WO2018021197A1 - 圧電体膜、圧電素子および圧電体膜の製造方法 - Google Patents

圧電体膜、圧電素子および圧電体膜の製造方法 Download PDF

Info

Publication number
WO2018021197A1
WO2018021197A1 PCT/JP2017/026547 JP2017026547W WO2018021197A1 WO 2018021197 A1 WO2018021197 A1 WO 2018021197A1 JP 2017026547 W JP2017026547 W JP 2017026547W WO 2018021197 A1 WO2018021197 A1 WO 2018021197A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
piezoelectric
film formation
piezoelectric film
initial
Prior art date
Application number
PCT/JP2017/026547
Other languages
English (en)
French (fr)
Inventor
大悟 澤木
直樹 村上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to DE112017003091.9T priority Critical patent/DE112017003091B4/de
Priority to JP2018529856A priority patent/JP6661771B2/ja
Publication of WO2018021197A1 publication Critical patent/WO2018021197A1/ja
Priority to US16/199,296 priority patent/US11195983B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present invention relates to a lead zirconate titanate (PZT) -based piezoelectric film, a manufacturing method thereof, and a piezoelectric element.
  • PZT lead zirconate titanate
  • a piezoelectric element in which a piezoelectric film having a piezoelectric effect that is displaced by applying a voltage and an electrode that applies a voltage to the piezoelectric film are combined.
  • the piezoelectric film is a thin film and is very useful because it is advantageous for miniaturization.
  • the piezoelectric performance does not change, there is a problem that sufficient device performance cannot be exhibited.
  • PZT and a PZT substitution system in which a part of the A site and / or B site of PZT is substituted with another element are known. It is known that PZT to which a donor ion having a valence higher than that of a substituted ion is added has improved piezoelectric performance as compared with intrinsic PZT. In this specification, PZT and its substitution system are collectively referred to as “PZT system”.
  • JP 2010-182717 A discloses a piezoelectric film having both piezoelectric performance and durability, Pb a (Zr x , Ti y , M bxy ) b O c (P)
  • a piezoelectric film having a perovskite single phase structure including a perovskite type oxide and having no pyrochlore phase and a / b ⁇ 1.06 has been proposed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a piezoelectric film and a piezoelectric element that can suppress an increase in leakage current generated when driven in a high temperature and high electric field region. It is another object of the present invention to provide a method of manufacturing a piezoelectric film that can suppress an increase in leakage current that occurs when driving in a high temperature and high electric field region.
  • the piezoelectric film of the present invention has a perovskite structure preferentially oriented in the (100) plane, Composition formula: Pb a [(Zr x Ti 1-x ) 1-y Nb y ] b O 3 0 ⁇ x ⁇ 1, 0.10 ⁇ y ⁇ 0.13
  • a composite oxide represented by Ratio of diffraction peak intensity I (200) from perovskite (200) plane to diffraction peak intensity I (100) from perovskite (100) plane measured by X-ray diffraction method I (200) / I (100) r
  • a / b q is 0.28r + 0.9 ⁇ q ⁇ 0.32r + 0.95, 1.10 ⁇ q, r ⁇ 1.00 Meet.
  • the piezoelectric element of the present invention is a piezoelectric element including the piezoelectric film of the present invention and an electrode for applying an electric field to the piezoelectric film.
  • the method of manufacturing a piezoelectric element of the present invention includes an initial step of forming a film having a thickness within 5% of the total thickness as a step of forming a piezoelectric film on a substrate using a sputtering method, Subsequent to the process, the latter process of forming a piezoelectric film, The relationship between the film formation temperature T1 and the film formation rate R1 in the initial process, and the film formation temperature T2 and the film formation rate R2 in the latter process, 1.02 ⁇ T1 / T2 ⁇ 1.06 1.00 ⁇ R1 / R2 ⁇ 1.54 500 °C ⁇ T1 ⁇ 600 °C This is a method of manufacturing a piezoelectric film with 1.8 nm / second ⁇ R1 ⁇ 3.0 nm / second.
  • the piezoelectric film of the present invention has a perovskite structure preferentially oriented in the (100) plane, satisfies the above-described conditions, can suppress generation of leakage current at high temperature and high electric field driving, High durability.
  • FIG. 1 It is a cross-sectional schematic diagram which shows one Embodiment of the piezoelectric element of this invention. It is a figure which shows an example of the manufacturing apparatus which manufactures the piezoelectric film of this invention. It is a figure which shows the XRD spectrum of the piezoelectric element of an Example. It is the graph which plotted the r and q value of the Example and the comparative example.
  • the piezoelectric film of the present invention has a perovskite structure preferentially oriented in the (100) plane, and has a composition formula Pb a [(Zr x Ti 1-x ) 1-y Nb y ] b O c , 0 ⁇ x ⁇ 1 0.10 ⁇ y ⁇ 0.13.
  • a: b: c is represented by q: 1: c, where c is q May be deviated from 3 as long as it satisfies the above range and can have a perovskite structure.
  • (R, q) that satisfies the above conditions is a range indicated by oblique lines in FIG. It is preferable that 0.6 ⁇ r ⁇ 0.9. Further, 1.12 ⁇ q ⁇ 1.21 is preferable.
  • the piezoelectric film 14 has a perovskite structure preferentially oriented in the (100) plane.
  • the preferential orientation refers to a state in which the orientation direction of the crystal is not disordered and a specific crystal plane is oriented in a substantially constant direction.
  • “preferentially oriented in the (100) plane” means diffraction of the (100) plane, the (110) plane, and the (111) plane that occurs when the piezoelectric film is measured by the X-ray diffraction wide angle method. It means that the intensity ratio (100) / ((100) + (110) + (111)) is larger than 0.5.
  • the piezoelectric properties can be enhanced by setting the Nb content (y) to 0.10 (percentage 10%) or more. Further, by setting the Nb content to less than 0.13 (percentage 13%), an increase in leakage current due to an increase in the Pb content can be suppressed.
  • the present inventors have generated oxygen defects due to Pb detachment from the A site in the crystal structure to compensate for charge neutrality. It is presumed that this is caused by forming defect levels in the band gap by substituting Pb into the B site as it is divalent. Since this defect level is at a deep level near the valence band, it is estimated that a leak current is generated at a high temperature and in a high electric field region.
  • a piezoelectric film that satisfies the above conditions is considered to have high resistance to high temperature and high electric field driving because Pb is sufficiently taken into the crystal lattice in a stable state.
  • the Nb content is 13% or more, it is presumed that Pb taken into the lattice decreases and Pb high-temperature instability occurs.
  • the film thickness of the piezoelectric film is preferably 1.5 ⁇ m or more. Such a thick piezoelectric film can be formed by a vapor phase growth method to be described later.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a piezoelectric element of the present invention.
  • the piezoelectric element 10 is an element in which an adhesion layer 12, a lower electrode layer 13, a piezoelectric film 14 and an upper electrode layer 15 are sequentially laminated on the surface of a substrate 11.
  • the piezoelectric film 14 includes an upper electrode layer 13 and an upper electrode layer 15. An electric field is applied in the film thickness direction by the electrode layer 15.
  • the piezoelectric film 14 is the piezoelectric film according to the embodiment of the present invention described above.
  • the substrate 11 is not particularly limited, and examples thereof include silicon, glass, stainless steel, yttrium stabilized zirconia (YSZ), SrTiO 3 , alumina, sapphire, and silicon carbide.
  • YSZ yttrium stabilized zirconia
  • SrTiO 3 alumina, sapphire, and silicon carbide.
  • the substrate 11 a laminated substrate such as an SOI substrate in which a SiO 2 film and a Si active layer are sequentially laminated on a silicon substrate may be used.
  • the adhesion layer 12 for improving the adhesion between the substrate 11 and the lower electrode layer 13 is provided, but the buffer layer for improving the lattice matching is adhered. It may replace with a layer or may be provided with the adhesion layer.
  • adhesion layer 12 a configuration using Ti, TiW or the like is preferable, and an embodiment in which a platinum group metal group is laminated on the adhesion layer is more preferable.
  • the lower electrode layer 13 is an electrode for applying a voltage to the piezoelectric film.
  • the main component of the lower electrode layer 13 is not particularly limited, and metals such as Au, Pt, Ir, IrO 2 , RuO 2 , LaNiO 3 , SrRuO 3 , ITO (Indium Tin oxide), TiN (titanium nitride), and metal oxides Product, transparent conductive material, or a combination thereof.
  • metals such as Au, Pt, Ir, IrO 2 , RuO 2 , LaNiO 3 , SrRuO 3 , ITO (Indium Tin oxide), TiN (titanium nitride), and metal oxides Product, transparent conductive material, or a combination thereof.
  • Ir Indium Tin oxide
  • TiN titanium nitride
  • metal oxides Product transparent conductive material, or a combination thereof.
  • the lower electrode layer 13 it is particularly preferable to use Ir.
  • the upper electrode layer 15 is an electrode for making a pair with the lower electrode layer 13 and applying a voltage to the piezoelectric film.
  • the main component of the upper electrode layer 15 is not particularly limited, and materials exemplified in the lower electrode layer 13, electrode materials generally used in semiconductor processes such as Al, Ta, Cr, Cu, Ir, and Pt, and these The combination of these is mentioned.
  • the thicknesses of the lower electrode layer 13 and the upper electrode layer 15 are not particularly limited and are preferably 50 to 500 nm.
  • the method of forming the piezoelectric film 14 is not particularly limited, and gas phase such as sputtering, plasma CVD (Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition), and PLD (Pulse Laser Deposition) is used. Examples include a growth method, a liquid phase method such as a sol-gel method and an organometallic decomposition method, and an aerosol deposition method. Vapor phase epitaxy is preferred because the film formation conditions can be easily changed during film formation. Further, by performing the vapor phase growth method, it is possible to suppress the generation of lateral streaks during film formation, and it is possible to form a highly durable piezoelectric film.
  • gas phase such as sputtering, plasma CVD (Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition), and PLD (Pulse Laser Deposition) is used. Examples include a growth method, a liquid phase method such as a sol-gel method and an organometallic
  • the production of the piezoelectric film by the vapor phase growth method can be carried out in a film forming apparatus for forming a film containing the constituent elements of the target on the substrate using plasma with the base material and the target facing each other.
  • Applicable film formation methods include bipolar sputtering, tripolar sputtering, direct current sputtering, high frequency sputtering (RF sputtering), ECR sputtering, magnetron sputtering, counter target sputtering, pulse sputtering, and A sputtering method such as an ion beam sputtering method can be given.
  • Examples of the vapor deposition method to which the present invention can be applied include an ion plating method and a plasma CVD method in addition to the sputtering method.
  • a high frequency sputtering method RF sputtering method
  • the film formation temperature means the substrate temperature.
  • the initial film formation temperature T1 in the initial process is preferably 500 to 600 ° C., and the initial film formation rate R1 is preferably in the range of 1.8 nm / second to 3.0 nm / second.
  • the initial process is a period until a predetermined film thickness of 5% or less of the total film thickness is reached. In the initial step, the film is formed until the film thickness is 5% or less of the total film thickness and at least 100 nm or more. Therefore, the period of the initial process may be appropriately set within a range in which the piezoelectric film can be formed to a predetermined film thickness of 100 nm or more and 5% or less of the total film thickness.
  • the piezoelectric film of the present invention that can suppress an increase in leakage current even after driving at high temperature and high electric field can be manufactured.
  • FIG. 2 shows an example of a manufacturing apparatus for manufacturing the piezoelectric film of the present invention.
  • a film forming apparatus (high-frequency sputtering apparatus) 200 shown in FIG. 2 is capable of mounting a substrate B, a substrate holder 211 that can heat the mounted substrate B to a predetermined temperature, and a target on which a target T can be mounted.
  • a vacuum vessel 210 provided with a holder 212 is schematically configured. In the apparatus shown in FIG. 2, the vacuum vessel 210 is a film forming chamber.
  • the substrate holder 211 and the target holder 212 are spaced apart so as to face each other.
  • the target holder 212 is connected to a high-frequency power source (RF power source) 213 disposed outside the vacuum vessel 210, and the target holder 212 serves as a plasma power source (cathode electrode) for generating plasma.
  • RF power source radio frequency
  • a target holder 212 that functions as a high-frequency power source 213 and a cathode electrode is provided as plasma generating means 214 for generating plasma in the vacuum vessel 210.
  • the substrate B is not particularly limited, and can be appropriately selected depending on the application, such as a Si substrate, an oxide substrate, a glass substrate, and a kibble substrate.
  • the composition of the target T is selected according to the composition of the film to be formed.
  • the film forming apparatus 200 includes a gas introduction unit 217 that introduces a gas G to be converted into plasma into the vacuum vessel 210 and a gas discharge pipe 218 that exhausts the gas V in the vacuum vessel 210.
  • a gas introduction unit 217 that introduces a gas G to be converted into plasma into the vacuum vessel 210
  • a gas discharge pipe 218 that exhausts the gas V in the vacuum vessel 210.
  • the gas G Ar, Ar / O 2 mixed gas, or the like is used.
  • the wall surface in the vacuum vessel 210 is the floating wall 220 and is set to a floating potential.
  • the wall surface becomes the same potential as the plasma potential, so that it is difficult for the plasma component to reach the wall surface of the vacuum vessel 210 and the collision energy of ions against the substrate B can be increased. Therefore, Pb ions can be arranged at the A site of the perovskite structure (ABO 3 ), and the amount of unstable Pb ions in the crystal can be reduced, so that the formed piezoelectric film obtains high piezoelectric performance. be able to.
  • the collision energy of ions to the substrate B is increased by setting the wall surface of the vacuum vessel 210 to a floating potential, but as another method, the anode area in the vacuum vessel 210 is reduced, or Control can also be performed by changing the impedance of the substrate B covered with an insulator.
  • the film formation rate can be changed by adjusting the input power during film formation.
  • Example 1 Using a sputtering apparatus equipped with a 300 mm ⁇ target, as shown in FIG. An LCR (L (inductance), C (capacitance), R (resistance)) circuit having variable impedance is connected to the substrate, and the substrate impedance is changed, so that V sub during deposition (the substrate during deposition) (Potential) can be changed.
  • LCR L (inductance), C (capacitance), R (resistance)
  • a PZT thin film of 2.0 ⁇ m (piezoelectric film) was produced.
  • the film forming gas was a mixed gas of 99.5% Ar and 0.5% O 2 .
  • the piezoelectric film of Example 1 was formed under film forming conditions in which the ratio of the initial film forming temperature / late film forming temperature was 1.04 and the ratio of the initial film forming rate / late film forming rate was 1.43. .
  • the initial film formation temperature T1 was 570 ° C., and the initial film formation rate R1 was 2.0 mm / second. Details of the film forming conditions are summarized in Table 1.
  • Example 2 is the same as Example 1 except that the initial film formation temperature / late film formation temperature ratio is 1.06 and the initial film formation rate / late film formation rate ratio is 1.33. The piezoelectric film was formed.
  • Example 3 is the same as Example 1 except that the initial film formation temperature / late film formation temperature ratio is 1.06 and the initial film formation rate / late film formation rate ratio is 1.00. The piezoelectric film was formed.
  • Example 4 Example 2 is the same as Example 1 except that the initial film formation temperature / late film formation temperature ratio is 1.02, and the initial film formation rate / late film formation rate ratio is 1.43. The piezoelectric film was formed.
  • Example 5 Pb 1.3 (Zr 0.46 Ti 0.42 Nb 0.12 ) O x was used as a target, the ratio of initial film formation temperature / late film formation temperature was 1.06, and initial film formation rate / late film formation rate.
  • the piezoelectric film of Example 5 was formed as a film forming condition in which the ratio was 1.54.
  • Example 6 is the same as Example 5 except that the initial film formation temperature / late film formation temperature ratio is 1.04 and the initial film formation rate / late film formation rate ratio is 1.33. The piezoelectric film was formed.
  • Example 7 The piezoelectric film of Example 7 was formed in the same manner as in Example 5 except that the film formation conditions were such that the ratio of the initial film formation rate / late film formation rate was 1.00.
  • Example 8 Except for the film-forming conditions that the initial film formation temperature / late film formation temperature ratio is 1.02, the initial film formation rate / late film formation rate ratio is 1.00, and the initial film formation temperature is 500 ° C. In the same manner as in Example 5, the piezoelectric film of Example 8 was formed.
  • Example 9 Except for the initial film formation temperature / late film formation temperature ratio of 1.02, the initial film formation rate / late film formation rate ratio of 1.00, and the initial film formation temperature of 600 ° C.
  • the piezoelectric film of Example 9 was formed in the same manner as Example 5.
  • Example 10 The piezoelectric film of Example 10 was the same as Example 5 except that the initial film formation rate was 1.5 nm / second and the film formation conditions were such that the ratio of the initial film formation rate / late film formation rate was 1.20. Was deposited.
  • Example 11 The piezoelectric film of Example 11 was the same as Example 5 except that the initial film formation rate was set to 3.0 nm / second and the film formation conditions were set such that the ratio of the initial film formation rate / late film formation rate was 1.07. Was deposited.
  • Comparative Example 1 Pb 1.3 (Zr 0.47 Ti 0.43 Nb 0.10 ) O x was used as a target, the ratio of initial film formation temperature / late film formation temperature was 1.06, initial film formation rate / late film formation rate The piezoelectric film of Comparative Example 1 was formed in the same manner as in Example 1 except that the film forming condition was set to 0.80.
  • Comparative Example 2 is the same as Comparative Example 1 except that the initial film formation temperature / late film formation temperature ratio is 1.06, and the initial film formation rate / late film formation rate ratio is 2.00. The piezoelectric film was formed.
  • Comparative Example 3 Pb 1.3 (Zr 0.46 Ti 0.42 Nb 0.12 ) O x was used as a target, the ratio of the initial film formation temperature / late film formation temperature was 1.04, and the initial film formation rate / late film formation rate.
  • the piezoelectric film of Comparative Example 3 was formed in the same manner as Comparative Example 1 except that the film forming condition was set to 0.80.
  • Comparative Example 4 is the same as Comparative Example 3 except that the initial film forming temperature / late film forming temperature ratio is 1.06 and the initial film forming rate / late film forming rate ratio is 2.00. The piezoelectric film was formed.
  • Comparative Example 5 Pb 1.3 (Zr 0.47 Ti 0.44 Nb 0.09 ) O x was used as a target, the ratio of initial film formation temperature / late film formation temperature was 1.04, and initial film formation rate / late film formation rate.
  • the piezoelectric film of Comparative Example 5 was formed in the same manner as Comparative Example 1 except that the film formation conditions were set to 1.00.
  • Comparative Example 7 is the same as Comparative Example 6 except that the initial film formation temperature / late film formation temperature ratio is 1.00 and the initial film formation rate / late film formation rate ratio is 1.00. The piezoelectric film was formed.
  • FIG. 3 shows an XRD diffraction pattern of the piezoelectric film of Example 2 as an example.
  • composition analysis is performed to determine the composition ratio of Pb, Zr, Ti and Nb.
  • EDX energy-dispersive X-ray Spectroscopy
  • XRF X-ray Fluorescence
  • a substrate on which a piezoelectric film is formed is set on a hot plate, and probers are set on the upper electrode and the lower electrode.
  • the hot plate was raised to a predetermined temperature, and the leakage current when a predetermined voltage was applied was measured.
  • the leakage current before driving at high temperature was measured by measuring the amount of leakage current when a voltage was applied at room temperature under the following driving conditions.
  • the leakage current during high-temperature driving was measured when a voltage was applied at 250 ° C. under the following driving conditions.
  • Table 1 summarizes the film forming conditions and measurement results of each example and comparative example.
  • Example 1 to 11 the leakage current after high temperature driving is not significantly changed from that before high temperature driving. That is, the change in leakage current before and after high temperature driving was less than one digit.
  • Comparative Examples 1 to 7 the leakage current after the high temperature driving increased by 3 digits or more from before the high temperature driving. In Examples 1 to 11 that satisfy the conditions of the present invention, it was confirmed that the change in leakage current before and after high-temperature driving was small and extremely excellent in durability.
  • FIG. 4 is a diagram in which (r, q) of each example and comparative example are plotted in a graph with a horizontal axis r and a vertical axis q. Examples are indicated by white circles ( ⁇ ), and comparative examples are indicated by black triangles ( ⁇ ). In addition, the number provided to each shows the number of an Example and a comparative example.
  • the piezoelectric film of the present invention is preferable for a piezoelectric actuator mounted on an ink jet recording head, a magnetic recording / reproducing head, a MEMS device, a micro pump, an ultrasonic probe, and a ferroelectric element such as a ferroelectric memory. Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(100)面に優先配向したペロブスカイト構造を有し、組成式:Pb[(ZrTi1-x1-yNb3、0<x<1、0.10≦y<0.13で表される複合酸化物であり、X線回折法によって測定されたペロブスカイト(100)面からの回折ピーク強度I(100)とペロブスカイト(200)面からの回折ピーク強度I(200)の比I(200)/I(100)=rと、a/b=qとが0.28r+0.9≦q≦0.32r+0.95、1.10≦q≦1.25、r≦1.00を満たす圧電体膜とする。

Description

圧電体膜、圧電素子および圧電体膜の製造方法
 本発明は、チタン酸ジルコン酸鉛(PZT)系の圧電体膜およびその製造方法、並びに圧電素子に関するものである。
 アクチュエータとして、電圧を印加することによって変位する圧電効果を有する圧電体膜と、この圧電体膜に電圧を印加する電極とを組み合わせた圧電素子が知られている。圧電体膜は薄膜であり、微細化に有利であるため、非常に有用であるが、圧電性能が振るわないため、充分なデバイス性能を発揮できないという問題があった。
 圧電材料としては、PZT、およびPZTのAサイトおよび/またはBサイトの一部を他元素で置換したPZTの置換系が知られている。被置換イオンの価数よりも高い価数を有するドナイオンを添加したPZTでは、真性PZTよりも圧電性能が向上することが知られている。本明細書では、PZTおよびその置換系を併せて「PZT系」と称す。
 例えば、特開2012-9677号公報には、Nbを13%以上含有させ、(100)面と(200)面からの回折ピーク強度比を所定の値以上とすることにより、十分な圧電性能を得ることができる圧電体膜が開示されている。
 また、特開2010-182717号公報には圧電性能と耐久性を両立する圧電体膜として、
 Pb(Zr,Ti,Mb-x-y・・・(P)
で示されるペロブスカイト型酸化物からなり、パイロクロア相を含まないペロブスカイト単相構造であり、a/b≦1.06である圧電体膜が提案されている。
 しかしながら、特開2012-9677号公報や特開2010-182717号公報に記載の圧電体膜は、室温ではリーク電流が小さく、耐久性も十分と考えられていたが、本発明者らの検討により、100℃以上の高温かつ20V以上の高電界領域ではリーク電流増加するという課題があることが分かった。
 本発明は上記事情に鑑みてなされたものであり、高温かつ高電界領域での駆動時に生じるリーク電流の増加を抑制可能な圧電体膜および圧電素子を提供することを目的とする。また、本発明は、高温かつ高電界領域での駆動時に生じるリーク電流の増加を抑制可能な圧電体膜の製造方法を提供することを目的とする。
 本発明の圧電体膜は、(100)面に優先配向したペロブスカイト構造を有し、
 組成式:Pb[(ZrTi1-x1-yNb
 0<x<1、0.10≦y<0.13
で表される複合酸化物であり、
 X線回折法によって測定されたペロブスカイト(100)面からの回折ピーク強度I(100)に対するペロブスカイト(200)面からの回折ピーク強度I(200)の比I(200)/I(100)=rと、a/b=qとが
 0.28r+0.9≦q≦0.32r+0.95、
 1.10≦q、r≦1.00
を満たす。
 本発明の圧電体膜においては、0.6≦r≦0.9であることが好ましい。
 また、本発明の圧電体膜においては、1.12≦q≦1.21であることが好ましい。
 本発明の圧電体素子は、本発明の圧電体膜と、その圧電体膜に電界を印加する電極と、を備えた圧電素子である。
 本発明の圧電体素子の製造方法は、スパッタ法を用いた、基板上への圧電体膜の成膜工程として、総膜厚の5%以内の膜厚分を成膜する初期工程と、初期工程に引き続き、圧電体膜を成膜する後期工程とを有し、
 初期工程における成膜温度T1および成膜レートR1と、後期工程における成膜温度T2および成膜レートR2との関係を、
 1.02≦T1/T2≦1.06
 1.00≦R1/R2≦1.54
 500℃≦T1≦600℃
 1.8nm/秒≦R1≦3.0nm/秒
とする圧電体膜の製造方法である。
 本発明の圧電体膜は、(100)面に優先配向したペロブスカイト構造を有し、既述の条件を満たすものであり、高温かつ高電界駆動時のリーク電流発生を抑制することができ、非常に高い耐久性を示す。
本発明の圧電素子の一実施形態を示す断面模式図である。 本発明の圧電体膜を製造する製造装置の一例を示す図である。 実施例の圧電素子のXRDスペクトルを示す図である。 実施例および比較例のr、q値をプロットしたグラフである。
 以下、図面を参照して、本発明に係る圧電体膜、圧電素子および圧電体膜の製造方法の実施の形態について説明する。
[圧電体膜]
 本発明の圧電体膜は、(100)面に優先配向したペロブスカイト構造を有し、組成式Pb[(ZrTi1-x1-yNb、0<x<1、0.10≦y<0.13で表される複合酸化物である。
 本発明の圧電体膜は、X線回折法によって測定されたペロブスカイト(100)面からの回折ピーク強度I(100)に対するペロブスカイト(200)面からの回折ピーク強度I(200)の比、I(200)/I(100)=rと、Aサイト元素であるPbのBサイト元素に対する割合Pb/(Zr+Ti+Nb)=a/b=qとが、以下の関係を満たす。
 0.28r+0.9≦q≦0.32r+0.95、
 1.10≦q、r≦1.00
 ここで、ペロブスカイト構造の理想的な組成比はa:b:cは=1:1:3であるが、本発明においてはa:b:cはq:1:cで表され、cはqが上記範囲を満たし、かつ、ペロブスカイト構造をとりうる範囲であれば3からずれていてもよい。
 上記条件を満たす(r、q)は、後述する図4中の斜線で示す範囲である。
 なお、0.6≦r≦0.9であることが好ましい。
 また、1.12≦q≦1.21であることが好ましい。
 圧電体膜14は、(100)面に優先配向したペロブスカイト構造を有している。なお、優先配向とは、結晶の配向方向が無秩序ではなく、特定の結晶面がほぼ一定の方向に向いている状態をいう。具体的には、「(100)面に優先配向する」とは、X線回折広角法によって、圧電体膜を測定した際に生じる(100)面、(110)面および(111)面の回折強度の比率(100)/((100)+(110)+(111))が0.5より大きいことを意味する。
 Nbの含有量(y)を0.10(百分率で10%)以上とすることにより圧電特性を高くすることできる。また、Nb含有量を0.13(百分率で13%)未満とすることによりPb含有量の増大によるリーク電流の増大を抑制することができる。
 また、ピーク強度比を上記範囲にすることにより圧電体膜中の酸素欠陥を抑制することができ、リーク電流を抑制することができる。
 高温かつ高電界駆動によりリーク電流が増加する詳細なメカニズムは明らかとなっていないが、本発明者らは、結晶構造中のAサイトのPb抜けにより酸素欠陥が生じ、電荷中性を補うため、BサイトへPbが2価のまま置換されることにより、バンドギャップ中に欠陥準位を形成していることに起因すると推定している。そして、この欠陥準位が価電子帯近傍の深い準位にあるために、高温かつ、高電界領域にてリーク電流が発生していると推定している。
 圧電体膜が上記条件を満たすものであるとき、100℃以上の高温、かつ20V以上の高電界駆動後においてもリーク電流の大幅な増加は生じず、高温高電界駆動前と、大きく変化しないリーク電流で駆動することが可能であることが本発明者らの検討により明らかになった(後記実施例参照)。上記条件を満たす圧電体膜は、Pbが結晶格子に安定な状態で十分取り込まれているため、高温、高電界駆動に対する耐性が高いと考えられる。Nbの含有量が13%以上になると、格子中に取り込まれるPbが少なくなり、Pbの高温不安定さが生じると推定される。
 圧電体膜の膜厚は、1.5μm以上であることが好ましい。このような厚膜の圧電体膜は、後述する気相成長法によって成膜可能である。
[圧電素子]
 図1は本発明の圧電素子の一実施形態の模式断面図である。
 圧電素子10は、基板11の表面に、密着層12、下部電極層13、圧電体膜14および上部電極層15が順次積層された素子であり、圧電体膜14は、下部電極層13と上部電極層15とにより膜厚方向に電界が印加されるようになっている。
 この圧電体膜14は、上述の本発明の実施形態の圧電体膜である。
 本実施形態の圧電素子10において、基板11としては特に制限なく、シリコン,ガラス,ステンレス鋼,イットリウム安定化ジルコニア(YSZ),SrTiO,アルミナ,サファイヤ,およびシリコンカーバイド等の基板が挙げられる。基板11としては、シリコン基板上にSiO膜とSi活性層とが順次積層されたSOI基板等の積層基板を用いてもよい。本実施形態においては、基板11と下部電極層13との間に、両者の密着性を良好にするための密着層12を備えているが、格子整合性を良好にするためのバッファ層を密着層に代えて、あるいは密着層と共に備えていても構わない。
 密着層12としては、Ti,TiWなどを用いる構成が好ましく、この密着層の上に白金族の金族を積層して形成する態様がさらに好ましい。
 下部電極層13は、圧電体膜に電圧を加えるための電極である。下部電極層13の主成分としては特に制限なく、Au,Pt,Ir,IrO,RuO,LaNiO,およびSrRuO、ITO(Indium Tin oxide)、TiN(窒化チタン)等の金属、金属酸化物、透明導電性材料、または、これらの組合せが挙げられる。下部電極層13としては、Irを用いることが特に好ましい。
 上部電極層15は、上記下部電極層13と対をなし、圧電体膜に電圧を加えるための電極である。上部電極層15の主成分としては特に制限なく、下部電極層13で例示した材料、Al,Ta,Cr,Cu,IrおよびPt等の一般的に半導体プロセスで用いられている電極材料、およびこれらの組合せが挙げられる。
 下部電極層13と上部電極層15の厚みは特に制限なく、50~500nmであることが好ましい。
 [圧電体膜の成膜方法]
 圧電体膜14の成膜方法としては、特に限定されず、スパッタ法、プラズマCVD(Chemical Vapor Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、およびPLD(Pulse Laser Deposition)法などの気相成長法、ゾルゲル法および有機金属分解法などの液相法、およびエアロゾルデポジション法などが挙げられる。成膜中に成膜条件を変えやすいことから気相成長法が好ましい。また、気相成長法で行なうことにより、成膜時の横スジの発生を抑制することができ、耐久性の高い圧電体膜を成膜することができる。
 気相成長法による圧電体膜の製造は、基材とターゲットを対向させて、プラズマを用いて基板上にターゲットの構成元素を含む膜を成膜する成膜装置において実施可能である。適用可能な成膜方法としては、2極スパッタリング法、3極スパッタリング法、直流スパッタリング法、高周波スパッタリング法(RFスパッタリング法)、ECRスパッタリング法、マグネトロンスパッタリング法、対向ターゲットスパッタリング法、パルススパッタリング法、およびイオンビームスパッタリング法等のスパッタリング法が挙げられる。本発明が適用可能な気相成長法としては、スパッタリング法の他、イオンプレーティング法、およびプラズマCVD法等が挙げられる。
 本発明の圧電体膜の製造には、特に、高周波スパッタリング法(RFスパッタリング法)を用いることが好ましい。
 スパッタ法を用いた圧電体膜の製造方法の実施形態を説明する。
 圧電体膜の製造工程において、目標の総膜厚の5%以下の膜厚までを成膜する初期工程と、その初期工程に引き続き総膜厚まで成膜する後期工程とで成膜条件を変化させる。
 この際、初期工程における成膜温度T1と成膜レートR1と、後期工程における成膜温度T2と成膜レートR2との関係を
 1.02≦T1/T2≦1.06
 1.00≦R1/R2≦1.54
とする。上記条件で成膜することにより、(100)面に優先配向したペロブスカイト構造を有し、組成式:Pb[(ZrTi1-x1-yNb、0<x<1、0.10≦y<0.13で表される複合酸化物であり、X線回折法によって測定されたペロブスカイト(100)面からの回折ピーク強度I(100)とペロブスカイト(200)面からの回折ピーク強度I(200)の比I(200)/I(100)=rと、a/b=qとが
 0.28r+0.9≦q≦0.32r+0.95、
1.10≦q、r≦1.00の条件を満たす圧電体膜が得られることを本発明者らは見出した。なお、ここで成膜温度は、基板温度を意味する。
 なお、初期工程における初期成膜温度T1は、500℃~600℃とし、初期成膜レートR1は、1.8nm/秒~3.0nm/秒の範囲とすることが好ましい。
 なお、初期工程は総膜厚の5%以下の所定の膜厚になるまでの期間とする。なお、初期工程においては、総膜厚の5%以下であり、少なくとも100nm以上の膜厚になるまで成膜する。したがって、初期工程の期間は、圧電体膜を100nm以上かつ、総膜厚の5%以下の所定の膜厚まで成膜可能な範囲で、適宜設定すればよい。
 上記の条件で成膜を行うことにより、高温高電界駆動後にもリーク電流の増加を抑制することができる本発明の圧電体膜を製造することができる。
 図2に、本発明の圧電体膜を製造する製造装置の一例を示す。図2に示す成膜装置(高周波スパッタリング装置)200は、基板Bが装着可能であり、装着された基板Bを所定温度に加熱することが可能な基板ホルダー211と、ターゲットTが装着可能なターゲットホルダ212とが備えられた真空容器210から概略構成されている。図2における装置では、真空容器210が成膜チャンバとなっている。
 真空容器210内において、基板ホルダー211とターゲットホルダ212とは互いに対向するように離間配置されている。ターゲットホルダ212は真空容器210の外部に配置された高周波電源(RF電源)213に接続されており、ターゲットホルダ212がプラズマを発生させるためのプラズマ電源(カソード電極)となっている。図2においては、真空容器210内にプラズマを発生させるプラズマ発生手段214として、高周波電源213およびカソード電極)として機能するターゲットホルダ212が備えられている。
 基板Bは特に制限されず、Si基板、酸化物基板、ガラス基板、およびキシブル基板など、用途に応じて適宜選択することができる。ターゲットTの組成は、成膜する膜の組成に応じて選定される。
 成膜装置200には、真空容器210内にプラズマ化させるガスGを導入するガス導入手段217と、真空容器210内のガスの排気Vを行なうガス排出管218が備えられている。ガスGとしては、Ar、またはAr/O混合ガスなどが使用される。
 図2においては、真空容器210内の壁面をフローティング壁220として、フローティング電位としている。壁面をフローティング電位とすることで、プラズマ電位と同電位となるため、プラズマ成分が真空容器210の壁面に到達しにくくなり、基板Bに対するイオンの衝突エネルギーを高くすることができる。したがって、Pbイオンをペロブスカイト構造(ABO)のAサイトに配置することができ、結晶中の不安定なPbイオンの量を減らすことができるので、形成された圧電体膜は高い圧電性能を得ることができる。
 図2においては、真空容器210の壁面をフローティング電位とすることで、基板Bへのイオンの衝突エネルギーを高くしているが、他の方法として、真空容器210内のアノード面積を小さくする、あるいは、絶縁体で被覆する、基板Bのインピーダンスを変化させることにより、制御を行なうこともできる。なお、成膜レートは成膜時の投入パワーを調整することにより変化させることができる。
 次に、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
 [実施例1]
 300mmφターゲットを搭載したスパッタリング装置を用いて、図2に示すように、成膜チャンバ側壁面をフローティング電位とした。基板にはインピーダンスが可変なLCR(L(インダクタンス),C(キャパシタンス),R(レジスタンス))回路を接続し、基板のインピーダンスを変化させることで、成膜中のVsub(成膜中の基板電位)を変更できるようにした。
 ターゲットとしてPb1.3(Zr0.47Ti0.43Nb0.10)Oを用い、PZT薄膜2.0μm(圧電体膜)を作製した。成膜ガスは99.5%Arと0.5%Oの混合ガスとした。初期成膜温度/後期成膜温度の比を1.04、初期成膜レート/後期成膜レートの比を1.43とした成膜条件下にて実施例1の圧電体膜を成膜した。初期成膜温度T1を570℃、初期成膜レートR1を2.0mm/秒とした。成膜条件の詳細は表1に纏めて示す。
[実施例2]
 初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を1.33となる成膜条件とした以外は、実施例1と同様として実施例2の圧電体膜を成膜した。
[実施例3]
 初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を1.00となる成膜条件とした以外は、実施例1と同様として実施例3の圧電体膜を成膜した。
[実施例4]
 初期成膜温度/後期成膜温度の比を1.02、初期成膜レート/後期成膜レートの比を1.43となる成膜条件とした以外は、実施例1と同様として実施例2の圧電体膜を成膜した。
[実施例5]
 ターゲットとしてPb1.3(Zr0.46Ti0.42Nb0.12)Oを用い、初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を1.54となる成膜条件として実施例5の圧電体膜を成膜した。
[実施例6]
 初期成膜温度/後期成膜温度の比を1.04、初期成膜レート/後期成膜レートの比を1.33となる成膜条件とした以外は、実施例5と同様として実施例6の圧電体膜を成膜した。
[実施例7]
 初期成膜レート/後期成膜レートの比を1.00となる成膜条件とした以外は、実施例5と同様として実施例7の圧電体膜を成膜した。
[実施例8]
 初期成膜温度/後期成膜温度の比を1.02、初期成膜レート/後期成膜レートの比を1.00となる成膜条件とし、初期成膜温度を500℃とした以外は、実施例5と同様として実施例8の圧電体膜を成膜した。
[実施例9]
 初期成膜温度/後期成膜温度の比を1.02、初期成膜レート/後期成膜レートの比を1.00となる成膜条件とし、初期成膜温度を600℃とした以外は、実施例5と同様として実施例9の圧電体膜を成膜した。
[実施例10]
 初期成膜レートを1.5nm/秒とし、初期成膜レート/後期成膜レートの比を1.20となる成膜条件とした以外は、実施例5と同様として実施例10の圧電体膜を成膜した。
[実施例11]
 初期成膜レートを3.0nm/秒とし、初期成膜レート/後期成膜レートの比を1.07となる成膜条件とした以外は、実施例5と同様として実施例11の圧電体膜を成膜した。
[比較例1]
 ターゲットとしてPb1.3(Zr0.47Ti0.43Nb0.10)Oを用い、初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を0.80となる成膜条件とした以外は、実施例1と同様として比較例1の圧電体膜を成膜した。
[比較例2]
 初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を2.00となる成膜条件とした以外は、比較例1と同様として比較例2の圧電体膜を成膜した。
[比較例3]
 ターゲットとしてPb1.3(Zr0.46Ti0.42Nb0.12)Oを用い、初期成膜温度/後期成膜温度の比を1.04、初期成膜レート/後期成膜レートの比を0.80となる成膜条件とした以外は、比較例1と同様として比較例3の圧電体膜を成膜した。
[比較例4]
 初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を2.00となる成膜条件とした以外は、比較例3と同様として比較例4の圧電体膜を成膜した。
[比較例5]
 ターゲットとしてPb1.3(Zr0.47Ti0.44Nb0.09)Oを用い、初期成膜温度/後期成膜温度の比を1.04、初期成膜レート/後期成膜レートの比を1.00となる成膜条件とした以外は、比較例1と同様として比較例5の圧電体膜を成膜した。
[比較例6]
 ターゲットとしてPb1.3(Zr0.45Ti0.42Nb0.13)Oを用い、初期成膜温度/後期成膜温度の比を1.06、初期成膜レート/後期成膜レートの比を1.00となる成膜条件とした以外は、比較例1と同様として比較例6の圧電体膜を成膜した。
[比較例7]
 初期成膜温度/後期成膜温度の比を1.00、初期成膜レート/後期成膜レートの比を1.00となる成膜条件とした以外は、比較例6と同様として比較例7の圧電体膜を成膜した。
[測定方法]
<強度比I(200)/I(100)
 上記各実施例および比較例について、XRD回折パターンを取得し、ペロブスカイト(100)面と(200)面のピークの強度比I(200)/I(100)(=q)を求めた。
 なお、いずれの実施例、比較例も(100)単一配向を有するものであった。図3は、一例として、実施例2の圧電体膜のXRD回折パターンを示す。
<Pb/(Zr+Ti+Nb)>
 エネルギー分散型(Energy-dispersive X-ray Spectroscopy:EDX)の蛍光X線(X-ray Fluorescence:XRF)装置を用いて、組成分析を行い、Pb,Zr,TiおよびNbの組成比を求め、Pb/(Zr+Ti+Nb)=a/b(=q)を算出した。なお、この組成分析によりNb/(Zr+Ti+Nb)を求めてNbの含有量も算出した。
[リーク電流測定方法]
 ホットプレート上に圧電体膜が成膜された基板をセットし、上部電極と下部電極にプローバーをセッティングする。ホットプレートを所定の温度まで上昇させ、所定の電圧を印加させた時のリーク電流を測定した。
 高温駆動前のリーク電流は、室温にて下記駆動条件で電圧を印加させた時のリーク電流量を測定した。他方、高温駆動中のリーク電流は250℃下記駆動条件で電圧を印加させたときのリーク電流を測定した。
駆動条件:1.0×10V/cm
 表1に各実施例および比較例の成膜条件、測定結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~11は、高温駆動後のリーク電流は高温駆動前と大きく変化していない。すなわち、高温駆動前後のリーク電流の変化が1桁未満であった。一方、比較例1~7は、高温駆動後のリーク電流が高温駆動前から3桁以上増加した。
 本発明の条件を満たす実施例1~11は、高温駆動前後のリーク電流の変化が小さく、非常に耐久性に優れていることが確認できた。
 図4は、各実施例および比較例の(r、q)を横軸r、縦軸qのグラフ中にプロットした図である。実施例は白抜き円形(○)で示し、比較例は黒塗り三角形(▲)で示している。なお、それぞれに付与されている数字が実施例および比較例の番号を示す。
 図4に示すように、実施例1~11は、q=0.32r+0.95、q=0.28r+0.9、q=1.10r=1で囲まれた斜線領域に含まれていることが分かった。
 すなわち、組成式Pb[(ZrTi1-x1-yNb、ここで、0<x<1、0.10≦y<0.13で表される複合酸化物において、X線回折法によって測定されたペロブスカイト(100)面からの回折ピーク強度I(100)とペロブスカイト(200)面からの回折ピーク強度I(200)の比I(200)/I(100)=rと、a/b=qとが
 0.28r+0.9≦q≦0.32r+0.95、1.10≦q、r≦1.0
を満たす範囲であれば、高温駆動前後においてリーク電流の増加が抑制された圧電体膜であることが明らかである。
 本発明の圧電体膜は、インクジェット式記録ヘッド、磁気記録再生ヘッド、MEMSデバイス、マイクロポンプ、超音波探触子等に搭載される圧電アクチュエータ、および強誘電体メモリ等の強誘電体素子に好ましく利用できる。
 10 圧電素子
 11 基板
 12 密着層
 13 下部電極層
 14 圧電体膜
 15 上部電極層
 200 成膜装置(高周波スパッタリング装置)
 210 真空容器
 211 基板ホルダー
 212 ターゲットホルダ
 213 高周波電源(RF電源)
 217 ガス導入手段
 218 ガス排出管
 220 フローティング壁
 B 基板
 G ガス
 T ターゲット
 V 排気

Claims (5)

  1.  (100)面に優先配向したペロブスカイト構造を有し、
     組成式:Pb[(ZrTi1-x1-yNb
     0<x<1、0.10≦y<0.13
    で表される複合酸化物であり、
     X線回折法によって測定されたペロブスカイト(100)面からの回折ピーク強度I(100)に対するペロブスカイト(200)面からの回折ピーク強度I(200)の比I(200)/I(100)=rと、a/b=qとが
     0.28r+0.9≦q≦0.32r+0.95、
     1.10≦q、r≦1.00
    を満たす圧電体膜。
  2.  0.6≦r≦0.9
    である請求項1記載の圧電体膜。
  3.  1.12≦q≦1.21
    である請求項1または2記載の圧電体膜。
  4.  請求項1から3いずれか1項記載の圧電体膜と、該圧電体膜に電界を印加する電極と、を備えた圧電素子。
  5.  請求項1から3いずれか1項記載の圧電体膜の製造方法であって、
     スパッタ法を用いた、基板上への前記圧電体膜の成膜工程として、総膜厚の5%以内の膜厚分を成膜する初期工程と、前記初期工程に引き続き、前記圧電体膜を成膜する後期工程とを有し、
     前記初期工程における成膜温度T1および成膜レートR1と、前記後期工程における成膜温度T2および成膜レートR2との関係を、
     1.02≦T1/T2≦1.06
     1.00≦R1/R2≦1.54
     500℃≦T1≦600℃
     1.8nm/秒≦R1≦3.0nm/秒
    とする圧電体膜の製造方法。
PCT/JP2017/026547 2016-07-28 2017-07-21 圧電体膜、圧電素子および圧電体膜の製造方法 WO2018021197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017003091.9T DE112017003091B4 (de) 2016-07-28 2017-07-21 Piezoelektrischer Film, Piezoelektrisches Element und Verfahren zur Herstellung eines Piezoelektrischen Films
JP2018529856A JP6661771B2 (ja) 2016-07-28 2017-07-21 圧電体膜、圧電素子および圧電体膜の製造方法
US16/199,296 US11195983B2 (en) 2016-07-28 2018-11-26 Piezoelectric film, piezoelectric element, and method for manufacturing piezoelectric film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-148051 2016-07-28
JP2016148051 2016-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/199,296 Continuation US11195983B2 (en) 2016-07-28 2018-11-26 Piezoelectric film, piezoelectric element, and method for manufacturing piezoelectric film

Publications (1)

Publication Number Publication Date
WO2018021197A1 true WO2018021197A1 (ja) 2018-02-01

Family

ID=61016143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026547 WO2018021197A1 (ja) 2016-07-28 2017-07-21 圧電体膜、圧電素子および圧電体膜の製造方法

Country Status (4)

Country Link
US (1) US11195983B2 (ja)
JP (1) JP6661771B2 (ja)
DE (1) DE112017003091B4 (ja)
WO (1) WO2018021197A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266770A (ja) * 2007-03-22 2008-11-06 Fujifilm Corp 強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP2010080813A (ja) * 2008-09-29 2010-04-08 Fujifilm Corp 圧電体膜とその製造方法、圧電素子、及び液体吐出装置
JP2010077011A (ja) * 2008-09-01 2010-04-08 Seiko Epson Corp セラミックス粉体の製造方法、セラミックス膜の製造方法、圧電素子の製造方法および液滴噴射装置の製造方法
JP2016103567A (ja) * 2014-11-28 2016-06-02 富士フイルム株式会社 圧電体膜及びそれを備えた圧電素子、及び液体吐出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973177B8 (en) 2007-03-22 2015-01-21 FUJIFILM Corporation Ferroelectric film, process for producing the same, ferroelectric device, and liquid discharge device
JP2009221037A (ja) * 2008-03-14 2009-10-01 Seiko Epson Corp 圧電体、圧電素子、および圧電アクチュエータ
JP4438892B1 (ja) 2009-02-03 2010-03-24 富士フイルム株式会社 圧電体とその製造方法、圧電素子、及び液体吐出装置
JP5601899B2 (ja) * 2010-06-25 2014-10-08 富士フイルム株式会社 圧電体膜および圧電素子
DE112017000678B4 (de) 2016-02-05 2020-06-18 Fujifilm Corporation Piezoelektrisches Element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266770A (ja) * 2007-03-22 2008-11-06 Fujifilm Corp 強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP2010077011A (ja) * 2008-09-01 2010-04-08 Seiko Epson Corp セラミックス粉体の製造方法、セラミックス膜の製造方法、圧電素子の製造方法および液滴噴射装置の製造方法
JP2010080813A (ja) * 2008-09-29 2010-04-08 Fujifilm Corp 圧電体膜とその製造方法、圧電素子、及び液体吐出装置
JP2016103567A (ja) * 2014-11-28 2016-06-02 富士フイルム株式会社 圧電体膜及びそれを備えた圧電素子、及び液体吐出装置

Also Published As

Publication number Publication date
DE112017003091T5 (de) 2019-03-14
JP6661771B2 (ja) 2020-03-11
US20190097121A1 (en) 2019-03-28
US11195983B2 (en) 2021-12-07
JPWO2018021197A1 (ja) 2019-03-28
DE112017003091B4 (de) 2021-02-18

Similar Documents

Publication Publication Date Title
JP4618196B2 (ja) 圧電体アクチュエータ及びインクジェット式記録ヘッド
US20130099627A1 (en) Piezoelectric device and method of manufacturing piezoelectric device
US20100079555A1 (en) Lead-containing perovskite-type oxide film and method of producing the same, piezoelectric device using a lead-containing perovskite-type oxide film, as well as liquid ejecting apparatus using a piezoelectric device
JP5790759B2 (ja) 強誘電体薄膜およびその製造方法
JP2013211539A (ja) 圧電素子、液体吐出ヘッドおよび液体吐出装置
CN103547700A (zh) 制备由锆钛酸铅制成的薄膜的方法
US10388851B2 (en) Piezoelectric element
JP5370346B2 (ja) 圧電体素子およびインクジェット式記録ヘッド
JP6698383B2 (ja) 圧電素子
JP6850870B2 (ja) 圧電体膜、圧電素子、及び、圧電素子の製造方法
CN104628380A (zh) 压电组合物和压电元件
JP6661771B2 (ja) 圧電体膜、圧電素子および圧電体膜の製造方法
JP2010084160A (ja) 鉛含有ペロブスカイト型酸化物膜の成膜方法、圧電素子、および液体吐出装置
CN104817320A (zh) 压电组合物和压电元件
EP3540797B1 (en) Piezoelectric laminate, method of manufacturing piezoelectric laminate, and piezoelectric element
JP2008277783A (ja) エピタキシャル膜、圧電体素子、強誘電体素子、これらの製造方法及び液体吐出ヘッド
JP6823230B2 (ja) スパッタリング装置、膜の製造方法、SrRuO3−δ膜、強誘電体セラミックス及びその製造方法
US20230301193A1 (en) Piezoelectric laminate and piezoelectric element
EP4346360A1 (en) Piezoelectric element and actuator
WO2022070523A1 (ja) 圧電素子
JP2023122266A (ja) 圧電積層体、圧電素子及び圧電積層体の製造方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018529856

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834204

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17834204

Country of ref document: EP

Kind code of ref document: A1