WO2018014561A1 - 一种可生物降解聚酯组合物 - Google Patents

一种可生物降解聚酯组合物 Download PDF

Info

Publication number
WO2018014561A1
WO2018014561A1 PCT/CN2017/075358 CN2017075358W WO2018014561A1 WO 2018014561 A1 WO2018014561 A1 WO 2018014561A1 CN 2017075358 W CN2017075358 W CN 2017075358W WO 2018014561 A1 WO2018014561 A1 WO 2018014561A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
biodegradable polyester
glycidyl methacrylate
biodegradable
ppm
Prior art date
Application number
PCT/CN2017/075358
Other languages
English (en)
French (fr)
Inventor
卢昌利
袁志敏
蔡彤旻
黄险波
曾祥斌
焦健
苑仁旭
钟宇科
熊凯
杨晖
麦开锦
董学腾
Original Assignee
金发科技股份有限公司
珠海万通化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57450099&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018014561(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 金发科技股份有限公司, 珠海万通化工有限公司 filed Critical 金发科技股份有限公司
Priority to JP2017559709A priority Critical patent/JP6522789B2/ja
Priority to EP17764498.6A priority patent/EP3296360B1/en
Priority to ES17764498T priority patent/ES2827017T3/es
Priority to KR1020187010589A priority patent/KR102037618B1/ko
Priority to US15/580,217 priority patent/US10479887B2/en
Publication of WO2018014561A1 publication Critical patent/WO2018014561A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers

Definitions

  • the invention belongs to the field of polymer material modification, and in particular relates to a biodegradable polyester composition having excellent surface properties of a film.
  • Biodegradable polyester is a kind of polymer material which is made from biological resources. Compared with petroleum-based polymers based on petrochemical resources, biodegradable polyesters can be degraded in biological or biochemical processes or in biological environments. It is currently the most active and market-based degradation in biodegradable plastics research. One of the materials.
  • Biodegradable polyester based on aliphatic-aromatic polyester and polylactic acid In the process of blown film formation, due to poor compatibility between aliphatic-aromatic polyester and polylactic acid, often Corrosion and white streaks appear on the surface of the film, which affects the surface appearance of the film.
  • a conventional method is to add a copolymer containing an epoxy group and based on styrene, acrylate and/or methacrylate, or a chain extender such as a diisocyanate (CN103687902A, CN 102712766 B) ).
  • the addition of a suitable amount of chain extender greatly improves the compatibility of the aliphatic-aromatic polyester and the polylactic acid, and optimizes the surface properties of the film.
  • the chain extension reaction tends to be due to fluctuations in the amount of chain extender added, processing temperature, etc., and the phenomenon of insufficient chain extension or excessive chain extension occurs, resulting in the appearance of plastic dots (crystal points) which are difficult to plasticize on the surface of the film. This puts extremely high demands on the modification technology and processing technology, and it is difficult to satisfy the large-scale continuous production.
  • the present inventors have surprisingly discovered that glycidyl methacrylate is ultimately retained in the biodegradable polyester composition by the addition of trace amounts of glycidyl methacrylate in a biodegradable polyester composition formulation.
  • the weight content of 0.05 ppm to 10 ppm can greatly improve the compatibility of the aliphatic-aromatic polyester and the polylactic acid substrate in the biodegradable polyester composition, so that the biodegradable polyester composition has excellent properties.
  • the surface properties of the film are not caused by the occurrence of crystal spots on the film due to fluctuations in the processing process.
  • a biodegradable polyester composition comprising, by weight, components:
  • a biodegradable polyester composition according to the present invention comprises, by weight, components:
  • component i) has an MFR of 2 g/10 min to 30 g/10 min measured according to ISO 1133 at 190 ° C, 2.16 kg; component ii) an MFR measured according to ISO 1133 at 190 ° C, 2.16 kg 3g/10min-40g/10min.
  • component i) has an MFR of from 5 g/10 min to 15 g/10 min measured according to ISO 1133 at 190 ° C, 2.16 kg; component ii) MFR measured according to ISO 1133 at 190 ° C, 2.16 kg It is 5g/10min-20g/10min.
  • the glycidyl methacrylate has a weight content of from 0.05 ppm to 10 ppm, preferably from 0.5 ppm to 8 ppm, more preferably from 2 ppm to 5 ppm, based on the total weight of the biodegradable polyester composition; the glycidyl methacrylate
  • the ester weight content refers to the weight content that ultimately remains in the biodegradable polyester composition.
  • the weight content of the glycidyl methacrylate of the present invention is tested by the following method: accurately weigh 1.2000 g ⁇ 0.005 g of the biodegradable polyester composition into a static headspace test bottle, and test the viable by static headspace method.
  • the peak area of the glycidyl methacrylate in the degraded polyester composition can be calculated biodegradable according to the peak area of glycidyl methacrylate in the biodegradable polyester composition and the standard curve of glycidyl methacrylate.
  • the weight content of glycidyl methacrylate in the polyester composition; the glycidyl methacrylate standard curve is calibrated from glycidyl methacrylate/methanol solution.
  • Glycidyl methacrylate is a substance with a reactive functional group and will have a suitable weight content of A.
  • the addition of glycidyl acrylate to the biodegradable polyester composition acts as a compatibilizing agent to increase the compatibility of the two-phase or multi-phase materials in the biodegradable polyester composition, thereby enhancing biodegradability The surface properties of the film of the polyester composition.
  • the present inventors have surprisingly found that in the formulation of the biodegradable polyester composition, the glycidyl methacrylate finally remaining in the biodegradable polyester composition is controlled by adding a trace amount of glycidyl methacrylate.
  • the weight content is 0.05ppm-10ppm, which can greatly improve the compatibility of aliphatic-aromatic polyester and polylactic acid, optimize the surface properties of the film, and will not cause crystal spots on the film due to fluctuations in processing technology.
  • the weight content of glycidyl methacrylate is preferably from 0.5 ppm to 8 ppm; more preferably from 2 ppm to 5 ppm, based on the total weight of the biodegradable polyester composition.
  • the method for obtaining glycidyl methacrylate of the present invention directly adding glycidyl methacrylate during the blending process of the biodegradable polyester composition to adjust the methyl group finally remaining in the biodegradable polyester composition The weight content of glycidyl acrylate.
  • biodegradable aliphatic-aromatic polyester is selected from the group consisting of polybutylene terephthalate PBAT, polysuccinate terephthalate PBST, and polysebacic acid to benzene.
  • PBAT polybutylene terephthalate
  • PBST polysuccinate terephthalate
  • PBSeT polysebacic acid to benzene.
  • PBSeT butylene dicarboxylate
  • the organic filler is selected from one or more of natural starch, plasticized starch, modified starch, natural fiber, wood flour;
  • the inorganic filler is selected from the group consisting of talc, montmorillonite, kaolin, chalk, One or more of calcium carbonate, graphite, gypsum, conductive carbon black, calcium chloride, iron oxide, dolomite, silica, wollastonite, titanium dioxide, silicate, mica, glass fiber, mineral fiber.
  • the biodegradable polyester composition of the present invention may further comprise 0 to 4 parts of at least one of the following materials: a plasticizer, a mold release agent, a surfactant, a wax, an antistatic agent, according to different needs of the use. Dyes, UV absorbers, UV stabilizers or other plastic additives.
  • the plasticizer is one or a mixture of two or more of a mixture of citrate, glycerin, epoxidized soybean oil, glycerin and water;
  • the release agent is one of silicone oil, paraffin wax, white mineral oil, petrolatum or a mixture of two or more;
  • the surfactant is one or two of polysorbate, palmitate or laurate and a mixture
  • the wax is one or a mixture of two or more of erucamide, stearic acid amide, behenic acid amide, beeswax or beeswax;
  • the antistatic agent is a permanent antistatic agent, and specifically one of PELESTAT-230, PELESTAT-6500, SUNNICO ASA-2500 or a mixture of two or more;
  • the dye is one of carbon black, black species, titanium white powder, zinc sulfide, indigo blue, fluorescent orange or a mixture of two or more.
  • the UV absorber is one or more of UV-944, UV-234, UV531, UV326;
  • the UV stabilizer is one or more of UV-123, UV-3896, UV-328;
  • the other plastic additive may be a nucleating agent, an antifogging agent, a lubricant such as calcium stearate, or the like.
  • the biodegradable polyester composition of the invention is used for preparing shopping bags, compost bags, mulch films, protective covering films, silo films, film strips, fabrics, non-woven fabrics, textiles, fishing nets, load-bearing bags, garbage bags, etc. .
  • the invention has the following beneficial effects:
  • the present invention controls the final content of the glycidyl methacrylate in the biodegradable polyester composition to be 0.05 ppm by adding a trace amount of glycidyl methacrylate in the formulation of the biodegradable polyester composition.
  • -10 ppm which can greatly improve the compatibility of the aliphatic-aromatic polyester and the polylactic acid substrate in the biodegradable polyester composition, so that the biodegradable polyester composition has excellent film surface properties, and There will be no phenomena such as crystal spots on the film due to fluctuations in the processing technology.
  • Embodiments of the invention employ the following materials, but are not limited to these materials:
  • MFR is 6.0g/10min-12.6g/10min, the manufacturer is Blonde Technology Co., Ltd.;
  • MFR is 20.4g/10min-25.2g/10min, the manufacturer is Blonde Technology Co., Ltd.;
  • MFR is 36.0g/10min-37.2g/10min, the manufacturer is Blonde Technology Co., Ltd.;
  • MFR is 6.0g/10min-12.6g/10min, the manufacturer is Blonde Technology Co., Ltd.;
  • MFR is 6.0g/10min-12.6g/10min, the manufacturer is Blonde Technology Co., Ltd.;
  • PLA-1 MFR is 5.4g/10min-9.6g/10min, the manufacturer is NatureWorks LLC;
  • PLA-2 MFR is 3.0g/10min-4.2g/10min, the manufacturer is NatureWorks LLC;
  • MFR is 45.6g/10min-47.4g/10min, the manufacturer is NatureWorks LLC;
  • the organic filler is selected from starch;
  • the inorganic filler is selected from talc powder and calcium carbonate;
  • the plasticizer is a mixture of palmitate, glycerin and water
  • the wax is selected from erucamide
  • the number of crystal spots on the surface of the film was counted on a film of 1 m 2 and recorded as N i . At intervals of 10 m, an observation film was taken, and the number of crystal spots on the surface of the film was counted. A total of 5 observation films were taken, and the number of crystal spots on the surface of the film was respectively It is denoted as N 1 , N 2 , N 3 , N 4 , N 5 ; the number of crystal points N on the surface of the film is calculated according to formula (1):
  • N (N 1 +N 2 +N 3 +N 4 +N 5 )/5 Formula (1);
  • N the more crystal points on the surface of the film, the worse the surface appearance performance of the film.
  • the film was continuously blown for 4 h, and the number of broken holes on the surface of the film was counted as M in 4 h.
  • M The larger M was, the more serious the film was broken, and the worse the surface appearance performance of the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开了一种可生物降解聚酯组合物,其中,基于可生物降解聚酯组合物的总重量,甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm。本发明通过选用在可生物降解聚酯组合物配方中,通过添加微量的甲基丙烯酸缩水甘油酯,控制最终残留在可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm,可以极大的提高可生物降解聚酯组合物中脂肪族-芳香族聚酯和聚乳酸基材的相容性,使得可生物降解聚酯组合物具有优异的膜材表面性能,且不会由于加工工艺的波动导致膜材出现晶点等现象。

Description

一种可生物降解聚酯组合物 技术领域
本发明属于高分子材料改性领域,具体涉及一种具有优异的膜材表面性能的可生物降解聚酯组合物。
背景技术
可生物降解聚酯是以生物资源为原料的一类高分子材料。相对于以石化资源为原料的石油基高分子,可生物降解聚酯能够在生物或生物化学作用过程中或生物环境中发生降解,是目前生物降解塑料研究中非常活跃和市场应用最好的降解材料之一。
以脂肪族-芳香族聚酯和聚乳酸为基材的可生物降解聚酯,在吹塑成膜的过程中,由于脂肪族-芳香族聚酯和聚乳酸二者相容性较差,常常造成膜材表面出现破孔、白条纹等现象,影响了膜材表面外观性能。为了改善二者的相容性,常规的方法是加入含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物,或二异氰酸酯等扩链剂(CN103687902A,CN 102712766 B)。合适量扩链剂的加入在很大程度上改善了脂肪族-芳香族聚酯和聚乳酸的相容性,优化了膜材表面性能。但扩链反应往往会由于扩链剂添加量、加工温度等因素的波动,出现扩链不足或扩链过度的现象,造成膜材表面出现难以塑化的塑料点(晶点)的现象。这对改性技术和加工技术提出了极高的要求,难以满足大规模连续化的生产。
本发明经研究惊讶地发现,通过选用在可生物降解聚酯组合物配方中,通过添加微量的甲基丙烯酸缩水甘油酯,控制最终残留在可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm,可以极大的提高可生物降解聚酯组合物中脂肪族-芳香族聚酯和聚乳酸基材的相容性,使得可生物降解聚酯组合物具有优异的膜材表面性能,且不会由于加工工艺的波动导致膜材出现晶点等现象。
发明内容
本发明的目的在于提供一种可生物降解聚酯组合物,通过在该组合物中添加微量的甲基丙烯酸缩水甘油酯,可以使制备得到的可生物降解聚酯组合物具有优异的膜材表面性能,且不会由于加工工艺的波动导致膜材出现晶点等现象。
本发明上述目的通过如下技术方案予以实现:
一种可生物降解聚酯组合物,按重量份计,包括组分:
i)60份至100份的可生物降解的脂肪族-芳香族聚酯;
ii)0至40份的聚乳酸;
iii)0至35份的有机填料和/或无机填料。
优选地,本发明所述的一种可生物降解聚酯组合物,按重量份计,包括组分:
i)65至95份的可生物降解的脂肪族-芳香族聚酯;
ii)5至35份的聚乳酸;
iii)5至25份的有机填料和/或无机填料。
其中,组分i)根据ISO 1133在190℃,2.16kg条件下测得的MFR为2g/10min-30g/10min;组分ii)根据ISO 1133在190℃,2.16kg条件下测得的MFR为3g/10min-40g/10min。
优选地,组分i)根据ISO 1133在190℃,2.16kg条件下测得的MFR为5g/10min-15g/10min;组分ii)根据ISO 1133在190℃,2.16kg条件下测得的MFR为5g/10min-20g/10min。
其中,基于可生物降解聚酯组合物的总重量,甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm,优选为0.5ppm-8ppm;更优选为2ppm-5ppm;所述甲基丙烯酸缩水甘油酯重量含量是指最终残留在可生物降解聚酯组合物中的重量含量。
本发明所述甲基丙烯酸缩水甘油酯的重量含量采用如下方法测试:精确称量1.2000g±0.005g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的峰面积,根据可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的峰面积和甲基丙烯酸缩水甘油酯标准曲线即可计算得到可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量;甲基丙烯酸缩水甘油酯标准曲线由甲基丙烯酸缩水甘油酯/甲醇溶液标定。
甲基丙烯酸缩水甘油酯是一种带有活性官能团的物质,将合适重量含量的甲 基丙烯酸缩水甘油酯添加到可生物降解聚酯组合物中,可以起到增容的作用,提高可生物降解聚酯组合物中的两相或多相物质的相容性,从而提升可生物降解聚酯组合物的膜材表面性能。但若甲基丙烯酸缩水甘油酯添加量过多,会造成交联过度,导致可生物降解聚酯组合物吹出的膜材表面晶点较多,膜材易穿孔;若甲基丙烯酸缩水甘油酯添加量过少,则会造成可生物降解聚酯组合物中的两相或多相物质分散性不好,界面结合力较弱,同样会导致膜材表面出现穿孔和表面不均匀的现象。而本发明经研究惊讶地发现,在可生物降解聚酯组合物配方中,通过添加微量的甲基丙烯酸缩水甘油酯,控制最终残留在可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm,可以极大的提高脂肪族-芳香族聚酯和聚乳酸的相容性,优化膜材表面性能,且不会由于加工工艺的波动导致膜材出现晶点等现象。基于可生物降解聚酯组合物的总重量,甲基丙烯酸缩水甘油酯的重量含量优选为0.5ppm-8ppm;更优选为2ppm-5ppm。
本发明所述甲基丙烯酸缩水甘油酯的获得途径:在可生物降解聚酯组合物共混加工过程中直接添加甲基丙烯酸缩水甘油酯来调节最终残留在可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量。
其中,所述可生物降解的脂肪族-芳香族聚酯选自聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST、聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
其中,,所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维、木粉中的一种或几种;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维、矿物纤维中的一种或几种。
根据不同的用途需要,本发明的可生物降解聚酯组合物还可以进一步加入0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、UV吸收剂、UV稳定剂或其他塑料添加剂。
所述增塑剂为柠檬酸酯、甘油、环氧大豆油、甘油和水的混合物中的一种或者两种及以上的混合物;
所述脱模剂为硅油、石蜡、白矿油、凡士林中的一种或者两种及以上的混合物;
所述表面活性剂为聚山梨醇酯、棕榈酸酯或月桂酸酯中的一种或者两种及以 上的混合物;
所述蜡为芥酸酰胺、硬脂酰胺、山嵛酸酰胺、蜂蜡或蜂蜡酯中的一种或者两种及以上的混合物;
所述防静电剂为永久性抗静电剂,具体可以列举出PELESTAT-230、PELESTAT-6500、SUNNICO ASA-2500中的一种或者两种及以上的混合物;
所述染料为炭黑、黑种、钛白粉、硫化锌、酞青蓝、荧光橙中的一种或者两种及以上的混合物。
所述UV吸收剂为UV-944、UV-234、UV531、UV326中的一种或几种;
所述UV稳定剂为UV-123、UV-3896、UV-328中的一种或几种;
所述其他塑料添加剂可以为成核剂、防雾剂、润滑剂(如硬脂酸钙)等。
本发明所述的可生物降解聚酯组合物用于制备购物袋、堆肥袋、地膜、保护性覆盖膜、筒仓膜、薄膜带、织物、非织物、纺织品、渔网、承重袋、垃圾袋等。
本发明与现有技术相比,具有如下有益效果:
本发明通过选用在可生物降解聚酯组合物配方中,通过添加微量的甲基丙烯酸缩水甘油酯,控制最终残留在可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm,可以极大的提高可生物降解聚酯组合物中脂肪族-芳香族聚酯和聚乳酸基材的相容性,使得可生物降解聚酯组合物具有优异的膜材表面性能,且不会由于加工工艺的波动导致膜材出现晶点等现象。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
本发明的实施例采用如下原料,但不仅限于这些原料:
脂肪族-芳香族聚酯:
PBAT-1,MFR为6.0g/10min-12.6g/10min,厂家为金发科技股份有限公司;
PBAT-2,MFR为20.4g/10min-25.2g/10min,厂家为金发科技股份有限公司;
PBAT-3,MFR为36.0g/10min-37.2g/10min,厂家为金发科技股份有限公司;
PBST,MFR为6.0g/10min-12.6g/10min,厂家为金发科技股份有限公司;
PBSeT,MFR为6.0g/10min-12.6g/10min,厂家为金发科技股份有限公司;
聚乳酸:
PLA-1,MFR为5.4g/10min-9.6g/10min,厂家为NatureWorks LLC;
PLA-2,MFR为3.0g/10min-4.2g/10min,厂家为NatureWorks LLC;
PLA-3,MFR为45.6g/10min-47.4g/10min,厂家为NatureWorks LLC;
有机填料选用淀粉;
无机填料选用滑石粉、碳酸钙;
增塑剂选用棕榈酸酯、甘油和水的混合物;
其他塑料添加剂选用硬脂酸钙;
蜡选用芥酸酰胺;
上述助剂、甲基丙烯酸缩水甘油酯均来源于市购。
各性能指标的测试标准或评价方法:
(1)可生物降解聚酯组合物的膜材表面性能的评估方法:
a)膜材表面晶点计算方法:
在1m2的薄膜上统计膜材表面晶点的个数,记为Ni;每间隔10m,取一个观测膜,统计膜材表面晶点数,总计取5个观测膜,膜材表面晶点数分别记为N1、N2、N3、N4、N5;此膜材表面的晶点数N按式(1)计算:
N=(N1+N2+N3+N4+N5)/5            式(1);
N越大,膜材表面晶点越多,膜材表面外观性能越差。
b)膜材表面破孔计算方法:
连续吹膜4h,统计4h内,膜材表面出现破孔的个数,记为M;M越大,膜材破孔越严重,膜材表面外观性能越差。
(2)甲基丙烯酸缩水甘油酯的测定方法:
精确称量1.2000g±0.005g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的峰面积,根据可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的峰面积和甲基丙烯酸缩水甘油酯标准曲线即可计算得到可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量;甲基丙烯酸缩水甘油酯标准曲线由甲基丙烯酸缩水甘油酯/甲醇溶液标定。
静态顶空所用仪器型号和参数如下:
Agilent Technologies 7697Headspace Sampler;
Agilent Technologies 7890AGC System;
色谱柱:J&W 122-7032:250℃:30m x 250μm x 0.25μm;
进样:前SS进样口N2
出样:前检测器FID。
实施例1-21及对比例1-5:
按表1所示配方,将PBAT或PBST或PBSeT、PLA、有机填料、无机填料、增塑剂、蜡等助剂以及甲基丙烯酸缩水甘油酯在共混机中共混后投入单螺杆挤出机中,于140℃-240℃挤出、造粒,得到可生物降解聚酯组合物。性能测试数据见表1。
表1实施例1-21及对比例1-5的各组分配比(重量份)及各性能测试结果
Figure PCTCN2017075358-appb-000001
续表1
Figure PCTCN2017075358-appb-000002
续表1
Figure PCTCN2017075358-appb-000003

Claims (9)

  1. 一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)60份至100份的可生物降解的脂肪族-芳香族聚酯;
    ii)0至40份的聚乳酸;
    iii)0至35份的有机填料和/或无机填料。
  2. 根据权利要求1所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物,按重量份计,包括组分:
    i)65至95份的可生物降解的脂肪族-芳香族聚酯;
    ii)5至35份的聚乳酸;
    iii)5至25份的有机填料和/或无机填料。
  3. 根据权利要求1或2所述的一种可生物降解聚酯组合物,其特征在于,所述组分i)根据ISO 1133在190℃,2.16kg条件下测得的MFR为2g/10min-30g/10min;组分ii)根据ISO 1133在190℃,2.16kg条件下测得的MFR为3g/10min-40g/10min。
  4. 根据权利要求3所述的一种可生物降解聚酯组合物,其特征在于,所述组分i)根据ISO 1133在190℃,2.16kg条件下测得的MFR为5g/10min-15g/10min;组分ii)根据ISO 1133在190℃,2.16kg条件下测得的MFR为5g/10min-20g/10min。
  5. 根据权利要求1-4任一项所述的一种可生物降解聚酯组合物,其特征在于,基于可生物降解聚酯组合物的总重量,甲基丙烯酸缩水甘油酯的重量含量为0.05ppm-10ppm,优选为0.5ppm-8ppm;更优选为2ppm-5ppm。
  6. 根据权利要求5所述的一种可生物降解聚酯组合物,其特征在于,所述甲基丙烯酸缩水甘油酯的重量含量采用如下方法测试:精确称量1.2000g±0.005g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的峰面积,根据可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的峰面积和甲基丙烯酸缩水甘油酯标准曲线即可计算得到可生物降解聚酯组合物中甲基丙烯酸缩水甘油酯的重量含量;甲基丙烯酸缩水甘油酯标准曲线由甲基丙烯酸缩水甘油酯/甲醇溶液标定。
  7. 根据权利要求1或2所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解的脂肪族-芳香族聚酯选自聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST、聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
  8. 根据权利要求1或2所述的一种可生物降解聚酯组合物,其特征在于,所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维、木粉中的一种或几种;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维、矿物纤维中的一种或几种。
  9. 根据权利要求1或2所述的一种可生物降解聚酯组合物,其特征在于,还包括0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、UV吸收剂、UV稳定剂或其他塑料添加剂。
PCT/CN2017/075358 2016-07-22 2017-03-01 一种可生物降解聚酯组合物 WO2018014561A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017559709A JP6522789B2 (ja) 2016-07-22 2017-03-01 生分解性ポリエステル組成物
EP17764498.6A EP3296360B1 (en) 2016-07-22 2017-03-01 Bio-degradable polyester composition
ES17764498T ES2827017T3 (es) 2016-07-22 2017-03-01 Composición de poliéster biodegradable
KR1020187010589A KR102037618B1 (ko) 2016-07-22 2017-03-01 생분해성 폴리에스테르 조성물
US15/580,217 US10479887B2 (en) 2016-07-22 2017-03-01 Biodegradable polyester composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610583508.8 2016-07-22
CN201610583508.8A CN106084682B (zh) 2016-07-22 2016-07-22 一种可生物降解聚酯组合物

Publications (1)

Publication Number Publication Date
WO2018014561A1 true WO2018014561A1 (zh) 2018-01-25

Family

ID=57450099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075358 WO2018014561A1 (zh) 2016-07-22 2017-03-01 一种可生物降解聚酯组合物

Country Status (7)

Country Link
US (1) US10479887B2 (zh)
EP (1) EP3296360B1 (zh)
JP (1) JP6522789B2 (zh)
KR (1) KR102037618B1 (zh)
CN (1) CN106084682B (zh)
ES (1) ES2827017T3 (zh)
WO (1) WO2018014561A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084682B (zh) * 2016-07-22 2018-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN109322002A (zh) * 2018-10-10 2019-02-12 无锡沛莱斯纺织有限公司 一种生物可降解聚酯织物及其制备方法
KR102300448B1 (ko) * 2020-03-17 2021-09-09 경상국립대학교산학협력단 폐석고를 활용한 생분해성 수지 조성물
CN112480503A (zh) * 2020-11-27 2021-03-12 恒劢安全防护用品(南通)有限公司 一种可降解树脂手套的制备方法
EP4293079A1 (en) 2022-10-27 2023-12-20 Basf Se Biodegradable polymer composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN103687902A (zh) 2011-05-10 2014-03-26 巴斯夫欧洲公司 可生物降解的聚酯薄膜
CN102712766B (zh) 2009-11-09 2014-11-26 巴斯夫欧洲公司 生产收缩膜的方法
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN106084682A (zh) * 2016-07-22 2016-11-09 金发科技股份有限公司 一种可生物降解聚酯组合物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014430A2 (de) * 2000-08-11 2002-02-21 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biologisch abbaubarer polymerblend
CN100354367C (zh) * 2003-05-12 2007-12-12 尤尼吉可株式会社 生物降解性聚酯树脂组合物及其制造方法和用它形成的泡沫体及成形物
SI1838784T1 (sl) 2005-01-12 2008-10-31 Basf Se Biorazgradljiva poliestrska meĺ anica
US8188185B2 (en) * 2008-06-30 2012-05-29 Kimberly-Clark Worldwide, Inc. Biodegradable packaging film
US9017587B2 (en) * 2010-07-21 2015-04-28 Minima Technology Co., Ltd. Manufacturing method of biodegradable net-shaped articles
CN102321249B (zh) * 2011-06-30 2013-01-16 无锡碧杰生物材料科技有限公司 一种热塑性淀粉和生物降解聚酯/淀粉复合材料及其制备
US9034945B2 (en) * 2011-06-30 2015-05-19 Basf Se Item produced via thermoforming
CN102603994B (zh) * 2012-03-09 2014-08-13 中国科学院宁波材料技术与工程研究所 甲基丙烯酸缩水甘油酯接枝聚乳酸共聚物材料及其制备方法和应用
CN103571164A (zh) * 2012-08-03 2014-02-12 上海载和实业投资有限公司 一种聚乳酸/核-壳结构复合材料及其制备方法
JP6253650B2 (ja) * 2012-08-24 2017-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 薄肉射出成形部材を製造するためのポリマー混合物
JP6422877B2 (ja) 2012-11-15 2018-11-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 生分解性ポリエステル混合物
CN104514041B (zh) * 2013-09-29 2018-09-21 上海杰事杰新材料(集团)股份有限公司 一种可降解纤维及其制备方法
CN105585826A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585824A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585827A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN102712766B (zh) 2009-11-09 2014-11-26 巴斯夫欧洲公司 生产收缩膜的方法
CN103687902A (zh) 2011-05-10 2014-03-26 巴斯夫欧洲公司 可生物降解的聚酯薄膜
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN106084682A (zh) * 2016-07-22 2016-11-09 金发科技股份有限公司 一种可生物降解聚酯组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296360A4

Also Published As

Publication number Publication date
EP3296360A1 (en) 2018-03-21
JP2018526465A (ja) 2018-09-13
JP6522789B2 (ja) 2019-05-29
CN106084682A (zh) 2016-11-09
CN106084682B (zh) 2018-05-18
US20180298188A1 (en) 2018-10-18
EP3296360A4 (en) 2018-12-05
KR20180054724A (ko) 2018-05-24
KR102037618B1 (ko) 2019-10-28
US10479887B2 (en) 2019-11-19
EP3296360B1 (en) 2020-08-19
ES2827017T3 (es) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2018014561A1 (zh) 一种可生物降解聚酯组合物
EP3260494B1 (en) Biodegradable polyester composition
EP3315554B1 (en) Bio-degradable polyester composition
EP3260497B1 (en) Biodegradable polyester composition
KR101973891B1 (ko) 생분해성 폴리에스테르 조성물
WO2017152774A1 (zh) 一种可生物降解聚酯组合物
WO2017152772A1 (zh) 一种可生物降解聚酯组合物
WO2019105027A1 (zh) 一种可生物降解聚酯组合物
CN105585823A (zh) 一种可生物降解聚酯组合物

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017764498

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017559709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580217

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187010589

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE