WO2018016436A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018016436A1
WO2018016436A1 PCT/JP2017/025707 JP2017025707W WO2018016436A1 WO 2018016436 A1 WO2018016436 A1 WO 2018016436A1 JP 2017025707 W JP2017025707 W JP 2017025707W WO 2018016436 A1 WO2018016436 A1 WO 2018016436A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
unit
voltage
motor
disturbance
Prior art date
Application number
PCT/JP2017/025707
Other languages
English (en)
French (fr)
Inventor
亮 皆木
博明 高瀬
澤田 英樹
孝義 菅原
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US16/311,856 priority Critical patent/US10549772B2/en
Priority to JP2018528521A priority patent/JP6525108B2/ja
Priority to EP17830955.5A priority patent/EP3460990B1/en
Priority to CN201780037831.8A priority patent/CN109451782B/zh
Priority to BR112018076838-3A priority patent/BR112018076838B1/pt
Publication of WO2018016436A1 publication Critical patent/WO2018016436A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the driving of the three-phase brushless motor is vector-controlled by the dq axis rotation coordinate system, and disturbances such as the inverter dead time, the counter electromotive voltage of the motor and the interference voltage due to the mutual inductance between the windings are compensated smoothly.
  • the electric power steering system that enables smooth assist control, especially the three-phase disturbance observer and the space vector modulator inserted in the three-phase axis, improves the distortion of the current waveform, improves the current control response,
  • the present invention relates to a high-performance electric power steering device that suppresses vibration, ripple, and the like.
  • An electric power steering device that applies a steering assist force (assist force) to a steering mechanism of a vehicle by a rotational force of a motor transmits a driving force of a motor as an actuator to a transmission mechanism such as a gear or a belt via a reduction gear.
  • a steering assist force is applied to the steering shaft or the rack shaft.
  • Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
  • the adjustment of the motor applied voltage is generally performed by PWM (pulse width). Modulation) is done by adjusting the duty of control.
  • the general configuration of the electric power steering apparatus will be described with reference to FIG. 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b. Further, the column shaft 2 is provided with a torque sensor 10 that detects the steering torque Th of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. Yes.
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 30 calculates the current command value of the assist (steering assistance) command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and the calculated current command value
  • the current supplied to the motor 20 is controlled by the voltage control command value Vref for which compensation has been applied.
  • the steering angle sensor 14 is not essential and may not be provided, and the steering angle (motor rotation angle) ⁇ can be obtained from a rotation sensor such as a resolver connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that exchanges various vehicle information, and the vehicle speed Vs can be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (Central Processing Unit) (including MPU (Micro Processor Unit), MCU (Micro Controller Unit), etc.).
  • CPU Central Processing Unit
  • MPU Micro Processor Unit
  • MCU Micro Controller Unit
  • FIG. 2 A general function to be executed is shown in FIG. 2, for example.
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vs from the vehicle speed sensor 12 are input to the current command value calculation unit 31, and the current command value calculation unit 31.
  • the calculated current command value Iref1 is added by the adding unit 32A and the compensation signal CM from the compensating unit 34 for improving the characteristics, and the added current command value Iref2 is limited to the maximum value by the current limiting unit 33.
  • the current command value Irefm whose maximum value is limited is input to the subtraction unit 32B and subtracted from the motor current detection value Im.
  • the CF 20 is input to the PWM control unit 36 together with the CF to calculate the duty, and the motor 20 is PWM driven via the inverter 37 with the PWM signal from which the duty is calculated.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • the compensation unit 34 adds the detected or estimated self-aligning torque (SAT) to the inertia compensation value 342 by the addition unit 344, and further adds the convergence control value 341 to the addition result by the addition unit 345, and the addition The result is input to the adder 32A as a compensation signal CM to improve the characteristics.
  • SAT detected or estimated self-aligning torque
  • the current waveform is distorted, and the current control response and steering feel deteriorate.
  • the current control response and steering feel deteriorate.
  • the steering is slowly performed with the steering wheel in the vicinity of the on-center, discontinuous steering feeling due to torque ripple or the like occurs.
  • the back electromotive voltage of the motor during middle / high speed steering and the interference voltage between the windings act as disturbances on the current control, the followability and the steering feeling during turn-back steering are deteriorated.
  • the q axis that controls the torque which is the coordinate axis of the rotor of the three-phase brushless motor, and the d axis that controls the strength of the magnetic field are set independently, and the dq axis is in a 90 ° relationship.
  • a vector control method for controlling current corresponding to an axis (d-axis current command value and q-axis current command value) is known.
  • FIG. 3 shows a configuration example when the three-phase brushless motor 100 is driven and controlled by the vector control method, and is calculated by a current command value calculation unit (not shown) based on the steering torque Th, the vehicle speed Vs, and the like.
  • the d-axis current command value i d * and the q-axis current command value i q * of the 2-axis dq-axis coordinate system are respectively input to the subtraction units 131d and 131q, and the current deviation ⁇ i d * and the current values obtained by the subtraction units 131d and 131q ⁇ i q * is input to PI controllers 120d and 120q, respectively.
  • the voltage command values v d and v q subjected to PI control by the PI control units 120d and 120q are respectively input to the subtraction unit 121d and the addition unit 121q, and the voltages ⁇ v d and ⁇ v q obtained by the subtraction unit 121d and the addition unit 121q are respectively obtained.
  • the voltage command values Vu * , Vv * , Vw * converted into three phases by the dq axis / 3-phase AC converter 150 are input to the PWM controller 160, and the motor 100 is driven via the inverter 161 by the calculated duty. Is done.
  • the three-phase motor current of the motor 100 is detected by the current detector 162, and the detected three-phase currents i u , i v , i w are input to the three-phase AC / dq axis conversion unit 130, and the three-phase AC / dq axis together are subtracted respectively input to the feedback current i d and i q of the transformed two-phase conversion unit 130 subtraction section 131d and 131q, is input to the d-q decoupling control unit 140. Further, a rotation sensor or the like is attached to the motor 100, and the motor rotation angle ⁇ and the motor rotation number (rotation speed) ⁇ are output from the angle detection unit 110 that processes the sensor signal.
  • the motor rotation angle ⁇ is input to the dq axis / three-phase AC conversion unit 150 and the three-phase AC / dq axis conversion unit 130, and the motor rotation speed ⁇ is input to the dq non-interference control unit 140.
  • Such a vector control type electric power steering device is a device that assists the driver's steering, and at the same time, the sound, vibration, ripple, etc. of the motor are transmitted to the driver as a sense of force through the steering wheel.
  • the inverter has a dead time so that the switching elements of the upper and lower arms are not short-circuited. Since this dead time is non-linear, the current waveform is distorted, the control response performance deteriorates, and sound, vibration, and ripple are generated. To do.
  • the arrangement of the motor directly connected to the gear box connected to the steering wheel and the steel column shaft is very close to the driver due to its structure, resulting in the motor. Noise, vibration, ripple, etc. need to be considered especially compared to the downstream assist type electric power steering device.
  • FIG. 4 shows the result when a sine wave is input to the d-axis current command value (reference value) in general dq-axis vector control (FIG. 3), and current measurement is performed with respect to the d-axis current command value. It can be seen that the waveform of the value is distorted. Also, looking at the motor current when the steering wheel is slowly turned off from the on-center of the electric power steering device, the vibration and ripple of the q-axis current (torque) are large due to the distortion of the phase current as shown in FIGS. I understand that.
  • FIG. 5 shows the U-phase to W-phase motor currents for the d-axis current command value and the q-axis current command value, and FIG. 6 extracts only the q-axis current command value and the U-phase motor current. As shown.
  • the timing at which the dead time occurs is detected and the compensation value is added, or the dead time is compensated by a disturbance observer on the dq axis in current control.
  • Patent Document 1 In the control device of the electric power steering apparatus disclosed in Japanese Patent No. 3706296 (Patent Document 1), a signal corresponding to the disturbance voltage generated in the motor is output from the voltage applied to the motor and the current value of the motor. A disturbance voltage estimation observer is provided to compensate for the inverter dead time.
  • the voltage type inverter control device disclosed in Japanese Patent Application Laid-Open No. 2007-252163 (Patent Document 2) estimates a disturbance voltage including an output voltage error due to the inverter dead time and a back electromotive force component of the motor. A disturbance estimation observer is provided to compensate for the inverter dead time.
  • the control device of Patent Document 1 only compensates for the inverter dead time by a disturbance voltage estimation observer, and the current controller is provided separately, so that the configuration is complicated. In some embodiments, a high-pass filter is provided. Therefore, deterioration of characteristics becomes a problem. Further, the disturbance estimation observer in the control device of Patent Document 2 only compensates for the dead time of the inverter, and compensates the motor back electromotive force with a logic different from that of the disturbance estimation observer. For this reason, sufficient control performance cannot be expected only by inserting a disturbance estimation observer.
  • the electric power steering device is greatly influenced by the back electromotive force of the motor, and the dead time generation timing near the zero cross of the motor current is shifted, so that the effect of dead time compensation cannot be sufficiently exhibited as in Patent Documents 1 and 2. .
  • the compensation accuracy is determined by the back electromotive voltage estimation logic, so that the performance such as the followability becomes insufficient in a region where the estimation error is large.
  • the motor back electromotive force is non-linear, and the non-linear element expands in the range of motor manufacturing, the temperature change of the motor itself, the middle and high speeds of the motor, and the accurate back electromotive force due to fluctuations in the rotational speed. It is extremely difficult to calculate the compensation value with a linear arithmetic expression.
  • the present invention has been made under the circumstances as described above, and an object of the present invention is to compensate for the inverter dead time in the vector control type electric power steering apparatus, to compensate for the motor back electromotive force voltage and between the motor windings. Another object of the present invention is to provide an electric power steering apparatus that compensates for the interference voltage due to the mutual inductance, improves distortion of the current waveform and improves the response of current control, and suppresses sound, vibration, and ripple.
  • the current distortion of the vector control is superimposed on the three-phase disturbance observer that compensates for the disturbance voltage such as the motor back electromotive force voltage on the three-phase path, and the third-order harmonics are superimposed by the two-phase / three-phase conversion, and the current distortion And a space vector modulation unit for compensating for the above.
  • the present invention controls the driving of a three-phase brushless motor that applies assist torque to a steering mechanism of a vehicle based on a current command value calculated based on at least a steering torque, and uses a dq axis command value obtained by converting the current command value.
  • the present invention relates to an electric power steering apparatus that performs vector control via an inverter, and the above object of the present invention includes a three-phase disturbance observer that compensates each phase disturbance voltage including a dead time of the inverter with respect to a three-phase voltage command value. Is achieved.
  • the object of the present invention is that the three-phase disturbance observer includes a phase observer unit including a motor model, an inverse motor model, and a low-pass filter for each of the three phases.
  • the phase observer unit includes a first subtracting unit that subtracts a disturbance estimated voltage from the phase voltage converted into three phases, a gain unit that multiplies a subtracted value from the first subtracting unit, and a gain unit
  • the motor model that outputs a phase current by inputting a phase voltage with a disturbance element in the output, the reverse motor model that inputs the phase current, the low-pass filter that inputs the subtraction value, and the reverse motor model
  • a second subtraction unit that subtracts the output of the low-pass filter from the output of the output and outputs the estimated disturbance voltage, or the gain of the gain unit
  • the three-phase disturbance observer includes a phase observer unit composed of a motor model, an inverse motor model, and a low-pass filter for two of the three phases.
  • the other one phase is obtained by adding the phase voltages of the two phases of the three phases to invert positive and negative, and having an other phase observer unit configured by a motor model with respect to the inverted phase voltage.
  • the phase observer unit includes a first subtracting unit that subtracts the estimated disturbance voltage from the phase voltage converted into three phases, and a first gain unit that multiplies the subtracted value from the first subtracting unit by a gain.
  • a first motor model that outputs a phase current by inputting a phase voltage with a disturbance element into the output of the first gain section, the reverse motor model that inputs the phase current, and the subtraction value The low pass filter, And a second subtracting unit that subtracts the output of the low-pass filter from the output of the inverse motor model and outputs the estimated disturbance voltage, and the other-phase observer unit converts the phase converted into the three phases.
  • the compensation value of the three-phase disturbance observer is variable according to the power supply voltage of the inverter, or the inductance value of the three-phase disturbance observer is changed.
  • the null value is made variable in response to the current of the three-phase brushless motor, or a space vector modulation unit for superimposing the third harmonic is provided after the three-phase disturbance observer. This is achieved more effectively.
  • the compensation of the motor counter electromotive voltage is performed.
  • the interference voltage due to the mutual inductance between the motor windings can be compensated.
  • the dead time of the inverter is compensated, and the distortion of the current waveform is improved. It is possible to improve the voltage control efficiency and the inverter dead time to improve the current control response.
  • LPF phase disturbance observer
  • LPF phase disturbance observer
  • the armature winding resistance of each phase is represented as Ra
  • the self-inductance of each armature winding is represented as La
  • the child winding resistance Ra and the self-inductance La are connected in series and at equal intervals ( ⁇ / 3), and the mutual inductance of each phase is expressed as Ma.
  • the three-phase voltages of the motor are V u , V v , V w , respectively, and the three-phase currents are i u , i v , i w , respectively, and the induced voltages induced in the three-phase armature winding (motor back electromotive voltage) , E u , e v , e w respectively, and Laplace operator expressed as s, the three-phase voltages V u , V v , V w are expressed by the following equation (1)
  • the three-phase voltages V u , V v , and V w represented by Equation 1 are non-linear with respect to the motor currents i u , i v , and i w of the three phases (U, V, W). Since the armature winding resistance Ra and the self-inductance La are linear elements, it is necessary to eliminate the motor back electromotive voltages e u , e v and e w which are non-linear elements and to eliminate the mutual inductance Ma.
  • the whole including the inverter and the motor is regarded as a control target, and the input is linearized from the motor voltage command values v u * , v v * , v w * to the motor currents i u , i v , i w
  • a three-phase disturbance observer is provided that compensates for the motor back electromotive force voltages e u , e v , e w and the mutual inductance Ma as disturbances.
  • the inverter dead time is also compensated as a disturbance.
  • a space vector modulation unit for improving the voltage utilization factor and improving the characteristics of dead time compensation is provided.
  • FIG. 8 shows an overall configuration example of the present invention in which a three-phase disturbance observer is inserted on a three-phase axis, corresponding to FIG.
  • the d-axis current command value i d * and the q-axis current command value i q * calculated by the current command value calculation unit are input to the two-degree-of-freedom control unit 200.
  • the d-axis voltage command value v d and the q-axis voltage command value v q calculated by the unit 200 are input to the subtraction unit 121d and the addition unit 121q, respectively.
  • the voltages ⁇ v d and ⁇ v q calculated by the subtractor 121d and the adder 121q are input to the dq-axis / 3-phase AC converter 210 that converts the two phases of the dq axis into three phases of U, V, and W, and dq
  • the three-phase AC voltage command values V u * , V v * , and V w * obtained by the shaft / three-phase AC converter 210 are input to the three-phase disturbance observer 220.
  • the compensated voltage command values V ur , V vr , V wr output from the three-phase disturbance observer 220 are input to the three-phase AC / ⁇ AC converter 230 that converts the two phases in the ⁇ - ⁇ space, and ⁇ - ⁇
  • the voltage command values v ⁇ * and v ⁇ * are converted into the space voltage command values v ⁇ * and v ⁇ *
  • the voltage command values v ⁇ * and v ⁇ * are input to the space vector modulation unit 240 that superimposes the third harmonic.
  • the three-phase voltage command values V ur * , V vu * , and V wu * vector-modulated by the space vector modulation unit 240 are input to the PWM control unit 160, and the motor 100 receives the PWM control unit 160 and the inverter 161 in the same manner as described above. It is driven and controlled via.
  • the motor angle ⁇ is input to the three-phase AC / dq-axis conversion unit 130 and also input to the dq-axis / three-phase AC conversion unit 210 and the space vector modulation unit 240.
  • the motor currents i u , i v , and i w are 3 It is input to the phase AC / dq axis conversion unit 130 and also input to the three-phase disturbance observer 220.
  • a subtraction unit 201 which calculates the current deviation .DELTA.i d * from the d-axis current command value i d * by subtracting the d-axis feedback current i d, q-axis A subtractor 202 that calculates a current deviation ⁇ i q * by subtracting the q-axis feedback current i q from the current command value i q *, a PI controller 203 that performs PI control of the current deviation ⁇ i d * , and a current deviation ⁇ i q * And a PI control unit 204 for PI control.
  • the dq-axis / 3-phase AC converter 210 converts the dq-axis voltage deviations ⁇ v d and ⁇ v q into three-phase voltage command values Vu * , Vv * , Vw * with the motor angle ⁇ as a reference, and a three-phase disturbance. Input to the observer 220.
  • a three-phase disturbance observer 220 shown in FIG. 10 includes a U-phase observer and a W-phase observer having the same configuration, and a V-phase observer that is another phase. That is, since the U-phase observer and the W-phase observer have the same configuration, the U-phase observer will be described.
  • the voltage command value Vu * from the dq-axis / 3-phase AC conversion unit 210 is input to the subtraction unit 221u, and the deviation Vu ** obtained by subtracting the U-phase disturbance estimated voltage V dis_ue is input to the gain unit 222u, and the gain G dob And input to the adder 223u.
  • a gain G dob of the gain unit 222u is a characteristic sensitive to the motor rotational speed ⁇ .
  • the adder 223u receives a U-phase disturbance V dis_u such as an induced voltage induced in each phase armature winding or an interference voltage due to mutual inductance between the windings, and the added value is an inverter dead time (unknown model Xu). ) After passing through 224u, it is input to the motor model 225u, which is the object to be controlled and is represented by the transfer function “1 / (La ⁇ s + Ra)”.
  • the U-phase current i u from the motor model 225 u is input to the inverse motor model 228 u represented by the transfer function “(Lan ⁇ s + Ran) / ( ⁇ 1 ⁇ s + 1)”, and the current i ur from the inverse motor model 228 u is subtracted.
  • the addition is input to the unit 227u.
  • Ran in the reverse motor model 228u is a nominal value of the armature winding resistance Ra
  • Lan is a nominal value of the self-inductance La.
  • the voltage deviation V u ** is added to the subtraction unit 227u through the low-pass filter (LPF) 226u represented by the transfer function “1 / ( ⁇ 1 ⁇ s + 1)”, and is calculated by the subtraction unit 227u.
  • the estimated voltage V dis_ue is subtracted and input to the subtraction unit 221u.
  • the W-phase observer has the same configuration as the U-phase observer, and the voltage deviation V u ** from the subtraction unit 221u and the voltage deviation V w ** from the subtraction unit 221w are input to the addition unit 221v in the V-phase observer.
  • the addition result is input to the inversion unit 222v whose sign is inverted, and the voltage command value V v ** whose sign is inverted is input to the gain unit 223v. That is, the voltage command value Vv ** and the voltage command values V u ** and V w ** have the relationship of the following formula 2.
  • Vv ** -(V u ** + V w ** )
  • the voltage from the gain unit (G dob ) 223v is added to the V-phase disturbance voltage V dis_v by the adding unit 224v, and after the inverter dead time 225v, the voltage is controlled and the transfer function “1 / (La ⁇ s + Ra)” Input to the motor model 226v represented.
  • the gain G dob of the gain unit 223v changes in response to the motor rotational speed ⁇ .
  • control is performed with the disturbance voltages v dis_u , v dis_v , and v dis_w of each phase.
  • Modeling errors include winding resistance error ⁇ R a , self-inductance error ⁇ L a , and unknown models (errors) X u , X v , X w due to dead time. Details will be described later.
  • the three-phase disturbance observer 220 in FIG. 10 controls the other one phase from the phase observer for the two phases from the relationship of Equation 2, but a phase observer may be provided in each phase as shown in FIG. .
  • the compensated voltage command values V ur , V vr , and V wr compensated for the disturbance by the three-phase disturbance observer 220 are three-phase AC / ⁇ AC conversion unit 230 that converts the three-phase AC into ⁇ - ⁇ space.
  • the voltage command values v ⁇ * and v ⁇ * converted into two phases by the three-phase AC / ⁇ AC converter 230 are input to the space vector modulator 240 together with the motor angle ⁇ .
  • the space vector modulation unit 240 has a two-phase / three-phase conversion unit that converts two-phase voltage command values v ⁇ * and v ⁇ * into three-phase voltages V ur , V vr , and V wr. 241 and a third harmonic superimposing unit 242 that superimposes the third harmonic on the three-phase voltages V ur , V vr , and V wr and outputs voltage command values V ur * , V vr * , and V wr *.
  • the motor rotation angle ⁇ is input to the two-phase / 3-phase converter 241. Details of the space vector modulation unit 240 will be described later.
  • the motor parameter to be controlled is given by the following equation.
  • Equations 4 to 6 show only the U phase, but the same formula holds for the other phases.
  • LPFs 226u to 226w having a filter time constant ⁇ 1 and having a transfer function “1 / ( ⁇ 1 ⁇ s + 1)” are LPFs that limit the bandwidth of the disturbance observer 220. The performance of the disturbance observer 220 is exhibited.
  • the following equation 8 is obtained.
  • the gains G dob of the gain units 222u to 222w all vary according to the motor rotation speed ⁇ , but here G dob 1 is set for simplification. From Equations 3, 6, and 7, the following Equation 8 is established.
  • Equation 8 indicates that the voltage command value v u * to the current value i u can be linearized.
  • the induced voltage of the armature current, the interference voltage due to the mutual inductance, the modeling error of the motor winding resistance and self-inductance, the unknown error X u of the inverter, X v and X w can be reduced, and the circuit equation of the three-phase brushless motor is apparently converted from the above equation 1 to the following equation 9.
  • the gain G dob of the gain units 222u to 222w is a gain that varies according to the motor rotation speed ⁇ .
  • the power supply voltage of the electric power steering is about 12V because a battery is used.
  • the gain G dob is set to “1” until the rotational speed ⁇ (absolute value) of the motor is a predetermined value ⁇ 1, as shown in FIG.
  • the gain G dob is adjusted so as to gradually decrease when the value becomes larger than the value ⁇ 1.
  • the gain G dob is always set to “1”.
  • the self-inductance L a of the motor when the motor current increases gradually decreases due to the influence of magnetic saturation.
  • the three-phase disturbance observer 220 of the present invention can reduce the current distortion by varying the inductance L a (L an ) of the motor inverse models 228u to 228w in response to the motor current.
  • the inductance L a (L an ) may not be varied but may be a fixed value.
  • the motor current i u that is the output of the motor model 225 u is expressed by the following equation (10).
  • the estimated disturbance value V dis_ue output from the subtracting unit 227u of the U-phase observer is expressed by the following formula 11.
  • FIG. 15 shows an angular frequency characteristic ( ⁇ is a time constant of the motor winding) of the transfer function “1 / (1 + s ⁇ ⁇ )”, and FIG. 16 shows the transfer function “s ⁇ ⁇ 1 / (1 + s ⁇ ⁇ ).
  • the angular frequency characteristic of ⁇ 1 ) is shown.
  • the space vector modulation unit 240 converts the two-phase voltages (v ⁇ * , v ⁇ * ) in the ⁇ - ⁇ space into three-phase voltages (V ua , V va , V wa ), It only needs to have a function of superimposing the third harmonic on the voltage (V ua , V va , V wa ), and is proposed in, for example, Japanese Patent Application No. 2017-70066 and Japanese Patent Application No. 2015-239898 by the present applicant.
  • a space vector modulation method may be used.
  • the space vector modulation performs coordinate conversion as shown below based on the voltage command values v ⁇ * and v ⁇ * in the ⁇ - ⁇ space, the motor rotation angle ⁇ , and the sector number n (# 1 to # 6).
  • Switching patterns S1 to S6 corresponding to sectors # 1 to # 6 for controlling ON / OFF of switching elements (upper arms Q1, Q3, and Q5, lower arms Q2, Q4, and Q6) of the inverter having the bridge configuration By supplying it to the motor, it has a function of controlling the rotation of the motor.
  • the voltage command values v ⁇ * and v ⁇ * are converted into voltage vectors V ⁇ and V ⁇ in the ⁇ - ⁇ coordinate system based on the equation (19). The relationship between the coordinate axes used for this coordinate conversion and the motor rotation angle ⁇ is shown in FIG.
  • Equation 20 there is a relationship as shown in Equation 20 between the target voltage vector in the dq coordinate system and the target voltage vector in the ⁇ - ⁇ coordinate system, and the absolute value of the target voltage vector V is stored.
  • the output voltage of the inverter is changed according to the switching patterns S1 to S6 of the switching elements (Q1 to Q6) according to the eight kinds of discrete reference voltage vectors V0 to V7 shown in the space vector diagram of FIG. (Non-zero voltage vectors V1 to V6 and zero-voltage vectors V0 and V7 having different phases by ⁇ / 3 [rad]).
  • the selection of the reference output voltage vectors V0 to V7 and the generation time thereof are controlled.
  • the space vector can be divided into six sectors # 1 to # 6 using six regions sandwiched between adjacent reference output voltage vectors, and the target voltage vector V is set to the sector # 1 to # 6. It belongs to any one and can be assigned a sector number.
  • the target voltage vector V which is a combined vector of V ⁇ and V ⁇ , exists in the sector as shown in FIG. 18 divided into a regular hexagon in the ⁇ - ⁇ space. It can be obtained based on the rotation angle ⁇ in the ⁇ coordinate system.
  • FIG. 19 shows the switching in the ON / OFF signals S1 to S6 (switching patterns) for the switching elements in order to output the target voltage vector V from the inverter in the digital control by the inverter switching patterns S1, S3, and S5 in the space vector control.
  • the basic timing chart which determines a pulse width and its timing is shown. Space vector modulation is performed within the sampling period Ts every prescribed sampling period Ts, and the calculation result is converted into each switching pulse width and timing in the switching patterns S1 to S6 in the next sampling period Ts. And output.
  • Signals S1, S3 and S5 indicate gate signals of the switching elements Q1, Q3 and Q5 corresponding to the upper arm.
  • the horizontal axis indicates time, and Ts corresponds to the switching period and is divided into 8 periods, and T0 / 4, T1 / 2, T2 / 2, T0 / 4, T0 / 4, T2 / 2, T1 / 2 And T0 / 4.
  • the periods T1 and T2 are times depending on the sector number n and the rotation angle ⁇ , respectively.
  • the dead time compensation of the present invention is applied on the dq axis, and the dead time compensation value waveform (U phase waveform) obtained by converting only the dead time compensation value by dq axis / 3 phase is shown by the broken line in FIG.
  • U phase waveform the dead time compensation value waveform obtained by converting only the dead time compensation value by dq axis / 3 phase
  • Such a third-order component is removed from the waveform.
  • V phase and the W phase By applying space vector modulation instead of dq axis / 3-phase conversion, it is possible to superimpose third-order harmonics on a three-phase signal, and to compensate for third-order components that are lost due to three-phase conversion. It is possible to generate an ideal dead time compensation waveform as shown by the solid line in FIG.
  • FIG. 21 shows the result when a sine wave is input to the d-axis current command value when the three-phase disturbance observer and space vector modulation are operated.
  • the waveform distortion of the d-axis current value and the three-phase current value is reduced. There is almost no error.
  • looking at the motor current when the steering wheel is slowly turned off from the on-center of the electric power steering device the distortion of the phase current is improved as shown in FIGS. 22 and 23, and the vibration and ripple of the q-axis current (torque) are improved. It can be seen that is reduced.
  • the limit value of the compensation value of the 3-phase disturbance observer for motor current control can be varied in response to the power supply voltage of the inverter.
  • the disturbance observer compensates for all disturbances such as back electromotive force and dead time, so there is a region where overcompensation occurs. For example, in the case of electric power steering, since the back electromotive voltage is large, overcompensation of the disturbance observer is increased, the duty is saturated, and sound and vibration are generated. When the power supply voltage of the inverter is high, the duty is difficult to saturate, so the limit value after compensation can be increased. However, when the voltage is low, the limit value needs to be decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】ベクトル制御方式の電動パワーステアリング装置において、インバータのデッドタイムを補償し、モータ逆起電圧の補償やモータ巻線間の相互インダクタンスによる干渉電圧を補償をも行い、電流波形の歪み改善と電流制御の応答性の向上を図り、音や振動、リップルを抑制した電動パワーステアリング装置を提供する。 【解決手段】少なくとも操舵トルクに基づいて演算された電流指令値により、車両の操舵機構にアシストトルクを付与する3相ブラシレスモータを駆動制御すると共に、電流指令値を変換したdq軸指令値でインバータを介してベクトル制御する電動パワーステアリング装置において、3相電圧指令値に対して、インバータのデッドタイムを含む各相外乱電圧を補償する3相外乱オブザーバを具備する。

Description

電動パワーステアリング装置
 本発明は、3相ブラシレスモータの駆動をdq軸回転座標系でベクトル制御すると共に、インバータのデッドタイム、モータの逆起電圧や巻線間の相互インダクタンスによる干渉電圧等の外乱を補償して滑らかなアシスト制御を可能とした電動パワーステアリング装置に関し、特に3相軸に介挿した3相外乱オブザーバと空間ベクトル変調部により、電流波形の歪みを改善し、電流制御の応答性を向上し、音や振動、リップルを抑制した高性能な電動パワーステアリング装置に関する。
 車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、アクチュエータとしてのモータの駆動力を、減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のDutyの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクThを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結されたレゾルバ等の回転センサから舵角(モータ回転角)θを得ることもできる。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VsはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(Central Processing Unit)(MPU(Micro Processor Unit)やMCU(Micro Controller Unit)等を含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Vsは電流指令値演算部31に入力され、電流指令値演算部31は操舵トルクTh及び車速Vsに基づいてアシストマップ等を用いて電流指令値Iref1を演算する。演算された電流指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された電流指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
 減算部32Bでの減算結果である偏差ΔI(=Irefm-Im)はPI制御部35でPI(比例積分)等の電流制御をされ、電流制御された電圧制御指令値Vrefが変調信号(キャリア)CFと共にPWM制御部36に入力されてDutyを演算され、Dutyを演算されたPWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。
 補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、特性改善を実施する。
 近年、電動パワーステアリング装置のアクチュエータは3相ブラシレスモータが主流となっていると共に、電動パワーステアリング装置は車載製品であるため、稼動温度範囲が広く、フェールセーフの観点からモータを駆動するインバータは家電製品を代表とする一般産業用と比較して、デッドタイムを大きく(産業用機器<EPS)する必要がある。一般にスイッチング素子(例えばFET)にはOFFの際に遅れ時間があるため、上下アームのスイッチング素子のOFF/ON切り替えを同時に行うと、直流リンクを短絡する状況になり、これを防ぐため上下アーム両方のスイッチング素子がOFFになる時間(デッドタイム)を設けている。
 その結果、電流波形が歪み、電流制御の応答性や操舵感が悪化する。例えばハンドルがオンセンター付近にある状態でゆっくり操舵すると、トルクリップル等による不連続な操舵感などが生じる。また、中・高速操舵時におけるモータの逆起電圧や、巻線間の干渉電圧が電流制御に対して外乱として作用するため、転追性や切り返し操舵時の操舵感を悪化させている。
 3相ブラシレスモータのロータの座標軸であるトルクを制御するq軸と、磁界の強さを制御するd軸とを独立に設定し、dq軸が90°の関係にあることから、そのベクトルで各軸に相当する電流(d軸電流指令値及びq軸電流指令値)を制御するベクトル制御方式が知られている。
 図3は、ベクトル制御方式で3相ブラシレスモータ100を駆動制御する場合の構成例を示しており、操舵トルクTh、車速Vs等に基づいて電流指令値演算部(図示せず)で演算された2軸dq軸座標系のd軸電流指令値id *及びq軸電流指令値iq *はそれぞれ減算部131d及び131qに入力され、減算部131d及び131qで求められた電流偏差Δid *及びΔiq *はそれぞれPI制御部120d及び120qに入力される。PI制御部120d及び120qでPI制御された電圧指令値vd及びvqは、それぞれ減算部121d及び加算部121qに入力され、減算部121d及び加算部121qで求められた電圧Δvd及びΔvqはdq軸/3相交流変換部150に入力される。dq軸/3相交流変換部150で3相に変換された電圧指令値Vu*,Vv*,Vw*はPWM制御部160に入力され、演算されたDutyによりインバータ161を介してモータ100が駆動される。
 モータ100の3相モータ電流は電流検出器162で検出され、検出された3相電流iu,iv,iwは3相交流/dq軸変換部130に入力され、3相交流/dq軸変換部130で変換された2相のフィードバック電流id及びiqはそれぞれ減算部131d及び131qに減算入力されると共に、d-q非干渉制御部140に入力される。また、モータ100には回転センサ等が取り付けられており、センサ信号を処理する角度検出部110からモータ回転角θ及びモータ回転数(回転速度)ωが出力される。モータ回転角θはdq軸/3相交流変換部150及び3相交流/dq軸変換部130に入力され、モータ回転数ωはd-q非干渉制御部140に入力される。
 このようなベクトル制御方式の電動パワーステアリング装置は、運転者の操舵をアシストする装置であると同時に、モータの音や振動、リップル等はハンドルを介して運転者へ力の感覚として伝達される。また、インバータは、上下アームのスイッチング素子が短絡しないようにデッドタイムを設けており、このデッドタイムは非線形であるため電流波形は歪み、制御の応答性能が悪化し、音や振動、リップルが発生する。コラム式電動パワーステアリング装置の場合、ハンドルと鋼製のコラム軸で接続されるギアボックスに直結されるモータの配置が、その構造上運転者に極めて近い位置となっているため、モータに起因する音、振動、リップル等には、下流アシスト方式の電動パワーステアリング装置に比べて、特に配慮する必要がある。
 図4は一般的なdq軸ベクトル制御(図3)おいて、d軸電流指令値(基準値)に正弦波を入力した場合の結果を示しており、d軸電流指令値に対して電流測定値の波形が歪んでいることが分かる。また、電動パワーステアリング装置のオンセンターからハンドルをゆっくり切った時のモータ電流を見ると、図5及び図6に示すように相電流の歪みにより、q軸電流(トルク)の振動やリップルが大きいことが分かる。図5はd軸電流指令値及びq軸電流指令値に対してU相~W相のモータ電流を示しており、図6はその中のq軸電流指令値及びU相のモータ電流のみを抽出して示している。
 インバータのデッドタイムを補償する手法として、従来はデッドタイムが発生するタイミングを検出して補償値を足し込んだり、電流制御におけるdq軸上の外乱オブザーバによってデッドタイムを補償している。
 特許第3706296号公報(特許文献1)に示される電動パワーステアリング装置の制御装置では、モータに印加する電圧とモータの現在の電流値とから、モータに生じている外乱電圧に対応する信号を出力する外乱電圧推定オブザーバを設け、インバータのデッドタイムを補償している。また、特開2007-252163号公報(特許文献2)に示される電圧型インバータの制御装置では、インバータのデッドタイムに起因した出力電圧誤差とモータの逆起電力成分とを含む外乱電圧を推定する外乱推定オブザーバを設け、インバータのデッドタイムを補償している。
特許第3706296号公報 特開2007-252163号公報
 しかしながら、特許文献1の制御装置は外乱電圧推定オブザーバによってインバータのデッドタイムを補償しているだけであり、電流制御器を別途設けているので構成が煩雑であり、実施形態によってはハイパスフィルタを設けているので、特性の劣化が問題となる。また、特許文献2の制御装置における外乱推定オブザーバはインバータのデッドタイムを補償しているだけであり、外乱推定オブザーバとは異なる論理でモータ逆起電圧を補償している。このため、外乱推定オブザーバの介挿だけでは十分な制御性能が望めない。更に、dq軸上の外乱推定オブザーバはデッドタイムを電圧外乱として推定するが、2相/3相座標変換において3次成分の信号が除去されてしまうため、効果が十分ではないといった問題がある。また、特許文献1及び2の制御装置では、モータの磁気飽和領域におけるインダクタンス変化に対して補償していないので、電流波形が歪んでしまう問題がある。
 電動パワーステアリング装置は、モータの逆起電圧の影響が大きく、モータ電流のゼロクロス付近のデッドタイム発生タイミングがずれるため、特許文献1及び2のようにデッドタイム補償の効果が十分に発揮できていない。また、モータ逆起電圧の補償については、逆起電圧推定ロジックによって補償精度が決まるため、推定誤差が大きい領域においては転追性等の性能が不十分となる。モータ逆起電圧は非線形であり、モータ製造のバラツキやモータ自体の温度変化、モータの回転数が中・高速の領域では非線形要素が拡大し、また、回転数変動等により正確な逆起電圧の補償値を線形な演算式で算定することは極めて困難である。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、ベクトル制御方式の電動パワーステアリング装置において、インバータのデッドタイムを補償し、モータ逆起電圧の補償やモータ巻線間の相互インダクタンスによる干渉電圧を補償をも行い、電流波形の歪み改善と電流制御の応答性の向上を図り、音や振動、リップルを抑制した電動パワーステアリング装置を提供することにある。そのために、ベクトル制御の電流制御経路に、3相経路のモータ逆起電圧等の外乱電圧を補償する3相外乱オブザーバと、2相/3相変換して3次高調波を重畳し、電流歪み等を補償する空間ベクトル変調部とを設けている。
 本発明は、少なくとも操舵トルクに基づいて演算された電流指令値により、車両の操舵機構にアシストトルクを付与する3相ブラシレスモータを駆動制御すると共に、前記電流指令値を変換したdq軸指令値でインバータを介してベクトル制御する電動パワーステアリング装置に関し、本発明の上記目的は、3相電圧指令値に対して、前記インバータのデッドタイムを含む各相外乱電圧を補償する3相外乱オブザーバを具備することにより達成される。
 また、本発明の上記目的は、前記3相外乱オブザーバが、3相各相について、モータモデルと、逆モータモデルと、ローパスフィルタとで構成された相オブザーバ部を具備していることにより、或いは前記相オブザーバ部が、3相に変換された相電圧から外乱推定電圧を減算する第1の減算部と、前記第1の減算部からの減算値をゲイン倍するゲイン部と、前記ゲイン部の出力に外乱要素を入れた相電圧を入力して相電流を出力する前記モータモデルと、前記相電流を入力する前記逆モータモデルと、前記減算値を入力する前記ローパスフィルタと、前記逆モータモデルの出力から前記ローパスフィルタの出力を減算して前記外乱推定電圧を出力する第2の減算部とで構成されていることにより、或いは前記ゲイン部のゲインがモータ回転数に感応して可変となっていることにより、或いは前記3相外乱オブザーバが、3相のうちの2相について、モータモデルと、逆モータモデルと、ローパスフィルタとで構成された相オブザーバ部を具備し、他の1相は、前記3相のうちの2相の相電圧を加算して正負反転し、反転された相電圧に対してモータモデルで成る他相オブザーバ部を具備していることにより、或いは前記相オブザーバ部が、3相に変換された相電圧から外乱推定電圧を減算する第1の減算部と、前記第1の減算部からの減算値をゲイン倍する第1のゲイン部と、前記第1のゲイン部の出力に外乱要素を入れた相電圧を入力して相電流を出力する第1のモータモデルと、前記相電流を入力する前記逆モータモデルと、前記減算値を入力する前記ローパスフィルタと、前記逆モータモデルの出力から前記ローパスフィルタの出力を減算して前記外乱推定電圧を出力する第2の減算部とで構成されており、前記他相オブザーバ部が、前記3相に変換された相電圧のうちの2相の相電圧を加算する加算部と、前記加算部の出力を正負反転する反転部と、前記反転部の出力をゲイン倍する第2のゲイン部と、前記第2のゲイン部の出力に外乱要素を入れた相電圧を入力して相電流を出力する第2のモータモデルとで構成されていることにより、或いは前記第1及び第2のゲイン部のゲインがモータ回転数に感応して可変となっていることにより、或いは前記3相外乱オブザーバの補償値を前記インバータの電源電圧に応じて可変するようになっていることにより、或いは前記3相外乱オブザーバのインダクタンスノミナル値を前記3相ブラシレスモータの電流に感応させて可変するようになっていることにより、或いは前記3相外乱オブザーバの後段に、3次高調波を重畳する空間ベクトル変調部が設けられていることにより、より効果的に達成される。
 本発明の電動パワーステアリング装置によれば、電流制御の3相経路中に逆起電圧、インバータデッドタイム等の外乱電圧を補償する3相外乱オブザーバを介挿しているので、モータ逆起電圧の補償やモータ巻線間の相互インダクタンスによる干渉電圧の補償を行うことができる。また、3次高調波を重畳して電圧利用効率の向上とデッドタイム補償を行う空間ベクトル変調部を設けていることにより、インバータのデッドタイムを補償すると共に、電流波形の歪みの改善を行い、電圧利用効率の向上とインバータデッドタイムの補償を行い、電流制御の応答性の向上を図ることができる。
 更に、制御が滑らかになるので、モータの音や振動、リップルを抑制することができる。
一般的な電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 ベクトル制御方式の構成例を示すブロック図である。 従来の電流制御の特性例(基準値と電流測定値)を示す波形図である。 従来の電流制御の特性例(dq軸と3相)を示す波形図である。 従来の電流制御の特性例(q軸とU相)を示す波形図である。 3相ブラシレスモータの構成例を示す電気的等価図である。 本発明に係るベクトル制御系の構成例を示すブロック図である。 2自由度制御部系の構成例を示すブロック図である。 3相外乱オブザーバ(2相式)の構成例を示すブロック図である。 3相外乱オブザーバ(3相式)の構成例を示すブロック図である。 空間ベクトル変調部の構成例を示すブロック図である。 ゲイン部の特性例を示す特性図である。 モータのインダクタンスの特性例を示す特性図である。 相外乱オブザーバ(LPF)の特性例を示す特性図である。 相外乱オブザーバ(LPF)の特性例を示す特性図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示すタイミングチャートである。 空間ベクトル変調の効果を示す波形図である。 本発明の電流制御の特性例(基準値と電流測定値)を示す波形図である。 本発明の電流制御の特性例(dq軸と3相)を示す波形図である。 本発明の電流制御の特性例(q軸とU相)を示す波形図である。
 先ず3相(U~W)ブラシレスモータの等価構成を図7に示して説明すると、各相の電機子巻線抵抗はRa、各相の電機子巻線の自己インダクタンスはLaと表され、電機子巻線抵抗Ra及び自己インダクタンスLaは直列にかつ等間隔(π/3)に接続され、各相の相互インダクタンスはMaと表される。そして、モータの3相電圧をそれぞれV,V,V、3相電流をそれぞれiu,iv,iw、3相電機子巻線に誘起される誘起電圧(モータ逆起電圧)をそれぞれeu,ev,ewとし、ラプラス演算子をsで表記すると、3相電圧V,V,Vは下記数1で表される
Figure JPOXMLDOC01-appb-M000001
数1で表わされる3相電圧V,V,Vは3相(U,V,W)のモータ電流iu,iv,iwに対して非線形であり、線形化するためには、電機子巻線抵抗Ra及び自己インダクタンスLaは線形要素であるため、非線形要素であるモータ逆起電圧eu,ev,ewを消去すると共に、相互インダクタンスMaを消去する必要がある。
 本発明では、インバータとモータを含めた全体を制御対象と捉え、入力をモータの電圧指令値vu *,vv *,vw *からモータ電流iu,iv,iwまでを線形化するために、モータ逆起電圧eu,ev,ewや相互インダクタンスMaを外乱とみなして補償する3相外乱オブザーバを設ける。インバータのデッドタイムも外乱として補償される。また、電圧利用率の向上と、デッドタイム補償の特性改善を行う空間ベクトル変調部を設けている。3相軸に3相外乱オブザーバを介挿した本発明の全体構成例を、図3に対応させて図8に示す。
 図8では、電流指令値演算部(図示せず)で演算されたd軸電流指令値id *及びq軸電流指令値iq *は2自由度制御部200に入力され、2自由度制御部200で演算されたd軸電圧指令値vd及びq軸電圧指令値vqはそれぞれ減算部121d及び加算部121qに入力される。減算部121d及び加算部121qで算出された電圧Δvd及びΔvqは、dq軸の2相からU、V,Wの3相  に変換するdq軸/3相交流変換部210に入力され、dq軸/3相交流変換部210で得られた3相交流電圧指令値Vu *,Vv *,Vw *は3相外乱オブザーバ220に入力される。3相外乱オブザーバ220から出力される補償後の電圧指令値Vur,Vvr,Vwrはα-β空間の2相に変換する3相交流/αβ交流変換部230に入力され、α-β空間の電圧指令値vα 及びvβ に変換され、電圧指令値vα 及びvβ は3次高調波を重畳する空間ベクトル変調部240に入力される。空間ベクトル変調部240でベクトル変調された3相の電圧指令値Vur *,Vvu *,Vwu *はPWM制御部160に入力され、モータ100は前述と同様にPWM制御部160及びインバータ161を介して駆動制御される。
 モータ角度θは3相交流/dq軸変換部130に入力されると共に、dq軸/3相交流変換部210及び空間ベクトル変調部240に入力され、モータ電流iu,iv,iwは3相交流/dq軸変換部130に入力されると共に、3相外乱オブザーバ220に入力されている。
 2自由度制御部200の構成は図9に示すように、d軸電流指令値id *からd軸フィードバック電流idを減算して電流偏差Δid *を算出する減算部201と、q軸電流指令値iq *からq軸フィードバック電流iqを減算して電流偏差Δiq *を算出する減算部202と、電流偏差Δid *をPI制御するPI制御部203と、電流偏差Δiq *をPI制御するPI制御部204とで構成されている。
 dq軸/3相交流変換部210はモータ角度θを基準にして、dq軸の電圧偏差Δvd及びΔvqを3相の電圧指令値Vu,Vv*,Vw*に変換して3相外乱オブザーバ220に入力する。
 3相外乱オブザーバ220は、図10又は図11の構成となっており、図10は3相モータの電流i+i+i=0の関係があることより、例えばV相電流i=-(i+i)で求める例である。
 図10に示す3相外乱オブザーバ220は、同一構成のU相オブザーバ及びW相オブザーバと、他相であるV相オブザーバとで構成されている。即ち、U相オブザーバ及びW相オブザーバは同一の構成であるので、U相オブザーバについて説明する。dq軸/3相交流変換部210からの電圧指令値Vuは減算部221uに入力され、U相外乱推定電圧Vdis_ueを減算された偏差Vu**はゲイン部222uに入力され、ゲインGdobを乗算されて加算部223uに入力される。ゲイン部222uのゲインンGdobは、モータ回転数ωに感応する特性である。加算部223uには、各相電機子巻線に誘起される誘起電圧や巻線間の相互インダクタンスによる干渉電圧などのU相外乱Vdis_uが入力され、その加算値がインバータデッドタイム(未知モデルXu)224uを経て、制御対象であり、伝達関数“1/(La・s+Ra)”で表わされるモータモデル225uに入力される。モータモデル225uからのU相電流iは、伝達関数“(Lan・s+Ran)/(τ・s+1)”で表わされる逆モータモデル228uに入力され、逆モータモデル228uからの電流iurが減算部227uに加算入力される。なお、逆モータモデル228u内のRanは電機子巻線抵抗Raのノミナル値であり、Lanは自己インダクタンスLaのノミナル値である。また、電圧偏差Vu **は伝達関数“1/(τ・s+1)”で表わされるローパスフィルタ(LPF)226uを経て減算部227uに加算入力され、減算部227uで算出されるU相外乱推定電圧Vdis_ueが減算部221uに減算入力されている。
 W相オブザーバはU相オブザーバと同一の構成であり、減算部221uからの電圧偏差Vu **と減算部221wからの電圧偏差Vw **は、V相オブザーバ内の加算部221vに入力され、その加算結果が符号反転する反転部222vに入力され、符号反転された電圧指令値Vv **がゲイン部223vに入力される。つまり、電圧指令値Vv**と電圧指令値Vu **、Vw **とは下記数2の関係となっている。
(数2)
Vv**=-(Vu **+Vw **
 
ゲイン部(Gdob)223vからの電圧は、加算部224vでV相外乱電圧Vdis_vと加算され、インバータデッドタイム225vを経て、制御対象であり、伝達関数“1/(La・s+Ra)”で表わされるモータモデル226vに入力される。ゲイン部223vのゲインGdobは、モータ回転数ωに感応して変化する。
 dq軸/3相交流変換部210からの電圧指令値Vu *,Vv *,Vw *を3相外乱オブザーバ220の入力として、各相の外乱電圧vdis_u,vdis_v,vdis_wと制御対象(インバータ161とモータ100を含めたモデル)のモデル化誤差をまとめて外乱推定電圧vdis_ue,vdis_weとして推定し、各相の電圧指令値V ,V から減算することで、ロバストな制御が可能となる。モデル化誤差には、巻線抵抗誤差ΔRa、自己インダクタンス誤差ΔLa、デッドタイムによる未知モデル(誤差)Xu,Xv,Xwが含まれる。詳細は後述する。
 図10の3相外乱オブザーバ220では数2の関係より、2相についての相オブザーバから他の1相の制御を行っているが、図11に示すように各相に相オブザーバを設けても良い。
 図11では、U~W各相に同一構成のU相オブザーバ~W相オブザーバを設けており、各相について同様な動作を行うようになっている。
 上述のように3相外乱オブザーバ220で外乱を補償された補償後電圧指令値Vur,Vvr,Vwrは、3相交流をα-β空間に変換する3相交流/αβ交流変換部230に入力され、3相交流/αβ交流変換部230で2相に変換された電圧指令値vα 及びvβ は,モータ角度θと共に空間ベクトル変調部240に入力される。
 空間ベクトル変調部240の構成は図12に示すように、2相の電圧指令値vα 及びvβ を3相電圧Vur,Vvr,Vwrに変換する2相/3相変換部241と、3相電圧Vur,Vvr,Vwrに3次高調波を重畳し、電圧指令値Vur *,Vvr *,Vwr *を出力する3次高調波重畳部242とで構成されている。2相/3相変換部241には、モータ回転角θが入力されている。空間ベクトル変調部240の詳細は後述する。
 電機子巻線抵抗Raとそのノミナル値Ranの誤差値をΔRaとし、自己インダクタンスLaとそのノミナル値Lanの誤差値をΔLaとすると、制御対象となるモータパラメータは下式となる。
Figure JPOXMLDOC01-appb-M000002
 
 また、3相外乱オブザーバ220による電圧方程式は、下記数4~数6となり、数4~数6から数7が導かれる。数4~数6ではU相についてのみ示しているが、他の相についても同様な式が成立する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 
上記数3~数5より、下記数7が成立する。
Figure JPOXMLDOC01-appb-M000006
 
フィルタ時定数をτとし、伝達関数“1/(τ・s+1)”を有するLPF226u~226wは外乱オブザーバ220の帯域制限をするLPFであり、LPF226u~226wのカットオフ周波数より低い周波数領域において、外乱オブザーバ220の性能が発揮される。カットオフ周波数より低い周波数領域のみに限定して電圧方程式を解くと、下記数8となる。ゲイン部222u~222wのゲインGdobは、いずれもモータ回転数ωに応じて可変するが、ここでは簡略化するため、Gdob=1としている。
数3、数6及び数7より、下記数8が成立する。
Figure JPOXMLDOC01-appb-M000007
 
 数8は電圧指令値vu *から電流値iuまでを線形化できたことを示している。このように、3相外乱オブザーバ220を利用することにより、電機子電流の誘起電圧、相互インダクタンスによる干渉電圧、モータの巻線抵抗や自己インダクタンスのモデル化誤差、インバータの未知となる誤差Xu,Xv,Xwを低減することが可能となり、3相ブラシレスモータの回路方程式は見かけ上、前述の数1から下記数9へ変換される。
Figure JPOXMLDOC01-appb-M000008
 
 ゲイン部222u~222wのゲインGdobは、モータ回転数ωに応じて可変するゲインである。一般的に電動パワーステアリングの電源電圧はバッテリを用いるため、12V程度となる。モータ100の高速回転領域において、Dutyが飽和すると、音が発生する。そのため、3相外乱オブザーバ220によって逆起電圧を補償し過ぎないように、図13に示すようにモータの回転数ω(絶対値)が所定値ω1まではゲインGdobを“1”とし、所定値ω1より大きくなるとゲインGdobを徐々に下げるように調整している。全操舵領域において、3相外乱オブザーバ220を有効とさせる場合は、ゲインGdobを常に”1”とする。
 また、図14に示すように、モータの自己インダクタンスLaはモータ電流が増加すると、磁気飽和の影響により徐々に低下する。本発明の3相外乱オブザーバ220は、モータ逆モデル228u~228wのインダクタンスLa( Lan)をモータ電流に感応して可変させ、電流歪みを低減させることが可能である。インダクタンスLa( Lan)を可変せず、固定値としても良い。
 ここで、相オブザーバが外乱電圧やインバータデッドタイムの影響を受けないことを説明する。ここでは、U相について説明するが他のV相、W相についても同様であり、図10及び図11についても同様である。また、Lan=La,Ran=Raとして説明する。
 モータモデル225uの出力であるモータ電流iuは、下記数10で表される。
Figure JPOXMLDOC01-appb-M000009
また、U相オブザーバの減算部227uから出力される外乱推定値Vdis_ueは、下記数11で表される。
Figure JPOXMLDOC01-appb-M000010
 
 
つまり、モータ電流iuが逆モータモデル228uを経ることにより、その出力iurは下記数12となる。
(数12)
iur=(Vu **・Gdob-Vdis_ue+Vdis_u・Xu)/(τ・s+1)
 
LPF226uの入力は“Vu ** =Vu *-Vdis_ue”であり、その出力iufは下記数13である。
(数13)
iuf=(Vu *-Vdis_ue)/(τ・s+1)
 
よって、減算部227uの出力である外乱推定電圧Vdis_ueは上記数11となる。
 ここで、数11を数10に代入すると、下記数14が成立する。
Figure JPOXMLDOC01-appb-M000011
 
  ただし、時定数τ=La/Raである。
 
 ここで、図15は伝達関数“1/(1+s・τ)”の角周波数特性(τはモータ巻線の時定数)を示しており、図16は伝達関数“s・τ/(1+s・τ)”の角周波数特性を示している。図16の伝達関数“G(s)=s・τ/(1+s・τ)”において、各周波数ωが遮断周波数ωHより十分小さい、即ちω<<ωHの関係が成り立つ場合、下記数15と近似できる。
 
この関係を数14に適用すると、下記数16となり、出力電流iuは外乱Vdis_u及びデッドタイムXuの影響を受けない。
Figure JPOXMLDOC01-appb-M000013
 
 なお、モータ巻線の時定数τとU相オブザーバのフィルタ時定数τとは、
Figure JPOXMLDOC01-appb-M000014
の関係、即ち、
Figure JPOXMLDOC01-appb-M000015
の関係を満足する必要がある。
 次に、空間ベクトル変調について説明する。空間ベクトル変調部240は図12に示すように、α-β空間の2相電圧(vα 、vβ )を3相電圧(Vua,Vva,Vwa)に変換し、3相電圧(Vua,Vva,Vwa)に3次高調波を重畳する機能を有していれば良く、例えば本出願人による特開2017-70066、特願2015-239898等で提案している空間ベクトル変調の手法を用いても良い。
 即ち、空間ベクトル変調は、α-β空間の電圧指令値vα 及びvβ 、モータ回転角θ及びセクター番号n(#1~#6)に基づいて、以下に示すような座標変換を行い、ブリッジ構成のインバータのスイッチング素子(上側アームQ1、Q3、Q5、下側アームQ2、Q4、Q6)のON/OFFを制御する、セクター#1~#6に対応したスイッチングパターンS1~S6をモータに供給することによって、モータの回転を制御する機能を有する。座標変換については、空間ベクトル変調において、電圧指令値vα 及びvβ は、数19に基づいて、α-β座標系における電圧ベクトルVα及びVβに座標変換が行われる。この座標変換に用いる座標軸及びモータ回転角θの関係については、図17に示す。
Figure JPOXMLDOC01-appb-M000016
 
そして、d-q座標系における目標電圧ベクトルとα-β座標系における目標電圧ベクトルとの間には、数20のような関係が存在し、目標電圧ベクトルVの絶対値は保存される。
Figure JPOXMLDOC01-appb-M000017
 
 空間ベクトル制御におけるスイッチングパターンでは、インバータの出力電圧をスイッチング素子(Q1~Q6)のスイッチングパターンS1~S6に応じて、図18の空間ベクトル図に示す8種類の離散的な基準電圧ベクトルV0~V7(π/3[rad]ずつ位相の異なる非零電圧ベクトルV1~V6と零電圧ベクトルV0,V7)で定義する。そして、それら基準出力電圧ベクトルV0~V7の選択とその発生時間を制御するようにしている。また、隣接する基準出力電圧ベクトルによって挟まれた6つの領域を用いて、空間ベクトルを6つのセクター#1~#6に分割することができ、目標電圧ベクトルVは、セクター#1~#6のいずれか1つに属し、セクター番号を割り当てることができる。Vα及びVβの合成ベクトルである目標電圧ベクトルVが、α-β空間において正6角形に区切られた図18に示されたようなセクター内のいずれに存在するかは、目標電圧ベクトルVのα-β座標系における回転角γに基づいて求めることができる。また、回転角γはモータの回転角θとd-q座標系における電圧指令値vα 及びvβ の関係から得られる位相δの和として、γ=θ+δで決定される。
 図19は、空間ベクトル制御におけるインバータのスイッチングパターンS1、S3,S5によるディジタル制御で、インバータから目標電圧ベクトルVを出力させるために、スイッチング素子に対するON/OFF信号S1~S6(スイッチングパターン)におけるスイッチングパルス幅とそのタイミングを決定する基本的なタイミングチャートを示す。空間ベクトル変調は、規定されたサンプリング期間Ts毎に演算などをサンプリング期間Ts内で行い、その演算結果を次のサンプリング期間Tsにて、スイッチングパターンS1~S6における各スイッチングパルス幅とそのタイミングに変換して出力する。
 空間ベクトル変調は、目標電圧ベクトルVに基づいて求められたセクター番号に応じたスイッチングパターンS1~S6を生成する。図19には、セクター番号#1(n=1)の場合における、インバータのスイッチング素子のスイッチングパターンS1~S6の一例が示されている。信号S1、S3及びS5は、上側アームに対応するスイッチング素子Q1、Q3、Q5のゲート信号を示している。横軸は時間を示しており、Tsはスイッチング周期に対応し、8期間に分割され、T0/4、T1/2、T2/2、T0/4、T0/4、T2/2、T1/2及びT0/4で構成される期間である。また、期間T1及びT2は、それぞれセクター番号n及び回転角γに依存する時間である。
 空間ベクトル変調がない場合、本発明のデッドタイム補償をdq軸上に適用し、デッドタイム補償値のみdq軸/3相変換したデッドタイム補償値波形(U相波形)は、図20の破線のような3次成分が除去された波形となってしまう。V相及びW相についても同様である。dq軸/3相変換の代わりに空間ベクトル変調を適用することにより、3相信号に3次高調波を重畳させることが可能となり、3相変換によって欠損してしまう3次成分を補うことができ、図20の実線のような理想的なデッドタイム補償波形を生成することが可能となる。
 図21は3相外乱オブザーバと空間ベクトル変調を動作させた場合において、d軸電流指令値に正弦波を入力した時の結果である。3相外乱オブザーバがない場合と比較して、d軸電流値や3相電流値の波形歪みが低減している。殆ど誤差が生じていない。また、電動パワーステアリング装置のオンセンターからハンドルをゆっくり切った時のモータ電流を見ると、図22及び図23に示すように相電流の歪が改善され、q軸電流(トルク)の振動やリップルが低減していることが分かる。
 モータの自動モデル同定アルゴリズムを搭載し、3相軸の外乱オブザーバのモータ規範モデルを変更することにより、多品種のモータを同一制御で動作することが可能となる。また、3相軸の外乱オブザーバのモータ規範モデルや2自由度制御のパラメータをモータ電流に感応して可変させることも可能である。モータは電流が増加すると、磁気飽和現象によってモータのインダクタンスLaが変化する。外乱オブザーバによるインダクタンスノミナル値Lanを上述では固定値として扱っているが、モータのインダクタンスに合わせてオブザーバのインダクタンスノミナル値Lanも変化させないと波形が歪み、リップルとなる。そこで、モータ電流に感応してオブザーバのインダクタンスノミナル値Lanを可変すれば、波形の歪みやリップルを改善することが可能である。
 また、モータ電流制御の3相外乱オブザーバの補償値のリミット値を、インバータの電源電圧に感応して可変させることも可能である。外乱オブザーバは、逆起電圧やデッドタイム等の全ての外乱を補償するので、過補償となる領域がある。例えば、電動パワーステアリングの場合は逆起電圧が大きいので、外乱オブザーバの過補償が増加し、dutyが飽和し、音や振動となる。インバータの電源電圧が高い場合はdutyが飽和し難いので、補償後のリミット値を大きくすることができるが、電圧が低い場合はリミット値を小さくする必要がある。
1         ハンドル
2         コラム軸(ステアリングシャフト、ハンドル軸)
10        トルクセンサ
12        車速センサ
13        バッテリ
20、100    モータ
30        コントロールユニット(ECU)
31        電流指令値演算部
35、203、204   PI制御部
36、160    PWM制御部
37,161    インバータ
110       角度検出部
130       3相交流/dq軸変換部
140       d-q非干渉制御部
200       2自由度制御部
210       dq軸/3相交流変換部
220       3相外乱オブザーバ
230       3相交流/αβ交流変換部
240       空間ベクトル変調部
241       2相/3相変換部
242       3次高調波重畳部

Claims (10)

  1. 少なくとも操舵トルクに基づいて演算された電流指令値により、車両の操舵機構にアシストトルクを付与する3相ブラシレスモータを駆動制御すると共に、前記電流指令値を変換したdq軸指令値でインバータを介してベクトル制御する電動パワーステアリング装置において、
    3相電圧指令値に対して、前記インバータのデッドタイムを含む各相外乱電圧を補償する3相外乱オブザーバを具備したことを特徴とする電動パワーステアリング装置。
  2. 前記3相外乱オブザーバが、
    3相各相について、モータモデルと、逆モータモデルと、ローパスフィルタとで構成された相オブザーバ部を具備している請求項1に記載の電動パワーステアリング装置。
  3. 前記相オブザーバ部が、
    3相に変換された相電圧から外乱推定電圧を減算する第1の減算部と、
    前記第1の減算部からの減算値をゲイン倍するゲイン部と、
    前記ゲイン部の出力に外乱要素を入れた相電圧を入力して相電流を出力する前記モータモデルと、
    前記相電流を入力する前記逆モータモデルと、
    前記減算値を入力する前記ローパスフィルタと、
    前記逆モータモデルの出力から前記ローパスフィルタの出力を減算して前記外乱推定電圧を出力する第2の減算部と、
    で構成されている請求項2に記載の電動パワーステアリング装置。
  4. 前記ゲイン部のゲインがモータ回転数に感応して可変となっている請求項3に記載の電動パワーステアリング装置。
  5. 前記3相外乱オブザーバが、
    3相のうちの2相について、モータモデルと、逆モータモデルと、ローパスフィルタとで構成された相オブザーバ部を具備し、
    他の1相は、前記3相のうちの2相の相電圧を加算して正負反転し、反転された相電圧に対してモータモデルで成る他相オブザーバ部を具備している請求項1に記載の電動パワーステアリング装置。
  6. 前記相オブザーバ部が、
    3相に変換された相電圧から外乱推定電圧を減算する第1の減算部と、前記第1の減算部からの減算値をゲイン倍する第1のゲイン部と、前記第1のゲイン部の出力に外乱要素を入れた相電圧を入力して相電流を出力する第1のモータモデルと、前記相電流を入力する前記逆モータモデルと、前記減算値を入力する前記ローパスフィルタと、前記逆モータモデルの出力から前記ローパスフィルタの出力を減算して前記外乱推定電圧を出力する第2の減算部とで構成されており、
    前記他相オブザーバ部が、
    前記3相に変換された相電圧のうちの2相の相電圧を加算する加算部と、前記加算部の出力を正負反転する反転部と、前記反転部の出力をゲイン倍する第2のゲイン部と、前記第2のゲイン部の出力に外乱要素を入れた相電圧を入力して相電流を出力する第2のモータモデルとで構成されている請求項5に記載の電動パワーステアリング装置。
  7. 前記第1及び第2のゲイン部のゲインがモータ回転数に感応して可変となっている請求項6に記載の電動パワーステアリング装置。
  8. 前記3相外乱オブザーバの補償値を前記インバータの電源電圧に応じて可変するようになっている請求項1乃至7のいずれかに記載の電動パワーステアリング装置。
  9. 前記3相外乱オブザーバのインダクタンスノミナル値を前記3相ブラシレスモータの電流に感応させて可変するようになっている請求項2乃至8のいずれかに記載の電動パワーステアリング装置。
  10. 前記3相外乱オブザーバの後段に、3次高調波を重畳する空間ベクトル変調部が設けられている請求項1乃至9のいずれかに記載の電動パワーステアリング装置。
PCT/JP2017/025707 2016-07-20 2017-07-14 電動パワーステアリング装置 WO2018016436A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/311,856 US10549772B2 (en) 2016-07-20 2017-07-14 Electric power steering apparatus
JP2018528521A JP6525108B2 (ja) 2016-07-20 2017-07-14 電動パワーステアリング装置
EP17830955.5A EP3460990B1 (en) 2016-07-20 2017-07-14 Electric power steering device
CN201780037831.8A CN109451782B (zh) 2016-07-20 2017-07-14 电动助力转向装置
BR112018076838-3A BR112018076838B1 (pt) 2016-07-20 2017-07-14 Aparelho de direção de energia elétrica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016142621 2016-07-20
JP2016-142621 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016436A1 true WO2018016436A1 (ja) 2018-01-25

Family

ID=60992526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025707 WO2018016436A1 (ja) 2016-07-20 2017-07-14 電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US10549772B2 (ja)
EP (1) EP3460990B1 (ja)
JP (1) JP6525108B2 (ja)
CN (1) CN109451782B (ja)
BR (1) BR112018076838B1 (ja)
WO (1) WO2018016436A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504879A (zh) * 2019-07-26 2019-11-26 江苏大学 一种电磁式主动悬架作动器节能抗干扰控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675352B1 (en) * 2017-08-21 2021-09-22 Mitsubishi Electric Corporation Power conversion device and electric power steering device
CN113258845B (zh) * 2021-06-15 2022-08-16 吉林大学 交流电机电压源逆变器干扰特性自学习方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325499A (ja) * 2001-04-27 2002-11-08 Matsushita Electric Ind Co Ltd 交流電動機の電流制御方式
JP2005160221A (ja) * 2003-11-26 2005-06-16 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2006166628A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電力変換装置の制御方法
JP2010041867A (ja) * 2008-08-07 2010-02-18 Denso Corp 多相回転機の制御装置
JP2016054594A (ja) * 2014-09-03 2016-04-14 トヨタ自動車株式会社 電動機制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940001301B1 (ko) * 1989-12-27 1994-02-18 삼성항공산업 주식회사 모터의 부하 외란 억압 제어회로
JPH05122970A (ja) * 1991-10-29 1993-05-18 Hitachi Ltd モータ速度制御装置
JP3700305B2 (ja) * 1996-04-19 2005-09-28 松下電器産業株式会社 ブラシレスモータの駆動装置とモータのロータ位置検出装置
JP3706296B2 (ja) 2000-05-08 2005-10-12 三菱電機株式会社 電動パワーステアリング装置の制御装置。
JP2002108410A (ja) * 2000-09-28 2002-04-10 Fuji Electric Co Ltd 電流制御装置
JP4322254B2 (ja) * 2003-05-30 2009-08-26 日本精工株式会社 電動パワーステアリング装置の制御装置
US7548035B2 (en) * 2003-11-26 2009-06-16 Nsk Ltd. Control apparatus of electric power steering apparatus
JP4603340B2 (ja) * 2004-11-30 2010-12-22 株式会社デンソー モータ制御装置、および操舵装置
JP4889329B2 (ja) 2006-03-20 2012-03-07 国立大学法人長岡技術科学大学 電圧形インバータの制御装置
JP2010120453A (ja) * 2008-11-18 2010-06-03 Mitsubishi Electric Corp 外乱振動抑制制御器
JP5343955B2 (ja) * 2009-12-25 2013-11-13 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP5333422B2 (ja) * 2010-12-07 2013-11-06 株式会社デンソー 電力変換装置
JP5327277B2 (ja) * 2011-06-08 2013-10-30 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5824918B2 (ja) * 2011-07-04 2015-12-02 日産自動車株式会社 インバータ制御装置及びインバータ制御方法
JP5803422B2 (ja) * 2011-08-22 2015-11-04 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5867782B2 (ja) * 2011-11-30 2016-02-24 株式会社ジェイテクト 車両用操舵装置
JP5892012B2 (ja) * 2012-09-11 2016-03-23 日本精工株式会社 車載電子制御装置
CN104620497B (zh) * 2012-09-21 2016-08-31 日产自动车株式会社 逆变器控制装置以及逆变器控制方法
KR101393765B1 (ko) * 2013-04-17 2014-05-12 현대중공업 주식회사 토크 리플 저감을 위한 모델 기반 외란 관측기
US9663143B2 (en) * 2013-08-22 2017-05-30 Nsk Ltd. Control unit for electric power steering apparatus
WO2015114751A1 (ja) * 2014-01-29 2015-08-06 日本精工株式会社 電動パワーステアリング装置
JP6015712B2 (ja) * 2014-05-19 2016-10-26 株式会社デンソー 回転機の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325499A (ja) * 2001-04-27 2002-11-08 Matsushita Electric Ind Co Ltd 交流電動機の電流制御方式
JP2005160221A (ja) * 2003-11-26 2005-06-16 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2006166628A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電力変換装置の制御方法
JP2010041867A (ja) * 2008-08-07 2010-02-18 Denso Corp 多相回転機の制御装置
JP2016054594A (ja) * 2014-09-03 2016-04-14 トヨタ自動車株式会社 電動機制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460990A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504879A (zh) * 2019-07-26 2019-11-26 江苏大学 一种电磁式主动悬架作动器节能抗干扰控制系统
CN110504879B (zh) * 2019-07-26 2021-02-12 江苏大学 一种电磁式主动悬架作动器节能抗干扰控制系统

Also Published As

Publication number Publication date
BR112018076838A2 (pt) 2019-04-02
CN109451782A (zh) 2019-03-08
CN109451782B (zh) 2022-02-22
EP3460990A4 (en) 2019-06-19
EP3460990A1 (en) 2019-03-27
JPWO2018016436A1 (ja) 2019-05-16
US10549772B2 (en) 2020-02-04
JP6525108B2 (ja) 2019-06-05
EP3460990B1 (en) 2020-04-01
BR112018076838B1 (pt) 2023-03-21
US20190337553A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6476374B2 (ja) 電動パワーステアリング装置
JP6579220B2 (ja) 電動パワーステアリング装置
JP6521132B2 (ja) 電動パワーステアリング装置
JP6601595B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2019151200A1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6555378B2 (ja) 電動パワーステアリング装置
JP6512372B2 (ja) 電動パワーステアリング装置
JP6471834B2 (ja) 電動パワーステアリング装置
JP6658972B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2018016436A1 (ja) 電動パワーステアリング装置
WO2019150945A1 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528521

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018076838

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017830955

Country of ref document: EP

Effective date: 20181219

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018076838

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181221