WO2017152773A1 - 一种可生物降解聚酯组合物 - Google Patents

一种可生物降解聚酯组合物 Download PDF

Info

Publication number
WO2017152773A1
WO2017152773A1 PCT/CN2017/074675 CN2017074675W WO2017152773A1 WO 2017152773 A1 WO2017152773 A1 WO 2017152773A1 CN 2017074675 W CN2017074675 W CN 2017074675W WO 2017152773 A1 WO2017152773 A1 WO 2017152773A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
biodegradable polyester
ppm
film
tetrahydrofuran
Prior art date
Application number
PCT/CN2017/074675
Other languages
English (en)
French (fr)
Inventor
卢昌利
袁志敏
蔡彤旻
黄险波
曾祥斌
焦健
苑仁旭
钟宇科
熊凯
杨晖
麦开锦
董学腾
Original Assignee
金发科技股份有限公司
珠海万通化工有限公司
天津金发新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55925749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017152773(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 金发科技股份有限公司, 珠海万通化工有限公司, 天津金发新材料有限公司 filed Critical 金发科技股份有限公司
Priority to US15/578,697 priority Critical patent/US10400100B2/en
Priority to KR1020187010587A priority patent/KR102037616B1/ko
Priority to EP17762459.0A priority patent/EP3260497B1/en
Priority to ES17762459T priority patent/ES2765882T3/es
Priority to JP2018511328A priority patent/JP6469930B2/ja
Publication of WO2017152773A1 publication Critical patent/WO2017152773A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/14Homopolymers or copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention belongs to the field of polymer material modification, and particularly relates to a biodegradable polyester composition having excellent printing performance and bubble stability.
  • Biodegradable polyester is a kind of polymer material which is made from biological resources. Compared with petroleum-based polymers based on petrochemical resources, biodegradable polyesters can be degraded in biological or biochemical processes or in biological environments. It is currently the most active and market-based degradation in biodegradable plastics research. One of the materials.
  • Biodegradable polyester film is one of the important application fields of biodegradable polyester, including food bags, garbage bags, shopping bags and plastic film.
  • the biodegradable polyester In the process of preparing a film by blow molding, the biodegradable polyester often has a phenomenon that the film is not sufficiently lubricated and adhered to the roller or is too lubricious to be wound up, resulting in poor bubble stability during film blowing, and the film thickness is extremely poor. The phenomenon has seriously affected the continuity of the blown film.
  • Patent CN 101622311A by adding 0.05-5 wt% biodiesel to the biodegradable polyester mixture, by reducing the viscosity of the polyester mixture, to some extent, the film sticks to the roller, thereby ensuring continuous film blowing. Sex.
  • the decrease in the viscosity of the polyester mixture indicates that the addition of biodiesel impairs the properties of the polyester to some extent, resulting in an increase in the melting index of the polyester mixture and a decrease in viscosity.
  • biodegradable polyesters typically require over-inking during blow-molding of the film to print the desired label and logo on the film.
  • biodegradable polyester film often shows poor printing during printing (ink is not completely adhered to the film, or the adhesion strength is not enough) or excessive printing (excess ink adhesion, unclear), film The printing performance is poor.
  • the present inventors have surprisingly found that in the biodegradable polyester composition, by adding a trace amount of tetrahydrofuran and cyclopentanone, the film can be prevented from coming off the film during the printing process, nor will it occur. There is a phenomenon in which the ink excessively adheres to the film, so that the film exhibits excellent printing performance, and the biodegradable polyester composition can have a markedly improved blown film property, and the bubble is stabilized at a higher speed when the film is blown at a higher speed. Goodness, the film thickness is extremely poor, ensuring the continuity of blown film production.
  • It is an object of the present invention to provide a biodegradable polyester composition which can provide a prepared biodegradable polyester composition with excellent printing properties and a film by adding a trace amount of tetrahydrofuran and cyclopentanone to the composition. Bubble stability.
  • a biodegradable polyester composition comprising, by weight, components:
  • the weight content of tetrahydrofuran is from 3 ppm to 200 ppm based on the total weight of the biodegradable polyester composition; and the weight content of cyclopentanone is from 0.5 ppm to 85 ppm based on the total weight of the biodegradable polyester composition.
  • the weight content of tetrahydrofuran is from 8 ppm to 100 ppm, preferably from 15 ppm to 75 ppm, based on the total weight of the biodegradable polyester composition; the weight content of cyclopentanone is from 5 ppm to 50 ppm; preferably from 10 ppm to 35 ppm.
  • the biodegradable polyester composition comprises, by weight, components:
  • the biodegradable aliphatic-aromatic polyester is polybutylene terephthalate PBAT, polysuccinate terephthalate PBST or polysebacate terephthalate.
  • cyclopentanone and tetrahydrofuran can act like a lubricant, and the present inventors have found through research that the content of tetrahydrofuran in the biodegradable polyester composition is controlled at 3 ppm to 200 ppm.
  • the content of cyclopentanone is controlled at 0.5ppm-85ppm, which can make the dynamic friction factor of the film in a reasonable range, so that the film does not appear to be detached from the film during the printing process (ie, the printing is not strong), nor There is a phenomenon in which the ink excessively adheres to the film, so that the film exhibits excellent printing performance, and can improve the degree of lubrication of the film of the biodegradable polyester composition during the blow molding process at a film blowing speed of 176 Kg/h.
  • the film thickness is extremely poor ⁇ 0.2 ⁇ m, the film thickness relative deviation is ⁇ 1%, and the stability of the bubble and the continuity of the blown film are ensured.
  • the THF content of the tetrahydrofuran in the biodegradable polyester composition is too high, the dynamic friction factor of the film is extremely small, and printing is basically impossible; the THF content of tetrahydrofuran is too low, the dynamic friction factor is too large, and the film sticks excessively in the printing process. .
  • the cyclopentanone content in the biodegradable polyester composition is too high, the film is too lubricated during the high-speed film blowing process, resulting in the film not being able to wind up well on the roll, which also causes the bubble to be unstable, so it is based on the bio-biota
  • the total weight of the degraded polyester composition the weight content of tetrahydrofuran is preferably from 8 ppm to 100 ppm, more preferably from 15 ppm to 75 ppm; and the weight content of cyclopentanone is preferably from 5 ppm to 50 ppm, more preferably from 10 ppm to 35 ppm.
  • the organic filler is selected from one of natural starch, plasticized starch, modified starch, natural fiber or wood flour or a mixture; the inorganic filler is selected from the group consisting of talc, montmorillonite, kaolin, chalk, calcium carbonate, graphite, gypsum, conductive carbon black, calcium chloride, iron oxide, dolomite, silica, wollastonite, titanium dioxide, One of a silicate, mica, fiberglass or mineral fiber or a mixture thereof.
  • the tetrahydrofuran and cyclopentanone of the present invention can be obtained by directly adding tetrahydrofuran and cyclopentanone during the blending and extrusion process of the biodegradable polyester composition.
  • the biodegradable polyester composition of the present invention may further comprise 0 to 4 parts of at least one of the following materials: a plasticizer, a mold release agent, a surfactant, a wax, an antistatic agent, according to different needs of the use. Dyes, UV absorbers, UV stabilizers or other plastic additives.
  • the plasticizer is one or a mixture of two or more of citrate, glycerin, epoxidized soybean oil or the like;
  • the release agent is one of silicone oil, paraffin wax, white mineral oil, petrolatum or a mixture of two or more;
  • the surfactant is one or a mixture of two or more of polysorbate, palmitate or laurate;
  • the wax is one or a mixture of two or more of erucamide, stearic acid amide, behenic acid amide, beeswax or beeswax;
  • the antistatic agent is a permanent antistatic agent, and specifically one of PELESTAT-230, PELESTAT-6500, SUNNICO ASA-2500 or a mixture of two or more;
  • the dye is one of carbon black, black species, titanium white powder, zinc sulfide, indigo blue, fluorescent orange or a mixture of two or more.
  • the UV absorber is one or more of UV-944, UV-234, UV531, UV326;
  • the UV stabilizer is one or more of UV-123, UV-3896, UV-328;
  • the other plastic additive may be a nucleating agent, an antifogging agent, or the like;
  • the biodegradable polyester composition of the invention can be used for preparing shopping bags, compost bags, mulch films, protective covering films, silo films, film strips, fabrics, non-woven fabrics, textiles, fishing nets, load-bearing bags, garbage bags, etc. .
  • the invention has the following beneficial effects:
  • the invention controls the content of tetrahydrofuran in the composition to be in the range of 3ppm-200ppm by adding tetrahydrofuran and cyclopentanone to the composition, and the content of cyclopentanone is controlled in the range of 0.5ppm-85ppm, which can not only greatly improve.
  • the phenomenon that the biodegradable polyester composition is poorly printed during the printing process neither the phenomenon that the ink leaves the film, nor the phenomenon that the ink excessively adheres to the film, so that the film exhibits excellent printing performance.
  • the degree of lubrication of the membrane of the biodegradable polyester composition during the blow molding process can be improved.
  • the film blowing speed is 176 Kg/h
  • the film thickness is extremely poor ⁇ 0.2 ⁇ m
  • the film thickness relative deviation is ⁇ 1%, which ensures the bubble. Stability and continuity of blown film.
  • PBAT selects PBAT
  • component iv) selects ADR4370
  • organic filler selects starch
  • inorganic filler selects talc powder, calcium carbonate
  • plasticizer selects citric acid ester
  • surfactant selects palmitate
  • wax selects hard ester Amide
  • auxiliary agents, PBAT, ADR4370 and PLA, tetrahydrofuran and cyclopentanone are all commercially available.
  • PBAT, PLA, ADR4370, organic filler, inorganic filler, plasticizer, surfactant, wax and other additives, and tetrahydrofuran, cyclopentanone are mixed and put into a single screw extruder.
  • the mixture was extruded and granulated at 140 ° C to 240 ° C to obtain a composition.
  • the performance test data is shown in Table 1.
  • Biodegradable polyester film with different printing effects according to the clarity of the printed label and the adhesion of the ink on the surface of the film, the different printing effects are rated as follows:
  • Level 1 The label is clear and there is no excessive ink adhesion film
  • Level 2 The label is clear and a small amount of excess ink adheres to the film
  • Level 3 The label is basically clear and there are more ink-adhesive films
  • Level 4 The label is fuzzy and there are many ink-adhesive films
  • Level 5 The label is not visible, no ink-adhesive film.
  • the bubble stability during the blown film process of the biodegradable polyester composition is evaluated by the method of extremely poor film thickness and relative deviation of the film thickness:
  • the film thickness was measured by a spiral micrometer: 10 measurement points were uniformly taken on a film of 1 m*1 m for measurement.
  • the film thickness difference is the difference between the maximum thickness value and the minimum thickness value among the 10 measurement points.
  • the relative deviation of the film thickness is calculated by the following formula:
  • the preparation concentrations were 0.010g/L, 0.1g/L, 1.0g/L, 5.0g/L, 10.0g/L, 20.0g/L, 50.0g/L, 100.0g/L.
  • the THF methanol solution was used to test the peak area of THF in the different concentrations of THF methanol solution by static headspace method. The peak area of THF was taken as the ordinate and the concentration of THF was plotted on the abscissa to prepare the standard curve of THF.
  • THF content of the biodegradable polyester composition can be calculated from the peak area of THF and the THF standard curve.
  • the standard curve is calibrated from tetrahydrofuran/methanol solution.
  • the static headspace test conditions are as follows:
  • Heating box 105 ° C
  • cyclopentanone methanol solution Preparation of cyclopentanone methanol solution at concentrations of 0.0001 g/L, 0.001 g/L, 0.01 g/L, 0.1 g/L, 5.0 g/L, 10.0 g/L, 20.0 g/L, respectively, by static headspace method
  • the peak areas of cyclopentanone in the above different concentrations of cyclopentanone methanol solution were tested, and the standard curve of cyclopentanone was prepared by taking the peak area of cyclopentanone as the ordinate and the concentration of cyclopentanone as the abscissa.
  • the static headspace test conditions are as follows:
  • Heating box 105 ° C
  • the content of tetrahydrofuran in the biodegradable polyester composition is from 3 to 200 ppm
  • the content of cyclopentanone is from 0.5 ppm to 85 ppm
  • the printing performance level can be three or more, and excellent printing is possible.
  • the film blowing speed of Comparative Example 3 was lower than 176 Kg/h, the film blowing speed of Comparative Example 4 was higher than 176 Kg/h, the film thickness was extremely poor > 0.2 ⁇ m, the relative deviation of the film thickness was >1%, and the bubble of the composition was also less. stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开了一种可生物降解聚酯组合物,其中,基于可生物降解聚酯组合物的总重量,四氢呋喃的重量含量为3ppm-200ppm;基于可生物降解聚酯组合物的总重量,环戊酮的重量含量为0.5ppm-85ppm;本发明通过在组合物中添加四氢呋喃和环戊酮,将组合物中四氢呋喃和环戊酮的含量控制在一定范围内,可以极大的改善可生物降解聚酯组合物在印刷过程中印刷不良的现象,既不会出现油墨脱离膜材的现象,也不会出现油墨过多粘附膜材的现象,从而使薄膜表现出优良的印刷性能,且可以改善可生物降解聚酯组合物在吹塑过程中膜的润滑程度,在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,保证了膜泡的稳定性和吹膜的连续性。

