WO2016195087A1 - フィルム外装電池 - Google Patents

フィルム外装電池 Download PDF

Info

Publication number
WO2016195087A1
WO2016195087A1 PCT/JP2016/066637 JP2016066637W WO2016195087A1 WO 2016195087 A1 WO2016195087 A1 WO 2016195087A1 JP 2016066637 W JP2016066637 W JP 2016066637W WO 2016195087 A1 WO2016195087 A1 WO 2016195087A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
layer
fixing tape
clad
Prior art date
Application number
PCT/JP2016/066637
Other languages
English (en)
French (fr)
Inventor
井上 和彦
乙幡 牧宏
信也 須藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017522288A priority Critical patent/JP6750619B2/ja
Priority to US15/576,073 priority patent/US10566660B2/en
Publication of WO2016195087A1 publication Critical patent/WO2016195087A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a film-clad battery, and more particularly, to a highly reliable film-clad battery that is excellent in heat-resistant safety and is not easily affected by vibration or impact.
  • a film-clad battery is one in which a battery element is housed together with an electrolyte in an exterior body (also referred to as “film exterior body”) made of such a laminate film.
  • Patent Document 1 various forms relating to fixing of battery elements are disclosed.
  • the separator since the separator is made of a polymer film, the separator may be damaged by heat in the process of thermally fusing the fixing tape and the outer package.
  • the energy of film-clad batteries has been increased, and it has become important to ensure heat-resistant safety. Accordingly, an object of the present invention is to provide a highly reliable film-clad battery that is excellent in heat-resistant safety and is not easily affected by vibration or impact.
  • a battery according to an embodiment of the present invention is as follows: A battery element in which a positive electrode, a negative electrode, and a separator are laminated or wound, the battery element not melting or softening at least at 200 ° C. and having a thermal shrinkage rate of 3% or less; A film outer package that houses the battery element; A fixing tape fixed to a part of the battery element and fixed to the inner surface of the film exterior body, A film-clad battery comprising:
  • -"Film-clad battery means a battery in which a battery element is housed in a film-clad body together with an electrolyte. Generally, it has a flat shape as a whole. For example, a battery for an electric vehicle is required to have a large capacity, a low internal resistance, a high heat dissipation, and the like, and a film-covered battery is advantageous in these respects.
  • -“Film outer package” means an outer package made of a flexible film and containing a battery element, and the battery element is hermetically sealed by arranging two films facing each other and fusing each other. The battery element may be sealed by folding a single film and fusing the opposing surfaces. -Regarding the numerical range, when “ab” is described in the present specification, it is intended to be from a to b.
  • FIG. 1 It is a perspective view which shows the basic structure of a film-clad battery. It is a disassembled perspective view which shows the basic structure of a film-clad battery. It is sectional drawing which shows the cross section of the battery of FIG. 1 typically. It is a typical top view of the film-clad battery concerning one form of the present invention. It is sectional drawing which shows a fixed tape and its peripheral structure. It is sectional drawing which shows the layer structure of a fixed tape. It is sectional drawing which shows the other example of the layer structure of a fixed tape. It is sectional drawing which shows the further another example of the layer structure of a fixed tape. It is a schematic diagram which shows the other example of the sticking position of a fixed tape.
  • FIG. 1 It is a schematic diagram for demonstrating an example of the outline shape of a fixed tape. It is a figure for demonstrating another example of the outline shape of a fixed tape. It is a figure which shows the example by which the hole was provided in the fixing tape. It is a typical top view of the film-clad battery which concerns on another form of this invention. It is a figure for demonstrating another example of a fixed tape. It is a top view of the fixed tape before affixing.
  • a battery according to one embodiment of the present invention includes a fixing tape that fixes a battery element.
  • the battery element is described as an example of a laminated film-clad battery, but the present invention is not necessarily limited to a laminated battery but can be applied to a battery of a wound type.
  • a film-clad battery 1 includes a battery element 20, a film-clad body 10 that accommodates the battery element 20 together with an electrolyte, a positive electrode tab 51 and a negative electrode tab 52 (hereinafter, these are also simply referred to as “electrode tabs”). Say).
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with separators 25 therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41.
  • the overall external shape of the battery element 20 is not particularly limited, in this example, it is a flat and substantially rectangular parallelepiped.
  • Each of the positive electrode 30 and the negative electrode 40 has an extended portion that partially protrudes from a part of the outer periphery.
  • the extension part of the positive electrode 30 and the extension part of the negative electrode 40 are alternately arranged so as not to interfere with each other when the positive electrode and the negative electrode are stacked. All the negative electrode extensions are gathered together and connected to the negative electrode tab 52. Similarly, for the positive electrode, all the positive electrode extensions are gathered together and connected to the positive electrode tab 51 (See FIGS. 2 and 3).
  • the portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions” or the like.
  • resistance welding, ultrasonic welding, laser welding, caulking, adhesion with a conductive adhesive, or the like can be employed.
  • the positive electrode tab 51 is aluminum or an aluminum alloy
  • the negative electrode tab 52 is copper or nickel.
  • the material of the negative electrode tab 52 is copper, nickel may be arranged on the surface.
  • Each of the electrode tabs 51 and 52 is electrically connected to the battery element 20 and is drawn out of the film exterior body 10.
  • ⁇ Separator> As the separator, for example, an aramid, polyimide, polyester, cellulose, polyolefin resin such as polyethylene or polypropylene can be used. A polyolefin resin that is crosslinked by electron beam irradiation or addition of a crosslinking agent to increase the melting point may be used. Moreover, any structure, such as a woven fabric, a nonwoven fabric, or a microporous film, may be used.
  • the melting point at which the separator melts or softens and the temperature at which 3% heat shrinks is preferably not 200 ° C. or lower.
  • the gap of the separator becomes small, and the ionic conductivity of the electrolytic solution can be maintained.
  • the separator is completely melted, the insulation between the electrodes cannot be maintained. Further, when the separator contracts, the insulation between the electrodes cannot be maintained.
  • This shrinkage is preferably 5% or less at 200 ° C., more preferably 3% or less.
  • the melting point of the separator can be confirmed with a scanning calorimeter (DSC), a viscoelasticity measuring device (DMA) or the like. If the linear expansion coefficient measuring device (TMA) is used, not only the melting point but also the 3% shrinkage temperature. Can also be measured.
  • the separator does not deform and shrink to a temperature that is 50 ° C. or higher, 100 ° C. or higher, or 200 ° C. or higher higher than the melting point of the heat-sealing layer of the laminate film. It is preferable not to have.
  • the form of the separator may be a web or a sheet. The above items can be used alone or in combination.
  • a separator made of an inorganic material such as ceramic or glass can also be used.
  • a nonwoven fabric separator made of ceramic short fibers such as alumina, alumina-silica, and potassium titanate can be used.
  • the separator which consists of a base material which consists of a textile fabric, a nonwoven fabric, paper, or a porous film, and a layer containing a heat resistant nitrogen-containing aromatic polymer and ceramic powder may be sufficient.
  • a heat-resistant layer is provided on a part of the surface, and the heat-resistant layer is made of a porous thin film layer containing ceramic powder, a porous thin film layer of heat-resistant resin, or a composite of ceramic powder and heat-resistant resin. It may be a porous thin film layer separator. Alternatively, the separator may include a porous film layer in which secondary particles obtained by sintering or dissolving and recrystallizing a part of primary particles of a ceramic substance are bonded by a binder.
  • the separator including a polymer substrate and a ceramic-containing coating layer of Al 2 O 3 , MgO, TiO 2 , Al (OH) 3 , Mg (OH) 2 , and Ti (OH) 4 formed on the polymer substrate It may be.
  • the negative electrode has a negative electrode current collector formed of a metal foil and a negative electrode active material layer coated on both sides of the negative electrode current collector.
  • the negative electrode active material layer is bound so as to cover the negative electrode current collector with a negative electrode binder.
  • the negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • a carbon material that can occlude and release lithium ions a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
  • Examples of the carbon material include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • a negative electrode containing a metal or metal oxide is preferable in that it can improve the energy density and increase the capacity per unit weight or unit volume of the battery.
  • the metal examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide can be improved.
  • the negative electrode active material can be used by mixing a plurality of materials without using a single material.
  • the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, or the like can be used.
  • polyimide or polyamideimide is preferred because of its high binding properties.
  • the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the positive electrode has a positive electrode current collector formed of a metal foil, and a positive electrode active material coated on both surfaces of the positive electrode current collector.
  • the positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
  • the positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, but it is preferable to include a high-capacity compound from the viewpoint of increasing the energy density.
  • the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element.
  • the layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • radical materials or the like can be used as the positive electrode active material.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector the same as the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • a nonaqueous electrolytic solution containing a lithium salt (supporting salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • the supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) Lithium salts that can be used for ordinary lithium ion batteries such as 2 can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • a laminate film having a surface layer, a metal layer, and an inner surface layer can be used.
  • the metal layer may be aluminum
  • the surface layer may be nylon (registered trademark) or polyethylene terephthalate
  • the inner surface layer may be a polyolefin resin such as polyethylene or polypropylene.
  • the inner surface layer may be polyethylene having a melting point of 95 to 140 ° C. or polypropylene having a melting point of 160 to 165 ° C.
  • the film outer package 10 may be configured by arranging two films 10-1 and 10-2 facing each other.
  • a film outer package may be formed by folding a single film.
  • the outline shape of the film outer package 10 is not particularly limited, but may be a quadrangle, and specifically, in this example, it is a rectangle.
  • the films 10-1 and 10-2 are bonded to each other around the battery element 20 by thermal fusion, and the peripheral portion of the film outer package 10 is a thermal fusion portion 15.
  • the heat fusion part 15 is formed over the entire periphery of the battery.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn out from one side of the short side of the heat-sealed portion 15.
  • the electrode tabs may be drawn from two or more different sides.
  • the positive electrode tab 51 and the negative electrode tab 52 are preferably parallel, but the present invention is not limited to this.
  • the cup portion may be formed on one film 10-1 and the cup portion may not be formed on the other film 10-2. Or it is good also as a structure (not shown) which forms a cup part in both films, and it is good also as a structure (not shown) which does not form a cup part in both.
  • the film-clad battery 1 of the present embodiment is provided with a fixing tape 70 for fixing the battery element 20 and the film-clad body 10.
  • the fixing tape 70 may be provided only at one place, or may be provided at a plurality of places, but in this example, four places (specifically, left and right sides) of the peripheral portion of the battery element 20 are provided. 2 places on each side).
  • the fixing tape 70 is attached to the peripheral edge of the battery element 20 in a substantially U-shape. Specifically, the fixing tape 70 is fixed to the end face of the battery element 20 (or is not fixed but is simply close), and the second part is fixed to the upper surface of the battery element 20. 70b-1 and a second portion 70b-2 fixed to the lower surface. Hereinafter, the second portion may be simply indicated by reference numeral 70b.
  • the state in which the first portion 70a is not “fixed” but “close” is included in one embodiment of the present invention because the following case is also assumed as an example: That is, the portions 70 b-1 and 70 b-2 on both ends of the fixing tape 70 are fixed to the battery element 20, but the first portion 70 a is not fixed to the end of the battery element 20. is there. Specifically, for example, when the electrodes are uneven on the side surface of the battery element 20 and the fixing tape is not attached to the end face of the battery element, or only the first portion 70a is not intentionally attached to the end face of the battery element. This is the case.
  • the contour of the fixing tape is, for example, for the purpose of making it difficult to remove the fixing tape from between the battery element and the film. It is good also as an uneven
  • the shape illustrated in FIG. 8 (schematic plan view seen from the battery upper surface side) may be used.
  • the contour of the fixing tape 170 has a triangular wave-like uneven shape.
  • both the side edges 170p of the fixing tape 170 (here, the edges in the direction intersecting the end surface 20e of the battery element 20) and the edge 170q of the end are formed in an uneven shape. However, at least one of them, or only the side edges 170p may be uneven.
  • the uneven shape may be a rectangular wave-like uneven shape as shown in FIG. 9A, a sinusoidal wave-like uneven shape as shown in FIG. Good.
  • a trapezoidal uneven shape may be made by making these shapes deformed, for example, a trapezoidal uneven shape.
  • a fixing tape 171 in which one or a plurality of holes 171a are formed may be used.
  • the holes 171a may be formed in the second portions 70b-1 and 70b-2 (both may be either) of the tape.
  • one or a plurality of holes may be provided in a fixing tape whose contour is formed in an uneven shape.
  • FIG. 10 shows an example in which the holes 171a are arranged in the length direction of the tape, a plurality of holes may be provided in the width direction.
  • the shape of the hole 171a is not limited to a circle but may be an arbitrary shape such as a rectangle or a polygon.
  • FIG. 5 is a sectional view of the finished product.
  • the outer surface of the second portion 70b (the surface facing the film outer package) is heat-sealed to the inner surface of the film outer package 10.
  • the inner surfaces (surfaces facing the film outer package) of the second portions 70b-1 and 70b-2 are joined to the upper surface and the lower surface of the battery element 20, respectively.
  • 5 shows only one fixing tape 70 and its peripheral structure, the other three fixing tapes 70 can have the same configuration.
  • the relationship between the size of the battery element 20 and the length of the fixing tape 20 may be as follows, for example. That is, when the length of the portion of the fixing tape 70 to be attached to the main surface of the battery element 20 is L 70 and the width is W 70 , the values of L 70 and W 70 are both 1 mm or more and 2 mm. In one form, it is preferable to set it above or about 3 mm. When the width and length of the fixing tape are too short (that is, when the value of L 70 ⁇ W 70 is too small), there is a possibility that the fixing action by the fixing tape cannot be obtained sufficiently.
  • the battery element 20 and the film outer package 10 are fixed through the fixing tape 70 as described above, an impact is temporarily applied to the battery element 20 during use or transportation.
  • the battery element 20 is prevented from moving in the exterior body. Therefore, damage to the electrode tab and its peripheral structure can be prevented.
  • the fixing tape 70 may have a multilayer structure as shown in FIG. 6A, for example.
  • a heat-resistant layer 72 serving as a base material
  • a first heat-sealing layer 71 laminated on one surface thereof
  • a second heat-sealing layer 73 laminated on the other surface
  • a fixing tape And an adhesive layer 74 for temporarily fixing 70 to the element As another aspect, as shown in FIG. 6B, a tape in which the first heat sealing layer 71 is omitted may be used.
  • the fixing tape of FIG. 6B is preferable because it has a structure without the heat-fusible layer 71, so that the battery can be made thin.
  • the heat-sealing layer 71 has a heat-sealing layer on the films 10-1 and 10-2, so that the fixing tape 70 and the film 10-1 or 10-2 can be heat-sealed.
  • the layer 71 is preferable because the bonding strength with the inner surface of the exterior increases.
  • a heat-resistant base material is not a film, and a fixing tape made of fibers such as a nonwoven fabric or a woven fabric can be used.
  • the fixing tape of FIG. 6C has a composite layer 75 and an adhesive layer 74 obtained by impregnating a fiber with a heat-sealing layer.
  • the fiber can be heat-sealed with both sides by impregnating the fiber with the heat-sealing layer. Therefore, the same effect as that obtained by providing two heat-sealing layers as shown in FIG. 6A is obtained, and such a configuration is preferable because high adhesive strength can be obtained on both sides.
  • the woven fabric is superior in tensile strength to the nonwoven fabric, the effect of bundling battery elements is high.
  • nonwoven fabrics are preferable because they are thin and inexpensive, and are low in cost.
  • thermoplastic resin material can be used, for example, PP (polypropylene), PE (polyethylene), and the like. There may be.
  • the melting point (Ta) of the heat-sealing layers 71 and 73 is preferably lower than the melting point of the separator and the temperature (Ts) at which 3% heat shrinks. Thereby, it is prevented that the separator is damaged by heat at the time of heat fusion (details will be described later) with a heat press.
  • the melting points (Ta) of the heat-sealing layers 71 and 73 are preferably 10 ° C. or more, 20 ° C. or more, or 30 ° C. or less lower than the melting point of the separator and the temperature (Ts) at which 3% heat shrinks.
  • the melting point (Tb) of the heat-resistant layer 72 is preferably 10 ° C., 20 ° C., or 30 ° C. higher than the melting point (Ta) of the heat-sealing layers 71, 73.
  • the material of the heat-resistant layer 72 is preferably a material having high adhesiveness to the heat-fusion layer 73, the heat-fusion layer 71, or the heat-fusion layer of the films 10-1 and 10-2.
  • the difference in SP value is 5 (cal / cm 3 ) (1/2) or less, preferably 3 (cal / cm 3 ) (1/2) or less, more preferably 2 (cal / cm 3 ) (1/2 ) that it is preferably less.
  • the heat-resistant layer is formed as a fiber layer as shown in FIG. 6C, since the melt layer impregnates the fiber layer, the difference in solubility parameter between the two may exceed 5 (cal / cm 3 ) (1/2). Since it does not peel, it is not necessary to consider this, which is preferable.
  • the material of the fiber layer glass fiber, carbon fiber, or metal fiber, which is an inorganic material, may be used in addition to the above-mentioned fiber made of a crosslinked material of PP and PE and a resin such as nylon.
  • the inorganic material is preferable because it has a heat resistance higher by several hundred degrees C. or more than the heat-fusible layer, and thus there is no fear of breaking when the battery element is fixed with heat.
  • the adhesive layer 74 may be, for example, an acrylic adhesive layer. Although illustration is omitted, the adhesive may be applied to the entire surface of the heat-fusible layer 73, or the adhesive may be applied in a predetermined pattern such as a dot shape or a stripe shape instead of the entire surface. .
  • each layer is preferably, for example, about 10 to 100 ⁇ m for the heat-sealing layers 71 and 73 and about 10 to 50 ⁇ m for the heat-resistant layer 72.
  • the thickness of the adhesive layer 74 is preferably, for example, 50 ⁇ m or less, 30 ⁇ m or less, or 10 ⁇ m or less.
  • a positive electrode active material layer containing a positive electrode active material is formed on a current collector, a negative electrode active material layer containing a negative electrode active material is formed on the current collector, and the positive electrode active material layer and the negative electrode active material layer are separated from each other by a separator.
  • the battery elements are arranged by facing each other, and further laminated and pressed to form a battery element.
  • a fixing tape is affixed to the peripheral portion of the electrode / separator laminate.
  • a tape or the like is sometimes used for temporarily fixing (maintaining the shape) of the battery element.
  • the laminate is finally fixed to the film outer package.
  • This fixing tape can also be used as a temporary fixing tape.
  • the positive electrode tab and the negative electrode tab are connected to the positive electrode and the negative electrode by a conventionally known method.
  • the battery element formed in this way is placed in a film outer package in which three sides are heat-sealed to form a bag.
  • the inner fixing tape 70 is heated by heat-pressing from the outside of the film outer package at a predetermined temperature, pressure, and time conditions, and the inner heat-sealing layer 73 (see FIG. 6) and the battery element 20 are heated. While fixing, the outer heat-sealing layer 71 and the inner surface of the film outer package 10 are heat-sealed.
  • the temperature of the heat press can be heat-sealed in a shorter time as the temperature is higher than that of the heat-sealing layers 71 and 73, the melting point or higher, preferably 10 ° C or higher, more preferably 20 ° C higher than the melting point. This is a high temperature. In order to prevent deformation and breakage of the exterior film, it is necessary not to exceed these melting points. Further, if the fixing tape is melted and cut by the heat sealing step, the battery elements cannot be integrated, and therefore the heat press temperature is preferably lower than the melting point (Tb) of the heat-resistant layer 72.
  • the melting point of the separator is preferably as high as possible, and is preferably not 200 ° C. or less.
  • the upper surface or the lower surface, preferably both surfaces of the fixing tape are heated via the film outer package 10.
  • the area to be heated is heated only in a range that is the same as or narrower than the area of the second portion 70b that is the joint surface between the fixing tape and the film exterior body. It is preferable.
  • the outermost electrode layer is also heat-sealed using the heat-sealing layer on the inner surface of the film outer package, it is preferable to heat the portion where the fixing tape is not temporarily fixed.
  • the sealing step can be performed in a reduced-pressure atmosphere (in a reduced-pressure chamber).
  • a reduced-pressure chamber By returning the sealed film-covered battery to the atmospheric pressure atmosphere, the exterior film is pressed against the battery element by the atmospheric pressure, and the exterior film Can be brought into close contact with the battery element.
  • the separator since the melting point of the heat sealing layers 71 and 73 of the fixing tape 70 is lower than the melting point of the separator, the separator is not damaged by heat during the heat press. Moreover, since the heat resistant layer 72 is provided on the fixing tape 70 itself, the strength of the fixing tape 70 is also ensured. In the state after the heat press, the fixing tape 70 is not temporarily fixed by the adhesive layer 74, but the heat fusion layer 73 is fused to the battery element, so that the fixing tape 70 is fixed with sufficient strength.
  • the fixing tape 70 may be provided at each of the opposing sides of the battery element 20.
  • one or a plurality of fixing tapes may be provided on all four sides, or one or a fixing tape may be provided on each of three sides or less.
  • the fixing tape 70 is comparatively short in the form of FIG. 7A, it is fixed over the whole of the battery element 20 in the vertical direction (or horizontal direction) as shown in FIG. 7B.
  • a tape 70 ' may be provided.
  • the fixing tape 70 ′ may be affixed over the entire circumference of the battery element 20, or may be affixed only to a part rather than the entire circumference.
  • the battery element as shown in FIG. A configuration in which only a part of 20 is fixed is preferable.
  • Examples of the configuration in which one or a plurality of fixing tapes are provided on all four sides include, for example, a configuration in which fixing tapes 70 are arranged at six locations on the periphery of the battery element 20 as shown in FIG. According to such a configuration, it is preferable to fix the four sides because the central layer of the laminate cannot be moved by vibration or the like.
  • the fixing tape may be heat-sealed to the inner surface of the exterior body in consideration of the impregnation property of the electrolytic solution in the pouring step.
  • the fixing tape may be heat-sealed in advance after temporarily fixing the fixing tape to the battery element with the adhesive layer 74. preferable.
  • a fixing tape 270 having a shape as shown in FIGS. 12 and 13 may be used.
  • the fixing tape 270 includes two attaching portions 270a attached to the upper surface and the lower surface of the laminate, and an intermediate connecting portion 270b.
  • the affixing portion 270a can have various shapes such as a quadrangle, a polygon, and a circle, but in this example, it is a circle.
  • the width of the connecting portion 270b is formed narrower than the diameter of the pasting portion 270a.
  • a fixing tape 270 it is possible to achieve both the injection property of the electrolytic solution and the bonding strength as described below. That is, if the side surface portion of the laminate is covered with a wide fixing tape, the impregnation property to the electrode interlayer portion may be deteriorated when the electrolytic solution is injected. On the contrary, if the tape width is narrowed with the fixing tape as shown in FIG. 4, the area where the electrode and the exterior body are joined decreases, and there is a possibility that sufficient adhesive force for securing the laminate to the exterior body cannot be obtained. . Therefore, it is desirable to use a tape as shown in FIG. 12 and FIG.
  • a film outer package (10) containing the battery element A film-clad battery comprising: a fixing tape (70) fixed to a part of the battery element and fixed to the inner surface of the film-clad body.
  • the separator is made of at least one of polyimide resin, polyamide resin, and polyphenylene sulfone resin.
  • the fixing tape has a multilayer structure, A heat sealing layer (73); A heat-resistant layer (72) having a melting point higher by 10 ° C. or more than the melting point of the heat-sealing layer,
  • the fixing tape has a multilayer structure including a composite layer, Composite layer (75) in which a fiber having a melting point higher by 10 ° C. or more than the melting point of the heat-seal layer is impregnated with the heat-seal layer (composite layer in which the fiber is impregnated with the heat-seal layer)
  • Composite layer (75) in which a fiber having a melting point higher by 10 ° C. or more than the melting point of the heat-seal layer is impregnated with the heat-seal layer (composite layer in which the fiber is impregnated with the heat-seal layer)
  • the fixing tape (70) is further The film-clad battery according to the above, comprising an adhesive layer (74) for adhering a fixing tape to the battery element before heat fusion.
  • the film-clad battery according to one embodiment of the present invention can be used in, for example, all industrial fields that require a power source.
  • it can be used as a power source for mobile devices such as mobile phones and laptop computers; it can be used as a power source for electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles; transport for transportation such as trains, satellites, and submarines
  • electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • transport for transportation such as trains, satellites, and submarines
  • It can be used as a power source for mediums; it can be used as a power storage system for storing electric power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

本発明の目的は、耐熱安全性に優れ、振動や衝撃の影響も受けにくい高信頼なフィルム外装電池を提供することにある。本発明のフィルム外装電池(1)は、正極、負極、およびセパレータが積層または巻回された電池要素(20)であって、上記セパレータは少なくとも200℃で、溶融または軟化せず、かつ、熱収縮率が3%以下である、電池要素(20)と、上記電池要素を収容するフィルム外装体(10)と、上記電池要素の一部に固定されるとともに、上記フィルム外装体の内面に固定された固定テープ(70)と、を備える。

Description

フィルム外装電池
 本発明はフィルム外装電池に関し、特には、耐熱安全性に優れ、振動や衝撃の影響も受けにくい高信頼なフィルム外装電池に関する。
 近年、電子機器や自動車等の電源として用いられる電池には、小型化および軽量化が強く要求されてきている。電池の外装体に関しても、従来の金属缶に代わり、ラミネートフィルムを使用するものが多くなってきている。ラミネートフィルムとしては、金属薄膜としてアルミニウムを、熱融着性樹脂フィルムとして電池外側表面にナイロン(登録商標)やポリエチレンテレフタレートを、内側表面にポリエチレンやポリプロピレンを用いたものなどが一般的である。フィルム外装電池は、このようなラミネートフィルムからなる外装体(「フィルム外装体」ともいう)の内部に、電池要素を電解質とともに収納したものである。
 このようなフィルム外装電池において、例えば電池の使用中や運搬中などに電池に大きな衝撃が加わった場合、内部の電池要素がずれ動き、その結果、電極タブやその周辺構造が破損するおそれがあるという問題点がある。電池要素をフィルム外装体に固定する技術としては、例えば特許文献1に、積層型の電池要素に対して固定テープを貼り付け、かつ、その固定テープを外装体に対して熱融着することが開示されている。
特許3602797号公報
 上述した特許文献1では、電池要素の固定に関する種々の形態が開示されている。しかし、セパレータがポリマーフィルムからなるものであるので、固定テープと外装体とを熱融着させる工程でセパレータが熱によって損傷するおそれがある。他方、近年、フィルム外装電池の高エネルギー化が進んでおり、耐熱安全性を確保することも重要になってきている。そこで、本発明の目的は、耐熱安全性に優れ、振動や衝撃の影響も受けにくい高信頼なフィルム外装電池を提供することにある。
 上記目的を達成するための本発明の一形態に係る電池は、次のとおりである:
 正極、負極、およびセパレータが積層または巻回された電池要素であって、前記少なくとも200℃で、溶融または軟化せず、かつ、熱収縮率が3%以下である、電池要素と、
 前記電池要素を収容するフィルム外装体と、
 前記電池要素の一部に固定されるとともに、前記フィルム外装体の内面に固定された固定テープと、
 を備える、フィルム外装電池。
(用語の説明)
・「フィルム外装電池」とは、電池要素を電解質とともにフィルム外装体に収容した電池のことをいう。一般的には、全体として偏平な形状をしている。例えば電動車両用の電池では、容量が大きいこと、内部抵抗が低いこと、放熱性が高いこと等が要求されるところ、フィルム外装電池はこれらの点で有利である。
・「フィルム外装体」とは、可撓性を有するフィルムで構成され電池要素を収容する外装体のことをいい、2枚のフィルムを対向配置して互いに融着することにより電池要素を密閉するものであってもよいし、1枚のフィルムを折り返して対向した面どうしを融着することにより電池要素を密閉するものであってもよい。
・数値範囲に関し、本明細書で「a~b」と記載した場合には、a以上b以下であることを意図する。
 本発明によれば、耐熱安全性に優れ、振動や衝撃の影響も受けにくい高信頼なフィルム外装電池を提供することができる。
フィルム外装電池の基本的構造を示す斜視図である。 フィルム外装電池の基本的構造を示す分解斜視図である。 図1の電池の断面を模式的に示す断面図である。 本発明の一形態に係るフィルム外装電池の模式的な平面図である。 固定テープおよびその周辺構造を示す断面図である。 固定テープの層構造を示す断面図である。 固定テープの層構造の他の例を示す断面図である。 固定テープの層構造のさらに他の例を示す断面図である。 固定テープの貼付け位置の他の例を示す模式図である。 固定テープの輪郭形状の一例を説明するための模式的な図である。 固定テープの輪郭形状の別の例を説明するための図である。 固定テープに孔が設けられた例を示す図である。 本発明の別の形態に係るフィルム外装電池の模式的な平面図である。 固定テープの別の例を説明するための図である。 貼付け前の固定テープの平面図である。
1.フィルム外装電池の基本的な構成
 フィルム外装電池の基本的な構成について、図1~図3を参照して説明する。後述するように、本発明の一形態に係る電池は、電池要素を固定する固定テープを備えていることを特徴の1つとする。ただし、説明の都合上、図1~図3ではそれらの図示は省略している。以下では電池要素が積層型のフィルム外装電池を例に挙げて説明するが、本発明自体は、必ずしも積層型の電池に限らず捲回型などの電池にも適用しうる。
 本発明の一形態に係るフィルム外装電池1は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。電池要素20の全体的な外形は、特に限定されるものではないが、この例では偏平な略直方体である。
 正極30および負極40は、それぞれ、外周の一部に部分的に突出した延長部を有している。正極30の延長部と負極40の延長部とは、正極および負極を積層したときに互いに干渉しないように位置をずらして互い違いに配置されている。すべての負極の延長部は一つに集められて負極タブ52と接続され、同様に、正極の関しても、すべての正極の延長部が一つに集められて正極タブ51と接続される(図2、図3参照)。このように延長部どうし積層方向に1つに集められた部分は「集電部」などとも呼ばれる。集電部と電極タブとの接続は、抵抗溶接、超音波溶接、レーザー溶接、カシメ、導電性接着剤による接着等を採用することができる。
 電極タブとしては種々の材質を採用しうるが、一例として、正極タブ51がアルミニウムまたはアルミニウム合金で、負極タブ52が銅またはニッケルである。負極タブ52の材質が銅の場合、表面にニッケルが配置されていてもよい。各電極タブ51、52は、電池要素20に電気的に接続されるとともにフィルム外装体10の外部に引き出されている。
2.各部の構成
 電池要素の各要素に関しては、具体的には以下のようなものを採用してもよい。
<セパレータ>
 セパレータとしては、例えば、アラミド、ポリイミド、ポリエステル、セルロース、ポリエチレンやポリプロプレンなどのポリオレフィン系樹脂を用いることができる。ポリオレフィン系樹脂を電子線照射または架橋剤の添加によって架橋して融点を高めたものを用いてもよい。また、織布、不織布、または微多孔膜等のいずれの構造であっても構わない。
 セパレータの溶融または軟化が生じる融点および3%熱収縮する温度が200℃以下でないことが好ましい。セパレータが溶融するとセパレータの空隙が小さくなり、電解液のイオン伝導性が維持できなる。さらに完全にセパレータが溶融すると電極間の絶縁性を維持できなくなるためである。また、セパレータが収縮するとやはり電極間の絶縁性を維持できなくなる。この収縮は200℃において5%以下が好ましく3%以下が更に好ましい。なお、セパレータの融点は走査型熱量計(DSC)、粘弾性測定装置(DMA)などで確認することが可能であり、線膨張係数測定装置(TMA)であれば融点のみならず3%収縮温度も測定することが可能である。
 特には、ラミネートフィルムの熱融着層の融点より50℃以上高い、100℃以上高い、または200℃以上高い温度まで変形収縮しないものであることが好ましいため、セパレータがこれらの温度以下において融点を持たないことが好ましい。セパレータの形態はウェブまたはシートであってもよい。上記事項は、単独または組合せで使用することができる。
 セパレータとして、セラミックやガラスなどの無機材料からなるセパレータを使用することもできる。無機セパレータとしては、アルミナ、アルミナ-シリカ、チタン酸カリウム等のセラミック短繊維からなる不織布セパレータを用いることができる。または、織物、不織布、紙または多孔質のフィルムからなる基材と耐熱性含窒素芳香族重合体およびセラミック粉末を含む層とからなるセパレータであってもよい。または、表面の一部に耐熱層が設けられており、この耐熱層が、セラミック粉末を含有する多孔質薄膜層、耐熱性樹脂の多孔質薄膜層、またはセラミック粉末と耐熱性樹脂の複合体からなる多孔質薄膜層セパレータであってもよい。または、セラミック物質の1次粒子の一部が焼結もしくは溶解再結晶結合されてなる2次粒子がバインダーによって結合されてなる多孔膜の層を備えるセパレータであってよい。または、セラミックス物質とバインダーが結合して形成される多孔性膜を含み、セラミックス物質として、シリカ(SiO)、アルミナ(Al)、ジルコニウム酸化物(ZrO)、チタン酸化物(TiO)、シリコン(Si)の窒化物、アルミニウム(Al)の水酸化物、ジルコニウム(Zr)のアルコキシド化物、チタン(Ti)のケトン化合物を用いたセパレータであってもよい。または、ポリマー基材と、このポリマー基材に形成されたAl、MgO、TiO、Al(OH)、Mg(OH)、Ti(OH)のセラミック含有コーティング層を含むセパレータなどであってもよい。
<負極>
 負極は、金属箔で形成される負極集電体と、負極集電体の両面に塗工された負極活物質層とを有する。負極活物質層は負極用結着材によって負極集電体を覆うように結着される。負極集電体は、負極端子と接続する延長部を有して形成され、この延長部には負極活物質は塗工されない。
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料、リチウムと合金可能な金属、およびリチウムイオンを吸蔵、放出し得る金属酸化物等が挙げられる。
 炭素材料としては、例えば、炭素、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 金属や金属酸化物を含有する負極は、エネルギー密度を向上でき、電池の単位重量あたり、あるいは単位体積あたりの容量を増やすことができる点で好ましい。
 金属としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。
 また、負極活物質は、単独の材料を用いずに、複数の材料を混合して用いることもできる。例えば、黒鉛と非晶質炭素のように、同種の材料同士を混合しても良いし、黒鉛とシリコンのように、異種の材料を混合しても構わない。
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等を用いることができる。中でも、結着性が強いことから、ポリイミドまたはポリアミドイミドが好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~25質量部が好ましい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
<正極>
 正極は、金属箔で形成される正極集電体と、正極集電体の両面に塗工された正極活物質とを有する。正極活物質は正極用結着剤によって正極集電体を覆うように結着される。正極集電体は、正極端子と接続する延長部を有して形成され、この延長部には正極活物質は塗工されない。
 正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されないが、高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、リチウム酸ニッケル(LiNiO)またはリチウム酸ニッケルのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 また、ラジカル材料等を正極活物質として用いることも可能である。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。
 正極集電体としては、負極集電体と同様のものを用いることができる。
 正極活物質の塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
<電解質>
 電解質は、リチウム塩(支持塩)と、この支持塩を溶解する非水溶媒を含む非水電解液を用いることができる。
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、リン酸エステル等の非プロトン性有機溶媒を用いることができる。
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、カーボネート電解液、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 非水溶媒は、一種を単独で、または二種以上を組み合わせて使用することができる。
<フィルム外装体>
 外装体のフィルムとしては、表面層、金属層、および内面層を有するラミネートフィルムを用いることができる。金属層としてアルミニウムを、表面層としてはナイロン(登録商標)やポリエチレンテレフタレートを、内面層にポリエチレンやポリプロピレンなどのポリオレフィン系樹脂を用いたものであってもよい。内面層は、融点95~140℃のポリエチレンや、融点160~165℃のポリプロピレンであってもよい。
 本実施形態では、図1~図3に示すように、フィルム外装体10は2枚のフィルム10-1、10-2を対向配置して構成されるものであってもよい。図示しないが、1枚のフィルムを折り返してフィルム外装体を構成してもよい。フィルム外装体10の輪郭形状は特に限定されるものではないが、四角形であってもよく、この例では具体的には長方形となっている。
 フィルム10-1、10-2は、電池要素20の周囲で互いに熱融着されて接合されており、フィルム外装体10の周縁部が熱融着部15となっている。熱融着部15は電池の全周にわたって形成されている。
 この例では、熱融着部15のうち短辺側の一辺から、正極タブ51および負極タブ52が引き出されている。当然ながら、異なる二辺以上から電極タブがそれぞれ引き出されていてもよい。正極タブ51および負極タブ52は平行であることが一形態において好ましいが、本発明はこれに限定されない。また、図2、図3のように、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない構成としてもよい。あるいは、両方のフィルムにカップ部を形成する構成(不図示)としてもよいし、両方ともカップ部を形成しない構成(不図示)としてもよい。
<固定テープ>
 本実施形態のフィルム外装電池1には、図4、図5に示すように、電池要素20とフィルム外装体10とを固定するための固定テープ70が設けられている。固定テープ70は、1箇所のみに設けられていてもよいし、または複数箇所に設けられていてもよいが、この例では、電池要素20の周縁部の4箇所(具体的には、左右の辺に2箇所ずつ)に設けられている。
 図5に示すように、固定テープ70は、電池要素20の周縁部に略コ字型に貼付されている。具体的には、固定テープ70は、電池要素20の端面に固定される(または固定はされずに単に近接する)第1の部分70aと、電池要素20の上面に固定される第2の部分70b-1および下面に固定される第2の部分70b-2とを有している。なお、以下、第2の部分を単に符号70bで示すこともある。なお、上記において、第1の部分70aが「固定」ではなく「近接」した状態も本発明の一形態に含めているのは、一例として次のような場合も想定しているためである:すなわち、固定テープ70の両端側の部分70b-1、70b-2は電池要素20に固定されているものの、第1の部分70aは、電池要素20の端部に固定されていないような形態である。具体的には、例えば電池要素20の側面において電極が不揃いとなっており固定テープが電池要素端面に貼付されない場合や、または、第1の部分70aのみを意図的に電池要素端面に貼付しないような場合である。
 フィルム10-1や10-2が電池要素と熱融着するのに十分な熱融着層を有する場合、固定テープを電池要素とフィルムの間から抜けにくくする目的で、固定テープの輪郭を例えば凹凸形状としてもよい。具体的には、図8(電池上面側からみた模式的な平面図)に例示されるような形状としてもよい。この例では、固定テープ170の輪郭が三角波状の凹凸形状となっている。なお、図では、固定テープ170の両側縁170p(ここでは、電池要素20の端面20eに交差する向きの縁のことをいう)と、端部の縁170qとの両方が凹凸形状とされているが、少なくともいずれか1つ、または、両側縁170pのみを凹凸形状としてもよい。
 凹凸形状は、図8のような形状の他にも、例えば図9(a)に示すような矩形波状の凹凸形状や、図9(b)に示すような正弦波波状の凹凸形状等としてもよい。当然ながら、これらを変形させたような形状とすることも可能であり、例えば台形状の凹凸形状としてもよい。
 また、図10に示すように、1つまたは複数の孔171aが形成された固定テープ171を用いるようにしてもよい。孔171aは、テープのうち第2の部分70b-1、70b-2(両方でも一方でもよい)に形成されていればよい。当然ながら、輪郭が凹凸形状に形成された固定テープに、1つまたは複数の孔を設けるようにしてもよい。図10ではテープの長さ方向に孔171aが並んだ例を示しているが、幅方向に複数の孔を設けるようにしてもよい。孔171aの形状に関しても、円形に限らず、四角形や多角形など任意の形状とすることができる。
 図5は製品の完成状態の断面図であって、この状態では、第2の部分70bの外面(フィルム外装体に対向する側の面)はフィルム外装体10の内面に熱融着され、第2の部分70b-1、70b-2の内面(フィルム外装体に対向する側の面)はそれぞれ電池要素20の上面および下面に接合されている。なお、図5では1つの固定テープ70およびその周辺構造のみしか示していないが、他の3つの固定テープ70についても同様の構成とすることができる。
 図4のような形態で固定テープ70を貼り付ける場合、電池要素20のサイズと固定テープ20の長さの関係は、例えば次のようなものであってもよい。すなわち、固定テープ70のうち電池要素20の主面に貼り付けられる部分の長さをL70とし幅をW70としたときに、L70およびW70の値が、いずれも1mm以上、2mm以上、または3mm以上程度に設定されていることが、一形態において、好ましい。固定テープの幅や長さが短かすぎる場合(すなわちL70×W70の値が過度に小さい場合)、固定テープによる固定の作用が十分に得られない可能性がある。
 本実施形態の構成によれば、このように固定テープ70を介して電池要素20とフィルム外装体10との固定が行なわれているので、使用時や搬送時に仮に電池要素20に衝撃が加わったとしても、電池要素20が外装体内で動いてしまうようなことが防止される。したがって、電極タブやその周辺構造等の損傷を防止することができる。
 固定テープ70は、例えば図6Aに示すような多層構造のものであってもよい。この例では、基材となる耐熱層72と、その一方の面に積層された第1の熱融着層71と、他方の面に積層された第2の熱融着層73と、固定テープ70を要素に仮止めするための粘着層74とを有している。他の態様として、図6Bのように、第1の熱融着層71を省略したテープとしてもよい。図6Bの固定テープは、熱融着層71を持たない構造であるため、電池を薄く作ることができるため好ましい。熱融着層71は、フィルム10-1や10-2に熱融着層があるため、固定テープ70とフィルム10-1または10-2との熱融着は可能であるが、熱融着層71を具備している方が外装内面との接合強度が高まるため好ましい。
 更にその他の態様として、耐熱性の基材がフィルムではなく、不織布や織布などの繊維からなる固定テープを利用することもできる。図6Cの固定テープは、繊維に熱融着層を含浸して得られる複合体層75と粘着層74を有している。このような構成は、熱融着層を繊維に含浸することにより1層で両面と熱融着できる。そのため、図6Aのように熱融着層を2層付与したのと同様の効果が得られ、このような構成は、両面とも高い接着強度を得ることができることから好ましい。この場合、不織布よりも織布の方が引張強度に優れるため、電池要素を束ねる効果が高い。一方不織布は、薄くかつ安価であるため、低コストとなり好ましい。
 熱融着層71、73(図6Cの構成における「熱融着層」を含む)の材質としては、熱可塑性の樹脂材料を用いることができ、例えばPP(ポリプロピレン)、PE(ポリエチレン)などであってもよい。熱融着層71、73の融点(Ta)は、セパレータの融点および3%熱収縮する温度(Ts)よりも低いことが好ましい。これにより、ヒートプレスで熱融着(詳細後述)する際の熱でセパレータが損傷することが防止される。一例で、熱融着層71、73の融点(Ta)は、セパレータの融点および3%熱収縮する温度(Ts)よりも10℃以上、20℃以上、または30℃以上低いことが好ましい。
 耐熱層72の材質としては、PP(ポリプロピレン)、PE(ポリエチレン)の架橋体、ナイロン(登録商標)などを用いることができる。耐熱層72の融点(Tb)は、熱融着層71、73の融点(Ta)よりも10℃以上、20℃以上、または30℃以上高いことが好ましい。また、耐熱層72の材質は、熱融着層73、熱融着層71またはフィルム10-1や10-2の熱融着層との粘着性の高いものが好ましいため、両者の溶解度パラメータ(SP値)の差が5(cal/cm(1/2)以下、好ましくは3(cal/cm(1/2)以下、更に好ましくは2(cal/cm(1/2)以下であることが好ましい。
 図6Cのように耐熱層の形態を繊維層とした場合は、溶融層が繊維層に含浸するため、両者の溶解度パラメータの差は5(cal/cm(1/2)を超えても剥離しないので、これを考慮する必要がなく好ましい。繊維層の材質は、上記のPP、PEの架橋体、ナイロンのような樹脂を原料とする繊維以外にも無機材料であるガラスファイバー、カーボンファイバーや金属ファイバーを用いてもよい。無機材料は、耐熱性が熱融着層に比べ数百℃以上高いため、電池要素を熱で固定する際に、切れてしまう恐れがなく好ましい。
 粘着層74は例えばアクリル系粘着剤の層としてもよい。図示は省略するが、熱融着層73の表面の全体に粘着剤が塗布されていてもよいし、全体ではなく、ドット状やストライプ状といった所定のパターンで粘着剤が塗布されていてもよい。
 各層の厚みは、例えば、熱融着層71、73が10μm~100μm程度、耐熱層72が10μm~50μm程度であることが好ましい。粘着層74の厚みは、例えば、50μm以下、30μm以下、または10μm以下が好ましい。
 続いて、上記のような構成の本実施形態の二次電池の製造方法の概略について説明する。なお、基本的には、この種のフィルム外装電池を製造するための従来公知の方法を使用できるため、詳細な説明は省略し、固定テープの貼り付けや熱融着に関連する工程を中心に説明するものとする。
 まず、集電体上に正極活物質を含む正極活物質層を形成し、集電体上に負極活物質を含む負極活物質層を形成し、正極活物質層と負極活物質層を、セパレータを介して対向して配置し、さらにこれらを積層等し、押圧して電池要素を形成する。
 次いで、電極およびセパレータの積層体の周縁部に固定テープを貼り付ける。従来の製造方法においても電池要素の仮止め(形状維持)のためにテープ等を用いることがあったが、本形態の製造方法によれば、積層体を最終的にフィルム外装体に固定するための固定テープを、仮止め用のテープとして兼用することができる。
 次いで、正極タブおよび負極タブを従来公知の方法によって正極および負極に接続する。このようにして形成した電池要素を、3辺を熱融着し袋状にしたフィルム外装体内に配置する。
 その後、フィルム外装体の外側から所定の温度、圧力、時間条件でヒートプレスすることで、内部の固定テープ70を加熱し、内側の熱融着層73(図6参照)と電池要素20とを固定するとともに、外側の熱融着層71とフィルム外装体10の内面とを熱融着する。
 なお、ヒートプレスの温度は、熱融着層71、73よりも高いほど短時間で熱融着することが可能であるため、この融点以上、好ましくは融点より10℃以上、更に好ましくは20℃以上高い温度である。なお、外装フィルムの変形や破損を防ぐため、これらの融点を超えないことが必要である。また、熱融着工程により固定テープが溶融切断されてしまうと、電池要素を一体化できなくなるため、ヒートプレス温度は耐熱層72の融点(Tb)よりも低いことが好ましい。
 さらに、ヒートプレス温度はセパレータの融点を超えた場合も、電解液が通過する孔が塞がる可能性があるため、これを超えないことが好ましい。言い換えれば、セパレータの融点は高いほど好ましく、200℃以下でないことが好ましい。
 ヒートプレスを行う位置等に関し、フィルム外装体10を介して固定テープの上面もしくは下面、好ましくは両面を加熱する。また、加熱する面積は、固定テープのみを外装体内部に固定するのであれば、固定テープとフィルム外装体の接合面である第2の部分70bの面積と同じもしくはこれよりも狭い範囲のみ加熱することが好ましい。これに対して、電極最外層もフィルム外装体内面の熱融着層を利用して熱融着するのであれば、固定テープが仮止めされていない部分も加熱することが好ましい。
 そして、外装体内へ電解液を供給した後、残る一辺を熱融着して封止する。封止工程は、減圧雰囲気中(減圧チャンバ内)で実施可能であり、封止後のフィルム外装電池を大気圧雰囲気中に戻すことによって、外装フィルムは大気圧によって電池要素に押し付けられ、外装フィルムを電池要素に密着させることができる。
 本実施形態の構成では、固定テープ70の熱融着層71、73の融点がセパレータの融点よりも低いものであるため、このヒートプレスの際にセパレータを熱で損傷させることがない。また、固定テープ70自体に耐熱層72が設けられているので、固定テープ70の強度も確保される。ヒートプレス後の状態では、固定テープ70は、粘着層74による仮止めではなく、熱融着層73が電池要素に融着することとなるので、十分な強度での固定となる。
 以上、具体的な形態を参照しつつ本発明について説明したが、本発明の趣旨を逸脱しない範囲において、フィルム外装電池の各部構成は種々変更可能である。
(a)例えば、上記では電池要素の周縁部の4箇所に固定テープを設けた例を説明したが、当然ながらより少ないまたはより多い箇所に固定テープを設けるようにしてもよい。一例として図7(a)のように電池要素20の対向する辺のそれぞれ1箇所ずつに固定テープ70を設けるようにしてもよい。ほかにも、4辺全てに1つまたは複数の固定テープを設けたり、3辺またはそれ以下の辺にそれぞれ1つまたは固定テープを設けたりしてもよい。
(b)図7(a)の形態では固定テープ70は比較的短いものであるが、そうではなく図7(b)のように、電池要素20の縦方向(または横方向)の全体にわたって固定テープ70’を設けてもよい。固定テープ70’は、電池要素20の全周にわたって貼り付けてもよいし、全周ではなく一部のみに貼り付けてもよい。ただし、電池要素20の中央部付近にも電解液が行き渡る点、および、複雑な注液工程を要さない点などを考慮した場合には、図7(a)や図4のように電池要素20の一部のみを固定する構成が、好ましい。
 4辺全てに1つまたは複数の固定テープを設ける構成としては、例えば、図11に示すように、電池要素20の周縁部の6箇所に固定テープ70が配置された構成などが挙げられる。このような構成によれば、4辺を固定することにより積層体の中心部の層が振動等で移動できなくなるため好ましい。
 なお、注液工程における電解液の含浸性を考慮して、固定テープのうち、一部のみを外装体内面に熱融着してもよい。この場合、外装体に熱融着しない固定テープが電池要素20から脱落することを防ぐ目的で、固定テープを電池要素に粘着層74で仮止めしたあとに、あらかじめ熱融着しておくことが好ましい。
(c)固定テープのさらに別の態様として、図12、図13に示すような形状の固定テープ270を利用してもよい。この固定テープ270は、積層体の上面と下面に貼り付けられる2つの貼付け部270aと、中間の接続部270bとを有している。貼付け部270aは、例えば四角形、多角形、円形など種々の形状とすることができるが、この例では円形となっている。接続部270bの幅は、貼付け部270aの直径よりも狭く形成されている。
 このような固定テープ270によれば、下記のとおり、電解液の注液性と接合強度の両立を図ることができる。すなわち、幅広の固定テープで積層体の側面部を覆ってしまうと、電解液を注液する際に、電極層間部への含浸性が悪くなる可能性がある。逆に、図4のような固定テープでテープ幅を細くすると、電極と外装体と接合する面積が小さくなり、積層体を外装体に固定するための十分な接着力が得られなくなるおそれもある。そこで、図12、図13に示すようなテープを用いれば、電解液の注液性と接合強度を両立することが可能となるため望ましい。
(付記)
 本出願は、以下の発明を開示する:
1.正極、負極、およびセパレータが積層または巻回された電池要素(20)であって、上記セパレータは少なくとも200℃で、溶融または軟化せず、かつ、熱収縮率が3%以下である、電池要素(20)と、
 上記電池要素を収容するフィルム外装体(10)と、
 上記電池要素の一部に固定されるとともに、上記フィルム外装体の内面に固定された固定テープ(70)と、を備える、フィルム外装電池。
2.上記固定テープと上記フィルム外装体の内面とが、熱融着により固定されている、上記記載のフィルム外装電池。換言すれば、固定テープとフィルム外装体の内面とが融着した状態となっている。
3.上記セパレータは、ポリイミド樹脂、ポリアミド樹脂、ポリフェニレンスルホン樹脂の少なくとも一つからなる、上記記載のフィルム外装電池。
4.上記固定テープが多層構造であり、
 熱融着層(73)と、
 上記熱融着層の融点よりも10℃以上高い融点の耐熱層(72)と、
 を有する、上記記載のフィルム外装電池。
5.上記固定テープが複合体層を含む多層構造であり、
 上記熱融着層の融点よりも10℃以上高い融点の繊維に熱融着層を含浸した複合体層(75)(上記繊維に熱融着層が含浸された状態となっている複合体層)を有する、上記記載のフィルム外装電池。
6.上記熱融着層として、
 上記フィルム外装体の内面に固定される第1の熱融着層(71)と、
 上記電池要素に固定される第1の熱融着層(73)と、
 を有する、上記記載のフィルム外装電池。
7.上記熱融着層の融点が、上記セパレータの融点よりも低い、上記記載のフィルム外装電池。
8.上記固定テープ(70)が、さらに、
 熱融着前に固定テープを上記電池要素に貼着しておくための粘着層(74)を有している、上記記載のフィルム外装電池。
 なお、上記付記の記載において、括弧内の符号は本発明を何ら限定するものではない。
 本発明の一形態に係るフィルム外装電池は、例えば、電源を必要とするあらゆる産業分野に利用可能である。一例として、携帯電話、ノートパソコンなどのモバイル機器の電源として利用でき;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両の電源として利用でき;電車や衛星や潜水艦などの移動用輸送用媒体の電源として利用でき;電力を貯める蓄電システムとして利用できる。
1 フィルム外装電池
10 フィルム外装体
15 熱融着部
20 電池要素
25 セパレータ
30 正極
40 負極
70、70’ 固定テープ
71 熱融着層
72 耐熱層
73 熱融着層
74 粘着層
75 複合体層(耐熱繊維を含浸した熱融着層)
170、270 固定テープ

Claims (8)

  1.  正極、負極、およびセパレータが積層または巻回された電池要素であって、前記セパレータは少なくとも200℃で、溶融または軟化せず、かつ、熱収縮率が3%以下である、電池要素と、
     前記電池要素を収容するフィルム外装体と、
     前記電池要素の一部に固定されるとともに、前記フィルム外装体の内面に固定された固定テープと、
     を備える、フィルム外装電池。
  2.  前記固定テープと前記フィルム外装体の内面とが、熱融着により固定されている、請求項1に記載のフィルム外装電池。
  3.  前記セパレータは、ポリイミド樹脂、ポリアミド樹脂、ポリフェニレンスルホン樹脂の少なくとも一つからなる、請求項1または2に記載のフィルム外装電池。
  4.  前記固定テープが多層構造であり、
     熱融着層と、
     前記熱融着層の融点よりも10℃以上高い融点の耐熱層と、
     を有する、請求項1~3のいずれか一項に記載のフィルム外装電池。
  5.  前記固定テープが複合体層を含む多層構造であり、
     前記熱融着層の融点よりも10℃以上高い融点の繊維に熱融着層を含浸した複合体層を有する、請求項1~3のいずれか一項に記載のフィルム外装電池。
  6.  前記熱融着層として、
     前記フィルム外装体の内面に固定される第1の熱融着層と、
     前記電池要素に固定される第1の熱融着層と、
     を有する、請求項4に記載のフィルム外装電池。
  7.  前記熱融着層の融点が、前記セパレータの融点よりも低い、請求項4~6のいずれか一項に記載のフィルム外装電池。
  8.  前記固定テープが、さらに、
     熱融着前に固定テープを前記電池要素に貼着しておくための粘着層を有している、請求項4~7のいずれか一項に記載のフィルム外装電池。
PCT/JP2016/066637 2015-06-04 2016-06-03 フィルム外装電池 WO2016195087A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017522288A JP6750619B2 (ja) 2015-06-04 2016-06-03 フィルム外装電池
US15/576,073 US10566660B2 (en) 2015-06-04 2016-06-03 Film packaged battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-113792 2015-06-04
JP2015113792 2015-06-04

Publications (1)

Publication Number Publication Date
WO2016195087A1 true WO2016195087A1 (ja) 2016-12-08

Family

ID=57441272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066637 WO2016195087A1 (ja) 2015-06-04 2016-06-03 フィルム外装電池

Country Status (3)

Country Link
US (1) US10566660B2 (ja)
JP (1) JP6750619B2 (ja)
WO (1) WO2016195087A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216060A1 (ja) * 2017-05-22 2018-11-29 日本電気株式会社 電極体およびそれを備えた二次電池
CN109216776A (zh) * 2017-06-30 2019-01-15 Nec 能源元器件株式会社 电化学器件
JP2019029300A (ja) * 2017-08-03 2019-02-21 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP2019057473A (ja) * 2017-09-22 2019-04-11 セイコーインスツル株式会社 電気化学セル
CN110212250A (zh) * 2019-06-01 2019-09-06 珠海冠宇电池有限公司 一种锂电池电芯
CN110337751A (zh) * 2017-02-22 2019-10-15 株式会社村田制作所 二次电池
JP2020170636A (ja) * 2019-04-03 2020-10-15 積水化学工業株式会社 積層型電池
JP2022046825A (ja) * 2017-08-03 2022-03-23 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6620943B2 (ja) * 2016-10-25 2019-12-18 トヨタ自動車株式会社 積層型電極体の製造方法
KR20210021844A (ko) * 2019-08-19 2021-03-02 삼성에스디아이 주식회사 이차전지
CN211907597U (zh) * 2020-03-27 2020-11-10 宁德新能源科技有限公司 电芯和应用所述电芯的电池
CN112838297B (zh) * 2020-12-29 2023-03-28 宁德新能源科技有限公司 电芯及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602797B2 (ja) * 1999-03-26 2004-12-15 松下電器産業株式会社 ラミネート外装型電池
JP2005071658A (ja) * 2003-08-28 2005-03-17 Sii Micro Parts Ltd 平板型電気化学セル及びその製造法
JP2006196276A (ja) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd 非水電解質電池
JP2010192462A (ja) * 2004-09-22 2010-09-02 Samsung Sdi Co Ltd リチウム二次電池
JP2011233534A (ja) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp 非水系電解液二次電池用セパレータおよび非水系電解液二次電池
JP2012049052A (ja) * 2010-08-30 2012-03-08 Hitachi Ltd 非水電解質電池用セパレータおよび非水電解質電池
WO2014141640A1 (ja) * 2013-03-12 2014-09-18 三洋電機株式会社 ラミネート外装電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602797B2 (ja) * 1999-03-26 2004-12-15 松下電器産業株式会社 ラミネート外装型電池
JP2005071658A (ja) * 2003-08-28 2005-03-17 Sii Micro Parts Ltd 平板型電気化学セル及びその製造法
JP2010192462A (ja) * 2004-09-22 2010-09-02 Samsung Sdi Co Ltd リチウム二次電池
JP2006196276A (ja) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd 非水電解質電池
JP2012049052A (ja) * 2010-08-30 2012-03-08 Hitachi Ltd 非水電解質電池用セパレータおよび非水電解質電池
JP2011233534A (ja) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp 非水系電解液二次電池用セパレータおよび非水系電解液二次電池
WO2014141640A1 (ja) * 2013-03-12 2014-09-18 三洋電機株式会社 ラミネート外装電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337751A (zh) * 2017-02-22 2019-10-15 株式会社村田制作所 二次电池
JPWO2018155211A1 (ja) * 2017-02-22 2019-11-07 株式会社村田製作所 二次電池
WO2018216060A1 (ja) * 2017-05-22 2018-11-29 日本電気株式会社 電極体およびそれを備えた二次電池
CN109216776A (zh) * 2017-06-30 2019-01-15 Nec 能源元器件株式会社 电化学器件
JP2019029300A (ja) * 2017-08-03 2019-02-21 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP7019991B2 (ja) 2017-08-03 2022-02-16 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP2022046825A (ja) * 2017-08-03 2022-03-23 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP7294466B2 (ja) 2017-08-03 2023-06-20 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP2019057473A (ja) * 2017-09-22 2019-04-11 セイコーインスツル株式会社 電気化学セル
JP2020170636A (ja) * 2019-04-03 2020-10-15 積水化学工業株式会社 積層型電池
CN110212250A (zh) * 2019-06-01 2019-09-06 珠海冠宇电池有限公司 一种锂电池电芯

Also Published As

Publication number Publication date
JPWO2016195087A1 (ja) 2018-04-19
JP6750619B2 (ja) 2020-09-02
US10566660B2 (en) 2020-02-18
US20180175451A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2016195087A1 (ja) フィルム外装電池
US10587002B2 (en) Secondary battery, method for manufacturing secondary battery, electric vehicle and electricity storage system
US20110244304A1 (en) Stack type battery
US11158851B2 (en) Electrode for electrochemical device, electrochemical device, and method for manufacturing same
JP4458145B2 (ja) 電池パックおよびその製造方法
WO2016068071A1 (ja) 二次電池、電動車両、蓄電システム、および製造方法
JP6634672B2 (ja) 二次電池、電動車両、蓄電システム、および製造方法
JP6384477B2 (ja) リチウムイオン二次電池およびその製造方法
JP2007087652A (ja) 非水電解質電池
JP6547295B2 (ja) 電池およびその製造方法
JP5962044B2 (ja) 電池
JP5161421B2 (ja) 非水電解質電池
JP2012151036A (ja) ラミネート形電池
JP6531491B2 (ja) 二次電池
JP2014179220A (ja) ラミネート外装電池
JP2008262788A (ja) 非水電解質電池
JP2008047397A (ja) 非水電解質二次電池
JP2008257922A (ja) 非水電解質電池の製造方法
WO2019093226A1 (ja) リチウムイオン二次電池
US20210091359A1 (en) Bag-shaped separator for electric storage device, thermal bonding method and thermal bonding device therefor, and electric storage device
JP5472941B2 (ja) 非水電解質電池
JP2000294286A (ja) ポリマーリチウム二次電池
JP2018142483A (ja) 二次電池
JP6633419B2 (ja) リチウムイオン二次電池
WO2018021550A1 (ja) フィルム外装電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522288

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803518

Country of ref document: EP

Kind code of ref document: A1