量の大小を切換えることで、供給油量に対する回転数を低速モード又は高速モードに切換えることのできる可変容量型ウインチモータを用いたウインチの制御装置が知られている。
 例えば、特許文献1のウインチの制御装置は、ブーム長さ、ブーム角度、モーメント等に基づいて演算した吊荷の荷重とスプール開度とに応じて高低速切換を行っている。このウインチの制御装置では、高低速切換の判定に高価な過負荷防止装置が必要であるうえ、荷重計で荷重を計測する必要もあった(図4及び図5参照)。
特開2012-62175号公報
 ところで、近年、住宅地での積み下ろし作業における騒音を抑制することなどを目的として、油圧ポンプの駆動源に従来型のエンジン(PTO方式)ではなく電動モータを用いる電動駆動が注目されてきている。電動駆動の油圧ポンプを備える作業車においても、高低速切換や荷振制御のために荷重を推定することが必要である。
 そこで、本発明は、簡易な構成によって荷重を推定することができる、作業車両の負荷演算システムを提供することを目的としている。
 前記目的を達成するために、本発明の作業車両の負荷演算システムは、作業車両の負荷演算システムであって、複数のアクチュエータと、複数の前記アクチュエータへ動力を分配する動力分配装置と、前記動力分配装置を介して複数の前記アクチュエータの動力源となる電動モータと、前記電動モータの電流値を検出する電流検出器と、検出された電流値に基づいて前記アクチュエータの負荷を判定する判定部と、を備えている。
 このように、本発明の作業車両の負荷演算システムは、複数のアクチュエータと、複数の動力分配装置と、電動モータと、電動モータの電流値を検出する電流検出器と、検出された電流値に基づいてアクチュエータの負荷を判定する判定部と、を備えている。このような構成によれば、安価かつ簡易な構成によって荷重を推定することができるようになる。これによって、吊荷の荷重に基づいて作動速度を自動で高速又は低速に切り換えられるようになる。
積載型トラッククレーンの全体の構成を説明する側面図である。 実施例1の油圧系の構成の説明図である。 実施例1の制御系の構成のブロック図である。 従来例の油圧系の構成の説明図である。 従来例の制御系の構成のブロック図である。 実施例2の負荷演算システムの構成の説明図である。 実施例3の負荷演算システムの構成の説明図である。 実施例3の負荷演算システムの操作量と最高速度との関係を示すグラフである。(a)は階段状に変化する場合であり、(b)は逆比例状に変化する場合である。
 以下、本発明の実施の形態について図面を参照して説明する。
(機械系の構成)
 まず、本実施例の作業車両の負荷演算システム2(図2参照)を備える移動式クレーンとしての積載型トラッククレーン1の機械系の全体構成について、図1を用いて説明する。ただし、本発明は、積載型トラッククレーン1だけではなく、電動油圧ポンプを動力源とする作業機械に広く適用することができる。
 本実施例の積載型トラッククレーン1は、走行機能を有する車体10と、車体10の転倒を防止するアウトリガ11と、車体10に旋回自在に立設されたポスト12と、ポスト12に起伏自在に支持されたブーム13と、ブーム13を起伏させるアクチュエータとして起伏シリンダ71と、ワイヤ15を介してブーム13先端から吊り下げられるフック16と、荷物を積載する荷台17と、運転用のキャビン18と、を備えている。この他に、積載型トラッククレーン1は、図2に示すように、油圧で駆動される複数のアクチュエータとして、ブーム13の内部に配置されてブーム13を伸縮させる伸縮シリンダ72と、ブーム13及びポスト12を一体に旋回させる旋回モータ73と、を備えている。
 さらに、図2に示すように、ポスト12の内部には、ウインチ48及び減速機47が配置されており、アクチュエータとしての可変容量型ウインチモータ44の回転によってワイヤ15を巻取り又は繰り出すことができる。
 また、ブーム13は、基端部がポスト12に起伏自在に支持される第1ブーム131、第1ブーム131に挿入される第2ブーム132、第2ブーム132に挿入される第3ブーム133、によって入れ子状に構成されている。
(油圧系の構成)
 次に、本実施例の作業車両の負荷演算システム2を含む油圧回路の構成について、図2を用いて説明する。
 本実施例の作業車両の負荷演算システム2を含む油圧回路は、複数のアクチュエータに圧油を供給する油圧ポンプ41と、リリーフ弁42と、方向流量制御弁43と、可変容量型ウインチモータ44と、切換弁45と、傾転角制御シリンダ46と、減速機47と、ウインチ48と、によって構成されている。
 方向流量制御弁43は、6ポート手動切換弁であり、作業者がウインチ操作手段としての操作レバー49を手動で操作することで、操作量に比例して作動油の方向及び流量が調整されて可変容量型ウインチモータ44に供給される。加えて、方向流量制御弁43には、スプール位置を検出する操作量検出器としての差動トランス54が取り付けられている。この他、方向流量制御弁43は、遠隔操作端末(不図示)を操作することで操作することもできる。
 可変容量型ウインチモータ44は、斜板式又は斜軸式のアキシャルピストンモータであり、コントローラ3の指示によって低速モード又は高速モードで回転する。具体的には、コントローラ3の指示を受けた切換弁45がオフ位置に切換えられた場合には、傾転角制御シリンダ46の圧油が開放されて内蔵スプリングによって大容量位置(低速モード)となる。一方、切換弁45がオン位置に切換えられた場合には、可変容量型ウインチモータ44の駆動圧がシャトル弁を介して傾転角制御シリンダ46に供給されて小容量位置(高速モード)となる。
 同様に、図示しないが、それぞれの方向流量制御弁が手動操作(又は遠隔操作)によって操作されることで、コントローラ3は起伏シリンダ71、伸縮シリンダ72、旋回モータ73の動作方向及び動作速度を指示する。すなわち、本実施例の作業車両の負荷演算システム2では、油圧ポンプ41は、複数のアクチュエータ71、72、73、44へ圧油を供給している。逆に言うと、油圧ポンプ41を回転駆動する電動モータ60は、複数のアクチュエータ71、72、73、44から同時に負荷を受ける可能性がある。
 このように、作業車両の負荷演算システム2は、油圧ポンプ41を回転駆動させる電動モータ60を備えている。そして、電動モータ60に流れるモータ電流は、バッテリ(電池)から供給され、インバータ61によって監視及び制御されている。すなわち、本実施例の作業車両としての積載型トラッククレーン1は、複数のアクチュエータを動作させる油圧ポンプ41の動力源として、従来のようにPTOを介してエンジンの回転動力を取り出すのではなく、電動モータ60を使用している。
 電動モータ60は、いわゆるACモータであり、インバータ61を使用することによって、トルクや回転数などを細かく制御できる。ACモータとしては、同期モータ、誘導モータ、交流整流子モータのいずれを用いてもよい。
 インバータ61は、バッテリからの直流電力を交流電力に変換する。また、インバータ61は、直流から交流へ変換する際に、電動モータ60用に周波数や電流量を調整する。すなわち、インバータ61は、電動モータ60に適切な電流を流すとともに電動モータ60の回転数を制御する。このように、インバータ61は、電動モータ60に流れるモータ電流を計測する電流検出器としての機能も有している。
 そして、本実施例のインバータ61は、あらかじめ所定の電流閾値を記憶する記憶部61aと、記憶された電流閾値を実際のモータ電流と比較・判定する判定部61bと、を備えており、判定結果信号をコントローラ3に送信する。この判定は、例えば、単純に2段階(電流閾値に対する大小関係)を判定するものであってもよいし、複数段階を判定するものであってもよい。
 そして、インバータ61からの判定結果信号を受信したコントローラ3は、以下に説明するように、インバータ61からの判定結果信号と、スプール位置Pの判定結果信号と、に基づいて、低速モード又は高速モードのいずれを指示するか判定し、切換弁45に対してオフ(低速モード)又はオン(高速モード)を指示する。
(制御部の構成)
 次に、本実施例のウインチの制御装置2の制御部としてのコントローラ3の構成について、図2、3を用いて説明する。
 本実施例の制御部としてのコントローラ3は、汎用のマイクロコンピュータであり、位置判定部34と、切換位置記憶部35と、モード判定部36と、出力部37と、を備えている。すなわち、従来のように、荷重演算部(31)と、荷重判定部(32)と、切換荷重記憶部(33)と、は備えていない(図5も参照)。
 位置判定部34は、差動トランス54で検出された方向流量制御弁43のスプール位置Pによって、操作レバー49の操作量を間接的に判定する。つまり、位置判定部34は、切換位置記憶部35に記憶した切換位置PXと、検出されたスプール位置Pと、の大小関係を判定する。ここにおいて切換位置PXは、高速モードと低速モードの切換時の速度差による衝撃と、微動操作領域の広さと、を考慮し、衝撃を抑えつつ微動領域を確保できるように決められる。
 モード判定部36は、インバータ61での判定結果と、スプール位置Pの判定結果と、に基づいて、低速モード又は高速モードのいずれを指示するか判定する。具体的にいうと、モード判定部36は、スプール位置Pが切換位置PX未満の場合には、微動操作したいという意思があると考えられるため、モータ電流と電流閾値の大小に関係なく、低速モードと判定する。
 一方、モード判定部36は、スプール位置Pが切換位置PX以上の場合には、高速移動させたいという意思があると考えられるため、モータ電流と電流閾値の大小関係によって適用すべきモードを変える。つまり、スプール位置Pが切換位置PX以上の場合には、モータ電流が電流閾値未満であれば、高速移動の意図を優先して高速モードと判定し、モータ電流が電流閾値以上であれば、安全性を優先して低速モードと判定する。
(操作量が少ない場合)
 より具体的にいうと、操作量が少ない場合(すなわち、スプール位置Pが切換位置PX未満の場合)には、操作者は微動操作したいという意思があると推定されるため、モータ電流によらず(すなわち、吊荷の重さによらず)、低速モードを維持する。
(操作量が多く、モータ電流が小さい場合)
 操作量が多く(すなわち、スプール位置Pが切換位置PX以上の場合)、かつ、モータ電流が小さい場合(吊荷が軽い場合)には、操作者は吊荷を高速移動させたいという意思があると推定されるため、この意思を尊重して高速モードとする。高速モードで移動させても、吊荷が軽いため、安全性を損なう恐れは小さい。さらに、吊荷を迅速に運搬することができる。
(操作量が多く、モータ電流が大きい場合)
 操作量が多く(すなわち、スプール位置Pが切換位置PX以上の場合)、かつ、モータ電流が大きい場合(吊荷が重い場合)には、操作者は吊荷を高速移動させたいという意思があると推定されるものの、吊荷が重く安全性を損なう恐れがあるため低速モードとする。低速モードで移動させないと、吊荷が重いため、安全性を損なう恐れがある。
(複数のアクチュエータが同時に操作される場合)
 上述した各場合において、実際には、同時に複数のアクチュエータが操作される可能性がある。そうすると、電動モータ60には、複数のアクチュエータから負荷がかかるようになるため、単一のアクチュエータのみの負荷を判定することが困難となる。そこで、ある1つのアクチュエータの操作前の電動モータ60の電流値を記憶する記憶部38をさらに搭載し、コントローラ3が、ある1つのアクチュエータの操作中の電動モータ60の電流値と、記憶されたある1つのアクチュエータの操作前の電動モータ60の電流値と、の差異に基づいて、ある1つのアクチュエータの負荷を判定するように構成することができる。例えば、コントローラ3が、可変容量型ウインチモータ44の操作中の電動モータ60の電流値と、記憶された可変容量型ウインチモータ44の操作前の電動モータ60の電流値と、の差異に基づいて、可変容量型ウインチモータ44の負荷を判定するように構成することができる。
 次に、本実施例の作業車両の負荷演算システム2の効果を列挙して説明する。
(1)このように、本実施例の作業車両の負荷演算システム2は、油圧で駆動される複数のアクチュエータである起伏シリンダ71、伸縮シリンダ72、旋回モータ73、及び、可変容量型ウインチモータ44と、複数のアクチュエータ71~73、44へ圧油を供給する油圧ポンプ41と、油圧ポンプ41を駆動する電動モータ60と、電動モータ60の電流値を検出する電流検出器の機能を有するとともに、検出された電流値に基づいてアクチュエータの負荷を判定する判定部61bの機能を有するインバータ61と、を備えることを特徴とする。
 このように、本実施例の構成によれば、過負荷防止装置がない機種においても、安価かつ簡易な構成によって荷重を推定することができるようになる。つまり、荷重を測定するために、新規に圧力センサやロードセルを追加する必要がない。これによって、実際の吊荷の荷重に基づいて作動速度を自動で高速又は低速に切り換えられるようになる。
(2)また、ある1つのアクチュエータの操作前の電動モータ60の電流値を記憶する記憶部38と、複数のアクチュエータを制御する制御部としてのコントローラ3と、をさらに備え、コントローラ3は、ある1つのアクチュエータの操作中の電動モータ60の電流値と、記憶されたある1つのアクチュエータの操作前の電動モータ60の電流値と、の差異に基づいて、ある1つのアクチュエータの負荷を判定するようになっている。このため、複数のアクチュエータが同時に操作された場合であっても、他のアクチュエータの負荷の影響を取り除いて、ある1つのアクチュエータに作用する負荷を演算できるようになる。
(3)具体的には、複数のアクチュエータとして、起伏シリンダ71と、伸縮シリンダ72と、旋回シリンダ73と、可変容量型ウインチモータ44と、を備える積載型トラッククレーン1において、記憶部38は、可変容量型ウインチモータ44の操作前の電動モータ60の電流値を記憶し、コントローラ3は、可変容量型ウインチモータ44の操作中の電動モータ60の電流値と、記憶された可変容量型ウインチモータ44の操作前の電動モータ60の電流値と、の差異に基づいて、可変容量型ウインチモータ44の負荷を判定するようになっている。このため、起伏シリンダ71、伸縮シリンダ72、及び旋回シリンダ73等が同時に操作されても、これらのアクチュエータの負荷の影響を取り除いて、可変容量型ウインチモータ44に作用する負荷を正確に演算できるようになる。
(4)また、コントローラ3は、演算された可変容量型ウインチモータ44の負荷の判定結果と、可変容量型ウインチモータ44の操作レバーの操作量と、に基づいて、可変容量型ウインチモータ44を高速モード又は低速モードに切り換えるように構成されている。このため、インバータ61によって推定された吊荷の荷重、及び、オペレータの意思に基づく操作レバーの操作量に比例するスプール位置Pの両方を考慮してモード判定することで、安全性と操作性を調和させることができる。
 つまり、安全性を優先して吊荷の荷重のみに基づいてモード判定すると、吊荷の荷重が小さいときには高速モードとなってしまい、操作量を小さくしても低速モードによる微動操作ができなくなるため、操作性が悪くなる。一方、操作性を優先して操作量のみに基づいてモード判定すると、吊荷の荷重が大きくても操作量が大きいときには高速モードとなり安全性を損なう可能性がある。そこで、吊荷の荷重と操作量の両方に基づいてモード判定することで、操作性と安全性を調和させることができる。
 以下、図6を用いて、実施例1の油圧システムとは異なり、電動モータ60の回転動力を機械的な動力分配機構81によって分配して利用する場合について説明する。なお、実施例1で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。
(構成)
 実施例2の作業車両の負荷演算システム2A(図6参照)を備える移動式クレーンとしての積載型トラッククレーン1の機械系の全体構成は実施例1の積載型トラッククレーン1と略同様である。
 そして、本実施例の作業車両の負荷演算システム2Aは、バッテリ電流によって回転駆動される電動モータ60と、電動モータ60のインバータ61と、電動モータ60の回転動力を回転動力のままで分配するデファレンシャル・遊星歯車機構などの動力分配機構81と、動力分配機構81を介して伝達された回転動力を高速又は低速に切り換えて減速機47へ伝達する高低速切換機構82と、操作レバー84と、を備えている。さらに、動力分配機構81には、高低速切換機構82の他にも、回転動力を回転動力として使用する別の負荷83が接続されている。
 インバータ61は、実施例1と同様に、あらかじめ所定の電流閾値を記憶する記憶部61aと、記憶された電流閾値を実際のモータ電流と比較・判定する判定部61bと、を備えており、判定結果信号をコントローラ3に送信する。
 そして、インバータ61からの判定結果信号を受信したコントローラ3は、実施例1と略同様に、インバータ61からの判定結果信号と、操作レバー84の位置の判定結果信号と、に基づいて、低速モード又は高速モードのいずれを指示するか判定し、高低速切換機構82に対して低速モード又は高速モードを指示する。
(作用・効果)
 次に、本実施例の作業車両の負荷演算システム2Aの効果を説明する。
(1)このように、本実施例の作業車両の負荷演算システム2Aは、複数のアクチュエータと48、72、83と、複数のアクチュエータ48、72、83へ動力を分配する動力分配機構81と、動力分配機構を介して複数のアクチュエータ48、72、83の動力源となる電動モータ60と、電動モータ60の電流値を検出する電流検出器(インバータ61に内蔵)と、検出された電流値に基づいてアクチュエータ48、72、83の負荷を判定する判定部61bと、を備えている。
 このように、本実施例の構成によれば、過負荷防止装置がない機種においても、安価かつ簡易な構成によって荷重を推定することができるようになる。つまり、荷重を測定するために、新規に圧力センサやロードセルを追加する必要がない。これによって、実際の吊荷の荷重に基づいて作動速度を自動で高速又は低速に切り換えられるようになる。特に、回転動力を回転動力のままで利用する複数のアクチュエータ48、72、83に分配する際にも本発明を適用することができる。
(2)さらに、ある1つのアクチュエータとしてのウインチ48の操作前の電動モータ60の電流値を記憶する記憶部61aと、複数のアクチュエータ48、72、83を制御するコントローラ3と、をさらに備え、コントローラ3は、ウインチ48の操作中の電動モータ60の電流値と、操作前の電動モータ60の電流値と、の差異に基づいて、あるウインチ48の負荷を計算するようになっている。このため、複数のアクチュエータ48、72、83が同時に操作された場合であっても、他のアクチュエータ72、83の負荷の影響を取り除いて、ウインチ48に作用する負荷を演算できるようになる。
 なお、この他の構成および作用効果については、前記実施の形態と略同様であるため説明を省略する。
 以下、図7、図8を用いて、実施例1、2とは異なり、電動モータ60の回転動力をそのまま利用する場合について説明する。なお、実施例1で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。
 本実施例の作業車両の負荷演算システム2Bは、図7に示すように、バッテリ電流によって回転駆動される電動モータ60と、電動モータ60に直接に連結されたウインチ48と、操作レバー84と、を備えている。さらに、インバータ61には、コントローラ30が内蔵されており、インバータ61の内部で、記憶及び/又は判定ができるようになっている。
 さらに、本実施例では、図8に示すように、電動モータ60への電流値が電流閾値を超えた場合に、負荷が重いと判定し、操作量が多くても電動モータ60の回転速度を低下(低速モードに)する。この場合、電流値の大きさに応じて複数段階(図8(a)参照)、あるいは逆比例的に最高速度を低下させることも考えられる(図8(b)参照)。その際には、設定された最高速度に比例させて、操作レバー84の操作量に応じた回転速度を割り当てることができる。
 以上、図面を参照して、本発明の実施例を詳述してきたが、具体的な構成は、この実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
 例えば、実施例では、判定部61bの機能を有するインバータ61と、制御部としてのコントローラ3と、を別々に備える場合について説明したが、これに限定されるものではなく、1つのハードウェアにおいて判定部と制御部の機能を兼ねることもできる。さらに、電流閾値の記憶部61aと、ある1つのアクチュエータの操作前の電動モータ60の電流値を記憶する記憶部38と、は同一のハードウェアであってもよい。
 また、実施例では、ウインチ48を回転させる可変容量型ウインチモータ44の負荷を判定する場合について説明したが、これに限定されるものではなく、本発明は電動モータ60の負荷電流に応じて制御を切り替える構成に広く適用できる。例えば、電動モータ60によって直接にウインチ48を回転させる場合にも適用できる(実施例3を参照)。
 さらに、実施例では、積載型トラッククレーン1に作業車両の負荷演算システム2を適用した場合について説明したが、これに限定されるものではない。電動モータ60で回転駆動される油圧ポンプ41を動力源とする作業機械であれば、広く本発明を適用することができる。この他、電動モータ60の動力を機械的に分配して利用する作業機械にも、本発明を適用することができる(実施例2を参照)。
1:積載型トラッククレーン(作業車両);
2,2A,2B:作業車両の負荷演算システム;
3,30:コントローラ;
34:位置判定部; 35:切換位置記憶部; 36:モード判定部;
37:出力部; 38:記憶部;
41:油圧モータ; 44:可変容量型ウインチモータ; 49:操作レバー;
54:差動トランス;
60:電動モータ; 61:インバータ; 61a:記憶部; 61b:判定部;
71:起伏シリンダ; 72:伸縮シリンダ; 73:旋回モータ
81:動力分配機構; 82:高低速切換機構; 83:別の負荷; 84:操作レバー
 

Claims (5)

  1.  作業車両の負荷演算システムであって、
     複数のアクチュエータと、
     複数の前記アクチュエータへ動力を分配する動力分配装置と、
     前記動力分配装置を介して複数の前記アクチュエータの動力源となる電動モータと、
     前記電動モータの電流値を検出する電流検出器と、
     検出された電流値に基づいて前記アクチュエータの負荷を判定する判定部と、を備えることを特徴とする作業車両の負荷演算システム。
  2.  作業車両の負荷演算システムであって、
     油圧で駆動される複数のアクチュエータと、
     複数の前記アクチュエータへ圧油を供給する油圧ポンプと、
     前記油圧ポンプを駆動する電動モータと、
     前記電動モータの電流値を検出する電流検出器と、
     検出された電流値に基づいて前記アクチュエータの負荷を判定する判定部と、を備えることを特徴とする作業車両の負荷演算システム。
  3.  ある1つの前記アクチュエータの操作前の前記電動モータの電流値を記憶する記憶部と、複数の前記アクチュエータを制御する制御部と、をさらに備え、
     前記制御部は、ある1つの前記アクチュエータの操作中の前記電動モータの電流値と、記憶されたある1つの前記アクチュエータの操作前の前記電動モータの電流値と、の差異に基づいて、ある1つの前記アクチュエータの負荷を計算するようになっている、請求項1又は請求項2に記載された作業車両の負荷演算システム。
  4.  複数の前記アクチュエータとして、ブーム起伏シリンダと、ブーム伸縮シリンダと、旋回シリンダと、可変容量型ウインチモータと、を備える移動式クレーンにおいて、
     前記記憶部は、前記可変容量型ウインチモータの操作前の前記電動モータの電流値を記憶し、
     前記制御部は、前記可変容量型ウインチモータの操作中の前記電動モータの電流値と、記憶された前記可変容量型ウインチモータの操作前の前記電動モータの電流値と、の差異に基づいて、前記可変容量型ウインチモータの負荷を計算するようになっている、請求項2又は請求項3に記載された作業車両の負荷演算システム。
  5.  前記制御部は、演算された前記可変容量型ウインチモータの負荷と、前記可変容量型ウインチモータの操作レバーの操作量と、に基づいて、前記可変容量型ウインチモータを高速モード又は低速モードに切り換えるように構成されている、請求項4に記載された作業車両の負荷演算システム。
PCT/JP2017/026744 2016-07-28 2017-07-25 作業車両の負荷演算システム WO2018021260A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016148864A JP6786928B2 (ja) 2016-07-28 2016-07-28 作業車両の負荷演算システム
JP2016-148864 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018021260A1 true WO2018021260A1 (ja) 2018-02-01

Family

ID=61017307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026744 WO2018021260A1 (ja) 2016-07-28 2017-07-25 作業車両の負荷演算システム

Country Status (2)

Country Link
JP (1) JP6786928B2 (ja)
WO (1) WO2018021260A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190588A (ja) * 1982-04-21 1983-11-07 アクチ−ボラグ・ハ−グルンド・アンド・ソ−ナ− 液圧駆動装置電源の過負荷防止方法及び装置
JPS592777U (ja) * 1982-06-28 1984-01-09 株式会社小松製作所 クレ−ンの安全装置
JPS60191993A (ja) * 1984-03-13 1985-09-30 株式会社福島製作所 液圧ウインチの制御装置
JP2001003399A (ja) * 1999-06-25 2001-01-09 Kobe Steel Ltd 建設機械のアクチュエータ制御装置
JP2009504420A (ja) * 2005-08-12 2009-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 工具における過負荷を検出するための方法および装置
JP2012062175A (ja) * 2010-09-17 2012-03-29 Tadano Ltd ウインチの制御装置及び移動式クレーン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190588A (ja) * 1982-04-21 1983-11-07 アクチ−ボラグ・ハ−グルンド・アンド・ソ−ナ− 液圧駆動装置電源の過負荷防止方法及び装置
JPS592777U (ja) * 1982-06-28 1984-01-09 株式会社小松製作所 クレ−ンの安全装置
JPS60191993A (ja) * 1984-03-13 1985-09-30 株式会社福島製作所 液圧ウインチの制御装置
JP2001003399A (ja) * 1999-06-25 2001-01-09 Kobe Steel Ltd 建設機械のアクチュエータ制御装置
JP2009504420A (ja) * 2005-08-12 2009-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 工具における過負荷を検出するための方法および装置
JP2012062175A (ja) * 2010-09-17 2012-03-29 Tadano Ltd ウインチの制御装置及び移動式クレーン

Also Published As

Publication number Publication date
JP6786928B2 (ja) 2020-11-18
JP2018016462A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
JP4468047B2 (ja) 作業機械の非常時旋回制動装置
JP6027790B2 (ja) 作業車両
JP2007056998A (ja) 旋回駆動装置および作業機械
WO2013021978A1 (ja) 旋回駆動装置
JP7433100B2 (ja) 作業機械の油圧駆動装置
KR20180131568A (ko) 작업기계
JP6214327B2 (ja) ハイブリッド式建設機械
ES2882547T3 (es) Máquina de trabajo accionada eléctricamente con almacenamiento de potencia inversa así como procedimiento
JP2011190009A (ja) 車両搭載用クレーンの発電機駆動制御装置
JP5173970B2 (ja) 旋回式作業機械の旋回停止制御装置および方法
WO2018021260A1 (ja) 作業車両の負荷演算システム
JP6557472B2 (ja) 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
CN108883914B (zh) 起重机
JP6844940B2 (ja) ショベル
JP2019014591A (ja) 作業機械
JP7077823B2 (ja) 旋回駆動装置およびこれを備えた作業機械
JP6016417B2 (ja) 作業機械
JP2012127478A (ja) 油圧アクチュエータの駆動装置
JP5964116B2 (ja) 作業車両
JP5698930B2 (ja) 操作指示装置及び作業車
JP6614054B2 (ja) 産業車両
JP2003070279A (ja) 電気動力ユニット
JP2013075761A (ja) 車両搭載型クレーン装置
JP2019026395A (ja) ウインチ
JP5930995B2 (ja) 電気レバーシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834266

Country of ref document: EP

Kind code of ref document: A1