Description

一种可生物降解聚酯组合物 技术领域
本发明属于高分子材料改性领域,具体涉及一种具有优异的印刷性能及膜泡稳定性的可生物降解聚酯组合物。
背景技术
可生物降解聚酯是以生物资源为原料的一类高分子材料。相对于以石化资源为原料的石油基高分子,可生物降解聚酯能够在生物或生物化学作用过程中或生物环境中发生降解,是目前生物降解塑料研究中非常活跃和市场应用最好的降解材料之一。
可生物降解聚酯薄膜是目前可生物降解聚酯重要应用领域之一,主要包括食品袋、垃圾袋、购物袋和地膜等。可生物降解聚酯在吹塑制备薄膜的过程中,经常会出现薄膜不够润滑粘于辊上或过于润滑无法收卷的现象,从而导致吹膜过程中膜泡稳定性差,膜材厚度极差大的现象,严重影响了吹膜的连续性。专利CN 101622311A通过在可生物降解聚酯混合物中加入0.05-5重量%的生物柴油,通过降低聚酯混合物的粘度,在一定程度上减轻了薄膜粘于辊上的现象,保证了吹膜的连续性。但聚酯混合物粘度的降低,说明生物柴油的加入在一定程度上损害了聚酯的性能,导致聚酯混合物熔指升高,粘度降低。
另外,可生物降解聚酯在吹塑制备薄膜的过程中,通常需要过墨,从而在薄膜上印刷需求的标签及标识。但可生物降解聚酯薄膜在印刷过程中常常出现印刷不牢(油墨未完全粘附在薄膜上,或粘附强度不够)或印刷过度的情况(油墨粘附过多,标识不清),薄膜的印刷性能较差。
本发明经研究惊讶地发现,在可生物降解聚酯组合物中,通过添加微量的四氢呋喃和环戊酮,可以使膜材在印刷过程中既不会出现油墨脱离膜材的现象,也不会出现油墨过多粘附膜材的现象,从而使薄膜表现出优良的印刷性能,并且可以使可生物降解聚酯组合物具有明显改善的吹膜特性,在较高速度吹膜时,膜泡稳定性好,膜材厚度极差较小,保证了吹膜生产的连续性。
发明内容
本发明的目的在于提供一种可生物降解聚酯组合物,通过在该组合物中添加微量的四氢呋喃和环戊酮,可以使制备得到的可生物降解聚酯组合物具有优异的印刷性能和膜泡稳定性。
本发明是通过以下技术方案实现的:
一种可生物降解聚酯组合物,按重量份计,包括组分:
i)60至100份的可生物降解的脂族-芳族聚酯;
ii)0至40份的聚乳酸;
iii)0至35份的有机填料和/或无机填料;
iv)0至1份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物。
其中,基于可生物降解聚酯组合物的总重量,四氢呋喃的重量含量为3ppm-200ppm;基于可生物降解聚酯组合物的总重量,环戊酮的重量含量为0.5ppm-85ppm。
优选的,基于可生物降解聚酯组合物的总重量,四氢呋喃的重量含量为8ppm-100ppm,优选为15ppm-75ppm;环戊酮的重量含量为5ppm-50ppm;优选为10ppm-35ppm。
优选的,所述的一种可生物降解聚酯组合物,按重量份计,包括组分:
i)65至95份的可生物降解的脂族-芳族聚酯;
ii)5至35份的聚乳酸;
iii)5至25份的有机填料和/或无机填料;
iv)0.02至0.5份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物。
所述可生物降解的脂族-芳族聚酯为聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST或聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
环戊酮和四氢呋喃添加到可生物降解聚酯组合物中,可以起到类似润滑剂的作用,而本发明通过研究发现,将可生物降解聚酯组合物中的四氢呋喃的含量控制在3ppm-200ppm,环戊酮的含量控制在0.5ppm-85ppm,可使膜材的动摩擦因素处于合理范围,使膜材在印刷过程中既不会出现油墨脱离膜材的现象(即印刷不牢),也不会出现油墨过多粘附膜材的现象,从而使薄膜表现出优良的印刷性能,且可以改善可生物降解聚酯组合物在吹塑过程中膜的润滑程度,在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,保证了膜泡的稳定性和吹膜的连续性。
但若可生物降解聚酯组合物中四氢呋喃THF含量太高,薄膜动摩擦因素极小,基本无法实现印刷;四氢呋喃THF含量太低,动摩擦因素太大,出现印刷过程中,薄膜粘墨过多的情况。若可生物降解聚酯组合物中环戊酮含量太高,在高速吹膜过程中,膜过于润滑,导致膜无法很好的在辊上收卷,同样会导致膜泡不稳,因此基于可生物降解聚酯组合物的总重量,四氢呋喃的重量含量优选为8ppm-100ppm,更优选为15ppm-75ppm;环戊酮的重量含量优选为5ppm-50ppm,更优选为10ppm-35ppm。
所述有机填料选自天然淀粉、塑化淀粉、改性淀粉、天然纤维或木粉中的一种或其 混合物;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维或矿物纤维中的一种或其混合物。
本发明所述四氢呋喃和环戊酮的获得途径,可以通过在可生物降解聚酯组合物共混挤出加工的过程中直接添加四氢呋喃和环戊酮。
根据不同的用途需要,本发明的可生物降解聚酯组合物还可以进一步加入0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、UV吸收剂、UV稳定剂或其他塑料添加剂。
所述增塑剂为柠檬酸酯、甘油、环氧大豆油等中的一种或者两种及以上的混合物;
所述脱模剂为硅油、石蜡、白矿油、凡士林中的一种或者两种及以上的混合物;
所述表面活性剂为聚山梨醇酯、棕榈酸酯或月桂酸酯中的一种或者两种及以上的混合物;
所述蜡为芥酸酰胺、硬脂酰胺、山嵛酸酰胺、蜂蜡或蜂蜡酯中的一种或者两种及以上的混合物;
所述防静电剂为永久性抗静电剂,具体可以列举出PELESTAT-230、PELESTAT-6500、SUNNICO ASA-2500中的一种或者两种及以上的混合物;
所述染料为炭黑、黑种、钛白粉、硫化锌、酞青蓝、荧光橙中的一种或者两种及以上的混合物。
所述UV吸收剂为UV-944、UV-234、UV531、UV326中的一种或几种;
所述UV稳定剂为UV-123、UV-3896、UV-328中的一种或几种;
所述其他塑料添加剂可以为成核剂、防雾剂等;
本发明所述的可生物降解聚酯组合物可用于制备购物袋、堆肥袋、地膜、保护性覆盖膜、筒仓膜、薄膜带、织物、非织物、纺织品、渔网、承重袋、垃圾袋等。
本发明与现有技术相比,具有如下有益效果:
本发明通过在组合物中添加四氢呋喃和环戊酮,将组合物中四氢呋喃的含量控制在3ppm-200ppm范围内,环戊酮的含量控制在0.5ppm-85ppm范围内,不但可以极大的改善可生物降解聚酯组合物在印刷过程中印刷不良的现象,既不会出现油墨脱离膜材的现象,也不会出现油墨过多粘附膜材的现象,从而使薄膜表现出优良的印刷性能,而且可以改善可生物降解聚酯组合物在吹塑过程中膜的润滑程度,在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,保证了膜泡的稳定性和吹膜的连续性。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
本发明实施例i)选用PBAT;组分iv)选用ADR4370;有机填料选用淀粉;无机填料选用滑石粉、碳酸钙;增塑剂选用柠檬酸酯;表面活性剂选用棕榈酸酯;蜡选用硬酯酰胺;上述助剂、PBAT、ADR4370及PLA、四氢呋喃、环戊酮均来源于市购。
实施例1-16及对比例1-4:
按表1所示配方,将PBAT、PLA、ADR4370、有机填料、无机填料、增塑剂、表面活性剂、蜡等助剂以及四氢呋喃、环戊酮混匀后投入单螺杆挤出机中,于140℃-240℃挤出、造粒,得到组合物。性能测试数据见表1。
性能评价方法:
(1)可生物降解聚酯薄膜印刷性能的评估方法:
取不同印刷效果的可生物降解聚酯薄膜,根据印刷标签的清晰度和薄膜表面油墨粘附的情况,对不同印刷效果按如下方法定级:
1级:标签清晰,无过多油墨粘附薄膜;
2级:标签清晰,有少量多余油墨粘附薄膜;
3级:标签基本清晰,有较多油墨粘附薄膜;
4级:标签模糊,有极多油墨粘附薄膜;
5级:标签未见,无油墨粘附薄膜。
(2)可生物降解聚酯组合物膜泡稳定性的评估方法:
可生物降解聚酯组合物吹膜过程中的膜泡稳定性通过膜材厚度极差和膜材厚度相对偏差的方法进行评估:
薄膜厚度用螺旋测微计测试:在1m*1m的薄膜上均匀取10个测量点进行测量。
膜厚极差为10个测量点中最大厚度值与最小厚度值的差值。
膜厚相对偏差按下式计算:
Figure PCTCN2017074675-appb-000001
其中平均膜厚在1m*1m的薄膜上均匀取10个测量点,分别测试厚度后取算数平均值。
(3)四氢呋喃的测定方法:
THF标准曲线的制作:
配制浓度分别为0.010g/L、0.1g/L、1.0g/L、5.0g/L、10.0g/L、20.0g/L、50.0g/L、100.0g/L 的THF甲醇溶液,通过静态顶空方法分别测试上述不同浓度THF甲醇溶液中THF的峰面积,以THF的峰面积为纵坐标,THF的浓度为横坐标,制作THF的标准曲线。
可生物降解聚酯组合物中THF的测定:
精确称量1.2000g左右的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中THF的峰面积,根据可生物降解聚酯组合物中THF的峰面积和THF标准曲线即可计算得到可生物降解聚酯组合物中THF的含量,标准曲线由四氢呋喃/甲醇溶液标定。
静态顶空测试条件如下:
温度:
加热箱:105℃
定量环:135℃
传输线:165℃
时间:
样品瓶平衡:120分钟
进样持续时间:0.09分钟
GC循环:30分钟;
静态顶空所用仪器型号和参数如下:
Agilent Technologies 7697Headspace Sampler;
Agilent Technologies 7890AGC System;
色谱柱:J&W 122-7032:250℃:30m x 250μm x 0.25μm
进样:前SS进样口N2
出样:前检测器FID。
(4)环戊酮的测定方法:
1)环戊酮标准曲线的制作:
配制浓度分别为0.0001g/L、0.001g/L、0.01g/L、0.1g/L、5.0g/L、10.0g/L、20.0g/L的环戊酮甲醇溶液,通过静态顶空方法分别测试上述不同浓度环戊酮甲醇溶液中环戊酮的峰面积,以环戊酮的峰面积为纵坐标,环戊酮的浓度为横坐标,制作环戊酮的标准曲线。
2)可生物降解聚酯组合物中环戊酮含量的测定:
精确称量1.2000g左右的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中环戊酮的峰面积,根据可生物降解聚酯组合物中环戊酮的峰面 积和环戊酮标准曲线即可计算得到可生物降解聚酯组合物中环戊酮的含量。
静态顶空所用仪器型号和参数如下:
Agilent Technologies 7697Headspace Sampler;
Agilent Technologies 7890A GC System;
色谱柱:J&W 122-7032:250℃:30m x 250μm x 0.25μm
进样:前SS进样口N2
出样:前检测器FID。
静态顶空测试条件如下:
温度:
加热箱:105℃
定量环:135℃
传输线:165℃
时间:
样品瓶平衡:120分钟
进样持续时间:0.09分钟
GC循环:30分钟。
表1对比例1~4和实施例1-16测试数据(重量份)
Figure PCTCN2017074675-appb-000002
续表1
Figure PCTCN2017074675-appb-000003
从表1中可以看出,可生物降解聚酯组合物中四氢呋喃的含量为3-200ppm,环戊酮的含量为0.5ppm-85ppm,其印刷性能等级可达到3级或以上,具有优异的印刷性能,且在吹膜速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%,表明组合物具有更好的膜泡稳定性。而对比例1的四氢呋喃含量小于3ppm、环戊酮的含量为0时,组合物的印刷性能等级为4级,膜厚极差>0.2μm,膜厚相对偏差>1%。对比例2四氢呋喃含量超出200ppm,环戊酮含量超出85ppm时,组合物的印刷性能等级为5级,膜厚极差>0.2μm,膜厚相对偏差>1%,表明组合物的印刷性能和膜泡稳定性较差。对比例3的吹膜速度低于176Kg/h,对比例4的吹膜速度高于176Kg/h,膜厚极差>0.2μm,膜厚相对偏差>1%,组合物的膜泡也较不稳定。

Claims (9)

  1. 一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)60至100份的可生物降解的脂族-芳族聚酯;
    ii)0至40份的聚乳酸;
    iii)0至35份的有机填料和/或无机填料;
    iv)0至1份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物;
    其中,基于可生物降解聚酯组合物的总重量,四氢呋喃的重量含量为3ppm-200ppm;
    且,基于可生物降解聚酯组合物的总重量,环戊酮的重量含量为0.5ppm-85ppm。
  2. 根据权利要求1所述的一种可生物降解聚酯组合物,其特征在于,基于可生物降解聚酯组合物的总重量,四氢呋喃的重量含量为8ppm-100ppm,优选为15ppm-75ppm;环戊酮的重量含量为5ppm-50ppm;优选为10ppm-35ppm。
  3. 根据权利要求1或2所述的一种可生物降解聚酯组合物,其特征在于,按重量份计,包括组分:
    i)65至95份的可生物降解的脂族-芳族聚酯;
    ii)5至35份的聚乳酸;
    iii)5至25份的有机填料和/或无机填料;
    iv)0.02至0.5份的含有环氧基团且基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯的共聚物。
  4. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述四氢呋喃的重量含量采用如下方法测试:所述四氢呋喃的重量含量采用如下方法测试:精确称量1.2000g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中四氢呋喃的峰面积,根据可生物降解聚酯组合物中四氢呋喃的峰面积和四氢呋喃标准曲线即可计算得到可生物降解聚酯组合物中四氢呋喃的含量;标准曲线由四氢呋喃/甲醇溶液标定;
    所述环戊酮的重量含量采用如下方法测试:精确称量1.2000g的可生物降解聚酯组合物加入静态顶空测试瓶中,通过静态顶空方法测试可生物降解聚酯组合物中环戊酮的峰面积,根据可生物降解聚酯组合物中环戊酮的峰面积和环戊酮标准曲线即可计算得到可生物降解聚酯组合物中环戊酮的含量;标准曲线由环戊酮/甲醇溶液标定。
  5. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解的脂族-芳族聚酯为聚己二酸对苯二甲酸丁二醇酯PBAT、聚琥珀酸对苯二甲酸丁二醇酯PBST或聚癸二酸对苯二甲酸丁二醇酯PBSeT中的一种或几种。
  6. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,所述有机填料 选自天然淀粉、塑化淀粉、改性淀粉、天然纤维或木粉中的一种或其混合物;所述无机填料选自滑石粉、蒙脱土、高岭土、白垩、碳酸钙、石墨、石膏、导电炭黑、氯化钙、氧化铁、白云石、二氧化硅、硅灰石、二氧化钛、硅酸盐、云母、玻璃纤维或矿物纤维中的一种或其混合物。
  7. 根据权利要求1-3任一项所述的一种可生物降解聚酯组合物,其特征在于,还包括0至4份的至少一种下述物质:增塑剂、脱模剂、表面活性剂、蜡、防静电剂、染料、UV吸收剂、UV稳定剂或其他塑料添加剂。
  8. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物的印刷性能等级可达到3级或以上。
  9. 根据权利要求1-7任一项所述的一种可生物降解聚酯组合物,其特征在于,所述可生物降解聚酯组合物在吹膜挤出速度为176Kg/h时,膜厚极差<0.2μm,膜厚相对偏差<1%。
PCT/CN2017/074675 2016-03-07 2017-02-24 一种可生物降解聚酯组合物 WO2017152773A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/578,697 US10400100B2 (en) 2016-03-07 2017-02-24 Biodegradable polyester composition
KR1020187010587A KR102037616B1 (ko) 2016-03-07 2017-02-24 생분해성 폴리에스테르 조성물
EP17762459.0A EP3260497B1 (en) 2016-03-07 2017-02-24 Biodegradable polyester composition
ES17762459T ES2765882T3 (es) 2016-03-07 2017-02-24 Composición de poliéster biodegradable
JP2018511328A JP6469930B2 (ja) 2016-03-07 2017-02-24 生分解性ポリエステル組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610126864.7 2016-03-07
CN201610126864.7A CN105585826A (zh) 2016-03-07 2016-03-07 一种可生物降解聚酯组合物

Publications (1)

Publication Number Publication Date
WO2017152773A1 true WO2017152773A1 (zh) 2017-09-14

Family

ID=55925749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074675 WO2017152773A1 (zh) 2016-03-07 2017-02-24 一种可生物降解聚酯组合物

Country Status (8)

Country Link
US (1) US10400100B2 (zh)
EP (1) EP3260497B1 (zh)
JP (1) JP6469930B2 (zh)
KR (1) KR102037616B1 (zh)
CN (1) CN105585826A (zh)
DE (4) DE202017007331U1 (zh)
ES (1) ES2765882T3 (zh)
WO (1) WO2017152773A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585827A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585825A (zh) 2016-03-07 2016-05-18 杨红梅 一种可生物降解聚酯组合物
CN105585826A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585824A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105713356B (zh) 2016-03-07 2017-05-31 杨红梅 一种可生物降解聚酯组合物
CN106084681B (zh) 2016-07-22 2018-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN106084682B (zh) 2016-07-22 2018-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN108070225B (zh) * 2016-11-17 2022-02-08 普立万聚合体(上海)有限公司 具有模拟金属或珠光外观的聚酯制品
CN107459783B (zh) 2016-12-12 2018-07-27 金发科技股份有限公司 一种聚对苯二甲酸酯-共-癸二酸酯树脂组合物
WO2023102683A1 (zh) * 2021-12-06 2023-06-15 万华化学集团股份有限公司 一种pbat树脂组合物及其制备方法和应用
EP4293079A1 (en) 2022-10-27 2023-12-20 Basf Se Biodegradable polymer composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067550A (ja) * 1983-09-21 1985-04-17 Chisso Corp 塩化ビニル樹脂組成物
CN101622311A (zh) 2007-03-01 2010-01-06 巴斯夫欧洲公司 含有生物柴油的聚酯混合物
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN105585826A (zh) * 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379063A (en) * 1981-02-20 1983-04-05 Cincinnati Milacron Inc. Novel functional fluid
GB9225054D0 (en) * 1992-11-30 1993-01-20 Baxenden Chem Enzymatic synthesis
DE19528539A1 (de) 1995-08-03 1997-02-06 Basf Ag Verfahren zur Herstelung von Polyesterolen mit einem verminderten Gehalt an flüchtigen Verbindungen
US6762235B2 (en) * 2001-04-24 2004-07-13 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin and compositions and molded articles comprising the resin
US6972315B2 (en) 2002-07-19 2005-12-06 Gross Richard A Enzyme-catalyzed polycondensations
CN1284761C (zh) 2004-06-21 2006-11-15 沈阳工业大学 一种环戊酮的生产方法
US7619025B2 (en) * 2005-08-12 2009-11-17 Board Of Trustees Of Michigan State University Biodegradable polymeric nanocomposite compositions particularly for packaging
JP2007204650A (ja) * 2006-02-03 2007-08-16 Mitsubishi Chemicals Corp 熱可塑性樹脂組成物および樹脂成形品
CN101864068B (zh) 2009-04-15 2012-03-07 中国石油天然气股份有限公司 一种聚对苯二甲酸丁二醇/己二酸丁二醇共聚酯的制备方法
CN102731976A (zh) * 2011-04-12 2012-10-17 东丽纤维研究所(中国)有限公司 一种聚酯组合物及其制成的薄膜
US8686080B2 (en) * 2011-05-10 2014-04-01 Basf Se Biodegradable polyester film
EP2522695A1 (de) 2011-05-10 2012-11-14 Basf Se Biologisch abbaubare Polyesterfolie
JP6422877B2 (ja) 2012-11-15 2018-11-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 生分解性ポリエステル混合物
CN103044226B (zh) 2012-12-26 2014-09-03 淮安万邦香料工业有限公司 用己二酸制备环戊酮的方法
JP2014156539A (ja) * 2013-02-15 2014-08-28 Mitsubishi Chemicals Corp ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、及び該フィルムを成形してなる袋
CN104072952B (zh) * 2014-06-17 2016-08-24 杭州鑫富科技有限公司 一种横纵向撕裂性能优异的全生物降解地膜
CN105195063B (zh) 2015-09-29 2017-10-27 山东国润生物医药有限公司 一种用于己二酸制备环戊酮的脱羧装置
EP3214108A1 (en) 2016-03-01 2017-09-06 Novamont S.p.A. Process for removal of tetrahydrofuran
CN105585824A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物
CN105585827A (zh) 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067550A (ja) * 1983-09-21 1985-04-17 Chisso Corp 塩化ビニル樹脂組成物
CN101622311A (zh) 2007-03-01 2010-01-06 巴斯夫欧洲公司 含有生物柴油的聚酯混合物
CN102639594A (zh) * 2009-11-05 2012-08-15 诺瓦蒙特股份公司 包含天然来源的聚合物和脂族-芳族共聚酯的生物可降解的组合物
CN104479304A (zh) * 2014-12-10 2015-04-01 金发科技股份有限公司 一种全生物降解复合材料及其制备方法和应用
CN104744898A (zh) * 2015-03-26 2015-07-01 南通龙达生物新材料科技有限公司 一种全生物降解薄膜及其制备方法
CN105585826A (zh) * 2016-03-07 2016-05-18 金发科技股份有限公司 一种可生物降解聚酯组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260497A4

Also Published As

Publication number Publication date
US20180179375A1 (en) 2018-06-28
KR102037616B1 (ko) 2019-10-28
US10400100B2 (en) 2019-09-03
EP3260497A4 (en) 2019-01-02
DE202017007327U1 (de) 2020-10-28
DE202017007331U1 (de) 2020-10-28
EP3260497B1 (en) 2019-09-25
EP3260497A1 (en) 2017-12-27
DE202017007337U1 (de) 2020-10-28
CN105585826A (zh) 2016-05-18
DE202017007330U1 (de) 2020-10-28
ES2765882T3 (es) 2020-06-11
JP2018515683A (ja) 2018-06-14
KR20180054722A (ko) 2018-05-24
JP6469930B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2017152773A1 (zh) 一种可生物降解聚酯组合物
WO2017152678A1 (zh) 一种可生物降解聚酯组合物
WO2017152774A1 (zh) 一种可生物降解聚酯组合物
WO2017152772A1 (zh) 一种可生物降解聚酯组合物
WO2017152771A1 (zh) 一种可生物降解聚酯组合物
WO2018014561A1 (zh) 一种可生物降解聚酯组合物
CN105585823A (zh) 一种可生物降解聚酯组合物
WO2018107971A1 (zh) 一种聚对苯二甲酸酯-共-癸二酸酯树脂组合物

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017762459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018511328

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578697

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187010587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE