WO2014141640A1 - ラミネート外装電池 - Google Patents

ラミネート外装電池 Download PDF

Info

Publication number
WO2014141640A1
WO2014141640A1 PCT/JP2014/001239 JP2014001239W WO2014141640A1 WO 2014141640 A1 WO2014141640 A1 WO 2014141640A1 JP 2014001239 W JP2014001239 W JP 2014001239W WO 2014141640 A1 WO2014141640 A1 WO 2014141640A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
separator
positive electrode
laminated
current collecting
Prior art date
Application number
PCT/JP2014/001239
Other languages
English (en)
French (fr)
Inventor
仁史 前田
伸夫 原
忠継 小川
昌孝 新屋敷
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014141640A1 publication Critical patent/WO2014141640A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminated battery.
  • Laminate exterior batteries are widely used as relatively large-capacity storage batteries in mobile devices such as mobile phones, as well as in vehicles such as hybrid electric vehicles (HEV) and electric vehicles (PEV), robots, and homes and stores. It has been.
  • a laminate-clad battery is configured by sealing a rectangular parallelepiped electrode body inside a laminate-clad body.
  • the electrode body is formed by repeatedly laminating a rectangular positive electrode plate and a negative electrode plate through a separator and impregnating with an electrolytic solution.
  • the separator is, for example, a bag shape formed by joining a pair of resin sheets at each peripheral edge, and the positive electrode plate is insulated from the negative electrode plate by being housed in the separator.
  • a current collecting tab is extended on each of the positive electrode plate and the negative electrode plate.
  • the positive electrode tab is electrically connected to the positive electrode terminal
  • the negative electrode tab is electrically connected to the negative electrode terminal.
  • the positive electrode terminal and the negative electrode terminal are exposed to the outside from the laminate outer package and used for charging and discharging.
  • any of the separators that house the positive electrode plate in the electrode body and the negative electrode plate may be relatively displaced (lamination misalignment).
  • the positive electrode tab is extended from the separator, and it is difficult to join the positive electrode tab and the separator due to the structure. For this reason, when the frictional force accompanying the said position shift reaches a separator and the separator part which coat
  • the present invention has been made in view of the above problems, and in an exterior laminated battery having an electrode body in which a part of a current collecting tab extended from an electrode plate is covered with a separator, a separator in the vicinity of the current collecting tab
  • An object of the present invention is to provide a laminated battery that can appropriately prevent the occurrence of a short circuit due to turning.
  • one aspect of the present invention is a laminated exterior battery including an electrode body and a laminated exterior body that houses the electrode body, and the electrode body includes a rectangular first electrode plate and A strip-shaped current collecting tab extended from one side of the first electrode plate, a sheet-shaped separator having a larger area than the first electrode plate, and covering both surfaces of the first electrode plate; A second electrode plate having a rectangular shape opposite to that of the first electrode plate, the separator being disposed on both sides of the first electrode plate;
  • the electrode body has a peripheral portion protruding from at least one side of the electrode plate, and the protruding opposing portions are overlapped with each other, and a connecting portion in which the protruding opposing portions are bonded to each other is formed on the peripheral portion.
  • the current collecting tab is the separator at the peripheral edge.
  • the joint is exposed from an end side, and the joint portion is closer to the current collecting tab than the center of the remaining area excluding a portion overlapping the current collecting tab at the peripheral edge portion along the one side, and It is set as the structure which exists in the position close
  • the joining portion may be configured to exist in a linear shape or a dot shape along the current collecting tab.
  • a plurality of the joint portions may be present in the peripheral portion along the longitudinal direction.
  • the peripheral portion protrudes from four sides around the first electrode plate, and the peripheral portion protrudes from the one side of the first electrode plate. Can be configured to be wider than any width of the peripheral edge protruding from the remaining three sides excluding the one side.
  • each of the joints may have a linear shape or a dot shape that is parallel or inclined with respect to any side of the first electrode plate that is adjacent thereto.
  • the joining portion may be a heat welding portion.
  • the area of the first electrode plate is smaller than the area of the second electrode plate, and the area of the separator is larger than the area of the second electrode plate. It can also be configured.
  • a current collecting tab extending from the positive electrode plate is located at one end of the one side, It can also be set as the structure where the current collection tab extended from the said negative electrode plate is located in the other edge part of edge
  • the both surfaces of the first electrode plate are covered with the separator, and the joint portion that joins the opposing portions at the peripheral edge portion of the separator that protrudes from one side of the first electrode plate Is formed.
  • the junction is at least at the peripheral edge along one side of the first electrode plate, at a position closer to the current collecting tab than the center of the remaining area excluding the portion overlapping the current collecting tab, and one side of the first electrode plate It exists in a position closer to the end side of the separator than the center of the width of the perpendicular peripheral edge.
  • the separator joint is provided at a position close to at least both the current collecting tab and the end of the separator. Therefore, even when the positive electrode plate and the negative electrode plate are misaligned in the manufacturing process and a frictional force is exerted on the separator portion that overlaps the current collecting tab, the joint near the current collecting tab suppresses the movement of the separator. Therefore, the portion of the separator that overlaps the current collecting tab does not easily turn over. Therefore, it is possible to prevent the first electrode plate housed in the separator from being short-circuited with the second electrode plate by turning over the separator and exposing the current collecting tab.
  • FIG. 1 is an external view of a laminated battery 1 according to Embodiment 1.
  • FIG. FIG. 2 is an exploded view of the laminated battery 1.
  • FIG. 3 is an exploded view of the laminated electrode body 3X.
  • FIG. 4 is a front view of the positive electrode plate 31 and the separator 32.
  • FIG. 5 is a partially enlarged view of the positive electrode plate 31 and the separator 32 around the positive electrode tab 7B.
  • FIG. 6 is a diagram for explaining the effect of the joint portion 330A.
  • FIG. 7 is a partially enlarged view of the positive electrode plate 31 and the separator 32 around the positive electrode tab 7B according to the second to fifth embodiments.
  • FIG. 8 is a diagram showing the configuration of the positive electrode plate 31 and the separator 32C according to the sixth embodiment.
  • FIG. 9 is a diagram showing the configuration of the positive electrode plate 31 and the separator 32D according to the seventh embodiment.
  • the laminate outer battery 1 is a lithium ion secondary battery, and includes a laminate outer body 2, an electrode body 3, a spacer 4, welding resins 5A and 5B, a negative electrode terminal 6A, and a positive electrode terminal 6B. .
  • the laminate-clad battery 1 has an external configuration in which the negative electrode terminal 6A and the positive electrode terminal 6B are externally exposed from one side of the flat rectangular laminate outer package 2 via the welding resins 5A and 5B.
  • the laminate outer package 2 includes a pair of rectangular laminate sheets 2A and 2B.
  • Laminate sheets 2A and 2B are both metal laminates, and are formed by laminating a polypropylene film on the weld surface of an aluminum sheet as an example.
  • the laminate sheet 2 ⁇ / b> A has a rectangular parallelepiped cup portion 20 ⁇ / b> A for housing the electrode body 3.
  • the four peripheral edge portions 21a 1 to 21d 1 surrounding the cup portion 20A are thermally welded to the peripheral edge portions 21a 2 to 21d 2 of the laminate sheet 2B.
  • the laminate outer package 2 has the sealing portions 21a to 21d, and the inside of the cup portion 20A is sealed.
  • the electrode body 3 is a main component of the laminated battery 1 and has a flat rectangular parallelepiped shape.
  • the electrode body 3 includes a laminated electrode body 3X and an electrolytic solution (not shown) impregnated in the laminated electrode body 3X.
  • the laminated electrode body 3 ⁇ / b> X includes a plurality of negative plates 30, a plurality of positive plates 31, a plurality of separators 32, a pair of insulating sheets 33, and an insulating tape 34.
  • the laminated electrode body 3X a plurality of positive electrode plates 31 that are first electrode plates are alternately stacked over a plurality of negative electrode plates 30 that are second electrode plates in a state where both surfaces thereof are covered with separators 32.
  • the insulating tape 34 is not shown in FIG. 3, and the number of laminated negative electrode plates 30 and positive electrode plates 31 is smaller than the actual number.
  • the negative electrode plate 30 is a rectangular electrode plate, and is formed by applying a negative electrode material containing natural graphite, artificial graphite or the like to both surfaces of a core made of copper foil.
  • the size of the negative electrode plate 30 is, for example, a height (Y direction length) of 90 mm, a width (X direction length) of 90 mm, and a thickness (Z direction thickness) of 80 ⁇ m.
  • the negative electrode plate 30 has a strip-like current collecting tab (negative electrode tab 7A) extending on one side of the negative electrode plate by cutting off a part of the core.
  • the positive electrode plate 31 is a rectangular electrode plate similar to the negative electrode plate 30, and is formed by applying a positive electrode material containing lithium cobalt oxide (LiCoO 2 ) to both surfaces of a core made of aluminum foil.
  • the area of the positive electrode plate 31 in plan view is slightly narrower than the area of the negative electrode plate 30, and as an example, the height (Y direction length) is 85 mm, the width (X direction length) is 85 mm, and the thickness (Z direction thickness) is 100 ⁇ m.
  • the positive electrode plate 31 has a strip-like current collecting tab (positive electrode tab 7 ⁇ / b> B) extending on one side of the positive electrode plate 31 by cutting off a part of the core body.
  • the separator 32 is a bag that has a rectangular shape when viewed from above.
  • the separator 32 is made of an insulating material having a low heat shrinkage rate, for example, one of polyethylene (PE), polypropylene (PP), and polyamide (PA).
  • the area of the separator 32 when viewed in plan is larger than the area of the negative electrode plate 30, and as an example, the height (Y direction length) is 94 mm, the width (X direction length) is 90 mm, and the total thickness (Z direction thickness) is 30 ⁇ m.
  • the separator 32 is formed by joining a pair of resin sheets 32A and 32B. As shown in FIG. 4, the resin sheets 32 ⁇ / b> A and 32 ⁇ / b> B expose the positive electrode tab 7 ⁇ / b> B extending from the positive electrode plate 31 from the end side 320 ⁇ / b> A, and at least one side (here, the upper side 320 ⁇ / b> A) of the positive electrode plate 31 from both sides of the positive electrode plate 31.
  • the separator 32 the resin sheet 32A that protrudes from the upper side 320A, having a peripheral edge portion 320a formed by overlapping the opposing portion 32A 1, 32B 1 of 32B.
  • peripheral portions 320b to 320d are formed by overlapping the opposing portions 32A 2 to 32A 4 and 32B 2 to 32B 4 of the resin sheets 32A and 32B protruding from the sides 32B to 32D.
  • a plurality of joining portions (thermal welding portions) 330 for joining the portions of the resin sheets 32A and 32B are formed on the peripheral edge portions 320a to 320d. Further, a joining portion 330A is formed at the peripheral edge portion 320a.
  • Each joint portion 330 is formed in an intermittent line shape along each longitudinal direction of the peripheral edge portions 320a to 320d.
  • the joining portion 330 ⁇ / b> A is formed at a position close to the positive electrode tab 7 ⁇ / b> B and the end side 320 ⁇ / b> A of the separator 32. Specifically, it is formed so as to exist in an area A (shaded area in the drawing) satisfying at least (Condition 1) and (Condition 2) shown below.
  • the positive electrode tab 7B is located along the one side (here, the upper side 310A) of the positive electrode plate 31 except for the portion overlapping the positive electrode tab 7B than the center (point P 0 in the figure) of the remaining region L of the peripheral edge 320a. Must be in close proximity.
  • the position is closer to the end 320A of the separator 32 than the center (point P 1 in the figure) of the width D (peripheral width) of the peripheral portion 320a orthogonal to the upper side 310A.
  • the separator 32 seems to be able to appropriately cover the base of the positive electrode tab 7B starting from the joint 330A.
  • the critical point of the range Usually, the width of the positive electrode tab 7B occupies a certain length with respect to the length of the end side 320A of the separator 32. In the example of FIG. 5, the length of the remaining region L is 2 times the width of the positive electrode tab 7B. Shorter than twice.
  • the joining portion 330A is closer to the positive electrode tab 7B side than the point P 0 , the positional deviation of the separator 32 on the positive electrode tab 7B can be effectively prevented by the joining portion 330A. Also if the joint 330A is in close proximity to the end side 320A of the separator 32 from the point P 1, it can be prevented curling of the separator 32 in the vicinity of the joint 330A in the vicinity of the end side 320A.
  • the joint portion 330A is formed so as to overlap with a position 2 mm away from the positive electrode tab 7B and 1 mm away from the end side 320A.
  • the width D of the peripheral portion 320a is set wider than the widths (peripheral widths) of the peripheral portions 320b to 320d protruding from the remaining three sides 310B to 310D excluding the upper side 310A. This is a device for setting the width D of the peripheral edge portion 320a to be relatively wide so that the upper side 310A is not easily exposed when the separator 32 is turned over.
  • the region A is a region where the position of the joint portion 330A for obtaining a good short-circuit prevention effect is defined by the relationship between the positive electrode tab 7B and the end side 320A, and the short-circuit prevention effect by the joint portion 330A is further improved. Therefore, the position of the joint portion 330A in the region A is set as close as possible to both the positive electrode tab 7B and the end side 320A, and the separator 32 is prevented from being turned up near the end side 320A. It is desirable to do. Thereby, even if a frictional force is applied to the separator 32 at a position overlapping the positive electrode tab 7B, the root of the positive electrode tab 7B covered with the separator 32 is not easily exposed.
  • the separator 32 when the separator 32 is constituted by a pair of resin sheets 32A and 32B, the bonding portion 330A is formed in the region A in the remaining region L, and the remaining region M on the opposite side of the remaining region L with the positive electrode tab 7B interposed therebetween.
  • the joint 330 In the (region of the peripheral edge 320a on the left side of the paper), it is desirable to form the joint 330 at a position symmetrical to the joint 330A.
  • the separator 32 can be prevented from turning over from both sides in the width (X) direction of the positive electrode tab 7B, and a short circuit that can occur at the base of the positive electrode tab 7B can be effectively prevented.
  • the insulating sheet 33 is made of the same insulating material as that of the separator 32 and reliably insulates the electrode body 3 from the laminate outer body 2.
  • the 35 positive electrode plates 31 are alternately stacked with the 36 negative electrode plates 30 through the separator 32 in a state where the positive electrode plate 31 is housed in the separator 32, thereby forming a stacked electrode body 3 ⁇ / b> X.
  • the pair of insulating sheets 33 are disposed so as to cover the uppermost and lowermost electrode plates (here, the negative electrode plate 30) in the laminated electrode body 3X.
  • (V) Insulating tape 34 The insulating tape 34 is attached to a plurality of locations of the pair of insulating sheets 33 and holds the laminated structure of the electrode body 3.
  • (Vi) Electrolytic Solution The electrolytic solution is obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent containing, for example, ethylene carbonate (EC) and diethyl carbonate (DEC).
  • the spacer 4 is a sheet-like member bent in an L-shaped cross section, and is provided across the one end surface 3A of the electrode body 3 in which the negative electrode tab 7A and the positive electrode tab 7B are extended and the inside of the cup portion 20A. Thereby, the positioning of the electrode body 3 in the cup portion 20A and the insulation between the electrode body 3 and the laminate outer body 2 are ensured.
  • the spacer 4 is made of, for example, a resin sheet.
  • the welding resins (tab resins) 5A and 5B seal between the negative electrode terminal 6A and the positive electrode terminal 6B and the laminate outer package 2. Thereby, the sealing strength of the negative electrode terminal 6A and the positive electrode terminal 6B and the laminate outer package 2 is improved, and the sealing performance of the laminate outer package 2 around the negative electrode terminal 6A and the positive electrode terminal 6B is secured.
  • the welding resins 5A and 5B are made of a welding resin material such as polypropylene (PP).
  • the negative electrode terminal 6A is formed of a copper plate having a thickness of 0.4 mm.
  • the positive electrode terminal 6B is formed of an aluminum plate having a thickness of 0.4 mm.
  • the negative electrode terminal 6 ⁇ / b> A is electrically connected to each negative electrode tab 7 ⁇ / b> A in the electrode body 3.
  • the positive terminal 6 ⁇ / b> B is electrically connected to each positive tab 7 ⁇ / b> B in the electrode body 3.
  • the negative electrode terminal 6A and the positive electrode terminal 6B are arranged so as to be exposed to the outside.
  • the positive electrode plate 31 and the negative electrode plate 30 are misaligned, and, for example, as shown in FIG. 6A, the center of the positive electrode plate 31 with respect to the separator 32 near the positive electrode tab 7B. Even if a frictional force is exerted in the direction, the joint portion 330A of the separator 32 appropriately prevents the separator 32 from moving. Therefore, for example, as shown in FIG. 6B, the separator 32 is not easily turned over when the frictional force is exerted in the central direction of the positive electrode plate 31 when the joining portion 330 ⁇ / b> A does not exist.
  • a typical turning method of the separator 32 is a V-shaped turning as shown in FIG. Therefore, even if the largest V-shaped turn-up occurs in the remaining region L of the end side 320A, the joining portion 330A is formed in the region A located on the positive electrode tab 7B side from the point P 0 at the longitudinal center of the remaining region L. If formed, the separator 32 overlapping the positive electrode tab 7B can be prevented from being turned over.
  • 6A and 6B indicate the position of the upper side 300A of the negative electrode plate 30 overlaid on the separator 32 and the positive electrode plate 31 in the electrode body 3.
  • the separator 32 is turned to a position exceeding the upper side 300 ⁇ / b> A
  • the base of the positive electrode tab 7 ⁇ / b> B comes into contact with the negative electrode plate 30.
  • the laminated battery 1 since the joining portion 330 ⁇ / b> A is provided, it is possible to appropriately prevent a short circuit that occurs when the base of the positive electrode tab 7 ⁇ / b> B exposed by turning over the separator 32 comes into contact with the negative electrode plate 30.
  • the separator 32 is formed along the joint portion 330A formed in the proximity of both the positive electrode tab 7B and the end side 320A and the four sides 310A to 32D around the positive electrode plate 31.
  • the respective joint portions 330 it is possible to eliminate the extra space inside the separator 32 and appropriately position the positive electrode plate 31. Therefore, even if vibration is applied to the separator 32 and the positive electrode plate 31 during the manufacture of the laminate-coated battery 1, the positive electrode plate 31 can be prevented from being biased or displaced with respect to the separator 32, and the shape of the electrode body 3 can be appropriately set. Can be held.
  • the separator 32 can be prevented from being turned over as described above. Therefore, even if a large number of positive plates 31 and negative plates 30 are stacked, such a problem is avoided. Can do. ⁇ Method for Manufacturing Laminated Battery 1> Hereinafter, the manufacturing method of the laminate-cased battery 1 will be exemplified.
  • Step of forming negative electrode plate 30 Graphite powder as a negative electrode active material is mixed by weight of 95% by weight, SBR (styrene butadiene rubber) as a binder is mixed by 5% by weight, and pure water as a solvent is mixed. Adjust the slurry. This negative electrode slurry is applied to both sides of the copper foil (thickness 10 ⁇ m) of the negative electrode core leaving a part. Thereafter, the negative electrode slurry is dried and compressed to a thickness of about 0.08 mm with a roller.
  • SBR styrene butadiene rubber
  • An uncoated portion of the negative electrode slurry having a width of 30 mm and a length of 20 mm is used as the negative electrode tab 7A, and the core is cut into a rectangular shape having a width of 90 mm and a height of 90 mm, thereby forming the negative electrode plate 30 with the negative electrode tab 7A.
  • a total of 36 negative electrode plates 30 are manufactured.
  • An uncoated portion of the positive electrode slurry having a width of 30 mm and a length of 20 mm is used as a positive electrode tab 7B, and the core body is cut into a rectangular shape having a width of 85 mm and a height of 85 mm to obtain a positive electrode plate 31 with the positive electrode tab 7B.
  • LiCoO 2 for example, LiNiO 2 , LiMn 2 O 4 , or a composite thereof is suitably used as the positive electrode active material.
  • a total of 35 positive electrode plates 31 are manufactured.
  • Resin sheets 32A and 32B (height 94 mm ⁇ width 90 mm, thickness 30 ⁇ m) made of polypropylene are prepared in the same number as the positive electrode plate 31 (total of 35 sheets).
  • the positive electrode plate 31 is sandwiched between the pair of resin sheets 32A and 32B. At this time, the width D (see FIG.
  • Step of forming laminated electrode body 3X A total of 36 negative electrode plates 30 and a total of 35 positive electrode plates 31 individually housed in separators 32 are alternately laminated to form laminated electrode body 3X (FIG. 3). See). Each negative electrode plate 30 positioned at the uppermost and lowermost positions is sandwiched between a pair of insulating sheets 33, and these are fixed with insulating tape 34.
  • the separator 32 is prevented from being turned around in the vicinity of the positive electrode tab 7B by the formation of the joint portion 330A as described above, the occurrence of a short circuit in the vicinity of the positive electrode tab 7B is prevented and the laminated electrode body 3X is manufactured satisfactorily. be able to.
  • (V) Step of forming negative electrode terminal 6A and positive electrode terminal 6B A copper plate having a thickness of 0.4 mm is electrically connected to each negative electrode tab 7A of laminated electrode body 3X by ultrasonic welding to form negative electrode terminal 6A. Similarly, an aluminum plate having a thickness of 0.4 mm is collectively connected to each positive electrode tab 7B of the laminated electrode body 3X by an ultrasonic welding method to form a positive electrode terminal 6B.
  • Electrolyte injection process and sealing process A laminate sheet 2A having a cup portion 20A is prepared.
  • the laminated electrode body 3X is accommodated in the cup portion 20A through the spacer 4 in the vicinity of the negative electrode tab 7A and the positive electrode tab 7B (see FIG. 2).
  • the welding resins 5A and 5B are inserted through the negative electrode terminal 6A and the positive electrode terminal 6B, and the welding resins 5A and 5B are placed on the periphery of the cup portion 20A.
  • the laminate sheet 2B is overlaid on the laminate sheet 2A.
  • the peripheral edge portions 21b 1 to 21d 1 of the laminate sheet 2A are thermally welded to the peripheral edge portions 21b 2 to 21d 2 of the laminate sheet 2B to form the sealing portions 21b to 21d.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • An electrolytic solution that is dissolved at a ratio is adjusted.
  • the adjusted electrolyte solution is injected into the cup portion 20A through the gap between the laminate sheets 2A and 2B, and impregnated into the laminated electrode body to constitute the electrode body 3.
  • the periphery of the cup portion 20A on which the welding resins 5A and 5B are placed is thermocompression bonded to form the sealing portion 21a.
  • the electrode body 3 inside the cup portion 20A is internally sealed.
  • the laminated battery 1 is obtained.
  • the performance confirmation test about the laminate-clad battery of the present invention was performed by the following procedure.
  • the negative electrode plate 30, the positive electrode plate 31, and the separator 32 were produced based on the manufacturing method described in the first embodiment.
  • a total of 36 negative electrode plates 30 were alternately stacked on a total of 35 positive electrode plates 31 individually stored in a bag-like separator 32 to obtain a stacked electrode body in which the insulating sheet 33 and the insulating tape 34 were omitted.
  • a laminated electrode body having the same configuration as that of the example was obtained except that the bonding portion 330A was not formed on the separator 32.
  • each laminated electrode body of an Example and a comparative example was released, and the presence or absence of the turning of each separator 32 was confirmed visually.
  • the procedure of the manufacture and confirmation test of this example and comparative example was repeated three times for each of the example and comparative example. The test results at this time are shown in Table 1.
  • the separator was not turned over as in the comparative example.
  • the reason for this is that by providing the joint portion 330A in the proximity of both the positive electrode tab 7B and the end side 320A, even if a frictional force is exerted on the separator 32 overlapping the positive electrode tab 7B, it is difficult to turn over easily. It is conceivable that the separator 32 can maintain a good shape.
  • FIG. 7A is a diagram showing a configuration around the separator 32 according to the second embodiment and the positive electrode tab 7B of the positive electrode plate 31 housed therein.
  • the positive electrode tab 7 ⁇ / b> B extends from the vicinity of the center of the upper side 310 ⁇ / b> A of the positive electrode plate 31. Accordingly, since the remaining regions L 1 and L 2 of the peripheral edge portion 320a excluding the portion overlapping the positive electrode tab 7B exist on both sides of the positive electrode tab 7B along the upper side 310A, the joint portion 330A is in the remaining regions L 1 and L 2 .
  • the region A 1 is a peripheral portion excluding a portion overlapping with the positive electrode tab 7B at least along the upper side 310A of the positive electrode plate 31 in the same manner as the region A of the first embodiment (see FIG. 5).
  • the edge of the separator 32 is closer to the positive electrode tab 7B side than the center point P 2 (P 3 ) of the remaining area L 1 (L 2 ) of 320a and more than the center point P 4 of the width D of the peripheral edge 320a. This is an area close to the 320A side.
  • FIG. 7B is a diagram showing a configuration around the separator 32 according to the third embodiment and the positive electrode tab 7B of the positive electrode plate 31 accommodated therein.
  • At least the joint 330A 1 formed so as to overlap with the region A and the joint 330B formed on the other peripheral edge 320a are formed so as to be inclined with respect to the extending (Y) direction of the positive electrode tab 7B. . Even if the joint portions 330A 1 and 330B having such a configuration are used, the same effect as in the first embodiment can be expected. Further, since each of the joint portions 330A 1 and 330B has a certain length along each of the XY directions, each of the joint portions 330A 1 or 330B has the separator 32 along either of the XY directions. It can be expected to prevent curling.
  • FIG. 7C is a diagram showing a configuration around the separator 32 according to the fourth embodiment and the positive electrode tab 7B of the positive electrode plate 31 accommodated therein.
  • the joint 330A 2 formed so as to overlap the region A and the joint 330C formed at other positions are both formed in a dot shape. Furthermore, along the width direction (Y) of the peripheral portion 320a, and each of junction 330A 2, formed such that two rows as a whole and 330C.
  • FIG. 7D is a diagram illustrating a configuration around the separator 32 according to the fifth embodiment and the positive electrode tab 7B of the positive electrode plate 31 accommodated therein.
  • the basic structure is the same as in the fourth embodiment, and the joint 330A 3 provided to overlap the region A and the joint 330D formed at other positions are formed along the upper side 310A as in the first embodiment. It has a linear shape. According to the fifth embodiment, since the linear joint portions 330A 3 and 330D are formed in two rows as a whole along the extending (Y) direction of the positive electrode tab 7B, the first embodiment Compared to the above, it is possible to further prevent the separator 32 from being turned up.
  • FIG. 8 is a diagram illustrating a configuration of the separator 32C and the positive electrode plate 31 according to the sixth embodiment.
  • the separator 32 ⁇ / b> C is disposed so as to wrap a strip-shaped laminate sheet having the Y direction as a longitudinal direction so as to cover both surfaces of the positive electrode plate 31.
  • the peripheral edge portions 320a 1 and 320a 2 , 320b 1 and 320b 2 , 320c 1 and 320c 2 facing each other of the laminate sheet are joined to each other on the outer periphery of the three sides including the upper side 310A of the positive electrode plate 31 by thermal welding.
  • Peripheral portions 320a to 320c are formed (see FIG. 4).
  • FIG. 9 is a diagram illustrating a configuration of the separator 32D and the positive electrode plate 31 according to the seventh embodiment.
  • the separator 32 ⁇ / b> D is arranged so as to cover the both surfaces of the negative electrode plate 30 and the positive electrode plate 31 by folding a belt-like laminate sheet having the X direction as its length. Thereafter, peripheral edge portions 320a 1 to 320a 2 , 320c 1 to 320c 2 , 320d 1 to 320d 2 facing each other are joined by thermal welding on the outer periphery of three sides including the upper side 310A of the positive electrode plate 31, respectively. 320a, 320b, and 320d are made (see FIG. 4).
  • peripheral edge portions 320a 2 to 320a 3 , 320b 2 to 320b 3 , 320d 2 to 320d 3 facing each other on the outer periphery of the three sides including the upper side 300A of the negative electrode plate 30 are joined by thermal welding, respectively. , 320b, 320d.
  • the same effect as in the first and sixth embodiments can be expected. Since a plurality of positive electrode plates 31 can be accommodated in the separator 32D configured by a single laminate sheet, further improvement in manufacturing efficiency can be expected compared to the sixth embodiment. ⁇ Other matters>
  • the first electrode plate is a positive electrode plate and the second electrode plate is a negative electrode plate.
  • the first electrode plate may be a negative electrode plate and the second electrode plate may be a positive electrode plate. it can.
  • the joining portions 330A and 330 are not limited to a method of forming by a thermal welding method, and may be formed by an ultrasonic welding method or the like. Alternatively, the bonding portions 330A and 330 may be formed using any one of an adhesive, a bonding agent, and a stapleless stapler. In addition to the sheet-like separators shown in the above embodiments, the separator 32 can be formed by using a bag-like one having only the end 320A opened when viewed in plan.
  • the present invention can be used as a power source for mobile devices such as mobile phones, power storage in homes, or vehicles, and is useful for realizing a battery with high productivity.

Abstract

 ラミネート外装電池において、矩形状の正極板(31)と、正極板(31)の両面を被覆するセパレータ(32)と、矩形状の負極板とを積層して電極体を得る。正極タブ(7B)はセパレータ(32)の端辺(320A)から露出される。セパレータ(32)は正極板(31)の両面から正極板(31)の4辺(310A)~(310D)より突出した接合部(330A)、(330)を有する。接合部(330)は、正極板(31)の上辺(310A)に沿ったセパレータ(32)の周縁部(320a)の長手方向中央より正極タブ(7B)側に近接し且つ、周縁部(320a)の幅の中央よりもセパレータ(32)の端辺(320A)側に近接する位置に存在する。

Description

ラミネート外装電池
 本発明は、ラミネート外装電池に関する。
 ラミネート外装電池は、携帯電話機などのモバイル機器にはもとより、ハイブリッド電気自動車(HEV)や電気自動車(PEV)などの車両、ロボット、さらには家庭や店舗等において、比較的大容量の蓄電池として広く用いられている。
 ラミネート外装電池は、一例として、直方体状の電極体をラミネート外装体の内部に封止して構成される。電極体は、矩形状の正極板と、負極板とを、セパレータを介して複数にわたり繰り返し積層し、電解液を含浸してなる。セパレータは、例えば一対の樹脂シートを各周縁で接合してなる袋状であり、正極板はセパレータの中に収納されることで負極板と絶縁される。
 正極板と負極板の各々には、それぞれ集電用のタブが延設される。このうち正極タブが正極端子、負極タブが負極端子に電気接続される。正極端子と負極端子とは、ラミネート外装体から外部露出され、充放電に供される。
特開2012-54029号公報 国際公開WO00/59063号公報
 ラミネート外装電池の製造工程では、電極体に振動等の外力が加わり、電極体内の正極板を収納したいずれかのセパレータと負極板とが相対的に位置ずれ(積層ずれ)を生じることがある。正極タブはセパレータより延設されており、構造上、正極タブとセパレータとは接合するのが困難である。このため、上記位置ずれに伴う摩擦力がセパレータに及び、正極タブを被覆するセパレータ部分がめくれると、負極板と対向する正極タブの根元が露出し易い。これにより、正極タブを介して正極板と負極板とが短絡を生じるおそれがある。
 この対策として、大型のセパレータで正極タブをさらに被覆しようとすれば、セパレータ内の余分なスペースが増え、セパレータと正極板とが相対的に位置ずれを生じうる。また、電極体の周囲よりセパレータがはみ出てめくれ易くなるほか、ラミネート外装電池のエネルギー密度が低下しうる懸念もある。
 本発明は以上の課題に鑑みてなされたものであって、電極板から延設された集電タブの一部をセパレータで覆った電極体を有する外装ラミネート外装電池において、集電タブ付近のセパレータのめくれによる短絡の発生を適切に防止することが可能なラミネート外装電池の提供を目的とする。
 上記課題を解決するため、本発明の一態様は、電極体と、前記電極体を収納するラミネート外装体とを備えるラミネート外装電池であって、前記電極体は、矩形状の第1極板と、前記第1極板の一辺より延設された短冊状の集電タブと、前記第1極板よりも広い面積を有し、前記第1極板の両面を被覆するシート状のセパレータと、前記セパレータを介して前記第1極板に積層され、前記第1極板と逆極性で矩形状の第2極板と、を有し、前記セパレータは前記第1極板の両面から前記第1極板の少なくとも前記一辺より突出され、前記突出した対向部同士が重ねられた周縁部を有し、前記周縁部には前記突出した対向部同士が接合された接合部が形成され、前記電極体を平面視する際、前記集電タブは前記周縁部における前記セパレータの端辺から露出され、前記接合部は、前記一辺に沿った前記周縁部において、前記集電タブと重なる部分を除いた残余領域の中央よりも前記集電タブに近接する位置で、且つ、前記一辺と直交する前記周縁部の幅の中央よりも前記セパレータの前記端辺に近接する位置に存在する構成とする。
 本発明の別の態様では、前記接合部は、前記集電タブに沿って線状またはドット状で存在している構成とすることもできる。
 本発明の別の態様では、前記接合部は、前記長手方向に沿って前記周縁部に複数存在している構成とすることもできる。
 本発明の別の態様では、前記電極体を平面視する際、前記周縁部は、前記第1極板の周囲4辺より突出しており、前記第1極板の前記一辺より突出した前記周縁部の幅が、前記一辺を除く残余の3辺より突出した前記周縁部のいずれの幅よりも広い構成とすることもできる。
 本発明の別の態様では、前記各接合部は、その各々が近接する前記第1極板のいずれかの辺に対して平行若しくは傾斜した線状、またはドット状である構成とすることもできる。
 本発明の別の態様では、前記接合部は熱溶着部である構成とすることもできる。
 本発明の別の態様では、前記電極体を平面視する際、前記第1極板の面積は前記第2極板の面積よりも小さく、前記セパレータの面積は第2極板の面積よりも大きい構成とすることもできる。
 本発明の別の態様では、前記電極体を平面視する際、前記電極体の一辺において、前記一辺の一方の端部に前記正極板から延設された集電タブが位置し、前記一方の辺の他方の端部に前記負極板から延設された集電タブが位置する構成とすることもできる。
 本発明の一態様におけるラミネート外装電池は、第1極板の両面がセパレータに覆われ、第1極板の両面よりその一辺から突出したセパレータの周縁部において、その対向部同士を接合する接合部が形成されている。接合部は少なくとも、第1極板の一辺に沿った周縁部において、集電タブと重なる部分を除く残余領域の中央よりも集電タブに近接する位置で、且つ、第1極板の一辺と直交する周縁部の幅の中央よりもセパレータの端辺に近接する位置に存在する。
 これによりセパレータの接合部は、少なくとも集電タブとセパレータの端辺の両方に近接する位置に設けられる。したがって、製造工程において正極板と負極板とが積層ずれを生じ、集電タブに重なるセパレータ部分に摩擦力が及んでも、集電タブに近接する接合部がセパレータの移動を抑制する。よって、集電タブに重なるセパレータの部分が容易にめくれることがない。従って、セパレータがめくれて集電タブが露出することにより、セパレータ内に収納された第1極板が第2極板と短絡するのを防止できる。
 結果として、製造工程におけるセパレータのめくれによる短絡を適切に防止することが可能なラミネート外装電池を提供できる。
図1は実施の形態1に係るラミネート外装電池1の外観図である。 図2はラミネート外装電池1の分解図である。 図3は積層電極体3Xの分解図である。 図4は正極板31及びセパレータ32の正面図である。 図5は正極タブ7B周辺の正極板31及びセパレータ32の部分拡大図である。 図6は接合部330Aによる効果を説明するための図である。 図7は実施の形態2~5に係る、正極タブ7B周辺の正極板31及びセパレータ32の部分拡大図である。 図8は実施の形態6に係る、正極板31及びセパレータ32Cの構成を示す図である。 図9は実施の形態7に係る、正極板31及びセパレータ32Dの構成を示す図である。
 <実施の形態1>
 本発明の実施の形態1に係るラミネート外装電池1を図1及び図2に示す。
 ラミネート外装電池1はリチウムイオン二次電池であって、ラミネート外装体2と、電極体3と、スペーサ4と、溶着樹脂5A、5Bと、負極端子6Aと、正極端子6Bとを有してなる。ラミネート外装電池1は、扁平角型のラミネート外装体2の一辺より溶着樹脂5A、5Bを介して負極端子6A、正極端子6Bが外部露出した外観構成を有する。
 [ラミネート外装体2]
 ラミネート外装体2は、一対の矩形状のラミネートシート2A、2Bを有してなる。ラミネートシート2A、2Bは、いずれも金属ラミネートであって、一例としてアルミニウムシートの溶着面にポリプロピレン被膜をラミネートしてなる。ラミネートシート2Aは、電極体3を収納するための直方体状のカップ部20Aを有する。ラミネートシート2Aは、カップ部20Aを囲む4辺の周縁端部21a1~21d1を、ラミネートシート2Bの周縁端部21a2~21d2と熱溶着されている。これによりラミネート外装体2は封止部21a~21dを有し、カップ部20Aの内部が封止されている。
 [電極体3]
 電極体3はラミネート外装電池1の主要な構成要素であり、扁平な直方体状の形状を有する。電極体3は積層電極体3Xと、積層電極体3Xに含浸された電解液(不図示)とを有する。積層電極体3Xは図3に示すように、複数の負極板30と、複数の正極板31と、複数のセパレータ32と、一対の絶縁シート33と、絶縁テープ34とを有する。積層電極体3Xでは、第1極板である正極板31がその両面をセパレータ32に覆われた状態で、第2極板である負極板30と、複数にわたり交互に積層される。積層電極体3Xの内部構成の説明のため、図3では絶縁テープ34の図示を省略し、負極板30と正極板31の積層枚数を実際より少なく図示している。
 (i)負極板30
 負極板30は矩形状の電極板であり、天然黒鉛、人造黒鉛等を含む負極材料を銅箔からなる芯体の両面に塗布してなる。負極板30のサイズは、一例として高さ(Y方向長)90mm、幅(X方向長)90mm、厚み(Z方向厚)80μmである。負極板30はその一辺において、芯体の一部を切り残して延設された短冊状の集電タブ(負極タブ7A)を有する。
 (ii)正極板31
 正極板31は、負極板30と同様の矩形状の電極板であり、コバルト酸リチウム(LiCoO2)を含む正極材料をアルミニウム箔からなる芯体の両面に塗布してなる。平面視した際の正極板31の面積は負極板30の面積よりも若干狭く、一例として高さ(Y方向長)85mm、幅(X方向長)85mm、厚み(Z方向厚)100μmである。正極板31はその一辺において、芯体の一部を切り残して延設された短冊状の集電タブ(正極タブ7B)を有する。
 尚、負極タブ7Aと正極タブ7Bとは、図3に示すように、電極体3において同じ方向に揃う負極板30の上辺300Aと正極板31の上辺310Aとから、互いに重ならない位置より延設される。
 (iii)セパレータ32
 セパレータ32は平面視した際に矩形状となる袋である。セパレータ32は熱収縮率の低い絶縁性材料、一例としてポリエチレン(PE)やポリプロピレン(PP)、ポリアミド(PA)のいずれかで構成される。平面視した際のセパレータ32の面積は負極板30の面積よりも広く、一例として高さ(Y方向長)94mm、幅(X方向長)90mm、総厚み(Z方向厚)30μmである。セパレータ32は一対の樹脂シート32A、32Bを接合してなる。樹脂シート32A、32Bは、図4に示すように、正極板31から延設された正極タブ7Bを端辺320Aより露出させ、正極板31の両面から正極板31の少なくとも一辺(ここでは上辺320Aを含む、4辺320A~320D)より樹脂シート32A、32Bの周縁を突出させた状態で重ねられる。これによりセパレータ32は、上辺320Aより突出した樹脂シート32A、32Bの対向部32A1、32B1を重ねてなる周縁部320aを有する。また同様に、各辺32B~32Dより突出した樹脂シート32A、32Bの対向部32A2~32A4、32B2~32B4を重ねてなる周縁部320b~320dを有する。周縁部320a~320dには、樹脂シート32A、32Bの部分同士を接合するための複数の接合部(熱溶着部)330が形成される。さらに周縁部320aには、接合部330Aが形成される。
 各接合部330は、周縁部320a~320dの各長手方向に沿って、断続的な線状に形成される。
 一方、接合部330Aは図5に示すように、正極タブ7B及びセパレータ32の端辺320Aの近接位置に形成される。具体的には、少なくとも以下に示す(条件1)及び(条件2)をともに満たす領域A(図中の網掛け領域)に存在するように形成される。
 (条件1)正極板31の一辺(ここでは上辺310A)に沿って、正極タブ7Bと重なる部分を除く、周縁部320aの残余領域Lの中央(図中の点P0)よりも正極タブ7Bの近接位置であること。
 (条件2)上辺310Aと直交する周縁部320aの幅D(周縁幅)の中央(図中の点P1)よりもセパレータ32の端辺320Aの近接位置であること。
 点P0、P1は、セパレータ32に対して正極板31の中央方向に摩擦力が及んだ場合、セパレータ32が接合部330Aを起点として正極タブ7Bの根元を適切に被覆可能と思われる範囲の臨界点である。通常、正極タブ7Bの幅は、セパレータ32の端辺320Aの長さに対して一定の長さを占めており、図5の例では、残余領域Lの長さが正極タブ7Bの幅の2倍よりも短い。このため、接合部330Aが点P0よりも正極タブ7B側に近接していれば、正極タブ7B上のセパレータ32の位置ずれを接合部330Aで効果的に防止できる。また接合部330Aが点P1よりセパレータ32の端辺320Aに近接していれば、接合部330A付近のセパレータ32のめくれを端辺320A付近で阻止できる。
 ここでは一例として、領域A内において、正極タブ7Bから2mm離間し、端辺320Aより1mm離間した位置に一部が重なるように接合部330Aを形成する。
 尚、周縁部320aの幅Dは、上辺310Aを除く残余の3辺310B~310Dより突出した周縁部320b~320dの各幅(周縁幅)よりも広く設定される。これは周縁部320aの幅Dを比較的広く設定することで、セパレータ32がめくれた際に上辺310Aが容易に露出しないようにするための工夫である。
 また、領域Aは、短絡防止効果を良好に得るための接合部330Aの位置を、正極タブ7Bと端辺320Aとの関係で規定した領域であるが、接合部330Aによる短絡防止効果をさらに良好に得るためには、領域A内における接合部330Aの位置を、可能な限り、正極タブ7Bと端辺320Aとの両方の近接位置とし、端辺320A付近においてセパレータ32のめくれを最小限に防止することが望ましい。これにより、正極タブ7Bと重なる位置のセパレータ32に摩擦力が加わっても、セパレータ32で覆われた正極タブ7Bの根元が容易に露出することがない。
 また、セパレータ32を一対の樹脂シート32A、32Bで構成する場合、残余領域L中の領域Aに接合部330Aを形成するとともに、正極タブ7Bを挟んで残余領域Lと反対側にある残余領域M(紙面左側の周縁部320aの領域)中において、接合部330Aと対称的な位置に接合部330を形成することが望ましい。これにより、正極タブ7Bの幅(X)方向両側付近からのセパレータ32のめくれを防止でき、一層、正極タブ7Bの根元で発生しうる短絡を効果的に防止できる。
 (iv)絶縁シート33
 絶縁シート33はセパレータ32と同じ絶縁性材料で構成され、電極体3をラミネート外装体2と確実に絶縁する。
 電極体3では、セパレータ32に正極板31を収納した状態で、35枚の正極板31がセパレータ32を介し、36枚の負極板30と交互に積層され、積層電極体3Xが形成される。一対の絶縁シート33は、積層電極体3X中の最も上位及び最も下位の各電極板(ここではともに負極板30)とを覆うように配される。
 (v)絶縁テープ34
 絶縁テープ34は、一対の絶縁シート33の複数個所に貼着され、電極体3の積層構造を保持する。
 (vi)電解液
 電解液は、例えばエチレンカーボネート(EC)とジエチルカーボネート(DEC)を含む混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)を溶解してなる。
 [スペーサ4]
 スペーサ4はL字断面状に折り曲げられたシート状部材であり、負極タブ7A及び正極タブ7Bが延設された電極体3の一端面3Aとカップ部20Aの内部にわたって設けられる。これによりカップ部20Aの内部における電極体3の位置決めと、電極体3及びラミネート外装体2との絶縁確保を行う。スペーサ4は、例えば樹脂シートで構成される。
 [溶着樹脂5A、5B]
 溶着樹脂(タブ樹脂)5A、5Bは負極端子6A、正極端子6Bとラミネート外装体2との間を封止する。これにより負極端子6A、正極端子6Bとラミネート外装体2との封止強度を向上させ、負極端子6A、正極端子6B周辺におけるラミネート外装体2の封止性を確保する。溶着樹脂5A、5Bは溶着性の樹脂材料、例えばポリプロピレン(PP)で構成される。
 [負極端子6A、正極端子6B]
 負極端子6Aは一例として厚み0.4mmの銅板で構成される。正極端子6Bは一例として厚み0.4mmのアルミニウム板で構成される。負極端子6Aは、電極体3における各負極タブ7Aと電気接続される。正極端子6Bは、電極体3における各正極タブ7Bと電気接続される。ラミネート外装電池1を充放電するため、負極端子6A、正極端子6Bは外部露出するように配される。
 (ラミネート外装電池1の効果について)
 ラミネート外装電池1では、以下の諸効果を期待できる。
 (i)短絡防止効果
 正極板31は、その両面がセパレータ32に覆われ、正極板31の両面より上辺310Aから突出したセパレータ32の周縁部320aに複数の接合部330A、330が形成されている。このうち接合部330Aは、図5の領域Aに重なるように、正極タブ7Bとセパレータ32の端辺との両方の近接位置に存在する。従ってラミネート外装電池1の製造工程において、正極板31と負極板30とが積層ずれを生じ、例えば図6(a)に示すように、正極タブ7B付近のセパレータ32に対して正極板31の中央方向に摩擦力が及んでも、セパレータ32の接合部330Aがセパレータ32の移動を適切に防止する。よって、例えば図6(b)のように接合部330Aが存在しない場合に正極板31の中央方向に摩擦力が及んだときに比べ、セパレータ32が容易にめくれることがない。
 ここで、セパレータ32の典型的なめくれ方は、図6(b)に示すようにV字型のめくれであると推測される。従って仮に、端辺320Aの残余領域Lにおいて最大のV字型めくれが発生しても、残余領域Lの長手中央の点P0よりも正極タブ7B側に位置する領域A内に接合部330Aを形成しておけば、正極タブ7Bに重なるセパレータ32部分がめくれるのを防止できる。
 また、図6(a)、図6(b)に示す二点鎖線は、電極体3において、セパレータ32及び正極板31に重ねられた負極板30の上辺300Aの位置を示す。図6(b)のように、セパレータ32が上辺300Aを超える位置までめくれると、正極タブ7Bの根元が負極板30と接触してしまう。これに対してラミネート外装電池1では、接合部330Aが設けられているため、セパレータ32がめくれて露出した正極タブ7Bの根元が負極板30と接触して生じる短絡を適切に防止できる。結果として、製造工程におけるセパレータ32のめくれによる短絡を適切に防止することが可能なラミネート外装電池1を提供できる。
 (ii)正極板31の位置決め効果
 セパレータ32は、正極タブ7Bと端辺320Aとの両方の近接位置に形成された接合部330Aと、正極板31の周囲4辺310A~32Dに沿って形成された各接合部330とを有することで、セパレータ32内部の余分なスペースを排除し、正極板31を適切に位置決めできる。従って、ラミネート外装電池1の製造中にセパレータ32や正極板31に振動が加わっても、セパレータ32に対して正極板31が偏ったりずれたりするのを防止でき、電極体3の形態を適切に保持することができる。
 (iii)セパレータ32の厚み増大に伴う問題の防止効果
 図6(b)に示すように、セパレータ32にめくれが発生すると、めくれた部分でセパレータ32が幾重にも重なって局所的に厚みを増す。このため、電極体3中の正極板31と負極板30との極板間距離がばらついてしまう。これにより電極体3の厚みが増すと、ラミネート外装電池1の厚みが不均一になったり、極板間距離がばらつくため充放電反応が不均一になり、Li析出の恐れが生じうる。特に、多数の正極板31及び負極板30を積層する電極体3を用いる場合、このような問題は顕著になるおそれがある。
 これに対して本実施の形態1では、セパレータ32のめくれを上記のように適切に防止できるため、たとえ多数の正極板31及び負極板30を積層しても、このような問題を回避することができる。
 <ラミネート外装電池1の製造方法>
 以下、ラミネート外装電池1の製造方法を例示する。
 (i)負極板30の形成工程
 負極活物質としての黒鉛粉末を95重量%と、結着剤としてのSBR(スチレンブタジエンゴム)を5重量%と、溶媒としての純水とを混合し、負極用スラリーを調整する。この負極用スラリーを負極芯体の銅箔(厚み10μm)の両面に対し、一部を残して塗布する。その後、負極用スラリーを乾燥させ、ローラで厚み0.08mm程度まで圧縮する。幅30mm、長さ20mmの負極用スラリーの未塗布部を負極タブ7Aとし、幅90mm、高さ90mmの矩形状に芯体を切断し、負極タブ7A付の負極板30とする。負極板30は合計36枚製造する。
 (ii)正極板31の形成工程
 正極活物質としてのLiCoO2を90重量%と、導電剤としてのカーボンブラックを5重量%と、結着剤としてのポリフッ化ビニリデンを5重量%と、溶剤としてのN-メチル-2-ピロリドン(NMP)溶液とを混合し、正極用スラリーを調整する。この正極用スラリーを正極芯体のアルミニウム箔(厚み15μm)の両面に対し、一部を残して塗布する。その後、正極用スラリーを乾燥させ、ローラで厚み0.1mmまで圧縮する。幅30mm、長さ20mmの正極用スラリーの未塗布部を正極タブ7Bとし、幅85mm、高さ85mmの矩形状に芯体を切断し、正極タブ7B付の正極板31とする。
 尚、正極活物質としては、LiCoO2の他、例えばLiNiO2、LiMn24、或いはこれらの複合体等が好適に用いられる。正極板31は合計35枚製造する。
 (iii)セパレータ32の形成工程
 ポリプロピレン製の樹脂シート32A、32B(高さ94mm×幅90mm、厚み30μm)を、それぞれ正極板31と同数(それぞれ合計35枚)用意する。一対の樹脂シート32A、32Bで正極板31を挟む。このとき、正極板31の上辺310Aから突出する周縁部320aの幅D(図5参照)を、周縁部320b~320dの各幅よりも広くする(一例として幅D=6.5mm、その他の幅=2.5mm)。正極板31の4辺310A~310Dよりも突出した周縁部320a~320dにおいて、熱溶着機を用いて接合部330、330Aを形成する。このとき、正極タブ7Bに近接する周縁部320aにおいては、図5で示す領域Aに接合部330Aを形成する(図4を参照)。これにより袋状のセパレータ32を得る。
 (iv)積層電極体3Xの形成工程
 合計36枚の負極板30と、それぞれ個別にセパレータ32に収納した合計35枚の正極板31とを交互に積層し、積層電極体3Xとする(図3を参照)。最上位と最下位に位置する各負極板30を、一対の絶縁シート33で挟んだ状態とし、これらを絶縁テープ34で固定する。ここで、セパレータ32は上記のように接合部330Aの形成によって正極タブ7B付近でのめくれが防止されているため、正極タブ7B付近における短絡の発生を防いで良好に積層電極体3Xを製造することができる。
 (v)負極端子6A、正極端子6Bの形成工程
 積層電極体3Xの各負極タブ7Aに、超音波溶着法により、厚み0.4mmの銅板を一括して電気接続し、負極端子6Aとする。同様に、積層電極体3Xの各正極タブ7Bに、超音波溶着法により、厚み0.4mmのアルミニウム板を一括して電気接続し、正極端子6Bとする。
 (vi)電解液注液工程と封止工程
 カップ部20Aを有するラミネートシート2Aを用意する。負極タブ7A、正極タブ7B付近にスペーサ4を介しながら積層電極体3Xをカップ部20Aに収納する(図2を参照)。負極端子6A、正極端子6Bに溶着樹脂5A、5Bを挿通させ、溶着樹脂5A、5Bをカップ部20Aの周縁に載置する。この状態で、ラミネートシート2Aにラミネートシート2Bを重ね合わせる。ラミネートシート2Aの周縁端部21b1~21d1を、ラミネートシート2Bの周縁端部21b2~21d2と熱溶着し、封止部21b~21dを形成する。
 次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で30:70の割合で混合してなる混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)を1M(mol/L)の割合で溶解してなる電解液を調整する。ラミネートシート2A、2Bの隙間よりカップ部20Aの内部に調整した電解液を注入し、積層電極体に含浸させて電極体3を構成する。その後、溶着樹脂5A、5Bを載置したカップ部20Aの周縁を熱圧着し、封止部21aを形成する。これによりカップ部20A内部の電極体3を内部封止する。以上でラミネート外装電池1を得る。
 <性能確認試験>
 以下の手順で本発明のラミネート外装電池についての性能確認試験を行った。
 実施例として、実施の形態1に記載した製造方法に基づき、負極板30、正極板31、セパレータ32を作製した。個別に袋状のセパレータ32に収納した合計35枚の正極板31に、合計36枚の負極板30を交互に積層し、絶縁シート33及び絶縁テープ34を省略した積層電極体を得た。一方、比較例として、セパレータ32に接合部330Aを形成しない点以外は実施例と同じ構成の積層電極体を得た。その後、実施例と比較例の各積層電極体をばらし、各セパレータ32のめくれの有無を目視で確認した。この一例の実施例と比較例の製造と確認試験の手順を、実施例、比較例についてそれぞれ3回繰り返した。このときの試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例ではいずれの試験結果においても、正極タブと重なるセパレータの部分にめくれが発生しているのが目視で確認された。この理由として、比較例の積層電極体では、セパレータが接合部330Aを有さないため、正極タブと重なるセパレータの部分に摩擦力が及ぶと比較的容易にめくれを生じやすいことが考えられる。
 一方、実施例ではいずれの試験結果においても、比較例のようなセパレータのめくれは確認されなかった。この理由としては、正極タブ7Bと端辺320Aとの両方の近接位置に接合部330Aを設けたことにより、正極タブ7Bと重なるセパレータ32に摩擦力が及んでも、容易にめくれを生じにくくなり、セパレータ32が良好な形態を保てたことが考えられる。
 以下、本発明の実施の形態2~7について、実施の形態1との差異を中心に説明する。
 <実施の形態2>
 図7(a)は、実施の形態2に係るセパレータ32と、これに収納された正極板31の正極タブ7B周辺の構成を示す図である。
 実施の形態2では、正極タブ7Bは正極板31の上辺310Aの中央付近から延設されている。従って、上辺310Aに沿った正極タブ7Bの両側に、正極タブ7Bと重なる部分を除く周縁部320aの残余領域L1、L2が存在するので、接合部330Aは残余領域L1、L2中に存在する領域A1、A2に重ねて形成することができる。具体的に領域A1(領域A2)は、実施の形態1の領域A(図5参照)と同様に、少なくとも正極板31の上辺310Aに沿って、正極タブ7Bと重なる部分を除く周縁部320aの残余領域L1(L2)の中央の点P2(P3)より正極タブ7B側に近接し、且つ、周縁部320aの幅Dの中央の点P4よりもセパレータ32の端辺320A側に近接する領域である。
 以上の構成を有する実施の形態2のラミネート外装電池においても、実施の形態1と同様の効果を期待できる。実施の形態2では、上辺310Aに沿った正極タブ7Bの両側に接合部330Aが設けられているので、その分、正極タブ7Bの根元がセパレータ32より露出しにくくなっている。
 <実施の形態3>
 図7(b)は、実施の形態3に係るセパレータ32と、これに収納された正極板31の正極タブ7B周辺の構成を示す図である。
 実施の形態3では、少なくとも領域Aに重ねて形成する接合部330A1と、その他の周縁部320aに形成する接合部330Bとを、正極タブ7Bの延設(Y)方向と傾斜させて形成する。このような構成の接合部330A1、330Bを用いても、実施の形態1と同様の効果を期待できる。また、各接合部330A1、330Bは、それぞれXY各方向に沿って一定の長さを有しているので、接合部330A1または330Bの各々において、XYいずれかの方向に沿ってセパレータ32のめくれを一層防止する効果を期待できる。
 <実施の形態4>
 図7(c)は、実施の形態4に係るセパレータ32と、これに収納された正極板31の正極タブ7B周辺の構成を示す図である。
 実施の形態4では、領域Aに重ねて形成する接合部330A2と、それ以外の位置に形成する接合部330Cとを、いずれもドット状とする。さらに、周縁部320aの幅(Y)方向に沿って、各接合部330A2と、330Cとを全体として2列となるように形成する。
 このような構成の接合部330A2、330Cを用いても、実施の形態1と同様の効果を期待できる。また、ドット状の接合部330A2、330Cのピッチを適宜調節したり、各接合部330A2、330Cの配列を3列以上に設定することにより、周縁部320aにおける接合強度を細かく調整することが可能である。
 <実施の形態5>
 図7(d)は、実施の形態5に係るセパレータ32と、これに収納された正極板31の正極タブ7B周辺の構成を示す図である。
 実施の形態5は、実施の形態4を基本構造とし、領域Aに重ねて設ける接合部330A3とそれ以外の位置に形成する接合部330Dとを、実施の形態1と同様に上辺310Aに沿った線状としている。
 このような実施の形態5によれば、正極タブ7Bの延設(Y)方向に沿って、線状の接合部330A3、330Dが全体として2列に形成されているので、実施の形態1に比べ、一層、セパレータ32のめくれを防止することができる。
 <実施の形態6>
 図8は、実施の形態6に係るセパレータ32Cと正極板31との構成を示す図である。
 セパレータ32Cは、Y方向を長手とする帯状のラミネートシートを折り返して正極板31の両面を被覆するように配される。その後、正極板31の上辺310Aを含む3辺の外周において、ラミネートシートの互いに対向する周縁端部320a1と320a2、320b1と320b2、320c1と320c2をそれぞれ熱溶着にて接合し、周縁部320a~320cを形成する(図4参照)。
 以上の構成を有する実施の形態6においても、実施の形態1と同様の効果を期待できる。さらにセパレータ32Cを、折り返した1枚のラミネートシートで構成でき、折り返し部では接合部が不要となるため、製造効率の向上を期待できる。
 <実施の形態7>
 図9は、実施の形態7に係るセパレータ32Dと正極板31との構成を示す図である。
 セパレータ32Dは、X方向を長手とする帯状のラミネートシートをつづら折りし、負極板30、正極板31の両面をそれぞれ被覆するように配される。その後、正極板31の上辺310Aを含む3辺の外周において、互いに対向する周縁端部320a1~320a2、320c1~320c2、320d1~320d2をそれぞれ熱溶着にて接合し、周縁部320a、320b、320dを作る(図4参照)。さらに負極板30の上辺300Aを含む3辺の外周において、互いに対向する周縁端部320a2~320a3、320b2~320b3、320d2~320d3をそれぞれ熱溶着にて接合し、周縁部320a、320b、320dを作る。
 以上の構成を有する実施の形態7においても、実施の形態1及び実施の形態6と同様の効果を期待できる。1枚のラミネートシートで構成したセパレータ32Dの内部に、複数の正極板31を収納できるため、実施の形態6よりもさらに製造効率の向上を期待できる。
 <その他の事項>
 上記各実施の形態では、第1極板を正極板、第2極板を負極板としたが、これとは逆に
第1極板を負極板、第2極板を正極板とすることもできる。
 接合部330A、330は熱溶着法で形成する方法に限定されず、超音波溶着法等で形成してもよい。或いは、接着剤や接合剤、針無しステープラのいずれかを用いて接合部330A、330を形成してもよい。
 セパレータ32は、上記各実施の形態で示したシート状のものの他、平面視した際に端辺320Aのみが開口された袋状のものを成形して用いることもできる。
 本発明は、携帯電話機などのモバイル機器や家庭での蓄電用、あるいは車両用の電源として用いることができ、高い生産性を有する電池を実現するのに有用である。
 1  ラミネート外装電池
 2  ラミネート外装体
 2A、2B  ラミネートシート
 3  電極体
 3X  積層電極体
 4  スペーサ
 5A、5B  溶着樹脂
 6A  負極端子
 6B  正極端子
 7A  負極タブ
 7B  正極タブ
 30  負極板
 31  正極板
 32、32C、32D  セパレータ
 32A、32B  樹脂シート
 32A1~32A4、32B1~32B4  樹脂シートの対向部
 300A  負極板の上辺
 310A  正極板の上辺
 320A~320D  セパレータの端辺
 320a~320d  周縁部
 330、330A~330D、330A1~330A3  接合部

Claims (9)

  1.  電極体と、前記電極体を収納するラミネート外装体とを備えるラミネート外装電池であって、
     前記電極体は、矩形状の第1極板と、前記第1極板の一辺より延設された短冊状の集電タブと、前記第1極板よりも広い面積を有し、前記第1極板の両面を被覆するシート状のセパレータと、前記セパレータを介して前記第1極板に積層され、前記第1極板と逆極性で矩形状の第2極板と、を有し、
     前記セパレータは前記第1極板の両面から前記第1極板の少なくとも前記一辺より突出され、前記突出した対向部同士が重ねられた周縁部を有し、
     前記周縁部には前記突出した対向部同士が接合された接合部が形成され、
     前記電極体を平面視する際、
     前記集電タブは前記周縁部における前記セパレータの端辺から露出され、
     前記接合部は、前記一辺に沿った前記周縁部において、前記集電タブと重なる部分を除いた残余領域の中央よりも前記集電タブに近接する位置で、且つ、前記一辺と直交する前記周縁部の幅の中央よりも前記セパレータの前記端辺に近接する位置に存在する
     ラミネート外装電池。
  2.  前記接合部は、前記集電タブに沿って線状またはドット状で存在している
     請求項1に記載のラミネート外装電池。
  3.  前記セパレータの前記周縁部は前記第1極板の4辺よりも外周に存在し、
     前記接合部は前記第1極板の前記4辺に沿って複数存在している
     請求項1に記載のラミネート外装電池。
  4.  前記各接合部は、その各々が近接する前記第1極板のいずれかの辺に対して平行若しくは傾斜した線状、またはドット状である
     請求項3に記載のラミネート外装電池。
  5.  前記第1極板の前記一辺の外周における前記周縁部の幅が、前記一辺を除く残余の3辺における前記周縁部のいずれの幅よりも広い
     請求項3または4に記載のラミネート外装電池。
  6.  前記一辺に沿った方向において、前記残余領域の長さが前記集電タブの幅の2倍よりも短い
     請求項1~5のいずれかに記載のラミネート外装電池。
  7.  前記電極体を平面視する際、
     前記第1極板の面積は前記第2極板の面積よりも小さく、
     前記セパレータの面積は第2極板の面積よりも大きい
     請求項1~6のいずれかに記載のラミネート外装電池。
  8.  前記接合部は熱溶着部である
     請求項1~7のいずれかに記載のラミネート外装電池。
  9.  前記電極体を平面視する際、前記電極体の一辺において、
     前記一辺の一方の端部に前記正極板から延設された集電タブが位置し、
     前記一方の辺の他方の端部に前記負極板から延設された集電タブが位置する
     請求項1~8のいずれかに記載のラミネート外装電池。
PCT/JP2014/001239 2013-03-12 2014-03-06 ラミネート外装電池 WO2014141640A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-049142 2013-03-12
JP2013049142A JP2016105348A (ja) 2013-03-12 2013-03-12 ラミネート外装電池

Publications (1)

Publication Number Publication Date
WO2014141640A1 true WO2014141640A1 (ja) 2014-09-18

Family

ID=51536320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001239 WO2014141640A1 (ja) 2013-03-12 2014-03-06 ラミネート外装電池

Country Status (2)

Country Link
JP (1) JP2016105348A (ja)
WO (1) WO2014141640A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195087A1 (ja) * 2015-06-04 2016-12-08 日本電気株式会社 フィルム外装電池
WO2017208509A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 蓄電デバイス及びその製造方法
CN110323401A (zh) * 2018-03-29 2019-10-11 三洋电机株式会社 蓄电装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576822B1 (ko) * 2018-05-03 2023-09-11 삼성전자주식회사 코팅층이 형성된 다공성 기재를 포함하는 이차 전지
JP7463930B2 (ja) 2020-09-30 2024-04-09 トヨタ自動車株式会社 電池
JP7385639B2 (ja) * 2021-10-29 2023-11-22 プライムプラネットエナジー&ソリューションズ株式会社 電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213377A (ja) * 1996-01-30 1997-08-15 Ricoh Co Ltd 角形電池
JP2003017112A (ja) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd 積層型二次電池
JP2003092100A (ja) * 2001-09-19 2003-03-28 Nec Corp 積層型電池
JP2006139919A (ja) * 2004-11-10 2006-06-01 Ngk Spark Plug Co Ltd リチウムイオン二次電池およびその製造方法
WO2011145478A1 (ja) * 2010-05-18 2011-11-24 Necエナジーデバイス株式会社 積層型二次電池
JP2014049206A (ja) * 2012-08-29 2014-03-17 Toyota Industries Corp 電極組立体の製造装置、電極組立体、及び蓄電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213377A (ja) * 1996-01-30 1997-08-15 Ricoh Co Ltd 角形電池
JP2003017112A (ja) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd 積層型二次電池
JP2003092100A (ja) * 2001-09-19 2003-03-28 Nec Corp 積層型電池
JP2006139919A (ja) * 2004-11-10 2006-06-01 Ngk Spark Plug Co Ltd リチウムイオン二次電池およびその製造方法
WO2011145478A1 (ja) * 2010-05-18 2011-11-24 Necエナジーデバイス株式会社 積層型二次電池
JP2014049206A (ja) * 2012-08-29 2014-03-17 Toyota Industries Corp 電極組立体の製造装置、電極組立体、及び蓄電装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195087A1 (ja) * 2015-06-04 2016-12-08 日本電気株式会社 フィルム外装電池
US10566660B2 (en) 2015-06-04 2020-02-18 Nec Corporation Film packaged battery
WO2017208509A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 蓄電デバイス及びその製造方法
CN110323401A (zh) * 2018-03-29 2019-10-11 三洋电机株式会社 蓄电装置
CN110323401B (zh) * 2018-03-29 2024-04-05 三洋电机株式会社 蓄电装置

Also Published As

Publication number Publication date
JP2016105348A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
US20120202105A1 (en) Stack type battery and method of manufacturing the same
JP6214758B2 (ja) 角形二次電池
JP6250921B2 (ja) 電池
EP2413398B1 (en) Prismatic secondary battery
US20110244304A1 (en) Stack type battery
US20120244423A1 (en) Laminate case secondary battery
US20090197160A1 (en) Stack type battery
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
US20110070477A1 (en) Stack type battery
JP2013187077A (ja) 捲回型およびスタック型電極電池
WO2014141640A1 (ja) ラミネート外装電池
US20110076544A1 (en) Stack type battery
KR20180001458A (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2016208238A1 (ja) 電気化学デバイスの製造方法
JP2008091100A (ja) 角型リチウムイオン電池
JP2013080563A (ja) 積層型二次電池
JP2018181510A (ja) 二次電池
US9786896B2 (en) Lithium-ion secondary battery
JP5161421B2 (ja) 非水電解質電池
KR101387137B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
JP7108319B2 (ja) 密閉型電池、組電池及び密閉型電池の製造方法
JP5472941B2 (ja) 非水電解質電池
KR101722662B1 (ko) 파우치형 이차 전지
JP7317877B2 (ja) 非水電解液二次電池
JP6846490B1 (ja) 蓄電素子及び蓄電素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP