WO2018016112A1 - 二次電池およびその製造方法 - Google Patents
二次電池およびその製造方法 Download PDFInfo
- Publication number
- WO2018016112A1 WO2018016112A1 PCT/JP2017/007618 JP2017007618W WO2018016112A1 WO 2018016112 A1 WO2018016112 A1 WO 2018016112A1 JP 2017007618 W JP2017007618 W JP 2017007618W WO 2018016112 A1 WO2018016112 A1 WO 2018016112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- secondary battery
- layer
- foil
- insulating layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a secondary battery and a manufacturing method thereof.
- Lithium ion secondary batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones.
- the electrode group which is a main part of these secondary batteries has a configuration in which positive electrodes and negative electrodes are alternately stacked with a separator layer or an electrolyte layer interposed therebetween.
- Patent Document 1 Japanese Patent Laid-Open No. 2013-196781 discloses a structure in which a region in contact with a positive electrode active material layer is covered with an integral insulating layer in order to prevent an internal short circuit due to misalignment.
- Patent Document 1 has a structure that prevents a short circuit between a positive electrode active material and a negative electrode. However, when the positive electrode foil is deformed, a short circuit between the positive electrode foil and the end of the negative electrode foil is prevented. It is not structured to prevent. Therefore, a short circuit may occur between the positive electrode foil and the end of the negative electrode foil.
- An object of the present invention is to provide means for preventing the occurrence of a short circuit between the positive electrode foil and the end of the negative electrode foil.
- a secondary battery has an electrode including an electrode foil whose upper and lower surfaces are covered with an electrode layer, a separator layer, or an electrolyte layer, and each end of the electrode foil and the electrode layer serves as an insulating layer. It is what is covered.
- the secondary battery manufacturing method forms an electrode having upper and lower surfaces covered with an electrode layer, a separator layer, or an electrolyte layer, and an end covered with an insulating layer.
- FIG. 6 is a cross-sectional view showing a method for manufacturing the secondary battery following FIG. 5.
- FIG. 7 is a cross-sectional view showing a method for manufacturing the secondary battery following FIG. 6.
- FIG. 8 is a cross-sectional view showing a method for manufacturing the secondary battery following FIG. 7.
- the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
- FIG. 18 is a cross-sectional view showing a secondary battery of a comparative example.
- a stacked lithium ion secondary battery that is a secondary battery of a comparative example has a plurality of positive electrodes 12 and a plurality of negative electrodes 22, and the positive electrodes 12 and the negative electrodes 22 are alternately stacked.
- Each of the positive electrode 12 and the negative electrode 22 is made of a thin laminate having a rectangular shape, for example, in plan view.
- each of the positive electrode 12 and the negative electrode 22 has an upper surface and a lower surface on the opposite side, the upper surface of the negative electrode 22 and the lower surface of the positive electrode 12 are in contact with each other, and the upper surface of the positive electrode 12 and the lower surface of the negative electrode 22 are in contact with each other. ing.
- the positive electrode 12 has an electrode foil 3 and an electrode layer 1 covering each of the upper and lower surfaces of the electrode foil 3.
- the negative electrode 22 includes an electrode foil 4, an electrode layer 2 that covers each of the upper and lower surfaces of the electrode foil 4, and a separator layer 5 that covers each of the upper and lower surfaces of the electrode foil 4 via the electrode layer 2. Yes.
- the electrode foil 4 extends from each of the plurality of negative electrodes 22 on one side wall side of the laminate. Is drawn out, and the electrode foil 3 is drawn out from each of the plurality of positive electrodes 12 on the other side wall side of the laminate.
- a plurality of electrode foils 4 are bundled on one side of the laminate, and a plurality of electrode foils 3 are bundled on the other side of the laminate.
- the laminate is sealed in a container (exterior can) (not shown), and the container is filled with an electrolytic solution.
- the laminate including the positive electrode 12 and the negative electrode 22 is immersed in the electrolytic solution.
- the plurality of bundled electrode foils 4 are electrically connected to the negative electrode side drawn out to the outside of the container, and the plurality of bundled electrode foils 3 are drawn to the outside of the container. It is electrically connected to the side electrode. That is, each of the electrode foils 3 and 4 is drawn out from the laminated body in different directions. That is, in the secondary battery of the present embodiment, the tabs connected to the positive electrode and the tabs connected to the negative electrode are taken out in opposite directions.
- the negative electrode 22 has a first side wall and a second side wall opposite to the first side wall, and the electrode foil 4 is extended from the first side wall in the lateral direction. .
- the electrode foil 4 does not protrude from the second side wall and terminates in substantially the same plane as the separator layer 5 and the electrode layer 2. This is because the electrode layer 2 and the separator layer 5 laminated on the electrode foil 4 are cut together with the electrode foil 4 at the position of the second side wall in the manufacturing process of the negative electrode 22.
- the positive electrode 12 has a third side wall and a fourth side wall opposite to the third side wall, and the electrode foil 3 is drawn and extended in the lateral direction from the third side wall side.
- the electrode foil 3 does not protrude from the fourth side wall and terminates in substantially the same plane as the electrode layer 1.
- the 1st side wall of the negative electrode 22 here refers to the side wall of the laminated film which consists of the separator layer 5 and the electrode layer 2.
- the electrode foil 3 is drawn out from the third side wall of the positive electrode 12 constituting one side wall of the laminate composed of the positive electrode 12 and the negative electrode 22, and the electrode layer 2 and the electrode foil are formed on the second side wall of the negative electrode 22 adjacent to the third side wall. 4, the respective end portions (side walls), that is, the respective cut surfaces (negative electrode cut surfaces 7) of the electrode layer 2 and the electrode foil 4 are exposed.
- the electrode foil 3 is a thin film having a thickness of about 20 ⁇ m, the electrode foil 3 is deformed by the expansion / contraction at the time of electrode lamination, vacuum sealing, or charging / discharging, and the negative electrode cut surface 7 is formed. There is a risk of contact.
- FIG. 19 is a cross-sectional view of a secondary battery of a comparative example.
- the lithium ion secondary battery shown in FIG. 19 has the same structure as the lithium ion secondary battery shown in FIG. 18, but the electrode foil 3 of the positive electrode 12 is bent and a part of the electrode foil 3 is an electrode layer. 2 is in contact with the end. That is, in the structure shown in FIG. 19, a short circuit occurs between the positive electrode 12 and the negative electrode 22. Similarly, when the electrode foil 3 and the end of the electrode foil 4 are in contact with each other, a short circuit occurs. When a short circuit occurs in this way, the secondary battery does not operate normally, and the voltage of the secondary battery decreases. Further, excessive current may flow through the secondary battery, which may cause heat generation, ignition, or explosion. Thus, in the laminated secondary battery, there is room for improvement that a short circuit occurs between the electrode foil constituting the electrode and another electrode adjacent to the electrode.
- the secondary battery of the comparative example shown in FIG. 18 and FIG. 19 is actually composed of a positive electrode and a negative electrode, each of which is composed of a positive electrode 5 layer and a negative electrode 6 layer. There are 10 pairs of positive and negative electrodes that fit.
- FIG. 1 is a cross-sectional view showing a stacked lithium ion secondary battery which is a secondary battery of the present embodiment.
- the lithium ion secondary battery of the present embodiment has a plurality of positive electrodes 11 and a plurality of negative electrodes 21, and the positive electrodes 11 and the negative electrodes 21 are alternately stacked.
- Each of the positive electrode 11 and the negative electrode 21 is formed of a thin laminate having, for example, a rectangular shape in plan view. That is, each of the positive electrode 11 and the negative electrode 21 has an upper surface and a lower surface on the opposite side, the upper surface of the negative electrode 21 and the lower surface of the positive electrode 11 are in contact with each other, and the upper surface of the positive electrode 11 and the lower surface of the negative electrode 21 are in contact with each other. ing.
- the number of stacked positive electrodes 11 and negative electrodes 21 is the capacity of the battery. Can be increased or decreased as appropriate.
- the positive electrode 11 has an electrode foil 3 and an electrode layer 1 covering each of the upper and lower surfaces of the electrode foil 3.
- the negative electrode 21 includes an electrode foil 4, an electrode layer 2 that covers each of the upper and lower surfaces of the electrode foil 4, a separator layer 5 that covers each of the upper and lower surfaces of the electrode foil 4 via the electrode layer 2, and the electrode foil 4. And an insulating layer 8 that covers one end of each.
- the electrode foil 4 is drawn out from each of the plurality of negative electrodes 21 in one of the directions orthogonal to the stacking direction of the stacked body composed of the plurality of negative electrodes 21 and the plurality of positive electrodes 11, that is, the lateral side of the stacked body.
- the electrode foil 3 is drawn from each of the plurality of positive electrodes 11.
- a plurality of electrode foils 4 are bundled on one side of the laminate, and a plurality of electrode foils 3 are bundled on the other side of the laminate.
- a lithium metal oxide is used for the material of the electrode layer 1 of the positive electrode 11 (positive electrode material, active material), and a carbon material such as graphite is used for the material of the electrode layer 2 of the negative electrode 21 (negative electrode material, active material).
- the electrode foil 4 of the negative electrode 21 is made of, for example, a copper (Cu) foil
- the electrode foil 3 of the positive electrode 11 is made of, for example, an aluminum (Al) foil.
- the separator layer 5 is an insulating film containing, for example, silicon dioxide (SiO 2 , silica).
- the laminated body including the positive electrode 11 and the negative electrode 21 is sealed in a container (exterior can) (not shown), and the container is filled with an electrolytic solution made of an electrolyte.
- an electrolytic solution for example, an organic solvent such as ethylene carbonate and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) are used.
- the laminate including the positive electrode 11 and the negative electrode 21 is immersed in the electrolytic solution.
- the plurality of bundled electrode foils 4 are electrically connected to the negative electrode side drawn out to the outside of the container, and the plurality of bundled electrode foils 3 are drawn to the outside of the container. It is electrically connected to the side electrode.
- the negative electrode 21 has a first side wall and a second side wall opposite to the first side wall, and the electrode foil 4 is extended from the first side wall in the lateral direction.
- the electrode foil 4 protrudes from the side walls of the electrode layer 2 and the separator layer 5 and terminates outside the respective end portions of the separator layer 5 and the electrode layer 2.
- the positive electrode 11 has a third side wall and a fourth side wall opposite to the third side wall, and the electrode foil 3 is drawn out from the third side wall in the lateral direction and extends. On the fourth side wall of the positive electrode 11, the electrode foil 3 does not protrude from the fourth side wall and terminates in substantially the same plane as the electrode layer 1.
- the side wall (cut surface 6) is covered with an insulating layer 8.
- the second side wall of the negative electrode 21 is constituted by the side surface of the insulating layer 8.
- the insulating layer 8 includes, for example, silicon dioxide as an inorganic oxide and polytetrafluoroethylene (PTFE) particles as organic insulating particles.
- the insulating layer 8 has a side wall of the laminated film composed of the separator layer 5 and the electrode layer 2 that covers the upper surface of the electrode foil 4, an end of the electrode foil 4, and an electrode foil at the end of the negative electrode 21 on the second side wall side. 4 covers the separator layer 5 covering the lower surface of the electrode 4 and the side wall of the laminated film composed of the electrode layer 2.
- the insulating layer 8 includes the side wall of the laminated film composed of the separator layer 5 and the electrode layer 2 covering the upper surface of the electrode foil 4, the surface of the end of the electrode foil 4, It is in contact with the side wall of the laminated film composed of the separator layer 5 and the electrode layer 2 covering the lower surface. For this reason, the electrode foil 4 is not exposed at the end of the negative electrode 21 on the second side wall side.
- the insulating layer 8 overlaps the electrode foil 3 drawn from the stacked body (electrode group).
- FIG. 2 is a schematic diagram showing the structure of a lithium ion secondary battery.
- the outline of the separator layer 5 is indicated by a broken line, and the separator layer 5 is separated from the positive electrode 11 and the negative electrode 21 for easy understanding of the drawing.
- the lithium ion secondary battery is a kind of non-aqueous electrolyte secondary battery, and is a secondary battery in which lithium ions in the electrolyte are responsible for electrical conduction.
- the electrolytic solution 13 made of an electrolyte for example, an organic solvent such as ethylene carbonate and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) are used.
- LiPF 6 lithium hexafluorophosphate
- lithium ions exit from the positive electrode 11 during charging and enter the negative electrode 21.
- lithium ions exit from the negative electrode 21 and enter the positive electrode 11. In this way, charging / discharging in the secondary battery is performed.
- the effect of the secondary battery of this embodiment will be described with reference to FIG.
- the side wall of the electrode foil 4 on the second side wall side of the negative electrode 21 and the end of the electrode layer 2 on the second side wall side of the negative electrode 21 are covered with an insulating layer 8. Therefore, even if the electrode foil 3 extending from the third side wall in the vicinity of the second side wall is bent and comes into contact with the second side wall of the negative electrode 21, the second side wall is constituted by the surface of the insulating layer 8. 3, the insulating layer 8 is interposed between the electrode foil 4 and the electrode layer 2, so that the short circuit as in the comparative example described with reference to FIG. 19 does not occur. Therefore, the reliability of the secondary battery can be improved.
- the electrode foil 3 is brought into contact with the end of the negative electrode 21, that is, the insulating layer 8, a short circuit does not occur, so that a plurality of electrode foils 3 can be bundled in the vicinity of the positive electrode 11. That is, the size of the secondary battery can be reduced.
- the present inventors have a lithium ion secondary battery according to the present embodiment provided with an electrode group that includes five positive electrode layers and six negative electrode layers, and has 10 pairs of positive and negative electrodes adjacent to each other, and FIG.
- the lithium ion secondary battery of the comparative example was created and the characteristic test was done with respect to each secondary battery.
- charging / discharging of each secondary battery was repeated three times, followed by 50% charge, and then the cell voltage was measured for 10 days.
- the characteristic test described in the following modifications and embodiments, the test is performed in the same manner.
- the voltage drop of the secondary battery of the present embodiment was smaller than that of the secondary battery of the comparative example. Since the secondary battery of the comparative example had a large amount of voltage drop, it can be seen that a short circuit occurred inside as shown in FIG. On the other hand, the present inventors were able to confirm that the short circuit could be prevented by forming the insulating layer in the secondary battery of this embodiment by the characteristic test.
- FIG. 3 is a schematic diagram of a coating apparatus for manufacturing an electrode of the secondary battery according to the present embodiment.
- 5 to 8 are cross-sectional views in the manufacturing process of the secondary battery of the present embodiment.
- FIG. 4 is a plan view during the manufacturing process of the secondary battery according to the present embodiment.
- the positive electrode slurry (electrode slurry) is composed of a powder of LiMn 1/3 Ni 1/3 Co 1/3 O 2 as a positive electrode active material, carbon black as a conductive additive, and N-methyl-2- It is prepared by kneading pyrrolidone (NMP) and polyvinylidene fluoride (PVDF) as a binder.
- NMP kneading pyrrolidone
- PVDF polyvinylidene fluoride
- the negative electrode slurry (electrode slurry) is composed of spherical graphite powder as a negative electrode active material, carbon black as a conductive aid, N-methyl-2-pyrrolidone (NMP) as a solvent, and polyfluoride as a binder. It is prepared by kneading vinylidene chloride (PVDF).
- the separator slurry is prepared by kneading silicon dioxide fine particles as an inorganic oxide, N-methyl-2-pyrrolidone (NMP) as a solvent, and polyvinylidene fluoride (PVDF) as a binder.
- NMP N-methyl-2-pyrrolidone
- PVDF polyvinylidene fluoride
- the insulating layer slurry includes silicon dioxide as an inorganic oxide, polytetrafluoroethylene (PTFE) particles as organic insulating particles, N-methyl-2-pyrrolidone (NMP) as a solvent, and a binder. It is prepared by kneading with polyvinylidene fluoride (PVDF).
- PTFE polytetrafluoroethylene
- NMP N-methyl-2-pyrrolidone
- PVDF polyvinylidene fluoride
- the coating device performs coating / drying on one side of the electrode foil (electrode sheet), and then coating / drying the other side by turning the electrode foil upside down. .
- the manufacturing method of a negative electrode is demonstrated first.
- the electrode roll 101 wound with the electrode foil 4 is disposed in the coating apparatus, and an electrode slurry coating nozzle that faces the roller 102 is provided on one surface of the electrode foil 4 fed from the electrode roll 101.
- the electrode slurry 122 supplied from 121 is applied.
- the separator slurry 124 is applied on the upper surface of the electrode slurry 122 using the separator slurry application nozzle 123 facing the roller 103.
- the insulating layer slurry 126 is applied onto the upper surface of the electrode foil 4 in a region adjacent to the laminated slurry composed of the electrode slurry 122 and the separator slurry 124 using the insulating layer slurry application nozzle 125 facing the roller 104.
- a slit die coater is used in order to apply the insulating layer slurry 126 only to the end of the upper surface of the electrode foil 4.
- the electrode slurry 122, the separator slurry 124 and the insulating layer slurry 126 applied to the electrode foil 4 are heated and dried in the drying chamber 130.
- the electrode slurry 122 becomes the electrode layer 2 (see FIG. 5)
- the separator slurry 124 becomes the separator layer 5 (see FIGS. 4 and 5)
- the insulating layer slurry 126 becomes the insulating layer 8 (see FIGS. 4 and 5). It becomes.
- the electrode slurry 122, the separator slurry 124, and the insulating layer slurry 126 have been described as being dried in a single drying step. However, either after the electrode slurry 122 is applied or after the separator slurry 124 is applied. A drying step performed at one or both timings may be added.
- the electrode foil 4 on which the coating on one side is finished is fed by the roller 105 and wound around the electrode roll 106. Thereafter, the electrode roll 106 is reversed, and the other surface of the electrode foil 4 is similarly subjected to a coating / drying process, whereby an electrode layer, a separator layer, and an insulating layer are formed on both surfaces of the electrode foil 4.
- FIG. 4 and 5 show the negative electrode foil 4 that has undergone the above-described coating and drying steps.
- 4 shows a plan view including the electrode foil 4
- FIG. 5 is a cross-sectional view taken along line AA of FIG.
- the rectangular electrode foil 4 shown in FIG. 4 extends in the vertical direction of FIG. 4 in a region not shown.
- the electrode layer 2 and the separator layer 5 are laminated on the upper and lower surfaces of the electrode foil 4 in this order from the electrode foil 4 side.
- an insulating layer 8 is formed in contact with the side wall of the laminated film composed of the electrode layer 2 and the separator layer 5 and the upper surface of the electrode foil 4.
- An insulating layer 8 is formed in contact with the side wall of the laminated film composed of the electrode layer 2 and the separator layer 5 and the lower surface of the electrode foil 4.
- the manufacturing process of the positive electrode is substantially the same as the manufacturing process of the negative electrode described above.
- the separator slurry 124 and the insulating layer slurry 126 shown in FIG. 3 are not used, and only the electrode slurry is applied to the positive electrode foil.
- a drying process is performed, and in order to adhere an electrode layer to electrode foil, an electrode foil is pressed from the up-down direction.
- the pressing is performed, for example, by passing the electrode foil between the opposing rollers and pressing the electrode foil between the two opposing rollers.
- the positive electrode 11 which is the electrode sheet shown in FIG. 6 is formed.
- the positive electrode 11 has an electrode foil 3 and an electrode layer 1 that covers the upper and lower surfaces of the electrode foil 3.
- One side wall of the electrode foil 3 and the side wall of the electrode layer 1 are terminated on the same plane.
- the end of the positive electrode 11 may be cut.
- the separator layer and the insulating layer are not formed on the positive electrode 11.
- FIG. 7 shows a cross-sectional view of the negative electrode during the manufacturing process after cutting. As shown in FIG. 7, the side wall of the insulating layer 8 and the side wall of the electrode foil 4 which are cut surfaces are terminated on the same plane. That is, the end portion of the electrode foil 4 is exposed from the insulating layer 8. Further, the dried insulating layer 8 does not have fluidity.
- the electrode foil 4 is pressed.
- pressure is applied to the upper surfaces of the separator layer 5 and the insulating layer 8 from the upper surface side of the electrode foil 4, and pressure is applied to the lower surfaces of the separator layer 5 and the insulating layer 8 from the lower surface side of the electrode foil 4.
- the pressing is performed, for example, by passing the electrode foil 4 between the opposing rollers and pressing the electrode foil 4 between the two opposing rollers.
- the electrode foil 4 is heated at a temperature of about 120 to 140 ° C. That is, here, heating press is performed.
- the thickness of the separator layer 5 is reduced by pressing.
- the fluidity of polytetrafluoroethylene (PTFE), which is an organic particle constituting the insulating layer 8 is increased by heating, and the insulating layer 8 suppressed from the vertical direction is formed on the electrode foil (negative electrode) 4.
- PTFE polytetrafluoroethylene
- the insulating layer 8 on the upper surface side of the electrode foil 4 and the insulating layer 8 on the lower surface side of the electrode foil 4 are integrated beside the end portion of the electrode foil 4. The edge is covered.
- the negative electrode 21 which is an electrode sheet having the electrode foil 4, the electrode layer 2, the separator layer 5, and the insulating layer 8 is formed.
- the fluidity of the insulating layer 8 is increased, but the fluidity of the electrode layer 2 and the separator layer 5 is not increased. That is, in the press process with heating, the insulating layer 8 has higher fluidity than the electrode layer 2 and the separator layer 5. This is because the insulating layer 8 has, for example, polytetrafluoroethylene (PTFE) particles as organic insulating particles or silicon dioxide particles as inorganic insulating particles, so that the insulating layer 8 is temporarily heated. This is because the fluidity of the insulating layer 8 is enhanced.
- PTFE polytetrafluoroethylene
- the cell is assembled. That is, a plurality of negative electrodes 21 shown in FIG. 8 and a plurality of positive electrodes 11 shown in FIG. 6 are prepared, and the negative electrodes 21 and the positive electrodes 11 are alternately laminated. Subsequently, among the side walls of the laminate (see FIG. 1) composed of the negative electrode 21 and the positive electrode 11, the electrode foils 4 of the plurality of negative electrodes 21 drawn from one side wall are bundled, and a plurality of pieces drawn from the other side wall are bundled. The electrode foil 3 of the positive electrode 11 is bundled.
- the electrode foil 3 is drawn from the third side wall of the positive electrode 11 on one side wall of the laminate. Moreover, in the said side wall of the said laminated body, the insulating layer 8 is exposed in the 2nd side wall of the negative electrode 21, and since the edge part of the electrode foil 4 and the electrode layer 2 are covered with the insulating layer 8, they are exposed. Absent.
- the laminate (electrode group) is put in a laminate pack (container), and the parts other than the electrolyte injection port are sealed to assemble a cell.
- the lithium ion secondary battery of this Embodiment is completed by inject
- an organic solvent such as ethylene carbonate and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) are used.
- an organic solvent such as ethylene carbonate and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) are used.
- Outside the laminate pack there are a first electrode electrically connected to the positive electrode 11 through the bundled electrode foil 3 and a first electrode electrically connected to the negative electrode 21 through the bundled electrode foil 4. Two electrodes are provided.
- the effect of the manufacturing method of the secondary battery of the present embodiment can be the same as that of the secondary battery described with reference to FIG. That is, the side wall of the electrode foil 4 which is a cut surface on the second side wall side of the negative electrode 21 shown in FIG. 1 and the side wall of the electrode layer 2 on the second side wall side of the negative electrode 21 are covered with the insulating layer 8. Therefore, even if the electrode foil 3 extending from the third side wall in the vicinity of the second side wall is bent and comes into contact with the second side wall of the negative electrode 21, the second side wall is constituted by the surface of the insulating layer 8. Since the insulating layer 8 is interposed between the electrode 3 and the electrode foil 4 and the electrode layer 2, no short circuit occurs. Therefore, the reliability of the secondary battery can be improved.
- the electrode foil is formed on the side wall of the laminate in which the negative electrode 21 and the positive electrode 11 are laminated and the electrode foil 3 is drawn out. 4 and the insulating layer 8 covering the respective side walls of the electrode layer 2 must be formed. That is, in the stacking direction of the negative electrode 21 and the positive electrode 11, the insulating layer 8 needs to overlap the electrode foil 3 drawn from the stacked body (electrode group).
- FIG. 9 shows a cross-sectional view of Modification 1 of the secondary battery of the present embodiment.
- the lithium ion secondary battery of the first modification has a structure in which a plurality of positive electrodes and negative electrodes are alternately stacked as in the lithium ion secondary battery shown in FIG.
- the figure shows one positive electrode and one negative electrode.
- the positive electrode and the negative electrode are in contact with each other, and an electrode group in which the positive electrode and the negative electrode are overlapped includes five positive electrode layers and six negative electrode layers, and has 10 pairs of positive electrode and negative electrode adjacent to each other. .
- FIGS. 10 to 17 used in the following description.
- the positive electrode 11 is formed by the same method as the negative electrode described with reference to FIGS. 3 to 5, FIG. 7, and FIG. 11 differs from the lithium ion secondary battery described with reference to FIGS. 1 to 8 in that it has the same structure. That is, the positive electrode 11 of this modification has the separator layers 5 formed on the upper and lower sides of the electrode foil 3 via the electrode layer 1. Further, on the fourth side wall side where the electrode foil 3 is not drawn out, which is the side wall of the positive electrode 11, the end of the electrode foil 3 is lateral to the end of the laminated film composed of the electrode layer 1 and the separator layer 5. The side walls of the laminated film and the end portions of the electrode foil 3 are covered with an insulating layer 8.
- the same effect as the lithium ion secondary battery described with reference to FIGS. 1 to 8 can be obtained by forming the insulating layer 8 that covers the end of the negative electrode 21 on the second side wall side.
- the electrode foil 4 extending from the negative electrode 21 is formed on the electrode foil 3 or the electrode layer 1 of the positive electrode 11 by forming the insulating layer 8 that covers the end of the positive electrode 11 on the fourth side wall side. It can prevent that a short circuit arises in contact.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of this modification and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present modification had a smaller voltage drop than the secondary battery of the comparative example, in the secondary battery of the present modification, it was possible to prevent a short circuit by forming an insulating layer. I was able to confirm.
- FIG. 10 shows a cross-sectional view of Modification 2 of the secondary battery of the present embodiment.
- the lithium ion secondary battery of this modification example is different from that shown in FIGS. 1 to 3 in that separator layers 5 are formed on the upper and lower sides of the electrode foil 3 of the positive electrode 11 with the electrode layer 1 interposed therebetween.
- separator layers 5 are formed on the upper and lower sides of the electrode foil 3 of the positive electrode 11 with the electrode layer 1 interposed therebetween.
- the same effect as the lithium ion secondary battery described with reference to FIGS. 1 to 8 can be obtained by forming the insulating layer 8 that covers the end of the negative electrode 21 on the second side wall side.
- the insulation between the positive electrode 11 and the negative electrode 21 can be improved by forming the separator layer 5 on the positive electrode 11.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of this modification and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present modification had a smaller voltage drop than the secondary battery of the comparative example, in the secondary battery of the present modification, it was possible to prevent a short circuit by forming an insulating layer. I was able to confirm.
- FIG. 11 shows a cross-sectional view of Modification 3 of the secondary battery of the present embodiment.
- the insulating layer 8 is formed not only on the second side wall side of the negative electrode 21 but also on the first side wall side opposite to the second side wall. This is different from the lithium ion secondary battery described with reference to FIGS.
- the side wall of the laminated film composed of the electrode layer 2 and the separator layer 5 on the electrode foil 4 on the side of the first side wall where the electrode foil 4 is drawn and extends long It is covered with an insulating layer 8 that covers the upper surface of the electrode foil 4. That is, the side walls on both sides of the laminated film are covered with the insulating layer 8. Similarly, a laminated film and an insulating layer 8 that covers the side walls on both sides of the laminated film are also formed on the lower surface side of the electrode foil 4.
- the same effect as the lithium ion secondary battery described with reference to FIGS. 1 to 8 can be obtained by forming the insulating layer 8 that covers the end of the negative electrode 21 on the second side wall side.
- the insulating property of the negative electrode 21 can be improved by forming the insulating layer 8 on the first side wall of the negative electrode 21.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of this modification and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present modification had a smaller voltage drop than the secondary battery of the comparative example, in the secondary battery of the present modification, it was possible to prevent a short circuit by forming an insulating layer. I was able to confirm.
- FIG. 12 shows a cross-sectional view of the secondary battery of the second embodiment.
- the lithium ion secondary battery of the present embodiment is formed continuously so that the separator layer 5 of the negative electrode 21 is in contact with the upper surface, the side wall, and the upper surface of the electrode foil 4 of the electrode layer 2.
- the side wall of the electrode layer 2 is covered with the separator layer 5.
- the side wall of the separator layer 5 in contact with the side wall of the electrode layer 2 and the upper surface and side wall of the separator layer 5 in contact with the upper surface of the electrode foil 4 are covered with the insulating layer 8. .
- the separator slurry forming range may be widened so as to protrude beyond the end portion of the electrode slurry 3 beyond the end portion of the electrode slurry in the coating step described with reference to FIG.
- an insulating layer slurry is apply
- a drying process is performed.
- the insulating layer 8 is deformed so as to cover the separator layer 5 in contact with the side wall of the electrode layer 2 and the upper surface of the electrode foil 4 and to cover the end portion of the electrode foil 4.
- the negative electrode 21 shown in FIG. 12 can be formed.
- the steps after forming the negative electrode 21 and the positive electrode 11 are the same as those in the first embodiment.
- the same effect as the lithium ion secondary battery described with reference to FIGS. 1 to 8 can be obtained.
- the end portion of the electrode layer 2 on the second side wall side is covered by the separator layer 5, in the coating process, an insulating layer slurry is applied to a position separated from the electrode slurry and the separator slurry, Even if the end portion of the electrode layer 2 is not covered with the insulating layer 8, the insulating property of the electrode layer 2 can be ensured.
- the insulating layer slurry is applied to a position separated from the electrode slurry and the separator slurry in this way, it is possible to prevent the insulating layer 8 from remaining in contact with the uppermost surface of the separator layer 5 after the pressing step. That is, when the positive electrode 11 and the negative electrode 21 are overlapped, the insulating layer 8 is sandwiched between a part between the positive electrode 11 and the negative electrode 21, thereby preventing lithium ions from moving between the positive electrode 11 and the negative electrode 21. Therefore, it is possible to prevent the performance of the secondary battery from being deteriorated.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of the present embodiment and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present embodiment had a smaller voltage drop than the secondary battery of the comparative example, the secondary battery of the present embodiment was able to prevent a short circuit by forming an insulating layer. I was able to confirm that.
- FIG. 13 shows a cross-sectional view of Modification 1 of the secondary battery of the present embodiment.
- the positive electrode 11 is formed by the same method as the negative electrode described with reference to FIGS. 3 to 5, FIG. 7, and FIG. It differs from the lithium ion secondary battery described with reference to FIG. 12 in that it has the same structure as the positive electrode 11. That is, in the positive electrode 11 of this modification, the end of the electrode foil 3 protrudes laterally from the terminal end of the laminated film composed of the electrode layer 1 and the separator layer 5 on the fourth side wall side, and the side wall of the laminated film And the edge part of the electrode foil 3 is covered with the insulating layer 8.
- the electrode foil 4 extending from the negative electrode 21 is in contact with the electrode foil 3 or the electrode layer 1 of the positive electrode 11. The effect which prevents that a short circuit arises is acquired.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of this modification and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present modification had a smaller voltage drop than the secondary battery of the comparative example, in the secondary battery of the present modification, it was possible to prevent a short circuit by forming an insulating layer. I was able to confirm.
- FIG. 14 shows a cross-sectional view of Modification 2 of the secondary battery of the present embodiment.
- the lithium ion secondary battery of the present modification is different from that of FIG. 12 in that separator layers 5 are formed on the upper and lower sides of the electrode foil 3 of the positive electrode 11 with the electrode layer 1 interposed therebetween. It is different from the lithium ion secondary battery explained by using.
- the effect of increasing the insulation between the positive electrode 11 and the negative electrode 21 by forming the separator layer 5 on the positive electrode 11. Is obtained.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of this modification and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present modification had a smaller voltage drop than the secondary battery of the comparative example, in the secondary battery of the present modification, it was possible to prevent a short circuit by forming an insulating layer. I was able to confirm.
- FIG. 15 is a cross-sectional view of the secondary battery according to the third embodiment.
- the negative electrode 21 does not have the separator layer 5
- the positive electrode 11 has the separator layer 5 and the insulating layer 8. Different from the lithium ion secondary battery of the first embodiment.
- the upper surface of the electrode layer 2 is not covered with the separator layer 5, and the side wall of the electrode layer 2 and the end portion on the second side wall side of the electrode foil 4 are covered with the insulating layer 8. Yes.
- Such a structure of the negative electrode 21 can be obtained by not applying the separator slurry 124 in the coating step described with reference to FIG.
- the positive electrode 11 is formed by the same method as the negative electrode described with reference to FIGS. 3 to 5, FIG. 7, and FIG. For this reason, the positive electrode 11 of this modification has the separator layer 5 formed through the electrode layer 1 on the upper and lower sides of the electrode foil 3, respectively. Further, on the fourth side wall side where the electrode foil 3 is not drawn out, which is the side wall of the positive electrode 11, the end of the electrode foil 3 is lateral to the end of the laminated film composed of the electrode layer 1 and the separator layer 5. The side walls of the laminated film and the end portions of the electrode foil 3 are covered with an insulating layer 8.
- the side wall of the electrode layer 1 and the upper surface of the electrode foil 3 exposed from the electrode layer 1 adjacent to the side wall. Is covered with the separator layer 5.
- Such a structure can be obtained by widening the application range of the separator slurry 124 more than the application range of the electrode slurry in the formation process (coating process) of the positive electrode 11.
- the reason why the formation range of the separator layer 5 is expanded is to prevent the negative electrode 21 and the positive electrode 11 from being short-circuited.
- the width of the electrode layer 1 is smaller than the width of the electrode layer 2 in the extending direction of the electrode foils 3 and 4. Therefore, the entire electrode layer 1 overlaps a part of the electrode layer 2 in plan view. For this reason, when the separator layer 5 and the electrode layer 1 are terminated at the same position in the extending direction of the electrode foil 3, a part of the negative electrode 21 (for example, the electrode layer 2) and a part of the positive electrode 11 (the electrode foil 3) ) Contact each other, which may cause a short circuit.
- the formation range of the separator layer 5 in the positive electrode 11 is wider than the formation range of the electrode layer 1.
- the side wall of the electrode layer 1 is covered with the separator layer 5, and the surface of the electrode foil 3 exposed from the electrode layer 1 in a region between the terminal portion of the electrode layer 1 and the terminal portion of the electrode layer 2 in plan view. Is covered with a separator layer 5. Therefore, a part of the negative electrode 21 and a part of the positive electrode 11 are in contact with each other, thereby preventing a short circuit from occurring.
- the side wall of the electrode layer 2 and the surface of the end portion of the electrode foil 4 are covered with the insulating layer 8 on the second side wall side of the negative electrode 21. Similar effects can be obtained. Further, on the fourth sidewall side of the positive electrode 11, the sidewall of the electrode layer 1, the sidewall of the separator layer 5, and the surface of the end portion of the electrode foil 3 are covered with the insulating layer 8, so that the electrode foil 4 is bent. In this case, it is possible to prevent a short circuit from occurring between the electrode foil 4 and the electrode layer 1 or the electrode foil 3.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of the present embodiment and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present embodiment had a smaller voltage drop than the secondary battery of the comparative example, the secondary battery of the present embodiment was able to prevent a short circuit by forming an insulating layer. I was able to confirm that.
- FIG. 16 shows a plan view of the secondary battery of the fourth embodiment observed from below
- FIG. 17 shows a cross-sectional view of the secondary battery of the fourth embodiment.
- FIG. 17 is a cross-sectional view of FIG. 16 and is a cross-sectional view along the extending direction of the electrode foil 4.
- FIG. 17 shows a cross section including the electrode foil 4 extending laterally from the laminate of the negative electrode 21 and the positive electrode 11, and in addition, in plan view, the electrode foil 4 extending laterally from the laminate.
- An electrode foil 3 extending laterally from the laminate in a position where it does not overlap is shown.
- the lithium ion secondary battery according to the present embodiment is the same as that described above in that the direction in which each of the electrode foils 3 and 4 is drawn from the positive electrode 11 and the negative electrode 21, that is, the direction in which the tab is taken out is the same. Different from the lithium ion secondary battery of form 1.
- each of the negative electrode 21 and the positive electrode 11 has a rectangular shape in plan view, and extends from a predetermined side wall of the multilayer body including the negative electrode 21 and the positive electrode 11 toward the outside of the multilayer body. Electrode foils 3 and 4 are drawn out respectively. However, in order to prevent the electrode foils 3 and 4 from coming into contact with each other, each of the electrode foils 3 and 4 is drawn from the laminate in a position where they do not overlap in plan view.
- the electrode foils 3 and 4 are not drawn on three side walls other than the side wall from which the electrode foils 3 and 4 are drawn. Therefore, it is possible to prevent the occurrence of a short circuit due to the drawn electrode foil 3 or 4 coming into contact with the electrode foil 3 or 4 exposed on the three side walls. That is, among the side walls of the laminate, the end portions of the electrode foils 3 and 4 and the electrode layers 1 and 2 (see FIG. 17) must be covered with the insulating layer 8 on the side walls from which the electrode foils 3 and 4 are not drawn. There is no. Further, by unifying the direction in which the electrode foils 3 and 4 are drawn out in one direction, the size of the secondary battery can be reduced.
- the second side wall located in the direction in which the electrode foil 4 is drawn out of the side wall of the negative electrode 21, that is, the electrode foil 4, the electrode layer 2, and the separator layer 5 is included.
- the side walls of the laminated film are covered with an insulating layer 8 except where the electrode foil 4 is drawn.
- the side walls of the electrode foil 4 and the electrode layer 2 are covered with the insulating layer 8 in a region overlapping the electrode foil 3 drawn from the laminate including the negative electrode 21 and the positive electrode 11 in plan view. For this reason, even if the electrode foil 3 is bent, the electrode foil 3 and the electrode foil 4 or the electrode layer 2 can be prevented from being short-circuited. Moreover, the electrode foil 4 is bent by forming the insulating layer 8 which covers the side wall of the laminated film composed of the electrode layer 2 and the separator layer 5 and a part of the electrode foil 4 drawn out from the laminated film in the negative electrode 21. Short circuit to the positive electrode 11 can be prevented. Therefore, the reliability of the secondary battery can be improved.
- the present inventors conducted a characteristic test on each of the lithium ion secondary battery of the present embodiment and the lithium ion secondary battery of the comparative example shown in FIG. As a result, since the secondary battery of the present embodiment had a smaller voltage drop than the secondary battery of the comparative example, the secondary battery of the present embodiment was able to prevent a short circuit by forming an insulating layer. I was able to confirm that.
- the technical idea of the present invention has been described by taking a lithium ion secondary battery as an example.
- the technical idea of the present invention is limited to the lithium ion secondary battery. Instead, it can be widely applied to power storage devices (for example, all solid batteries or capacitors) including a positive electrode, a negative electrode, and a separator layer or an electrolyte layer that electrically separates the positive electrode and the negative electrode.
- the present invention is effective when applied to a manufacturing technique of a lithium ion secondary battery comprising a laminate of a positive electrode and a negative electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Dispersion Chemistry (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
電極箔上に電極層を介してセパレータ層または電解質層を形成する二次電池において、電極の切断部と、負極および正極の積層体から引き出された電極箔との間での短絡が発生することを防止する二次電池およびその製造方法を提供する。その手段として、負極および正極を交互に複数積層した電極群を有する二次電池において、正極から引き出された電極箔の近傍の負極の端部を構成する電極層および電極箔を、絶縁層により覆うことで保護する。
Description
本発明は二次電池およびその製造方法に関する。
携帯型電子機器の発達に伴い、これらの携帯型電子機器の電力供給源として、繰り返し充電が可能な小型二次電池が使用されている。中でも、エネルギー密度が高く、サイクルライフが長いとともに、自己放電性が低く、かつ、作動電圧が高いリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、上述した利点を有するため、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話機などの携帯型電子機器に多用されている。
また、今後はリチウムイオン二次電池に代わって固体電池も注目されている。これら二次電池の主要部品である電極群は、セパレータ層または電解質層を挟んで、正極および負極が交互に積層された構成となっている。
セパレータ層または電解質層を挟んで正極および負極を積層する場合、セパレータ層または電解質層と電極の間に異物を挟み込む可能性があり、内部短絡の原因となる。内部短絡を防止する目的で電極層上にセパレータ層または電解質層を形成する方法が提案されている。電極層上にセパレータ層または電解質層を形成した場合、電極の積層ずれによる内部短絡が発生する場合がある。
特許文献1(特開2013-196781号公報)には、積層ずれによる内部短絡を防止するために、正極活物質層と接する領域が一体の絶縁層で被覆される構造が開示されている。
特許文献1は、正極活物質と負極との短絡を防止する構造であるが、正極の電極箔が変形した場合に、正極の電極箔と負極の電極箔の端部との間での短絡を防止する構造になっていない。したがって、正極の電極箔と負極の電極箔の端部との間で短絡が発生する場合がある。
本発明の目的は、正極の電極箔と負極の電極箔の端部との間における短絡の発生を防止する手段を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
代表的な実施の形態による二次電池は、上下の面が電極層、セパレータ層または電解質層に覆われた電極箔を備えた電極において、電極箔および電極層のそれぞれの端部が絶縁層に覆われているものである。
他の実施の形態における二次電池の製造方法は、上下の面が電極層、セパレータ層または電解質層に覆われ、端部が絶縁層により覆われた電極を形成するものである。
代表的な実施の形態によれば、二次電池における内部短絡の発生を防ぐことができる。
以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。
また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではない。さらに、特定の数以上でも以下でも良いものとする。
また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。
以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
以下の各実施の形態では、積層型のリチウムイオン二次電池について図面を用いて説明するが、これに制限されることは無い。
(実施の形態1)
<改善の余地の詳細>
図18は、比較例の二次電池を示す断面図である。図18に示すように、比較例の二次電池である積層型のリチウムイオン二次電池は、複数の正極12と複数の負極22とを有しており、正極12および負極22は交互に積層されている。正極12および負極22のそれぞれは、平面視において例えば矩形の形状を有する薄い積層体からなる。すなわち、正極12および負極22のそれぞれは、上面とその反対側の下面とを有し、負極22の上面と正極12の下面とが互いに接し、正極12の上面と負極22の下面とが互いに接している。
<改善の余地の詳細>
図18は、比較例の二次電池を示す断面図である。図18に示すように、比較例の二次電池である積層型のリチウムイオン二次電池は、複数の正極12と複数の負極22とを有しており、正極12および負極22は交互に積層されている。正極12および負極22のそれぞれは、平面視において例えば矩形の形状を有する薄い積層体からなる。すなわち、正極12および負極22のそれぞれは、上面とその反対側の下面とを有し、負極22の上面と正極12の下面とが互いに接し、正極12の上面と負極22の下面とが互いに接している。
正極12は、電極箔3と、電極箔3の上面および下面のそれぞれを覆う電極層1とを有している。負極22は、電極箔4と、電極箔4の上面および下面のそれぞれを覆う電極層2と、電極箔4の上面および下面のそれぞれを電極層2を介して覆うセパレータ層5とを有している。複数の負極22と複数の正極12からなる積層体の積層方向に対して直交する方向、つまり当該積層体の横方向において、積層体の一方の側壁側に複数の負極22のそれぞれから電極箔4が引き出されており、積層体の他方の側壁側に複数の正極12のそれぞれから電極箔3が引き出されている。また、当該積層体の横側の一方において、複数の電極箔4が束ねられ、当該積層体の横側の他方において、複数の電極箔3が束ねられている。
当該積層体は、図示していない容器(外装缶)に封入されており、当該容器内には、電解液が充填されている。正極12および負極22からなる当該積層体は、電解液内に浸っている。束ねられた複数の電極箔4は、当該容器の外側に引き出された負極側の電極に電気的に接続されており、束ねられた複数の電極箔3は、当該容器の外側に引き出された正極側の電極に電気的に接続されている。つまり、当該積層体からは別々の方向に電極箔3、4のそれぞれが引き出されている。すなわち、本実施の形態の二次電池では、正極に接続されたタブおよび負極に接続されたタブの取出し方向がそれぞれ逆方向である。
図18に示すように、負極22は、第1側壁と、第1側壁の反対側の第2側壁を有し、第1側壁からは横方向に電極箔4が引き出されて延在している。負極22の第2側壁では、電極箔4は第2側壁から飛び出しておらず、セパレータ層5および電極層2と略同一の面内で終端している。これは、負極22の製造工程において、電極箔4上に積層された電極層2およびセパレータ層5を、第2側壁の位置において電極箔4と共に切断しているためである。
同様に、正極12は、第3側壁と、第3側壁の反対側の第4側壁を有し、第3側壁側からは横方向に電極箔3が引き出されて延在しており、正極12の第4側壁では、電極箔3は第4側壁から飛び出しておらず、電極層1と略同一の面内で終端している。
なお、ここでいう負極22の第1側壁とは、セパレータ層5および電極層2からなる積層膜の側壁を指す。また、ここでいう正極12の第4側壁とは、電極層1の側壁を指す。
正極12および負極22からなる積層体の一方の側壁を構成する正極12の第3側壁から電極箔3が引き出され、第3側壁と隣接する負極22の第2側壁において、電極層2および電極箔4のそれぞれの端部(側壁)、つまり、電極層2および電極箔4のそれぞれの切断面(負極切断面7)が露出している。ここで、電極箔3は厚さが20μm程度の薄い膜であるため、電極積層時、真空封止時、または、充放電時の膨張収縮により、電極箔3が変形して負極切断面7に接するおそれがある。すなわち、電極箔3が変形し易い薄さの膜であり、負極切断面7において電極層2および電極箔4のそれぞれの側壁が露出していることで、図19に示すような短絡が生じる場合がある。図19は、比較例の二次電池の断面図である。
図19に示すリチウムイオン二次電池は図18に示すリチウムイオン二次電池と同様の構造を有するものであるが、正極12の電極箔3が折れ曲がっており、電極箔3の一部が電極層2の端部と接している。すなわち、図19に示す構造では、正極12と負極22との間で短絡が生じている。電極箔3と電極箔4の端部とが接した場合にも、同様に短絡が生じる。このようにして短絡が発生すると、二次電池が正常に動作しなくなり、二次電池の電圧低下が起こる。また、二次電池に過度な電流が流れることで、発熱、発火または爆発が起こる虞がある。このように、積層型の二次電池では、電極を構成する電極箔と、当該電極と隣り合う他の電極との間で短絡が生じるという改善の余地を有する。
なお、本実施の形態では図18および図19に示す比較例の二次電池は、実際には、正極と負極とを重ねた電極群が、正極5層と負極6層とからなり、互いに隣り合う正極および負極のペアを10組有している。
<二次電池の構造>
そこで、本実施の形態1では、上述した改善の余地を解決する工夫を施している。以下では、この工夫を施した本実施の形態における技術的思想について説明する。図1は、本実施の形態の二次電池である積層型のリチウムイオン二次電池を示す断面図である。
そこで、本実施の形態1では、上述した改善の余地を解決する工夫を施している。以下では、この工夫を施した本実施の形態における技術的思想について説明する。図1は、本実施の形態の二次電池である積層型のリチウムイオン二次電池を示す断面図である。
図1に示すように、本実施の形態のリチウムイオン二次電池は、複数の正極11と複数の負極21とを有しており、正極11および負極21は交互に積層されている。正極11および負極21のそれぞれは、平面視において例えば矩形の形状を有する薄い積層体からなる。すなわち、正極11および負極21のそれぞれは、上面とその反対側の下面とを有し、負極21の上面と正極11の下面とが互いに接し、正極11の上面と負極21の下面とが互いに接している。ここでは正極11を2枚、負極21を3枚積層し、互いに隣接する正極11と負極21とのペアを4ペア形成する構造について説明するが、正極11および負極21の積層数は電池の容量により適宜増減できる。
正極11は、電極箔3と、電極箔3の上面および下面のそれぞれを覆う電極層1とを有している。負極21は、電極箔4と、電極箔4の上面および下面のそれぞれを覆う電極層2と、電極箔4の上面および下面のそれぞれを電極層2を介して覆うセパレータ層5と、電極箔4の一方の端部を覆う絶縁層8とを有している。複数の負極21と複数の正極11からなる積層体の積層方向に対して直交する方向、つまり当該積層体の横側のうち、一方に複数の負極21のそれぞれから電極箔4が引き出されており、他方に複数の正極11のそれぞれから電極箔3が引き出されている。また、当該積層体の横側の一方において、複数の電極箔4が束ねられ、当該積層体の横側の他方において、複数の電極箔3が束ねられている。
正極11の電極層1の材料(正極材料、活物質)にはリチウム金属酸化物を用い、負極21の電極層2の材料(負極材料、活物質)にはグラファイトなどの炭素材を用いている。負極21の電極箔4は、例えば銅(Cu)箔からなり、正極11の電極箔3は、例えばアルミニウム(Al)箔からなる。セパレータ層5は、例えば二酸化シリコン(SiO2、シリカ)を含む絶縁膜である。
正極11および負極21からなる上記積層体は、図示していない容器(外装缶)に封入されており、当該容器内には、電解質からなる電解液が充填されている。電解液には、例えば、炭酸エチレンなどの有機溶剤とヘキサフルオロリン酸リチウム(LiPF6)などのリチウム塩とを用いる。正極11および負極21からなる当該積層体は、電解液内に浸っている。束ねられた複数の電極箔4は、当該容器の外側に引き出された負極側の電極に電気的に接続されており、束ねられた複数の電極箔3は、当該容器の外側に引き出された正極側の電極に電気的に接続されている。
負極21は、第1側壁と、第1側壁の反対側の第2側壁を有し、第1側壁からは横方向に電極箔4が引き出されて延在しており、負極21の第1側壁の反対側の第2側壁側では、電極箔4は電極層2およびセパレータ層5の側壁から突出しており、セパレータ層5および電極層2のそれぞれの端部よりも外側で終端している。
正極11は、第3側壁と、第3側壁の反対側の第4側壁を有し、第3側壁から横方向に電極箔3が引き出されて延在している。正極11の第4側壁では、電極箔3は第4側壁から飛び出しておらず、電極層1と略同一の面内で終端している。
本実施の形態の特徴として、負極21の第2側壁側において、電極層2の側壁と、電極箔4の端部、つまり、負極21の第2側壁側において突出する電極箔4の上面、下面および側壁(切断面6)とは、絶縁層8により覆われている。負極21の第2側壁は、絶縁層8の側面により構成されている。絶縁層8は、例えば、無機酸化物としての二酸化シリコンと、有機絶縁物の粒子としてポリテトラフルオロエチレン(PTFE)の粒子とを含んでいる。
すなわち、絶縁層8は負極21の第2側壁側の端部において、電極箔4の上面を覆うセパレータ層5および電極層2からなる積層膜の側壁と、電極箔4の端部と、電極箔4の下面を覆うセパレータ層5および電極層2からなる積層膜の側壁とを覆っている。言い換えれば、1つの負極21において、絶縁層8は、電極箔4の上面を覆うセパレータ層5および電極層2からなる積層膜の側壁と、電極箔4の端部の表面と、電極箔4の下面を覆うセパレータ層5および電極層2からなる積層膜の側壁とに対し接している。このため、第2側壁側の負極21の端部において、電極箔4は露出していない。
負極21および正極11の積層方向において、絶縁層8は、当該積層体(電極群)から引き出された電極箔3と重なっている。
<二次電池の動作>
リチウムイオン二次電池の基本的な動作原理について、図2を用いて説明する。図2は、リチウムイオン二次電池の構造を示す模式図である。図2では、セパレータ層5の輪郭を破線で示しており、図を分かり易くするため、セパレータ層5と正極11および負極21とを離間させて示している。
リチウムイオン二次電池の基本的な動作原理について、図2を用いて説明する。図2は、リチウムイオン二次電池の構造を示す模式図である。図2では、セパレータ層5の輪郭を破線で示しており、図を分かり易くするため、セパレータ層5と正極11および負極21とを離間させて示している。
リチウムイオン二次電池は、図2に示すように、非水電解質二次電池の一種であり、電解質中のリチウムイオンが電気伝導を担う二次電池である。電解質からなる電解液13には、例えば炭酸エチレンなどの有機溶剤と、ヘキサフルオロリン酸リチウム(LiPF6)などのリチウム塩とを用いる。電池内では、充電時にリチウムイオンは正極11から出て負極21に入り、放電時には逆に、リチウムイオンは負極21から出て正極11に入る。このようにして、二次電池における充放電が行われる。
<本実施の形態の二次電池の効果>
次に、本実施の形態の二次電池の効果について、図1を用いて説明する。図1に示すように、負極21の第2側壁側の電極箔4の側壁と、負極21の第2側壁側の電極層2の端部とは、絶縁層8により覆われている。したがって、第2側壁の近傍の第3側壁から延在する電極箔3が折れ曲がって負極21の第2側壁に接したとしても、第2側壁は絶縁層8の表面により構成されており、電極箔3と電極箔4および電極層2との間には絶縁層8が介在するため、図19を用いて説明した上記比較例のような短絡は生じない。したがって、二次電池の信頼性を向上させることができる。
次に、本実施の形態の二次電池の効果について、図1を用いて説明する。図1に示すように、負極21の第2側壁側の電極箔4の側壁と、負極21の第2側壁側の電極層2の端部とは、絶縁層8により覆われている。したがって、第2側壁の近傍の第3側壁から延在する電極箔3が折れ曲がって負極21の第2側壁に接したとしても、第2側壁は絶縁層8の表面により構成されており、電極箔3と電極箔4および電極層2との間には絶縁層8が介在するため、図19を用いて説明した上記比較例のような短絡は生じない。したがって、二次電池の信頼性を向上させることができる。
また、電極箔3を負極21の端部、つまり絶縁層8に接触させても短絡が生じないため、複数の電極箔3を正極11の近傍で束ねることができる。つまり、二次電池のサイズを縮小することができる。
本発明者らは、正極5層と負極6層とからなり、互いに隣り合う正極および負極のペアを10組有する電極群を備えた本実施の形態のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とを作成して、それぞれの二次電池に対し特性試験を行った。当該特性試験では、セルを初期化するために、各二次電池の充放電を3回繰り返し、続いて、50%の充電を行った後、10日間セルの電圧を測定した。なお、以下の変形例および実施の形態において説明する特性試験では、同様の方法で試験を行う。
その結果、本実施の形態の二次電池は、比較例の二次電池に比べて電圧低下が小さかった。比較例の二次電池は、電圧の低下量が大きかったことから、図19に示すように、内部で短絡が発生していることが分かる。これに対し、本発明者らは当該特性試験により、本実施の形態の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
<二次電池の製造方法>
次に、本実施の形態の二次電池の製造方法を、図3~図8および図1を用いて説明する。図3は、本実施の形態の二次電池の電極製造用の塗布装置の模式図である。図5~図8は、本実施の形態の二次電池の製造工程中の断面図である。図4は、本実施の形態の二次電池の製造工程中の平面図である。
次に、本実施の形態の二次電池の製造方法を、図3~図8および図1を用いて説明する。図3は、本実施の形態の二次電池の電極製造用の塗布装置の模式図である。図5~図8は、本実施の形態の二次電池の製造工程中の断面図である。図4は、本実施の形態の二次電池の製造工程中の平面図である。
まず、電極、セパレータ層および絶縁層用のスラリを作成する。正極用スラリ(電極スラリ)は、正極活物質としてのLiMn1/3Ni1/3Co1/3O2の粉末と、導電助剤としてのカーボンブラックと、溶剤としてのN-メチル-2-ピロリドン(NMP)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを混練することで作成する。
負極用スラリ(電極スラリ)は、負極活物質としての球状黒鉛の粉末と、導電助剤としてのカーボンブラックと、溶剤としてのN-メチル-2-ピロリドン(NMP)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを混練することで作成する。
セパレータスラリは、無機酸化物としての二酸化シリコンの微粒子と、溶剤としてのN-メチル-2-ピロリドン(NMP)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを混練することで作成する。
絶縁層スラリは、無機酸化物としての二酸化シリコンと、有機絶縁物の粒子としてのポリテトラフルオロエチレン(PTFE)の粒子と、溶剤としてのN-メチル-2-ピロリドン(NMP)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを混練することで作成する。
次に、図3に示す塗布装置を用いて、電極の塗布・乾燥を行う。当該塗布装置は、電極箔(電極シート)の片面に対して塗工・乾燥を行った後、電極箔の上下を逆にして、他方の片面に対しても塗工・乾燥を行うものである。ここではまず負極の製造方法について説明する。
負極の製造工程では、電極箔4が捲回された電極ロール101を当該塗布装置に配置し、電極ロール101から送り出される電極箔4の一方の面に対し、ローラ102に対向する電極スラリ塗布ノズル121から供給される電極スラリ122を塗布する。続いて、ローラ103に対向するセパレータスラリ塗布ノズル123を用いて、セパレータスラリ124を電極スラリ122の上面上に塗布する。続いて、ローラ104に対向する絶縁層スラリ塗布ノズル125を用いて、電極スラリ122およびセパレータスラリ124からなる積層スラリに隣接する領域の電極箔4の上面上に、絶縁層スラリ126を塗布する。このように電極箔4の上面の端部にのみ絶縁層スラリ126を塗布するために、例えばスリットダイコータを用いる。その後、電極箔4に塗布された電極スラリ122、セパレータスラリ124および絶縁層スラリ126を、乾燥室130内で加熱して乾燥させる。
これにより、電極スラリ122は電極層2(図5参照)となり、セパレータスラリ124はセパレータ層5(図4および図5参照)となり、絶縁層スラリ126は絶縁層8(図4および図5参照)となる。なお、ここでは電極スラリ122、セパレータスラリ124および絶縁層スラリ126を1回の乾燥工程で乾燥させることについて説明したが、電極スラリ122を塗布した後、または、セパレータスラリ124を塗布した後のいずれか一方または両方のタイミングで行う乾燥工程を追加しても構わない。
このようにして、片面の塗布が終了した電極箔4は、ローラ105により送られ、電極ロール106に捲回される。その後、電極ロール106を反転させて、電極箔4のもう一方の面に対して同様に塗布・乾燥工程を行うことで、電極箔4の両面に電極層、セパレータ層および絶縁層を形成する。
上記の塗布・乾燥工程を経た負極用の電極箔4を図4および図5に示す。図4には電極箔4を含む平面図を示しており、図5は、図4のA-A線における断面図である。図4に示す矩形の電極箔4は、図示していない領域において、図4の上下方向に延在している。
図4および図5に示すように、電極箔4の上面および下面には、電極箔4側から順に電極層2およびセパレータ層5が積層されている。電極箔4の上面上には、電極層2およびセパレータ層5からなる積層膜の側壁と電極箔4の上面とに接する絶縁層8が形成されており、電極箔4の下面の下には、電極層2およびセパレータ層5からなる積層膜の側壁および電極箔4の下面に接する絶縁層8が形成されている。
ここで、正極の製造方法について説明する。正極の製造工程は、上述した負極の製造工程とほぼ同様である。ただし、図3に示すセパレータスラリ124および絶縁層スラリ126は用いず、正極用電極箔には電極スラリのみを塗布する。その後、乾燥工程を行い、続いて、電極層を電極箔に密着させるため、電極箔を上下方向からプレスする。当該プレスは、例えば、対向するローラ同士の間に電極箔を通過させ、その際に対向する2つのローラにより電極箔を挟んで押さえつけることで行う。
これにより、図6に示す電極シートである正極11を形成する。正極11は、電極箔3と、電極箔3の上面および下面を覆う電極層1とを有している。電極箔3の一方の側壁と電極層1の側壁とは同一面で終端しており、このような構造を得るため、正極11の端部を切断してもよい。なお、ここでは、正極11にセパレータ層および絶縁層は形成されていない。
次に、電極の切断・プレスを行う。すなわち、図4および図5に示す塗布・乾燥後の電極箔4を、破線で示す電極切断位置10で切断する。切断後の製造工程中の負極の断面図を図7に示す。図7に示すように、切断面である絶縁層8の側壁および電極箔4の側壁は、同一面で終端している。つまり、電極箔4の端部は絶縁層8から露出している。また、乾燥した絶縁層8は、流動性を有していない。
次に、図8に示すように、電極箔4をプレスする。言い換えれば、電極箔4の上面側からセパレータ層5および絶縁層8のそれぞれの上面に圧力をかけると共に、電極箔4の下面側からセパレータ層5および絶縁層8のそれぞれの下面に圧力を加える。当該プレスは、例えば、対向するローラ同士の間に電極箔4を通過させ、その際に対向する2つのローラにより電極箔4を挟んで押さえつけることで行う。当該プレスを行う際には、電極箔4に対し、120~140℃程度の温度で加熱を行う。すなわち、ここでは加熱プレスを行う。
プレスを行うことで、セパレータ層5の膜厚は薄くなる。また、プレスを行う際、加熱により絶縁層8を構成する有機物粒子であるポリテトラフルオロエチレン(PTFE)の流動性が高まり、上下方向から抑えられた絶縁層8は、電極箔(負極)4の切断面6を覆うように変形する。この変形により、電極箔4の上面側の絶縁層8と、電極箔4の下面側の絶縁層8とが、電極箔4の端部の横で一体となり、この絶縁層8により電極箔4の端部が覆われる。これにより、電極箔4、電極層2、セパレータ層5および絶縁層8を有する電極シートである負極21を形成する。
加熱を伴う上記プレス工程では、絶縁層8の流動性は高くなるが、電極層2およびセパレータ層5の流動性は高くならない。つまり、加熱を伴う上記プレス工程では、絶縁層8の方が、電極層2およびセパレータ層5よりも流動性が高い。これは、絶縁層8が、例えば有機絶縁物の粒子としてポリテトラフルオロエチレン(PTFE)の粒子、または、無機絶縁物の粒子として二酸化シリコンの粒子を有していることにより、熱によって一時的に絶縁層8の流動性が高まるためである。
次に、セルの組立を行う。すなわち、図8に示す負極21および図6に示す正極11をそれぞれ複数用意し、負極21と正極11とを交互に積層する。続いて、負極21と正極11とからなる積層体(図1参照)の側壁のうち、一方の側壁から引き出された複数の負極21の電極箔4を束ね、他方の側壁から引き出された複数の正極11の電極箔3を束ねる。
つまり、当該積層体の一方の側壁において、正極11の第3側壁からは電極箔3が引き出されている。また、当該積層体の当該側壁において、負極21の第2側壁では絶縁層8が露出しており、電極箔4の端部および電極層2は、絶縁層8に覆われているため露出していない。
次に、上記積層体(電極群)をラミネートパック(容器)に入れ、電解液注入口以外を封止し、セルを組み立てる。その後、セルに電解液を注入し、真空雰囲気で電解液注入口を封止することで、本実施の形態のリチウムイオン二次電池が完成する。電解質からなる当該電解液には、例えば炭酸エチレンなどの有機溶剤と、ヘキサフルオロリン酸リチウム(LiPF6)などのリチウム塩とを用いる。当該ラミネートパックの外部には、束ねられた電極箔3を介して正極11に電気的に接続された第1電極と、束ねられた電極箔4を介して負極21に電気的に接続された第2電極とが設けられている。
<本実施の形態の二次電池の製造方法の効果>
本実施の形態の二次電池の製造方法の効果は、図1を用いて説明した二次電池と同様の効果を得ることができる。すなわち、図1に示す負極21の第2側壁側の切断面である電極箔4の側壁と、負極21の第2側壁側の電極層2の側壁とは、絶縁層8により覆われている。したがって、第2側壁の近傍の第3側壁から延在する電極箔3が折れ曲がって負極21の第2側壁に接したとしても、第2側壁は絶縁層8の表面により構成されており、電極箔3と電極箔4および電極層2との間には絶縁層8が介在するため、短絡は生じない。したがって、二次電池の信頼性を向上させることができる。
本実施の形態の二次電池の製造方法の効果は、図1を用いて説明した二次電池と同様の効果を得ることができる。すなわち、図1に示す負極21の第2側壁側の切断面である電極箔4の側壁と、負極21の第2側壁側の電極層2の側壁とは、絶縁層8により覆われている。したがって、第2側壁の近傍の第3側壁から延在する電極箔3が折れ曲がって負極21の第2側壁に接したとしても、第2側壁は絶縁層8の表面により構成されており、電極箔3と電極箔4および電極層2との間には絶縁層8が介在するため、短絡は生じない。したがって、二次電池の信頼性を向上させることができる。
上記のように絶縁層8を形成して短絡を防ぐためには、負極21および正極11が積層された積層体の側壁であって、電極箔3が引き出されている側壁側に形成された電極箔4および電極層2のそれぞれの側壁を覆う絶縁層8を形成する必要がある。すなわち、負極21および正極11の積層方向において、絶縁層8は、当該積層体(電極群)から引き出された電極箔3と重なっている必要がある。
<変形例1>
図9に本実施の形態の二次電池の変形例1の断面図を示す。本変形例1のリチウムイオン二次電池は、図1に示すリチウムイオン二次電池と同様に複数の正極および負極を交互に積層した構造を有しているが、ここでは図を分かり易くするため、図に正極および負極をそれぞれ1つ示す。実際には、正極と負極は互いに接しており、正極と負極とを重ねた電極群は、正極5層と負極6層とからなり、互いに隣り合う正極および負極のペアを10組有している。これは、後の説明で用いる図10~図17も同様である。
図9に本実施の形態の二次電池の変形例1の断面図を示す。本変形例1のリチウムイオン二次電池は、図1に示すリチウムイオン二次電池と同様に複数の正極および負極を交互に積層した構造を有しているが、ここでは図を分かり易くするため、図に正極および負極をそれぞれ1つ示す。実際には、正極と負極は互いに接しており、正極と負極とを重ねた電極群は、正極5層と負極6層とからなり、互いに隣り合う正極および負極のペアを10組有している。これは、後の説明で用いる図10~図17も同様である。
図9に示すように、本変形例のリチウムイオン二次電池は、正極11が、図3~図5、図7および図8を用いて説明した負極と同じ方法で形成され、負極21と正極11が同じ構造を有している点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。つまり、本変形例の正極11は、電極箔3の上下のそれぞれに電極層1を介して形成されたセパレータ層5を有している。また、正極11の側壁であって、電極箔3が引き出されていない方の第4側壁側では、電極箔3の端部が電極層1およびセパレータ層5からなる積層膜の終端部から横側に突出しており、当該積層膜の側壁および電極箔3の端部は絶縁層8により覆われている。
本変形例では、負極21の第2側壁側の端部を覆う絶縁層8を形成することで、図1~図8を用いて説明したリチウムイオン二次電池と同様の効果が得られる。加えて、本変形例では、正極11の第4側壁側の端部を覆う絶縁層8を形成することで、負極21から延在する電極箔4が正極11の電極箔3または電極層1に接して短絡が生じることを防ぐことができる。
本発明者らは、本変形例のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本変形例の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本変形例の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
<変形例2>
図10に本実施の形態の二次電池の変形例2の断面図を示す。図10に示すように、本変形例のリチウムイオン二次電池は、正極11の電極箔3の上下のそれぞれに、電極層1を介してセパレータ層5が形成されている点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。
図10に本実施の形態の二次電池の変形例2の断面図を示す。図10に示すように、本変形例のリチウムイオン二次電池は、正極11の電極箔3の上下のそれぞれに、電極層1を介してセパレータ層5が形成されている点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。
本変形例では、負極21の第2側壁側の端部を覆う絶縁層8を形成することで、図1~図8を用いて説明したリチウムイオン二次電池と同様の効果が得られる。加えて、本変形例では、正極11にセパレータ層5を形成することで、正極11および負極21の間の絶縁性を高めることができる。
本発明者らは、本変形例のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本変形例の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本変形例の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
<変形例3>
図11に本実施の形態の二次電池の変形例3の断面図を示す。図11に示すように、本変形例のリチウムイオン二次電池は、負極21の第2側壁側のみでなく、第2側壁の反対側の第1側壁側にも絶縁層8が形成されている点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。
図11に本実施の形態の二次電池の変形例3の断面図を示す。図11に示すように、本変形例のリチウムイオン二次電池は、負極21の第2側壁側のみでなく、第2側壁の反対側の第1側壁側にも絶縁層8が形成されている点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。
つまり、負極21の側壁のうち、電極箔4が引き出されて長く延在している方の第1側壁側では、電極箔4上の電極層2およびセパレータ層5からなる積層膜の側壁が、電極箔4の上面を覆う絶縁層8により覆われている。つまり、当該積層膜の両側の側壁は、絶縁層8により覆われている。電極箔4の下面側にも、同様に積層膜と、当該積層膜の両側の側壁を覆う絶縁層8が形成されている。
本変形例では、負極21の第2側壁側の端部を覆う絶縁層8を形成することで、図1~図8を用いて説明したリチウムイオン二次電池と同様の効果が得られる。加えて、本変形例では、負極21の第1側壁に絶縁層8を形成することで、負極21の絶縁性を高めることができる。
本発明者らは、本変形例のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本変形例の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本変形例の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
(実施の形態2)
図12に本実施の形態2の二次電池の断面図を示す。図12に示すように、本実施の形態のリチウムイオン二次電池は、負極21のセパレータ層5が、電極層2の上面、側壁および電極箔4の上面に接するように連続的に形成されている点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。つまり、電極層2の側壁は、セパレータ層5により覆われている。また、負極21の第2側壁側において、電極層2の側壁に接するセパレータ層5の側壁と、電極箔4の上面に接するセパレータ層5の上面および側壁とは、絶縁層8に覆われている。
図12に本実施の形態2の二次電池の断面図を示す。図12に示すように、本実施の形態のリチウムイオン二次電池は、負極21のセパレータ層5が、電極層2の上面、側壁および電極箔4の上面に接するように連続的に形成されている点で、図1~図8を用いて説明したリチウムイオン二次電池と異なる。つまり、電極層2の側壁は、セパレータ層5により覆われている。また、負極21の第2側壁側において、電極層2の側壁に接するセパレータ層5の側壁と、電極箔4の上面に接するセパレータ層5の上面および側壁とは、絶縁層8に覆われている。
このような構造は、図3を用いて説明した塗工工程において、電極スラリの端部よりも電極箔3の端部側にはみ出すようにセパレータスラリの形成範囲を広げればよい。また、図3を用いて説明した塗工工程において、絶縁層スラリは、電極スラリから離間した位置の電極箔4の上面に塗布する。続いて乾燥工程を行う。その後、加熱を伴うプレスを行うことで、絶縁層8は、電極層2の側壁および電極箔4の上面に接するセパレータ層5を覆い、かつ、電極箔4の端部を覆うように変形する。これにより、図12に示す負極21を形成することができる。負極21および正極11を形成した後の工程は、前記実施の形態1と同様である。
本実施の形態では、負極21の端部を覆う絶縁層8を形成することで、図1~図8を用いて説明したリチウムイオン二次電池と同様の効果が得られる。加えて、本変形例では、セパレータ層5により第2側壁側の電極層2の端部が覆われるため、塗工工程において、電極スラリおよびセパレータスラリから離間した位置に絶縁層スラリを塗布し、電極層2の端部が絶縁層8により覆われなくても、電極層2の絶縁性を確保することができる。
このように絶縁層スラリを電極スラリおよびセパレータスラリから離間した位置に塗布すれば、プレス工程の後に、セパレータ層5の最上面に接して絶縁層8が残ることを防ぐことができる。つまり、正極11と負極21とを重ねた際に、正極11と負極21との間の一部に絶縁層8が挟まれ、これにより正極11と負極21と間におけるリチウムイオンの移動が妨げられて二次電池の性能が低下することを防ぐことができる。
本発明者らは、本実施の形態のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本実施の形態の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本実施の形態の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
<変形例1>
図13に本実施の形態の二次電池の変形例1の断面図を示す。図13に示すように、本変形例のリチウムイオン二次電池は、正極11が、図3~図5、図7および図8を用いて説明した負極と同じ方法で形成され、図9に示す正極11と同じ構造を有している点で、図12を用いて説明したリチウムイオン二次電池と異なる。つまり、本変形例の正極11は、第4側壁側において、電極箔3の端部が電極層1およびセパレータ層5からなる積層膜の終端部から横側に突出しており、当該積層膜の側壁および電極箔3の端部は絶縁層8により覆われている。
図13に本実施の形態の二次電池の変形例1の断面図を示す。図13に示すように、本変形例のリチウムイオン二次電池は、正極11が、図3~図5、図7および図8を用いて説明した負極と同じ方法で形成され、図9に示す正極11と同じ構造を有している点で、図12を用いて説明したリチウムイオン二次電池と異なる。つまり、本変形例の正極11は、第4側壁側において、電極箔3の端部が電極層1およびセパレータ層5からなる積層膜の終端部から横側に突出しており、当該積層膜の側壁および電極箔3の端部は絶縁層8により覆われている。
したがって、本変形例では、図12を用いて説明したリチウムイオン二次電池と同様の効果に加えて、負極21から延在する電極箔4が正極11の電極箔3または電極層1に接して短絡が生じることを防ぐ効果が得られる。
本発明者らは、本変形例のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本変形例の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本変形例の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
<変形例2>
図14に本実施の形態の二次電池の変形例2の断面図を示す。図14に示すように、本変形例のリチウムイオン二次電池は、正極11の電極箔3の上下のそれぞれに、電極層1を介してセパレータ層5が形成されている点で、図12を用いて説明したリチウムイオン二次電池と異なる。
図14に本実施の形態の二次電池の変形例2の断面図を示す。図14に示すように、本変形例のリチウムイオン二次電池は、正極11の電極箔3の上下のそれぞれに、電極層1を介してセパレータ層5が形成されている点で、図12を用いて説明したリチウムイオン二次電池と異なる。
本変形例では、図12を用いて説明したリチウムイオン二次電池と同様の効果に加えて、正極11にセパレータ層5を形成することで、正極11および負極21の間の絶縁性を高める効果が得られる。
本発明者らは、本変形例のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本変形例の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本変形例の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
(実施の形態3)
図15に本実施の形態3の二次電池の断面図を示す。図15に示すように、本実施の形態のリチウムイオン二次電池は、負極21がセパレータ層5を有しておらず、正極11がセパレータ層5および絶縁層8を有している点で、前記実施の形態1のリチウムイオン二次電池と異なる。
図15に本実施の形態3の二次電池の断面図を示す。図15に示すように、本実施の形態のリチウムイオン二次電池は、負極21がセパレータ層5を有しておらず、正極11がセパレータ層5および絶縁層8を有している点で、前記実施の形態1のリチウムイオン二次電池と異なる。
つまり、負極21において、電極層2の上面はセパレータ層5に覆われておらず、電極層2の側壁と、電極箔4の第2側壁側の端部とは、絶縁層8に覆われている。このような負極21の構造は、図3を用いて説明した塗工工程において、セパレータスラリ124を塗布しないことで得られる。
また、正極11は、図3~図5、図7および図8を用いて説明した負極と同様の方法で形成されている。このため、本変形例の正極11は、電極箔3の上下のそれぞれに電極層1を介して形成されたセパレータ層5を有している。また、正極11の側壁であって、電極箔3が引き出されていない方の第4側壁側では、電極箔3の端部が電極層1およびセパレータ層5からなる積層膜の終端部から横側に突出しており、当該積層膜の側壁および電極箔3の端部は絶縁層8により覆われている。
ただし、正極11の側壁であって、電極箔3が引き出されている方の第3側壁側では、電極層1の側壁と、当該側壁に隣接して電極層1から露出する電極箔3の上面が、セパレータ層5により覆われている。このような構造は、正極11の形成工程(塗工工程)において、セパレータスラリ124の塗布範囲を電極スラリの塗布範囲より広げることで得られる。セパレータ層5の形成範囲を広げている理由は、負極21と正極11とが短絡することを防ぐことにある。
すなわち、電極箔3、4の延在方向において、電極層1の幅は電極層2の幅よりも小さい。よって、電極層1の全体は、平面視において電極層2の一部と重なっている。このため、セパレータ層5と電極層1とが電極箔3の延在方向において同じ位置で終端している場合、負極21の一部(例えば電極層2)と正極11の一部(電極箔3)とが互いに接し、これにより短絡が起きるおそれがある。
これに対し、本実施の形態では正極11におけるセパレータ層5の形成範囲を、電極層1の形成範囲より広げている。これにより、電極層1の側壁をセパレータ層5により覆い、さらに、平面視において電極層1の終端部と電極層2の終端部との間の領域で電極層1から露出する電極箔3の表面をセパレータ層5により覆っている。よって、負極21の一部と正極11の一部とが互いに接し、これにより短絡が起きることを防ぐことができる。
加えて、本実施の形態では、負極21の第2側壁側において、電極層2の側壁と電極箔4の端部の表面とが絶縁層8により覆われているため、前記実施の形態1と同様の効果を得ることができる。また、正極11の第4側壁側において、電極層1の側壁およびセパレータ層5の側壁と、電極箔3の端部の表面とが絶縁層8により覆われているため、電極箔4が折れ曲がった場合に、電極箔4と電極層1または電極箔3との間で短絡が生じることを防ぐことができる。
本発明者らは、本実施の形態のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本実施の形態の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本実施の形態の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
(実施の形態4)
図16に本実施の形態4の二次電池を下側から観察した平面図を示し、図17に本実施の形態4の二次電池の断面図を示す。図17は、図16の断面図であって、電極箔4の延在方向に沿う断面図である。図17では、負極21および正極11の積層体から横側に延在する電極箔4を含む断面を示しており、加えて、当該積層体から横側に延在する電極箔4と平面視において重ならない位置で当該積層体から横側に延在する電極箔3を示している。
図16に本実施の形態4の二次電池を下側から観察した平面図を示し、図17に本実施の形態4の二次電池の断面図を示す。図17は、図16の断面図であって、電極箔4の延在方向に沿う断面図である。図17では、負極21および正極11の積層体から横側に延在する電極箔4を含む断面を示しており、加えて、当該積層体から横側に延在する電極箔4と平面視において重ならない位置で当該積層体から横側に延在する電極箔3を示している。
本実施の形態のリチウムイオン二次電池は、当該積層体に対し、正極11および負極21から電極箔3、4のそれぞれを引き出す方向、つまりタブを取り出す方向が同じである点で、前記実施の形態1のリチウムイオン二次電池と異なる。
つまり、図16に示すように、負極21および正極11のそれぞれは平面視において矩形形状を有しており、負極21および正極11からなる積層体の所定の側壁から、当該積層体の外側に向かって電極箔3、4がそれぞれ引き出されている。ただし、電極箔3、4のそれぞれが互いに接触することを防ぐため、平面視において重ならない位置で電極箔3、4のそれぞれが当該積層体から引き出されている。
このため、平面視において矩形形状を有する当該積層体において、電極箔3、4が引き出されている側壁以外の3つの側壁では、電極箔3、4は引き出されていない。よって、当該3つの側壁において露出する電極箔3または4に、引き出された電極箔3または4が接触することに起因する短絡の発生を防ぐことができる。すなわち、当該積層体の側壁のうち、電極箔3、4が引き出されていない側壁では、電極箔3、4、電極層1および2(図17参照)の端部を、絶縁層8により覆う必要がない。また、電極箔3、4を引き出す方向を1つの方向に統一することで、二次電池のサイズを縮小することができる。
また、図16および図17に示すように、負極21の側壁のうち、電極箔4が引き出されている方向に位置する第2側壁、つまり、電極箔4、電極層2およびセパレータ層5からなる積層膜の側壁は、電極箔4が引き出されている箇所を除き、絶縁層8により覆われている。
よって、負極21および正極11からなる積層体から引き出された電極箔3と平面視において重なる領域において、電極箔4および電極層2のそれぞれの側壁は、絶縁層8に覆われている。このため、電極箔3が折れ曲がったとしても、電極箔3と、電極箔4または電極層2とが短絡することを防ぐことができる。また、負極21において電極層2およびセパレータ層5からなる積層膜の側壁と、当該積層膜から引き出された電極箔4の一部とを覆う絶縁層8を形成することで、電極箔4が折れ曲がり、正極11に短絡することを防ぐことができる。よって、二次電池の信頼性を向上させることができる。
本発明者らは、本実施の形態のリチウムイオン二次電池と、図18に示す比較例のリチウムイオン二次電池とのそれぞれに対して特性試験を行った。その結果、本実施の形態の二次電池は、比較例の二次電池に比べて電圧低下が小さかったため、本実施の形態の二次電池において、絶縁層を形成することにより短絡を防止できたことを確認することができた。
以上、本発明者らによってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
例えば、上記した各実施の形態では、リチウムイオン二次電池を例に挙げて、本願発明の技術的思想について説明したが、本願発明の技術的思想は、リチウムイオン二次電池に限定されるものではなく、正極と、負極と、正極および負極の間を電気的に分離するセパレータ層または電解質層とを備える蓄電装置(例えば、全個体電池またはキャパシタなど)に幅広く適用することができる。
本発明は、正極および負極の積層体からなるリチウムイオン二次電池の製造技術に適用して有効である。
1、2 電極層
3、4 電極箔
5 セパレータ層
7 負極切断面
8 絶縁層
10 電極切断位置
11、12 正極
21、22 負極
3、4 電極箔
5 セパレータ層
7 負極切断面
8 絶縁層
10 電極切断位置
11、12 正極
21、22 負極
Claims (15)
- 第1電極および第2電極を積層した電極群を有する二次電池において、
前記第1電極は、上面および下面のそれぞれが第1電極層に覆われた第1電極箔を備え、
前記第2電極は、
上面および下面のそれぞれが第2電極層に覆われた第2電極箔と、
前記第1電極と前記第2電極層との間に配置されたセパレータ層または電解質層と、
前記第2電極箔および前記第2電極層のそれぞれの側壁を覆う第1絶縁層と、
を備え、
前記電極群からは、前記第1電極箔および前記第2電極箔がそれぞれ引き出されている、二次電池。 - 請求項1記載の二次電池において、
前記第1電極および前記第2電極の積層方向において、前記第1絶縁層は、前記電極群から引き出された前記第1電極箔と重なる、二次電池。 - 請求項1記載の二次電池において、
前記電極群は、前記第1電極および前記第2電極を交互に積層して形成され、複数の前記第1電極および複数の前記第2電極を含み、
複数の前記第1電極のそれぞれから引き出された複数の前記第1電極箔が、1つに束ねられている、二次電池。 - 請求項1記載の二次電池において、
前記第1絶縁層は、無機酸化物の粒子または有機絶縁物の粒子を含む、二次電池。 - 請求項1記載の二次電池において、
120~140℃の温度下において、前記第1絶縁層は、前記第2電極層および前記セパレータ層のいずれよりも流動性が高い、二次電池。 - 請求項1記載の二次電池において、
前記第1電極および前記第2電極の積層方向に対して直交する方向において、前記第1絶縁層に接する前記第2電極箔の端部は、前記第1絶縁層に接する前記第2電極層の側壁よりも外側へ突出している、二次電池。 - 請求項1記載の二次電池において、
引き出された前記第1電極箔は、前記第1絶縁層に接している、二次電池。 - 請求項1記載の二次電池において、
前記第2電極箔の上面側の前記第2電極層の側壁、前記第2電極箔の上面、前記第2電極箔の側壁、前記第2電極箔の下面、および、前記第2電極箔の下面側の前記第2電極層の側壁は、1つの第1絶縁層により覆われている、二次電池。 - 請求項1記載の二次電池において、
前記第1電極は、前記第1電極箔および前記第1電極層のそれぞれの側壁を覆う第2絶縁層を備え、
前記第1電極および前記第2電極の積層方向において、前記第2絶縁層は、前記電極群から引き出された前記第2電極箔と重なる、二次電池。 - 請求項1記載の二次電池において、
前記第1電極箔および前記第2電極箔は、前記電極群の同一の側壁側から引き出されている、二次電池。 - (a)第1電極を形成する工程、
(b)第2電極を形成する工程、
(c)前記第1電極および前記第2電極を積層して電極群を形成する工程を有し、
前記第1電極の製造工程は、
(a1)第1電極箔の表面上に第1電極スラリを塗布する工程、
(a2)前記第1電極スラリを乾燥させることで、前記第1電極箔と、前記第1電極スラリからなる第1電極層とを備えた前記第1電極を形成する工程、
を有し、
前記第2電極の製造工程は、
(b1)第2電極箔の表面上に第2電極スラリを塗布する工程、
(b2)前記第2電極スラリ上にセパレータスラリまたは電解質スラリを塗布する工程、
(b3)塗布された前記第2電極スラリの側壁に隣接する前記第2電極箔の前記表面上に絶縁層スラリを塗布する工程、
(b4)前記第2電極スラリ、前記セパレータスラリまたは前記電解質スラリ、および、前記絶縁層スラリを乾燥させることで、前記第2電極箔と、前記第2電極スラリからなる第2電極層と、前記セパレータスラリからなるセパレータ層または前記電解質スラリからなる電解質層と、前記絶縁層スラリからなる絶縁層とを備えた電極シートを形成する工程、
(b5)前記電極シートを切断することで、前記第2電極層の切断面を露出させる工程、
(b6)前記(b5)工程の後、電極シートをプレスすることで、前記第2電極箔の前記切断面が前記絶縁層により覆い、これにより前記電極シートからなる前記第2電極を形成する工程、
を有し、
前記電極群からは、前記第1電極箔が引き出されている、二次電池の製造方法。 - 請求項11記載の二次電池の製造方法において、
前記第1電極および前記第2電極の積層方向において、前記絶縁層は、前記電極群から引き出された前記第1電極箔と重なる、二次電池の製造方法。 - 請求項11記載の二次電池の製造方法において、
前記(c)工程では、複数の前記第1電極および複数の前記第2電極を1つずつ交互に積層することで前記電極群を形成し、
(d)前記(c)工程の後、複数の前記第1電極のそれぞれから引き出された複数の前記第1電極箔を、1つに束ねる工程をさらに有する、二次電池の製造方法。 - 請求項11記載の二次電池の製造方法において、
前記(b6)工程では、前記電極シートに対して加熱を行いながら前記電極シートをプレスし、
前記(b6)工程において加熱された前記絶縁層は、加熱された前記第1電極層、前記第2電極層、前記セパレータ層および前記電解質層のいずれよりも流動性が高い、二次電池の製造方法。 - 請求項11記載の二次電池の製造方法において、
前記絶縁層スラリは、無機酸化物の粒子または有機絶縁物の粒子を含む、二次電池の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780030786.3A CN109155425A (zh) | 2016-07-20 | 2017-02-28 | 二次电池及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016142025A JP6639347B2 (ja) | 2016-07-20 | 2016-07-20 | 二次電池およびその製造方法 |
JP2016-142025 | 2016-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016112A1 true WO2018016112A1 (ja) | 2018-01-25 |
Family
ID=60993233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007618 WO2018016112A1 (ja) | 2016-07-20 | 2017-02-28 | 二次電池およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6639347B2 (ja) |
CN (1) | CN109155425A (ja) |
WO (1) | WO2018016112A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160553A (ja) * | 2018-03-13 | 2019-09-19 | Tdk株式会社 | 電極及び蓄電素子 |
JP2020113434A (ja) * | 2019-01-11 | 2020-07-27 | 日立造船株式会社 | 全固体電池および全固体電池の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7172127B2 (ja) * | 2018-05-14 | 2022-11-16 | トヨタ自動車株式会社 | 全固体電池及びその製造方法 |
JP7169524B2 (ja) * | 2019-06-06 | 2022-11-11 | トヨタ自動車株式会社 | 非水電解質二次電池 |
KR20240082069A (ko) * | 2022-12-01 | 2024-06-10 | 주식회사 엘지에너지솔루션 | 전극조립체 및 그 전극조립체를 포함하는 이차전지 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001210304A (ja) * | 2000-01-27 | 2001-08-03 | Nec Mobile Energy Kk | 密閉型電池およびその製造方法 |
JP2013196781A (ja) * | 2012-03-15 | 2013-09-30 | Nissan Motor Co Ltd | 電気デバイス用正極およびこれを用いた電気デバイス |
JP2014120456A (ja) * | 2012-12-19 | 2014-06-30 | Nissan Motor Co Ltd | 二次電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10302762A (ja) * | 1997-02-28 | 1998-11-13 | Sumitomo Chem Co Ltd | サーマルスイッチを有するリチウム二次電池 |
WO2000059063A1 (en) * | 1999-03-26 | 2000-10-05 | Matsushita Electric Industrial Co., Ltd. | Laminate sheath type battery |
JP4590723B2 (ja) * | 2000-12-06 | 2010-12-01 | 株式会社デンソー | 巻回型電極電池およびその製造方法 |
JP4166997B2 (ja) * | 2002-03-29 | 2008-10-15 | 富士通メディアデバイス株式会社 | 弾性表面波素子の実装方法及び樹脂封止された弾性表面波素子を有する弾性表面波装置 |
US7335448B2 (en) * | 2002-05-30 | 2008-02-26 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary battery |
US20100216000A1 (en) * | 2006-09-19 | 2010-08-26 | Hideaki Fujita | Method of producing electrode for secondary battery and secondary battery |
JP6070067B2 (ja) * | 2012-10-30 | 2017-02-01 | ソニー株式会社 | 電池、電極、電池パック、電子機器、電動車両、蓄電装置および電力システム |
JP2014137883A (ja) * | 2013-01-16 | 2014-07-28 | Hioki Ee Corp | 二次電池および二次電池製造方法 |
JP6183348B2 (ja) * | 2014-12-19 | 2017-08-23 | トヨタ自動車株式会社 | 電極体および電極体の製造方法 |
JP6380083B2 (ja) * | 2014-12-19 | 2018-08-29 | トヨタ自動車株式会社 | 電極体および正極の製造方法 |
-
2016
- 2016-07-20 JP JP2016142025A patent/JP6639347B2/ja not_active Expired - Fee Related
-
2017
- 2017-02-28 CN CN201780030786.3A patent/CN109155425A/zh active Pending
- 2017-02-28 WO PCT/JP2017/007618 patent/WO2018016112A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001210304A (ja) * | 2000-01-27 | 2001-08-03 | Nec Mobile Energy Kk | 密閉型電池およびその製造方法 |
JP2013196781A (ja) * | 2012-03-15 | 2013-09-30 | Nissan Motor Co Ltd | 電気デバイス用正極およびこれを用いた電気デバイス |
JP2014120456A (ja) * | 2012-12-19 | 2014-06-30 | Nissan Motor Co Ltd | 二次電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160553A (ja) * | 2018-03-13 | 2019-09-19 | Tdk株式会社 | 電極及び蓄電素子 |
JP2020113434A (ja) * | 2019-01-11 | 2020-07-27 | 日立造船株式会社 | 全固体電池および全固体電池の製造方法 |
US11848421B2 (en) | 2019-01-11 | 2023-12-19 | Hitachi Zosen Corporation | All-solid-state battery and method for manufacturing all-solid-state battery |
JP7411331B2 (ja) | 2019-01-11 | 2024-01-11 | 日立造船株式会社 | 全固体電池および全固体電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2018014194A (ja) | 2018-01-25 |
JP6639347B2 (ja) | 2020-02-05 |
CN109155425A (zh) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018016112A1 (ja) | 二次電池およびその製造方法 | |
US9601745B2 (en) | Non-aqueous electrolyte secondary battery | |
US9472796B2 (en) | Stacked secondary battery with separator between electrodes | |
US10741820B2 (en) | Rechargeable battery | |
KR102337577B1 (ko) | 이차 전지 | |
JP2019021621A (ja) | 電池 | |
US10411304B2 (en) | Electrode assembly wound in both directions and lithium secondary battery including the same | |
JP6270613B2 (ja) | 角形二次電池 | |
JP2017097999A (ja) | 蓄電素子及びその製造方法 | |
JP2008293793A (ja) | 固体薄膜電池及び固体薄膜電池の製造方法 | |
JP7405243B2 (ja) | 集電体、蓄電素子及び蓄電モジュール | |
US20120321930A1 (en) | Electrode assembly and secondary battery using the same | |
WO2014141640A1 (ja) | ラミネート外装電池 | |
JP2014116080A (ja) | 蓄電装置、及び蓄電装置の製造方法 | |
JP6322947B2 (ja) | 蓄電素子および極板 | |
US10991985B2 (en) | Secondary battery | |
US20150270528A1 (en) | Secondary battery | |
JP2017050243A (ja) | 扁平型電池 | |
JP6307594B2 (ja) | リチウムイオン二次電池及びその製造方法と製造装置 | |
KR102619895B1 (ko) | 이차 전지 | |
JP6510304B2 (ja) | リチウムイオン二次電池の製造方法 | |
KR101515672B1 (ko) | 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자 | |
JP5501270B2 (ja) | 塗布型電極群を用いた電池 | |
JP2016115470A (ja) | 扁平型電池 | |
WO2019087668A1 (ja) | セパレータスラリ、二次電池の電極およびその製造方法、並びに、二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830634 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17830634 Country of ref document: EP Kind code of ref document: A1 |