WO2017152774A1 - 一种可生物降解聚酯组合物 - Google Patents

一种可生物降解聚酯组合物 Download PDF

Info

Publication number
WO2017152774A1
WO2017152774A1 PCT/CN2017/074676 CN2017074676W WO2017152774A1 WO 2017152774 A1 WO2017152774 A1 WO 2017152774A1 CN 2017074676 W CN2017074676 W CN 2017074676W WO 2017152774 A1 WO2017152774 A1 WO 2017152774A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
biodegradable polyester
ppm
cyclopentanone
biodegradable
Prior art date
Application number
PCT/CN2017/074676
Other languages
English (en)
French (fr)
Inventor
卢昌利
袁志敏
蔡彤旻
黄险波
曾祥斌
焦健
苑仁旭
钟宇科
熊凯
杨晖
麦开锦
董学腾
Original Assignee
金发科技股份有限公司
珠海万通化工有限公司
天津金发新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55925750&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017152774(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 金发科技股份有限公司, 珠海万通化工有限公司, 天津金发新材料有限公司 filed Critical 金发科技股份有限公司
Priority to JP2018511329A priority Critical patent/JP6469931B2/ja
Priority to AU2017230352A priority patent/AU2017230352B2/en
Priority to US15/578,683 priority patent/US10494521B2/en
Priority to EP17762460.8A priority patent/EP3260498B1/en
Priority to ES17762460T priority patent/ES2761049T3/es
Priority to KR1020187010585A priority patent/KR102024492B1/ko
Publication of WO2017152774A1 publication Critical patent/WO2017152774A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0075Antistatics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention belongs to the field of polymer material modification, and particularly relates to a biodegradable polyester composition having excellent resistance to thermal oxygen aging, surface appearance and bubble stability.
  • Biodegradable polyester is a kind of polymer material which is made from biological resources. Compared with petroleum-based polymers based on petrochemical resources, biodegradable polyesters can be degraded in biological or biochemical processes or in biological environments. It is currently the most active and market-based degradation in biodegradable plastics research. One of the materials.
  • Biodegradable polyester film is one of the important application fields of biodegradable polyester, including food bags, garbage bags, shopping bags and plastic film.
  • the biodegradable polyester In the process of preparing a film by blow molding, the biodegradable polyester often has a phenomenon that the film is not sufficiently lubricated and adhered to the roller or is too lubricious to be wound up, resulting in poor bubble stability during film blowing, and the film thickness is extremely poor. The phenomenon has seriously affected the continuity of the blown film.
  • Patent CN 101622311A by adding 0.05-5 wt% biodiesel to the biodegradable polyester mixture, by reducing the viscosity of the polyester mixture, to some extent, the film sticks to the roller, thereby ensuring continuous film blowing. Sex.
  • the decrease in the viscosity of the polyester mixture indicates that the addition of biodiesel impairs the properties of the polyester to some extent, resulting in an increase in the melting index of the polyester mixture and a decrease in viscosity.
  • the molded articles made of the biodegradable polyester are caused by the action of microorganisms, light, radiation, air and the environment of the material to be contacted.
  • the molded articles made of the biodegradable polyester are caused by the action of microorganisms, light, radiation, air and the environment of the material to be contacted.
  • Conventional methods for solving the aging degradation of polymer materials include adding an antioxidant, a UV absorber, and a HALS stabilizer to the material.
  • a film of polyethylene comprising hydroxyphenyltriazine as a stabilizer is disclosed, as disclosed in patent WO 2009/071475.
  • a UV absorber and a HALS stabilizer, or a combination of both, are described in CN 103687902 for providing UV stability to the film.
  • the above stabilizers can provide a certain stabilizing effect, it is never completely satisfactory for a transparent film, particularly a transparent film having a lower wall thickness.
  • the molded article obtained from the biodegradable polyester composition exhibits precipitation of precipitates on the surface of the film or article under the condition of 95% ethanol cooking, thereby affecting the surface appearance properties of the film or article.
  • the present inventors have surprisingly found that in the biodegradable polyester composition, the oxidation resistance of the biodegradable polyester composition can be greatly improved by adding a trace amount of the cyclic esterified product and cyclopentanone.
  • the biodegradable polyester composition is ensured to have excellent surface appearance properties, and the biodegradable polyester composition can have significantly improved blown film properties, and the film is stable at a higher speed, and the film thickness is good. The difference is small, ensuring continuous production of blown film Sex.
  • a biodegradable polyester composition comprising, by weight, components:
  • the cyclic esterified product having the structure represented by the formula (I) has a weight content of 100 ppm to 950 ppm;
  • the cyclopentanone is present in an amount of from 0.5 ppm to 85 ppm by weight based on the total weight of the biodegradable polyester composition.
  • the cyclic esterified compound has a weight content of from 160 ppm to 750 ppm, preferably from 210 ppm to 540 ppm, based on the total weight of the biodegradable polyester composition; and the cyclopentanone has a weight content of from 5 ppm to 50 ppm; preferably from 10 ppm to 35 ppm.
  • the biodegradable polyester composition comprises, by weight, components:
  • the biodegradable aliphatic-aromatic polyester is polybutylene terephthalate PBAT, polysuccinate terephthalate PBST or polysebacate terephthalate.
  • the addition of the cyclic esterified product helps to extend the service life of the biodegradable polyester composition, and the addition of cyclopentanone to the biodegradable polyester can act like a lubricant, and the present invention has found through research that
  • the content of the cyclic esterified compound in the biodegradable polyester composition is controlled to be 100 ppm to 950 ppm, and the content of the cyclopentanone is controlled to be 0.5 ppm to 85 ppm. It can ensure the biodegradable polyester composition has good resistance to thermal aging, and can ensure the excellent surface appearance of the produced film or article, and can improve the biodegradable polyester during the blow molding process.
  • the degree of lubrication of the film when the film blowing speed is 176 Kg / h, the film thickness is extremely poor ⁇ 0.2 ⁇ m, and the film thickness relative deviation is ⁇ 1%, which ensures the stability of the bubble and the continuity of the film.
  • the cyclic esterified product will precipitate from the surface of the film or the article under the condition of 95% ethanol cooking, which affects the surface appearance property of the film or the article.
  • the cyclopentanone content in the biodegradable polyester composition is too high, the film is too lubricated during the high-speed film blowing process, resulting in the film not being able to wind up well on the roll, which also causes the bubble to be unstable, so it is based on the bio-biota
  • the total weight of the degraded polyester composition, the weight content of the cyclic ester compound is preferably from 160 ppm to 750 ppm, more preferably from 210 ppm to 540 ppm; and the weight content of the cyclopentanone is preferably from 5 ppm to 50 ppm, more preferably from 10 ppm to 35 ppm.
  • the organic filler is selected from one of natural starch, plasticized starch, modified starch, natural fiber or wood flour or a mixture thereof; the inorganic filler is selected from the group consisting of talc, montmorillonite, kaolin, chalk, calcium carbonate, One or a mixture of graphite, gypsum, conductive carbon black, calcium chloride, iron oxide, dolomite, silica, wollastonite, titanium dioxide, silicate, mica, glass fiber or mineral fiber.
  • the cyclic esterified product and the cyclopentanone of the present invention can be obtained by directly adding a cyclic esterified product and a cyclopentanone during the blending and extrusion process of the biodegradable polyester composition.
  • the biodegradable polyester composition of the present invention may further comprise 0 to 4 parts of at least one of the following materials: a plasticizer, a mold release agent, a surfactant, a wax, an antistatic agent, according to different needs of the use. Dyes, UV absorbers, UV stabilizers or other plastic additives.
  • the plasticizer is one or a mixture of two or more of citrate, glycerin, epoxidized soybean oil or the like;
  • the release agent is one of silicone oil, paraffin wax, white mineral oil, petrolatum or a mixture of two or more;
  • the surfactant is one or a mixture of two or more of polysorbate, palmitate or laurate;
  • the wax is one or a mixture of two or more of erucamide, stearic acid amide, behenic acid amide, beeswax or beeswax;
  • the antistatic agent is a permanent antistatic agent, and specifically one of PELESTAT-230, PELESTAT-6500, SUNNICO ASA-2500 or a mixture of two or more;
  • the dye is one of carbon black, black species, titanium white powder, zinc sulfide, indigo blue, fluorescent orange or a mixture of two or more.
  • the UV absorber is one or more of UV-944, UV-234, UV531, UV326;
  • the UV stabilizer is one or more of UV-123, UV-3896, UV-328;
  • the other plastic additive may be a nucleating agent, an antifogging agent, or the like;
  • the biodegradable polyester composition of the invention can be used for preparing shopping bags, compost bags, mulch films, protective covering films, silo films, film strips, fabrics, non-woven fabrics, textiles, fishing nets, load-bearing bags, garbage bags, etc. .
  • the invention has the following beneficial effects:
  • the content of the cyclic esterified compound in the composition is controlled in the range of 100 ppm to 950 ppm, and the content of the cyclopentanone is controlled in the range of 0.5 ppm to 85 ppm.
  • the anti-heat aging property of the biodegradable polyester composition can be greatly improved, and the obtained film or the injection-molded article can be blown by 95% ethanol at 40 ° C for 240 hours, and the surface precipitate is small, and has excellent performance.
  • Surface appearance properties and can improve the degree of lubrication of the biodegradable polyester composition during the blow molding process.
  • the film blowing speed is 176Kg/h
  • the film thickness is extremely poor ⁇ 0.2 ⁇ m, and the film thickness relative deviation is ⁇ 1%.
  • the stability of the bubble and the continuity of the blown film are ensured.
  • i) selects PBAT; component iv) selects ADR4370; organic filler selects starch; inorganic filler selects talc powder, calcium carbonate; plasticizer selects citric acid ester; surfactant selects palmitate; wax selects hard ester Amide; the above auxiliary agents, PBAT, ADR4370 and PLA, cyclic esterified compounds, and cyclopentanone are all commercially available.
  • PBAT, PLA, ADR4370, organic filler, inorganic filler, plasticizer, surfactant, wax and other additives, and cyclic esterified product and cyclopentanone are mixed and put into single screw extruder.
  • the mixture was extruded and granulated at 140 ° C to 240 ° C to obtain a composition.
  • the performance test data is shown in Table 1.
  • the biodegradable polyester composition was sealed in an un-vacuumed aluminum foil bag, and the aluminum foil bag was placed in a 70 ° C blast drying oven for thermal oxygen aging test. Samples were taken every 3 days, and the test sample was melted (190 ° C / 2.16kg, according to ISO 1133). When the sample melts beyond the normal range of the biodegradable polyester composition, it indicates that the biodegradable polyester composition has undergone significant thermal aging degradation, recording significant thermal aging degradation of the biodegradable polyester composition. The test time, the shorter the test time, indicates that the biodegradable polyester composition has poorer resistance to thermal aging.
  • Injection molding 2mm swatch placed in 95% C, 95% ethanol solution, steamed for 240h, placed in a standard laboratory with ambient temperature of (23 ⁇ 2) ° C, relative humidity of 45% -55%, adjusted for color after 48h Measuring the L value before and after the swatch processing Change ⁇ L.
  • the larger the ⁇ L the more surface precipitates and the worse the surface appearance properties.
  • the bubble stability during the blown film process of the biodegradable polyester composition is evaluated by the method of extremely poor film thickness and relative deviation of the film thickness:
  • the film thickness was measured by a spiral micrometer: 10 measurement points were uniformly taken on a film of 1 m*1 m for measurement.
  • the film thickness difference is the difference between the maximum thickness value and the minimum thickness value among the 10 measurement points.
  • the relative deviation of the film thickness is calculated by the following formula:
  • cyclopentanone methanol solution Preparation of cyclopentanone methanol solution at concentrations of 0.0001 g/L, 0.001 g/L, 0.01 g/L, 0.1 g/L, 5.0 g/L, 10.0 g/L, 20.0 g/L, respectively, by static headspace method
  • the peak areas of cyclopentanone in the above different concentrations of cyclopentanone methanol solution were tested, and the standard curve of cyclopentanone was prepared by taking the peak area of cyclopentanone as the ordinate and the concentration of cyclopentanone as the abscissa.
  • the static headspace test conditions are as follows:
  • Heating box 105 ° C
  • the composition of the biodegradable polyester composition has a cyclic esterified product content of 100-950 ppm, and the cyclopentanone content of 0.5-85 ppm, the composition has better resistance to thermal aging. And after 95% ethanol boiling at 40 ° C for 240 h, ⁇ L is less than 0.80, indicating that the composition has excellent surface appearance properties, and when the film blowing speed is 176 Kg / h, the film thickness is extremely poor ⁇ 0.2 ⁇ m, and the film thickness relative deviation ⁇ 1 % indicates that the composition has better bubble stability.
  • Comparative Example 2 The content of cyclic ester compound exceeded 950 ppm, and when cyclopentanone content exceeded 85 ppm, ⁇ L reached 1.0 or more, film thickness was extremely poor > 0.2 ⁇ m, and film thickness relative deviation was >1%, indicating that there were many surface precipitation surfaces, and the composition was Surface appearance properties and bubble instability are poor.
  • the film blowing speed of Comparative Example 3 was lower than 176 Kg/h, the film blowing speed of Comparative Example 4 was higher than 176 Kg/h, the film thickness was extremely poor > 0.2 ⁇ m, the relative deviation of the film thickness was >1%, and the bubble of the composition was also less. stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开了一种可生物降解聚酯组合物,其中,基于可生物降解聚酯组合物的总重量,具有如式(I)所示结构的环状酯化物的重量含量为100ppm-950ppm; 基于可生物降解聚酯组合物的总重量,环戊酮的重量含量为0.5ppm-85ppm;本发明通过在组合物中添加环状酯化物和环戊酮,将组合物中环状酯化物和环戊酮的含量控制在一定范围内,可以极大提高可生物降解聚酯组合物的抗热氧老化性能,并且吹塑所得的膜或注塑所得的制件,经95%的乙醇40℃煮240h,表面析出物少,具有优异的表面外观性能,且可以改善可生物降解聚酯组合物在吹塑过程中膜的润滑程度,在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,保证了膜泡的稳定性和吹膜的连续性。

Description

一种可生物降解聚酯组合物 技术领域
本发明属于高分子材料改性领域,具体涉及一种具有优异的抗热氧老化性能和表面外观性能及膜泡稳定性的可生物降解聚酯组合物。
背景技术
可生物降解聚酯是以生物资源为原料的一类高分子材料。相对于以石化资源为原料的石油基高分子,可生物降解聚酯能够在生物或生物化学作用过程中或生物环境中发生降解,是目前生物降解塑料研究中非常活跃和市场应用最好的降解材料之一。
可生物降解聚酯薄膜是目前可生物降解聚酯重要应用领域之一,主要包括食品袋、垃圾袋、购物袋和地膜等。可生物降解聚酯在吹塑制备薄膜的过程中,经常会出现薄膜不够润滑粘于辊上或过于润滑无法收卷的现象,从而导致吹膜过程中膜泡稳定性差,膜材厚度极差大的现象,严重影响了吹膜的连续性。专利CN 101622311A通过在可生物降解聚酯混合物中加入0.05-5重量%的生物柴油,通过降低聚酯混合物的粘度,在一定程度上减轻了薄膜粘于辊上的现象,保证了吹膜的连续性。但聚酯混合物粘度的降低,说明生物柴油的加入在一定程度上损害了聚酯的性能,导致聚酯混合物熔指升高,粘度降低。
另外,可生物降解聚酯制得的模塑品在储存和使用过程中,由于微生物、光照、辐射、空气及所接触的物质环境的作用,导致可生物降解聚酯制得的模塑品在储存和使用过程,比较容易发生老化降解,极大的影响了产品的使用性能。传统的解决高分子材料老化降解的方法包括,在材料中加入抗氧剂、UV吸收剂及HALS稳定剂等。如专利WO 2009/071475公开了聚乙烯并且包含羟基苯基三嗪作为稳定剂的地膜。CN 103687902中介绍了UV吸收剂和HALS稳定剂,或两者结合的光稳定剂,用于为地膜提供UV稳定性。虽然上述稳定剂能够提供一定的稳定作用,但对于透明地膜,特别是具有较低壁厚的透明地膜是绝不能完全令人满意的。
而且,可生物降解聚酯组合物制得的模塑品在95%的乙醇蒸煮条件下,膜或制件表面会有析出物析出,从而影响膜或制件的表面外观性能。
本发明经研究惊讶地发现,在可生物降解聚酯组合物中,通过添加微量的环状酯化物和环戊酮,可以极大的提高可生物降解聚酯组合物的抗氧化性能,同时可以保证可生物降解聚酯组合物具有优异的表面外观性能,并且可以使可生物降解聚酯组合物具有明显改善的吹膜特性,在较高速度吹膜时,膜泡稳定性好,膜材厚度极差较小,保证了吹膜生产的连续 性。
发明内容
本发明的目的在于提供一种可生物降解聚酯组合物,通过在该组合物中添加微量的环状酯化物和环戊酮,可以使制备得到的可生物降解聚酯组合物具有优异的抗热氧老化性能、表面外观性能和膜泡稳定性。
本发明是通过以下技术方案实现的:
一种可生物降解聚酯组合物,按重量份计,包括组分:
i)60至100份的可生物降解的脂族-芳族聚酯;
ii)0至40份的聚乳酸;
iii)0至35份的有机填料和/或无机填料;
iv)0至1份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物。
其中,基于可生物降解聚酯组合物的总重量,具有如式(I)所示结构的环状酯化物的重量含量为100ppm-950ppm;
Figure PCTCN2017074676-appb-000001
基于可生物降解聚酯组合物的总重量,环戊酮的重量含量为0.5ppm-85ppm。
优选的,基于可生物降解聚酯组合物的总重量,环状酯化物的重量含量为160ppm-750ppm,优选为210ppm-540ppm;环戊酮的重量含量为5ppm-50ppm;优选为10ppm-35ppm。
优选的,所述的一种可生物降解聚酯组合物,按重量份计,包括组分:
i)65至95份的可生物降解的脂族-芳族聚酯;
ii)5至35份的聚乳酸;
iii)5至25份的有机填料和/或无机填料;
iv)0.02至0.5份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物。
所述可生物降解的脂族-芳族聚酯为聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST或聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
环状酯化物的添加有助于延长可生物降解聚酯组合物的使用寿命,环戊酮添加到可生物降解聚酯中,可以起到类似润滑剂的作用,而本发明通过研究发现,将可生物降解聚酯组合物中的环状酯化物的含量控制在100ppm-950ppm,环戊酮的含量控制在0.5ppm-85ppm, 既可保证可生物降解聚酯组合物具有良好的抗热氧老化性能,又能保证所制得的膜或制件具有优异的表面外观性能,且可以改善可生物降解聚酯在吹塑过程中膜的润滑程度,在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,保证了膜泡的稳定性和吹膜的连续性。
但若可生物降解聚酯组合物中环状酯化物的含量过高,环状酯化物在95%的乙醇蒸煮条件下会从膜或制件表面析出,影响膜或制件的表面外观性能。若可生物降解聚酯组合物中环戊酮含量太高,在高速吹膜过程中,膜过于润滑,导致膜无法很好的在辊上收卷,同样会导致膜泡不稳,因此基于可生物降解聚酯组合物的总重量,环状酯化物的重量含量优选为160ppm-750ppm,更优选为210ppm-540ppm;环戊酮的重量含量优选为5ppm-50ppm,更优选为10ppm-35ppm。
所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维或木粉中的一种或其混合物;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维或矿物纤维中的一种或其混合物。
本发明所述环状酯化物和环戊酮的获得途径,可以通过在可生物降解聚酯组合物共混挤出加工的过程中直接添加环状酯化物和环戊酮。
根据不同的用途需要,本发明的可生物降解聚酯组合物还可以进一步加入0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、UV吸收剂、UV稳定剂或其他塑料添加剂。
所述增塑剂为柠檬酸酯、甘油、环氧大豆油等中的一种或者两种及以上的混合物;
所述脱模剂为硅油、石蜡、白矿油、凡士林中的一种或者两种及以上的混合物;
所述表面活性剂为聚山梨醇酯、棕榈酸酯或月桂酸酯中的一种或者两种及以上的混合物;
所述蜡为芥酸酰胺、硬脂酰胺、山嵛酸酰胺、蜂蜡或蜂蜡酯中的一种或者两种及以上的混合物;
所述防静电剂为永久性抗静电剂,具体可以列举出PELESTAT-230、PELESTAT-6500、SUNNICO ASA-2500中的一种或者两种及以上的混合物;
所述染料为炭黑、黑种、钛白粉、硫化锌、酞青蓝、荧光橙中的一种或者两种及以上的混合物。
所述UV吸收剂为UV-944、UV-234、UV531、UV326中的一种或几种;
所述UV稳定剂为UV-123、UV-3896、UV-328中的一种或几种;
所述其他塑料添加剂可以为成核剂、防雾剂等;
本发明所述的可生物降解聚酯组合物可用于制备购物袋、堆肥袋、地膜、保护性覆盖膜、筒仓膜、薄膜带、织物、非织物、纺织品、渔网、承重袋、垃圾袋等。
本发明与现有技术相比,具有如下有益效果:
本发明通过在组合物中添加环状酯化物和环戊酮,将组合物中环状酯化物的含量控制在100ppm-950ppm范围内,环戊酮的含量控制在0.5ppm-85ppm范围内,不但可以极大的提高可生物降解聚酯组合物的抗热氧老化性能,同时吹塑所得的膜或注塑所得的制件,经95%的乙醇40℃煮240h,表面析出物少,具有优异的表面外观性能,而且可以改善可生物降解聚酯组合物在吹塑过程中膜的润滑程度,在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,保证了膜泡的稳定性和吹膜的连续性。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
本发明实施例i)选用PBAT;组分iv)选用ADR4370;有机填料选用淀粉;无机填料选用滑石粉、碳酸钙;增塑剂选用柠檬酸酯;表面活性剂选用棕榈酸酯;蜡选用硬酯酰胺;上述助剂、PBAT、ADR4370及PLA、环状酯化物、环戊酮均来源于市购。
实施例1-16及对比例1-4:
按表1所示配方,将PBAT、PLA、ADR4370、有机填料、无机填料、增塑剂、表面活性剂、蜡等助剂以及环状酯化物、环戊酮混匀后投入单螺杆挤出机中,于140℃-240℃挤出、造粒,得到组合物。性能测试数据见表1。
性能评价方法:
(1)可生物降解聚酯组合物抗热氧老化性能的评估方法:
将可生物降解聚酯组合物密封于未抽真空的铝箔袋中,将铝箔袋至于70℃鼓风干燥箱中,进行热氧老化测试,每隔3天取样,测试样品熔指(190℃/2.16kg,根据ISO 1133)。当样品熔指超出可生物降解聚酯组合物正常熔指范围时,说明可生物降解聚酯组合物已经发生了显著了热氧老化降解,记录可生物降解聚酯组合物发生显著热氧老化降解的测试时间,测试时间越短,说明可生物降解聚酯组合物抗热氧老化性能越差。
(2)模塑品表面外观性能的评估方法:
注塑2mm色板,放于95℃,95%乙醇溶液中,蒸煮240h后,放置于环境温度为(23±2)℃,相对湿度为45%-55%的标准实验室,调节48h后用色差仪测量色板处理前后的L值 变化ΔL。ΔL越大,表面析出物越多,表面外观性能越差。
(3)可生物降解聚酯组合物膜泡稳定性的评估方法:
可生物降解聚酯组合物吹膜过程中的膜泡稳定性通过膜材厚度极差和膜材厚度相对偏差的方法进行评估:
薄膜厚度用螺旋测微计测试:在1m*1m的薄膜上均匀取10个测量点进行测量。
膜厚极差为10个测量点中最大厚度值与最小厚度值的差值。
膜厚相对偏差按下式计算:
Figure PCTCN2017074676-appb-000002
其中平均膜厚在1m*1m的薄膜上均匀取10个测量点,分别测试厚度后取算数平均值。
(4)环状酯化物的测定方法:
精确称量1.2000g的可生物降解聚酯组合物加入25ml的容量瓶中,加氯仿溶解,待可生物降解聚酯组合物完全溶解后定容。通过GC-MS测试所配溶液中环状酯化物的峰面积,根据所配溶液中环状酯化物的峰面积和环状酯化物标准曲线即可计算得到可生物降解聚酯组合物中环状酯化物的含量。标准曲线由环状酯化物/氯仿溶液标定。
GC-MS型号和参数如下:
Agilent Technologies 7693AutoSampler;
Agilent Technologies 5975C inert MSD with Triple-Axis Detector;
色谱柱:J&W 122-5532UI:350℃:30m x 250μm x 0.25μm
进样:前SS进样口He
出样:真空。
(5)环戊酮的测定方法:
1)环戊酮标准曲线的制作:
配制浓度分别为0.0001g/L、0.001g/L、0.01g/L、0.1g/L、5.0g/L、10.0g/L、20.0g/L的环戊酮甲醇溶液,通过静态顶空方法分别测试上述不同浓度环戊酮甲醇溶液中环戊酮的峰面积,以环戊酮的峰面积为纵坐标,环戊酮的浓度为横坐标,制作环戊酮的标准曲线。
2)可生物降解聚酯组合物中环戊酮含量的测定:
精确称量1.2000g左右的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中环戊酮的峰面积,根据可生物降解聚酯组合物中环戊酮的峰面积和环戊酮标准曲线即可计算得到可生物降解聚酯组合物中环戊酮的含量。
静态顶空所用仪器型号和参数如下:
Agilent Technologies 7697Headspace Sampler;
Agilent Technologies 7890A GC System;
色谱柱:J&W 122-7032:250℃:30m x 250μm x 0.25μm
进样:前SS进样口N2
出样:前检测器FID。
静态顶空测试条件如下:
温度:
加热箱:105℃
定量环:135℃
传输线:165℃
时间:
样品瓶平衡:120分钟
进样持续时间:0.09分钟
GC循环:30分钟。
表1对比例1~4和实施例1-16测试数据(重量份)
Figure PCTCN2017074676-appb-000003
续表1
Figure PCTCN2017074676-appb-000004
从表1中可以看出,可生物降解聚酯组合物中环状酯化物的含量为100-950ppm,环戊酮的含量为0.5-85ppm时,组合物具有更好的抗热氧老化性能,且经95%的乙醇40℃煮240h后ΔL小于0.80,表明组合物具有优异的表面外观性能,且在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,表明组合物具有更好的膜泡稳定性。而对比例1的环状酯化物含量小于100ppm、环戊酮的含量为0时,虽然组合物的ΔL值较小,但其组合物的热氧老化时间较短,膜厚极差>0.2μm,膜厚相对偏差>1%。对比例2环状酯化物含量超出950ppm,环戊酮含量超出85ppm时,ΔL达到1.0以上,膜厚极差>0.2μm,膜厚相对偏差>1%,表明表面析出面较多,组合物的表面外观性能和膜泡不稳定性较差。对比例3的吹膜速度低于176Kg/h,对比例4的吹膜速度高于176Kg/h,膜厚极差>0.2μm,膜厚相对偏差>1%,组合物的膜泡也较不稳定。

Claims (10)

  1. 一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)60至100份的可生物降解的脂族-芳族聚酯;
    ii)0至40份的聚乳酸;
    iii)0至35份的有机填料和/或无机填料;
    iv)0至1份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物;其中,基于可生物降解聚酯组合物的总重量,具有如式(I)所示结构的环状酯化物的重量含量为100ppm-950ppm;
    Figure PCTCN2017074676-appb-100001
    且基于可生物降解聚酯组合物的总重量,环戊酮的重量含量为0.5ppm-85ppm。
  2. 根据权利要求1所述的一种可生物降解聚酯组合物,其特征在于,基于可生物降解聚酯组合物的总重量,环状酯化物的重量含量为160ppm-750ppm,优选为210ppm-540ppm;环戊酮的重量含量为5ppm-50ppm;优选为10ppm-35ppm。
  3. 根据权利要求1或2所述的一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)65至95份的可生物降解的脂族-芳族聚酯;
    ii)5至35份的聚乳酸;
    iii)5至25份的有机填料和/或无机填料;
    iv)0.02至0.5份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物。
  4. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述环状酯化物的重量含量采用如下方法测试:精确称量1.2000g的可生物降解聚酯组合物加入25ml的容量瓶中,加氯仿溶解,待可生物降解聚酯组合物完全溶解后定容,通过GC-MS测试所配溶液中环状酯化物的峰面积,根据所配溶液中环状酯化物的峰面积和环状酯化物标准曲线即可计算得到可生物降解聚酯组合物中环状酯化物的含量;标准曲线由环状酯化物/氯仿溶液标定;
    所述环戊酮的重量含量采用如下方法测试:精确称量1.2000g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中环戊酮的峰面积,根据可生物降解聚酯组合物中环戊酮的峰面积和环戊酮标准曲线即可计算得到可生物降解聚酯组合物中环戊酮的含量;标准曲线由环戊酮/甲醇溶液标定。
  5. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解的脂族-芳族聚酯为聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST或聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
  6. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维或木粉中的一种或其混合物;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维或矿物纤维中的一种或其混合物。
  7. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,还包括0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、UV吸收剂、UV稳定剂或其他塑料添加剂。
  8. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物在密封于未抽真空的铝箔袋中,将铝箔袋至于70℃鼓风干燥箱中进行热氧老化测试的热氧老化时间≥10天。
  9. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物经95%的乙醇40℃煮240h后的ΔL值为<0.80。
  10. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物在吹膜挤出速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%。
PCT/CN2017/074676 2016-03-07 2017-02-24 一种可生物降解聚酯组合物 WO2017152774A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018511329A JP6469931B2 (ja) 2016-03-07 2017-02-24 生分解性ポリエステル組成物
AU2017230352A AU2017230352B2 (en) 2016-03-07 2017-02-24 Biodegradable polyester composition
US15/578,683 US10494521B2 (en) 2016-03-07 2017-02-24 Biodegradable polyester composition
EP17762460.8A EP3260498B1 (en) 2016-03-07 2017-02-24 Biodegradable polyester composition
ES17762460T ES2761049T3 (es) 2016-03-07 2017-02-24 Composición de poliéster biodegradable
KR1020187010585A KR102024492B1 (ko) 2016-03-07 2017-02-24 생분해성 폴리에스테르 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610126866.6A CN105585827A (zh) 2016-03-07 2016-03-07 一种可生物降解聚酯组合物
CN201610126866.6 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017152774A1 true WO2017152774A1 (zh) 2017-09-14

Family

ID=55925750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074676 WO2017152774A1 (zh) 2016-03-07 2017-02-24 一种可生物降解聚酯组合物

Country Status (9)

Country Link
US (1) US10494521B2 (zh)
EP (1) EP3260498B1 (zh)
JP (1) JP6469931B2 (zh)
KR (1) KR102024492B1 (zh)
CN (1) CN105585827A (zh)
AU (1) AU2017230352B2 (zh)
DE (3) DE202017007335U1 (zh)
ES (1) ES2761049T3 (zh)
WO (1) WO2017152774A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308936A (zh) * 2021-05-26 2021-08-27 六盘水师范学院 一种天然矿物纤维/植物纤维可降解农用地膜的制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
CN105585826A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105713356B (zh) 2016-03-07 2017-05-31 杨红梅 一种可生物降解聚酯组合物
CN105585825A (zh) 2016-03-07 2016-05-18 杨红梅 一种可生物降解聚酯组合物
CN105602209B (zh) * 2016-03-07 2017-02-08 天津金发新材料有限公司 一种pbat树脂组合物
CN105585824A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585827A (zh) * 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN106084681B (zh) * 2016-07-22 2018-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN106084682B (zh) 2016-07-22 2018-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN108003571A (zh) * 2017-11-28 2018-05-08 金发科技股份有限公司 一种可生物降解聚酯组合物
WO2023102683A1 (zh) * 2021-12-06 2023-06-15 万华化学集团股份有限公司 一种pbat树脂组合物及其制备方法和应用
CN115572374A (zh) * 2022-09-30 2023-01-06 珠海金发生物材料有限公司 一种聚对苯二甲酸酯-共-癸二酸酯树脂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067550A (ja) * 1983-09-21 1985-04-17 Chisso Corp 塩化ビニル樹脂組成物
WO2009071475A1 (en) 2007-12-03 2009-06-11 Basf Se Crystalline form of 2-(4,6-bis-biphenyl-4-yl-1,3,5-triazin-2-yl)-5-(2-ethyl-(n)-hexyloxy)phenol
CN101622311A (zh) 2007-03-01 2010-01-06 巴斯夫欧洲公司 含有生物柴油的聚酯混合物
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN103687902A (zh) 2011-05-10 2014-03-26 巴斯夫欧洲公司 可生物降解的聚酯薄膜
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN105585827A (zh) * 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9225054D0 (en) * 1992-11-30 1993-01-20 Baxenden Chem Enzymatic synthesis
DE19528539A1 (de) 1995-08-03 1997-02-06 Basf Ag Verfahren zur Herstelung von Polyesterolen mit einem verminderten Gehalt an flüchtigen Verbindungen
DE19630232A1 (de) * 1996-07-26 1998-01-29 Wolff Walsrode Ag Monoaxial gereckte, biologisch abbbaubare und kompostierbare Folie mit verbesserten Eigenschaften
US6972315B2 (en) 2002-07-19 2005-12-06 Gross Richard A Enzyme-catalyzed polycondensations
AU2003301544A1 (en) * 2002-10-22 2004-05-13 Unitika Ltd. Aqueous polyester resin dispersion and method for production thereof
US7368503B2 (en) * 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
CN1284761C (zh) 2004-06-21 2006-11-15 沈阳工业大学 一种环戊酮的生产方法
SI1838784T1 (sl) * 2005-01-12 2008-10-31 Basf Se Biorazgradljiva poliestrska meĺ anica
US7619025B2 (en) * 2005-08-12 2009-11-17 Board Of Trustees Of Michigan State University Biodegradable polymeric nanocomposite compositions particularly for packaging
JP2007204650A (ja) * 2006-02-03 2007-08-16 Mitsubishi Chemicals Corp 熱可塑性樹脂組成物および樹脂成形品
CN101864068B (zh) 2009-04-15 2012-03-07 中国石油天然气股份有限公司 一种聚对苯二甲酸丁二醇/己二酸丁二醇共聚酯的制备方法
CN102485765A (zh) * 2010-12-02 2012-06-06 上海杰事杰新材料(集团)股份有限公司 一种脂肪族/芳香族共聚酯及其制备方法
CN102731976A (zh) * 2011-04-12 2012-10-17 东丽纤维研究所(中国)有限公司 一种聚酯组合物及其制成的薄膜
US8686080B2 (en) * 2011-05-10 2014-04-01 Basf Se Biodegradable polyester film
JP6422877B2 (ja) 2012-11-15 2018-11-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 生分解性ポリエステル混合物
CN103044226B (zh) 2012-12-26 2014-09-03 淮安万邦香料工业有限公司 用己二酸制备环戊酮的方法
JP2014156539A (ja) * 2013-02-15 2014-08-28 Mitsubishi Chemicals Corp ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、及び該フィルムを成形してなる袋
CN104072952B (zh) * 2014-06-17 2016-08-24 杭州鑫富科技有限公司 一种横纵向撕裂性能优异的全生物降解地膜
CN105195063B (zh) 2015-09-29 2017-10-27 山东国润生物医药有限公司 一种用于己二酸制备环戊酮的脱羧装置
EP3214108A1 (en) 2016-03-01 2017-09-06 Novamont S.p.A. Process for removal of tetrahydrofuran
CN105585826A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585824A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067550A (ja) * 1983-09-21 1985-04-17 Chisso Corp 塩化ビニル樹脂組成物
CN101622311A (zh) 2007-03-01 2010-01-06 巴斯夫欧洲公司 含有生物柴油的聚酯混合物
WO2009071475A1 (en) 2007-12-03 2009-06-11 Basf Se Crystalline form of 2-(4,6-bis-biphenyl-4-yl-1,3,5-triazin-2-yl)-5-(2-ethyl-(n)-hexyloxy)phenol
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN103687902A (zh) 2011-05-10 2014-03-26 巴斯夫欧洲公司 可生物降解的聚酯薄膜
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN105585827A (zh) * 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260498A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308936A (zh) * 2021-05-26 2021-08-27 六盘水师范学院 一种天然矿物纤维/植物纤维可降解农用地膜的制备方法
CN113308936B (zh) * 2021-05-26 2022-07-08 六盘水师范学院 一种天然矿物纤维/植物纤维可降解农用地膜的制备方法

Also Published As

Publication number Publication date
DE202017007335U1 (de) 2020-10-28
ES2761049T3 (es) 2020-05-18
EP3260498A1 (en) 2017-12-27
KR20180054720A (ko) 2018-05-24
US20180163044A1 (en) 2018-06-14
CN105585827A (zh) 2016-05-18
EP3260498B1 (en) 2019-09-18
EP3260498A4 (en) 2019-01-02
JP6469931B2 (ja) 2019-02-13
AU2017230352A1 (en) 2018-01-18
JP2018515684A (ja) 2018-06-14
DE202017007332U1 (de) 2020-10-28
KR102024492B1 (ko) 2019-09-23
US10494521B2 (en) 2019-12-03
DE202017007336U1 (de) 2020-10-28
AU2017230352B2 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
WO2017152774A1 (zh) 一种可生物降解聚酯组合物
WO2017152678A1 (zh) 一种可生物降解聚酯组合物
WO2017152771A1 (zh) 一种可生物降解聚酯组合物
WO2017152773A1 (zh) 一种可生物降解聚酯组合物
WO2017152772A1 (zh) 一种可生物降解聚酯组合物
EP3315554B1 (en) Bio-degradable polyester composition

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017762460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018511329

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578683

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017230352

Country of ref document: AU

Date of ref document: 20170224

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010585

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE