CN110504879B - 一种电磁式主动悬架作动器节能抗干扰控制系统 - Google Patents

一种电磁式主动悬架作动器节能抗干扰控制系统 Download PDF

Info

Publication number
CN110504879B
CN110504879B CN201910679967.XA CN201910679967A CN110504879B CN 110504879 B CN110504879 B CN 110504879B CN 201910679967 A CN201910679967 A CN 201910679967A CN 110504879 B CN110504879 B CN 110504879B
Authority
CN
China
Prior art keywords
controller
speed
module
energy
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910679967.XA
Other languages
English (en)
Other versions
CN110504879A (zh
Inventor
孙晓东
吴旻凯
陈龙
周卫琪
杨泽斌
李可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910679967.XA priority Critical patent/CN110504879B/zh
Publication of CN110504879A publication Critical patent/CN110504879A/zh
Application granted granted Critical
Publication of CN110504879B publication Critical patent/CN110504879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Abstract

本发明公开汽车底盘控制领域中的一种电磁式主动悬架作动器节能抗干扰控制系统,包括节能抗干扰控制器和低速控制器,节能抗干扰控制器由优化控制器、扰动观测器、线性控制器、能量控制器和力矩PI模块组成,电磁作动器的输出端分别连接低速控制器、优化控制器、扰动观测器、线性控制器和能量控制器,电磁作动器的输出端经力矩检测模块连接力矩PI模块的输入端,力矩PI模块输出端分别连接线性控制器和能量控制器和输入端,扰动观测器的输出端连接优化控制器的输入端,能量控制器的输出端连接线性控制器,优化控制器、线性控制器与低速控制器相并联后连接电磁作动器的输入端;对扰动进行有效的抗干扰控制,通过低速控制器实现电机低速时的稳定运行。

Description

一种电磁式主动悬架作动器节能抗干扰控制系统
技术领域
本发明属于汽车底盘控制领域,是汽车主动悬架作动器的控制系统,尤其适用于电磁式主动悬架作动器的高性能抗干扰控制。
背景技术
悬架既是汽车中的一个重要总成,也是汽车底盘中的一个重要部件,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。悬架中的被动悬架系统只能保证在特定的形式条件下才能达到最佳效果,所以汽车的操纵稳定性和平顺性较差;半主动悬架不考虑悬架的刚度,只改变阻尼,无法提供主动作用力,在平顺性和操稳性方面与主动悬架相差很远;主动悬架可根据汽车的运动状态、路面状况以及载荷等参数的变化,对悬架的刚度和阻尼进行动态地自适应调节,使悬架系统始终处于最佳减振状态。
悬架中的空气悬架、液压悬架存在着结构复杂、密封性不可靠、重量成本高等问题,在电力电子技术和电磁学的发展下,悬架中的电磁式主动悬架得到发展,电磁式主动悬架采用永磁直线电动机作为作动器使得控制精度和响应速率显著提高。利用电磁感应原理,直线电机可将车辆振动能量吸收回馈车辆可直接利用的电能,在改善车辆性能的同时降低能耗。但目前,在对电磁式主动悬架的常规控制方法中,对于外部干扰及时变参数无法进行有效处理。因此,为了在根本上对主动悬架进行有效控制。
在中国专利申请号为201610556641.4、名称为“一种主动悬架电磁作动器智能控制器的构造方法”的文献中,仅提及对主动悬架作动器的静态控制性能和抗干扰性能的优化,其扰动检测模块得出的外部扰动精确度不足。
发明内容
本发明的目的是针对目前将永磁直线电机作为作动器的主动悬架控制效果不佳的缺陷,提供一种让电磁作动器在多工况处于最优状态的一种电磁式主动悬架作动器节能抗干扰控制系统,提高作动器的动态响应速度、实时跟踪精度和鲁棒控制。
本发明采用的技术方案是:其以电磁作动器输出的实速度v、电流id、iq,还有给定的参考速度v*、给定的参考电流
Figure BDA0002144429710000011
以及实际力矩F和给定力矩F*相比较得到的力矩误差eF作为输入、以控制电压u为输出,其包括节能抗干扰控制器和低速控制器,节能抗干扰控制器由优化控制器、扰动观测器、线性控制器、能量控制器和力矩PI模块组成,电磁作动器的输出端分别连接低速控制器、优化控制器、扰动观测器、线性控制器和能量控制器,电磁作动器的输出端经力矩检测模块连接力矩PI模块的输入端,力矩PI模块的输出端分别连接线性控制器和能量控制器和输入端,扰动观测器的输出端连接优化控制器的输入端,能量控制器的输出端连接线性控制器,优化控制器、线性控制器与低速控制器相并联后连接电磁作动器的输入端。
所述的扰动观测器的输入值为速度v和电流id、iq、输出值为扰动估计值f;所述的优化控制器的输入值为参考电流
Figure BDA0002144429710000021
扰动估计值f、速度v和电流id、iq、输出值为控制电压u1;所述的力矩检测模块的输入值是速度v和电流id、iq、输出值是实际力矩F;所述的力矩误差eF输入到力矩PI模块,力矩PI模块的输出是力矩g;所述的能量控制器的输入值为力矩g、速度v和电流id、iq、输出值为节能电压z:所述的线性控制器的输入值为力矩g、节能电压z、速度v和电流id、iq、输出值为控制电压u3:所述的低速控制器的输入值为给定参考速度v*和速度v、输出值为控制电压u2=Kx,K为最优增益矩阵,电磁作动器的状态变量x=[id iq v]T,T是矩阵转置;所述的控制电压u=u1+u2+u3
本发明的有益效果是:
1、通过构建优化控制器取代现有的双闭环控制系统,能够有效改善瞬态响应特性,提升了系统的动态性能,对扰动观测器得到的扰动进行有效的抗干扰控制。
2、通过低速控制器实现了交流直线电机低速时的稳定运行,保证了控制精度。
3、通过线性控制器提升了电磁作动器时变力矩工况下的响应速度,并且将节能信号转化为电压信号。
4、采用扰动观测器能精准得到外部扰动,抗干扰性能进一步提升,外加能量控制器的节能控制效果,使得整体节能抗干扰控制器的优化效果更佳,有效克服电动汽车悬架用永磁直线电机耗能大、控制效果不佳的缺陷,设计方式简单,控制效果良好,鲁棒抗干扰能力得以提升。
5、通过K-均值聚类算法模块和误差限制模块来选取最优增益矩阵K,提升了低速控制的效果,减少了人工调节参数的工作量,在最大程度上优化控制。
6、在时变力矩和转速的工况下,线性控制器与能量控制器联合作用,既保证了最小的能量消耗,又实现力矩的精确追踪,提升了高性能控制。
7、所需要的输入输出信号在工程中易于测得,控制中的其他信号只需软件编程实现,不需要增加额外的测量硬件设备,降低成本的同时提高了控制质量。
附图说明
图1是本发明所述的一种电磁式主动悬架作动器节能抗干扰控制系统的结构框图以及与电磁作动器1、力矩检测模块28的连接示意图;
图2是图1中电磁作动器1的等效图;
图3是图1中低速控制器26的控制原理框图;
图中:1.电磁作动器;2.功率变换器模块;3.节能抗干扰控制器;4.扰动观测器;14.交流直线电机;15.电流坐标变换模块;21.速度给定模块;22.电流给定模块;23.优化控制器;24.线性控制器;25.能量控制器;26.低速控制器;27.力矩给定模块;28.力矩检测模块;29.力矩PI模块;31.积分型PI控制模块;41.K-均值聚类算法模块;51.误差限制模块;61.速度判定模块。
具体实施方式
如图1所示,本发明包括节能抗干扰控制器3和低速控制器26,节能抗干扰控制器3和低速控制器26相并联后连接于电磁作动器1的输入端。采用力矩检测模块28检测电磁作动器1的实际力矩,将力矩检测模块28串接在电磁作动器1的输出端和节能抗干扰控制器3的输入端之间。
节能抗干扰控制器3由优化控制器23、扰动观测器4、线性控制器24、能量控制器25和力矩PI模块29组成。电磁作动器1的输出端分别连接低速控制器26、优化控制器23、扰动观测器4、线性控制器24和能量控制器25。电磁作动器1的输出端还经力矩检测模块28连接力矩PI模块29的输入端,力矩PI模块29的输出端分别连接线性控制器24和能量控制器25和输入端。扰动观测器4的输出端连接优化控制器23的输入端。能量控制器25的输出端连接线性控制器24。
如图2所示,电磁作动器1由功率变换器模块2、交流直线电机14和电流坐标变换模块15构成,功率变换器模块2串联在交流直线电机14和电流坐标变换模块15之前,电磁作动器1的输入值是控制电压
Figure BDA0002144429710000031
ud、uq分别是u的d、q轴分量,输出值是为速度v和电流id、iq。功率变换器模块2由电压坐标变换模块11、PWM模块12和逆变器13依次串接组成,实现对交流直线电机14的开环控制。电压坐标变换模块11的输入为控制电压ud、uq信号、输出为静止坐标系下的定子电压ua、ub、uc,定子电压ua、ub、uc作为PWM模块12的输入,PWM模块12的输出为开关脉冲信号0和1(分别代表关断和开通),作为逆变器13的输入,逆变器13的输出为可变频变压三相交流电ia、ib、ic,三相交流电ia、ib、ic作为交流直线电机14的输入,交流直线电机14的输出为速度v,电流坐标变换模块15的输入端为三相电流ia、ib、ic,输出端为同步旋转坐标系下电流id、iq
电磁作动器1的数学模型方程是依据其输入、输入的各项参数,通过分析、等效和推导,考虑参数变化和外部扰动而得出的,具体是:
Figure BDA0002144429710000041
式中,x=[id iq v]T,u=[ud uq Tl]T,分别为电磁作动器1的状态变量x和输入变量u,将电磁作动器1的三个输出v、id、iq作为系统的状态变量,系统输入变量为控制电压ud、uq和负载Tl,T是矩阵转置,A为系统系数矩阵,L为电感矩阵,B为输入系数矩阵,M为求导系数矩阵,p为电机磁极对数,A、B、L由交流直线电机14决定:
Figure BDA0002144429710000042
Figure BDA0002144429710000043
如图1所示,对电磁作动器1输出的速度v、电流id、iq进行采集,然后分别输入给优化控制器23、扰动观测器4、线性控制器24、能量控制器25和力矩检测模块28,电磁作动器1输出的速度v信号单独输入给低速控制器26。
扰动观测器4的输入值为速度v和电流id、iq,输出值为扰动估计值f,扰动估计值f输入给优化控制器23。扰动估计值f为:
Figure BDA0002144429710000044
式中,fd、fq为时变参数和外部负载力矩造成的扰动估计值,Rs为交流直线电机14的电机定子电阻,Ld、Lq为交流直线电机14的定子的旋转坐标系下电感,Φ为动子磁链。
采用电流给定模块22给定参考电流
Figure BDA0002144429710000045
参考电流
Figure BDA0002144429710000046
输出给优化控制器23。这样,优化控制器23的输入值为参考电流
Figure BDA0002144429710000051
扰动估计值f、速度v和电流id、iq,输出值为控制电压u1
Figure BDA0002144429710000052
式中,ud1、uq1是控制电压u1的d、q分量,Rs为交流直线电机14的定子电阻,Ld、Lq为定子的d-q旋转坐标系下电感,Φ为交流直线电机14的动子磁链,fd、fq为时变参数和外部负载转矩造成的扰动估计,由扰动观测器4得出。
力矩给定模块27给定力矩F*信号,力矩检测模块28的输入值是速度v和电流id、iq,力矩检测模块28的输出值是实际力矩F,速度v和电流id、iq经力矩检测模块28测得实际力矩F信号。实际力矩F与给定力矩F*相比较得到力矩误差eF,力矩误差eF输入到力矩PI模块29,经力矩PI模块29调节得到力矩g的电信号,
Figure BDA0002144429710000053
μ为力矩系数,
Figure BDA0002144429710000054
为F的一阶导数,该力矩g分别输入至线性控制器24和能量控制器25。
能量控制器25的输入为力矩g、速度v、电流id、iq,输出为节能电压z信号:
Figure BDA0002144429710000055
式中,T是矩阵转置,j为线性化系数矩阵,jd、jq分别为j在d-q旋转坐标系下的d、q分量,
Figure BDA0002144429710000056
λ(i,v)为线性化函数,
Figure BDA0002144429710000057
a,b,c,d,e与电机参数有关,a=64,b=-0.00193,c=-0.0017,d=-2250000,e=0.00396。
线性控制器24的输入为力矩g、节能电压z、速度v、电流id、iq,输出为控制电压u3
Figure BDA0002144429710000058
式中,ud3、uq3分别为控制电压u3的d、q分量,j为线性化系数矩阵,jq为j在d-q旋转坐标系下的d、q分量,
Figure BDA0002144429710000061
λ(i,v)为线性化函数。
速度给定模块21给定参考速度v*信号,低速控制器26的输入为给定参考速度v*和电磁作动器1输出的速度v,低速控制器26的输出为控制电压u2
Figure BDA0002144429710000062
式中,ud2、uq2为控制电压u2在d-q旋转坐标系下的d、q轴分量,K为2×3的低速控制器26的最优增益矩阵,其值根据系统的响应特性选择。
低速控制器26包括速度判定模块61、积分型PI控制模块31、K-均值聚类算法模块41和误差限制模块51。在不同的车辆工况下,速度给定模块21输出的给定参考速度v*是不断变化的,从而满足不同工况的需求。速度给定模块21输出的给定参考速度v*作为速度判定模块61的第一输入,同时电磁作动器1输出的速度v作为速度判定模块61的第二输入。
低速控制器26首先通过速度判定模块61来实现速度大小的判定,使交流直线电机14在低速时能稳定运行。当给定参考速度v*低于内部预设的临界速度vdef时,速度判定模块61输出低速信号,低速度vl等于给定参考速度v*,即:当v*<vdef,时,则vl=v*。此时,将低速度vl与磁作动器1输出的速度v相比较,得到速度误差值ev,作为积分型PI控制模块31的输入,经积分型PI控制模块31调节,输出控制电压
Figure BDA0002144429710000063
也就是低速控制器26的输出。此时,低速控制器26则采用K-均值聚类算法模块41和误差限制模块51来选取所述的低速控制器26的最优增益矩阵K,具体是:将速度误差值ev分别求积分和求导,得到∫ev(τ)dτ和
Figure BDA0002144429710000064
对速度判定模块61输出的低速vl求一阶导数,得到
Figure BDA0002144429710000065
并对信号做规范化处理,组成K-均值聚类算法模块41的训练样本集
Figure BDA0002144429710000066
Figure BDA0002144429710000067
最后离线训练,得到聚类算法的优化控制电压u'd2、u'q2,将优化控制电压u'd2、u'q2与实际控制电压ud2、uq2相比较,得到电压误差eud、euq,电压误差eud、euq输入到误差限制模块51,经误差限制模块51求得最优增益矩阵K,本发明中的
Figure BDA0002144429710000071
误差限制模块51的输出电压信号如下:
Figure BDA0002144429710000072
其中:u(k)为ud2、uq2的离散形式,e(k)为电压误差ed2、eq2的离散形式,ε为根据实际电机参数得出的误差极限,当误差大于极限时,β=1,从而减小超调;当误差小于极限时,β=0,从而保证系统稳态精度,Kp、Ki和Kd分别为比例系数、积分系数和微分系数,其值分别为0.01、0.05和0.1。
反之,当给定参考速度v*高于或等于临界速度vdef时,速度判定模块61输出高速信号,高速度vh等于电磁作动器1输出的速度v,即当v*≥vh时,则有vh=v。此时,低速控制器26则采用K-均值聚类算法模块41和误差限制模块51来选取最优增益矩阵K,具体是:速度判定模块61输出的高速vh信号与电磁作动器1输出的速度v相比较得到速度误差值ev=0,作为积分型PI控制模块31的输入,积分型PI控制模块31的输出为d、q轴控制电压ud2、uq2,将速度判定模块61输出的高速vh信号与电磁作动器1输出的速度相比较,得到速度误差值ev=0,将其分别求积分和求导,得到∫ev(τ)dτ=0和
Figure BDA0002144429710000073
对速度判定模块61输出的高速vh信号求一阶导数,得到
Figure BDA0002144429710000074
并对信号做规范化处理,组成K-均值聚类算法模块41的训练样本集
Figure BDA0002144429710000075
最后离线训练,得到聚类算法的优化输出,即优化的控制电压u'd2、u'q2,将优化的控制电压u'd2、u'q2与实际输出的控制电压ud2、uq2相比较,得到电压误差eud、euq,将电压误差eud、euq输入误差限制模块51,经过误差限制模块51求得的最优增益矩阵K,本发明中的
Figure BDA0002144429710000076
误差限制模块51的输出电压信号公式与低速阶段相同,由于ev=0,输出电压信号u(k)=0。
本发明系统是由扰动观测器4和优化控制器23相串联、线性控制器24与能量控制器25相串联,再将优化控制器23、线性控制器24、低速控制器26相并联组成。本发明输出的控制电压u信号由优化控制器23、低速控制器26和线性控制器24输出控制电压u1、u2、u3相加得到:u=u1+u2+u3
本发明系统以电磁作动器1输出的实际速度v、实际电流id、iq、速度给定模块21给定的参考速度v*、电流给定模块22给定的参考电流
Figure BDA0002144429710000081
以及实际力矩F与给定力矩F*相比较得到的力矩误差eF作为输入,以控制电压
Figure BDA0002144429710000082
为输出,在时变力矩和速度的工况下,节能电压z信号减小了因绕组铜损而造成的功率损耗,保证了最小的能量消耗,节能电压z信号影响了电机力矩的产生,因此力矩g和节能电压z在线性控制器24与能量控制器25联合作用下,实现力矩的精确追踪,从而实现对主动悬架电磁作动器1的高性能鲁棒控制。

Claims (2)

1.一种电磁式主动悬架作动器节能抗干扰控制系统,其特征是:其以电磁作动器(1)输出的实际速度v、电流id、iq,以及给定的参考速度v*、给定的参考电流
Figure FDA0002766990240000011
以及实际力矩F和给定力矩F*相比较得到的力矩误差eF作为输入,以控制电压u为输出,其包括节能抗干扰控制器(3)和低速控制器(26),节能抗干扰控制器(3)由优化控制器(23)、扰动观测器(4)、线性控制器(24)、能量控制器(25)和力矩PI模块(29)组成,电磁作动器(1)的输出端分别连接低速控制器(26)、优化控制器(23)、扰动观测器(4)、线性控制器(24)和能量控制器(25),电磁作动器(1)的输出端经力矩检测模块(28)连接力矩PI模块(29)的输入端,力矩PI模块(29)的输出端分别连接线性控制器(24)和能量控制器(25)的输入端,扰动观测器(4)的输出端连接优化控制器(23)的输入端,能量控制器(25)的输出端连接线性控制器(24),优化控制器(23)、线性控制器(24)与低速控制器(26)相并联后连接电磁作动器(1)的输入端;
所述的扰动观测器(4)的输入值为实际速度v和电流id、iq,输出值为扰动估计值f;
所述的优化控制器(23)的输入值为参考电流
Figure FDA0002766990240000012
扰动估计值f、速度v和电流id、iq,输出值为控制电压u1
所述的扰动估计值
Figure FDA0002766990240000013
fd、fq为时变参数和外部负载力矩造成的扰动估计值,Rs为电机定子电阻,Ld、Lq为定子的d-q旋转坐标系下电感,p为电机磁极对数,Φ为动子磁链;
所述的控制电压
Figure FDA0002766990240000014
ud1、uq1是u1的d、q分量;
所述的力矩检测模块(28)的输入值是速度v和电流id、iq,输出值是实际力矩F;
所述的力矩误差eF输入到力矩PI模块(29),力矩PI模块(29)的输出是力矩g;
所述的能量控制器(25)的输入值为力矩g、速度v和电流id、iq,输出值为节能电压z;
所述的线性控制器(24)的输入值为力矩g、节能电压z、速度v和电流id、iq,输出值为控制电压u3
所述的节能电压
Figure FDA0002766990240000021
jTz=0,j为线性化系数矩阵,jd、jq为j的d、q分量,jd=38,jq=90,T为矩阵转置,λ(i,v)为线性化函数,
Figure FDA0002766990240000022
a,b,c,d,e与电机参数有关,a=64,b=-0.00193,c=-0.0017,d=-2250000,e=0.00396;
所述的控制电压
Figure FDA0002766990240000023
ud3、uq3为u3在d-q旋转坐标系下的d、q分量;
所述的低速控制器(26)的输入值为给定参考速度v*和速度v,输出值为控制电压
Figure FDA0002766990240000024
低速控制器(26)包括速度判定模块(61)、积分型PI控制模块(31)、K-均值聚类算法模块(41)和误差限制模块(51);速度判定模块(61)判定速度的大小,当给定的参考速度v*低于预设的临界速度vdef时,速度判定模块(61)输出低速度vl信号,且vl=v*;当给定的参考速度v*高于或等于临界速度vdef时,速度判定模块(61)输出高速度vh信号,且vh=v;速度判定模块(61)输出的高速度vh或者低速度vl与速度v相比较得到速度误差值ev作为积分型PI控制模块(31)的输入,积分型PI控制模块(31)输出控制电压u2;对所述的速度误差值ev分别求积分和求导得到∫ev(τ)dτ和
Figure FDA0002766990240000025
对速度判定模块(61)输出的高速度vh或者低速度vl求一阶导数,得到
Figure FDA0002766990240000026
或者
Figure FDA0002766990240000027
组成K-均值聚类算法模块(41)的训练样本集
Figure FDA0002766990240000028
或者
Figure FDA0002766990240000029
Figure FDA00027669902400000210
离线训练得到聚类算法的优化控制电压u'd2、u'q2,将优化控制电压u'd2、u'q2与控制电压ud2、uq2相比较得到电压误差eud、euq,电压误差eud、euq输入到误差限制模块(51),从而输出电压信号:
Figure FDA0002766990240000031
其中:u(k)为ud2、uq2的离散形式,e(k)为电压误差eud、euq的离散形式,ε为根据实际电机参数得出的误差极限,当误差大于极限时,β=0,从而减小超调;当误差小于或等于极限时,β=1,从而保证系统稳态精度,Kp、Ki和Kd分别为比例系数、积分系数和微分系数;
所述的控制电压u=u1+u2+u3
2.根据权利要求1所述的一种电磁式主动悬架作动器节能抗干扰控制系统,其特征是:电磁作动器(1)由功率变换器模块(2)、交流直线电机(14)和电流坐标变换模块(15)构成,功率变换器模块(2)串联在交流直线电机(14)和电流坐标变换模块(15)之前,功率变换器模块(2)由电压坐标变换模块(11)、PWM模块(12)和逆变器(13)依次串接组成,电压坐标变换模块(11)的输入为控制电压u,交流直线电机(14)的输出为速度v,电流坐标变换模块(15)的输出为电流id、iq
CN201910679967.XA 2019-07-26 2019-07-26 一种电磁式主动悬架作动器节能抗干扰控制系统 Active CN110504879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910679967.XA CN110504879B (zh) 2019-07-26 2019-07-26 一种电磁式主动悬架作动器节能抗干扰控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910679967.XA CN110504879B (zh) 2019-07-26 2019-07-26 一种电磁式主动悬架作动器节能抗干扰控制系统

Publications (2)

Publication Number Publication Date
CN110504879A CN110504879A (zh) 2019-11-26
CN110504879B true CN110504879B (zh) 2021-02-12

Family

ID=68587040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910679967.XA Active CN110504879B (zh) 2019-07-26 2019-07-26 一种电磁式主动悬架作动器节能抗干扰控制系统

Country Status (1)

Country Link
CN (1) CN110504879B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116278573B (zh) * 2023-05-19 2023-08-11 华东交通大学 基于线性矩阵不等式的磁流变半主动悬架抗干扰控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450135A (zh) * 2014-08-13 2016-03-30 上海华建电力设备股份有限公司 一种自动节能且灵活提升转矩的vf控制方法
CN106160610A (zh) * 2016-07-14 2016-11-23 江苏大学 一种主动悬架电磁作动器智能控制器的构造方法
WO2018016436A1 (ja) * 2016-07-20 2018-01-25 日本精工株式会社 電動パワーステアリング装置
CN108054969A (zh) * 2017-12-29 2018-05-18 天津工业大学 基于模糊控制器的内置式永磁同步电机全速域控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509042B2 (ja) * 2006-02-13 2010-07-21 株式会社デンソー 自動車用もてなし情報提供システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450135A (zh) * 2014-08-13 2016-03-30 上海华建电力设备股份有限公司 一种自动节能且灵活提升转矩的vf控制方法
CN106160610A (zh) * 2016-07-14 2016-11-23 江苏大学 一种主动悬架电磁作动器智能控制器的构造方法
WO2018016436A1 (ja) * 2016-07-20 2018-01-25 日本精工株式会社 電動パワーステアリング装置
CN108054969A (zh) * 2017-12-29 2018-05-18 天津工业大学 基于模糊控制器的内置式永磁同步电机全速域控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Disturbance observer based controller design of a speed servo system;XianLiang Jiang等;《CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018)》;20180622;第1-6页 *
双电机分布式驱动汽车高速稳定性机电耦合控制;张利鹏等;《机械工程学报》;20150831;第51卷(第16期);第29-40页 *

Also Published As

Publication number Publication date
CN110504879A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
CN110289795B (zh) 一种电动汽车用永磁同步电机控制系统及控制方法
CN110460281B (zh) 一种三电平永磁同步电机双矢量模型预测磁链控制方法
CN108418487B (zh) 一种用于电动汽车的速度脉动抑制方法
CN110429895B (zh) 混合动力车用开关磁阻bsg优化线性控制器的构造方法
CN111600518B (zh) 基于扩张状态观测器的永磁同步电流控制器的设计方法
CN110289792B (zh) 永磁同步电机的标定方法、控制方法及台架试验控制系统
CN111146991B (zh) 一种无人智能清扫车驱动电机控制方法
CN110323974B (zh) 一种基于比例谐振控制器优化的自抗扰控制方法
CN108336935B (zh) 一种反步控制协同eso的直线电机控制方法
CN110061671B (zh) 一种基于变速趋近率的永磁同步电机控制方法及控制系统
CN112187127B (zh) 一种永磁同步电机控制方法
CN110829932A (zh) 一种横向磁通开关磁阻电机的直接转矩控制系统及其方法
CN113193809A (zh) 一种改进二阶线性自抗扰的永磁同步电机控制方法
CN112953335A (zh) 一种永磁同步电机有限时间自适应复合控制方法和系统
CN110504879B (zh) 一种电磁式主动悬架作动器节能抗干扰控制系统
CN109510539B (zh) 一种基于增益矩阵的模型预测磁链控制系统及方法
CN112953328B (zh) 一种电动汽车永磁同步电机自抗扰控制方法
CN110481339B (zh) 一种电动汽车轮毂电机智能复合控制器
CN113691179B (zh) 基于固定时间变幂次指数趋近律的永磁同步电机控制方法
CN116094383A (zh) 永磁同步电机时变非线性扰动观测器及电流约束控制方法
CN113872477B (zh) 一种永磁同步电机滑模控制方法及其应用
CN112234894B (zh) 可变磁通记忆电机无差拍直接转矩-磁链控制系统及方法
CN112701979A (zh) 一种永磁同步电机转矩控制装置
CN111865164A (zh) 一种无位置传感器的永磁半直驱风电机组控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant